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Abstract
In the problem of the longest common substring with k mismatches we are given two strings X,Y
and must find the maximal length ` such that there is a length-` substring of X and a length-`
substring of Y that differ in at most k positions. The length ` can be used as a robust measure of
similarity between X,Y . In this work, we develop new approximation algorithms for computing `
that are significantly more efficient that previously known solutions from the theoretical point of
view. Our approach is simple and practical, which we confirm via an experimental evaluation, and
is probably close to optimal as we demonstrate via a conditional lower bound.
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1 Introduction

For decades, the edit distance and its variants remained the most relevant measure of
similarity between biological sequences. However, there is strong evidence that the edit
distance cannot be computed in strongly subquadratic time [7]. One possible approach
to overcoming the quadratic time barrier is computing the edit distance approximately,
and last year in the breakthrough paper Chakraborty et al. [8] showed a constant-factor
approximation algorithm that computes the edit distance between two strings of length n
in time Õ(n2−2/7). Nevertheless, the algorithm is highly non-trivial and because of that is
likely to be impractical.
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16:2 Approximating Longest Common Substring with k Mismatches

A different approach is to consider alignment-free measures of similarities. Ideally, we
want the measure to be robust and simple enough so that we could compute it efficiently.
One candidate for such a measure is the length of the longest common substring with k

mismatches. Formally, given two strings X,Y of lengths at most n and an integer k, we want
to find the maximal length LCSk(X,Y ) of a substring of X that occurs in Y with at most k
mismatches. Computing this value constitutes the LCS with k Mismatches problem.

The LCS with k Mismatches problem was first considered for k = 1 [6, 13], with current
best algorithm taking O(n logn) time and O(n) space. The first algorithm for the general
value of k was shown by Flouri et al. [13]. Their simple approach used quadratic time and
linear space. Grabowski [15] focused on a data-dependent approach, namely, he showed
two linear-space algorithms with running times O(n((k + 1)(LCS + 1))k) and O(n2k/LCSk),
where LCS is the length of the longest common substring of X and Y and LCSk, similarly
to above, is the length of the longest common substring with k mismatches of X and Y .
Abboud et al. [1] showed a k1.5n2/2Ω(

√
(logn)/k)-time randomised solution to the problem via

the polynomial method. Thankachan et al. [24] presented an O(n logk n)-time, O(n)-space
solution for constant k. This approach was recently extended by Charalampopoulos et al. [10]
to develop an O(n)-time and O(n)-space algorithm for the case of LCSk = Ω(log2k+2 n).

On the other hand, Kociumaka, Radoszewski, and Starikovskaya [19] showed that there
is k = Θ(logn) such that the LCS with k Mismatches problem cannot be solved in strongly
subquadratic time, even for the binary alphabet, unless the Strong Exponential Time Hypo-
thesis (SETH) of Impagliazzo, Paturi, and Zane [16] is false. This conditional lower bound
implies that there is little hope to improve existing solutions to LCS with k Mismatches. To
overcome this barrier, they introduced an approximation approach to LCS with k Mismatches,
inspired by the work of Andoni and Indyk [4].

I Problem 1 (LCS with Approximately k Mismatches). Two strings X,Y of length at most n,
an integer k, and a constant ε > 0 are given. Return a substring of X of length at least
LCSk(X,Y ) that occurs in Y with at most (1 + ε) · k mismatches.

Kociumaka, Radoszewski, and Starikovskaya [19] also showed that for any ε ∈ (0, 2) the
LCS with Approximately k Mismatches problem can be solved in O(n1+1/(1+ε) log2 n) time and
O(n1+1/(1+ε)) space. Besides for superlinear space, their solution uses a very complex class
of hash functions which requires n4/3+o(1)-time preprocessing, and that is the underlying
reason for the bounds on ε. In this work, we significantly improve the complexity of the LCS
with Approximately k Mismatches problem and show the following results.

I Theorem 2. Let ε > 0 be an arbitrary constant. The LCS with Approximately k Mismatches
problem can be solved correctly with high probability:
1) In O(n1+1/(1+2ε)+o(1)) time and O(n1+1/(1+2ε)+o(1)) space assuming a constant-size al-

phabet;
2) In O(n1+1/(1+ε) log3 n) time and O(n) space for alphabets of arbitrary size.

Our first solution uses the Approximate Nearest Neighbour data structure [5] as a black
box. The definition of this data structure is extremely involved, and we view this result as
more of a theoretical interest. On the other hand, our second solution is simple and practical,
which we confirm by experimental evaluation (see Section 4 for details).

As a final remark, we note that a construction similar to the one used to show a
lower bound for the LCS with k Mismatches problem [19] gives a lower bound for LCS with
Approximately k Mismatches. A proof of the following fact can be found in Section 5.
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I Fact 3. Assuming SETH, for every constant δ > 0, there exists a constant ε = ε(δ)1 such
that any randomised algorithm that solves the LCS with Approximately k Mismatches problem
for given X and Y of length at most n correctly with constant probability uses Ω(n2−δ) time.

Related work. In 2014, Leimester and Morgenstern [20] introduced a related similarity
measure, the k-macs distance. Let LCPk(Xi, Yj) = max{` : dH(X[i, i+`−1], Y [j, j+`−1]) ≤
k}, where dH stands for Hamming distance, i.e. the number of mismatches between two
strings. We have LCSk = maxi,j LCPk(Xi, Yj). The k-macs distance, on the other hand, is
defined as a normalised average of these values. Leimeister and Morgenstern [20] showed a
heuristic algorithm for computing the k-macs distance, with no theoretical guarantees for
the precision of the approximation; other heuristic approaches for computing the k-macs
distance include [25, 26]. The only algorithm with provable theoretical guarantees is [24]
and it computes the k-macs distance in O(n logk n) time and O(n) space.

2 Preliminaries

We assume that the alphabet of the strings X,Y is Σ = {1, . . . , σ}, where σ = nO(1).

Karp–Rabin fingerprints. The Karp–Rabin fingerprint [18] of a string S = s1s2 . . . s` is
defined as

ϕ(S) =
(∑̀
i=1

ri−1si

)
mod q,

where q = Ω(max{n5, σ}) is a prime number, and r ∈ Fq is chosen uniformly at random.
Obviously, if S1 = S2, then ϕ(S1) = ϕ(S2). Furthermore, for any ` ≤ n, if the fingerprints of
two `-length strings S1, S2 are equal, then S1, S2 are equal with probability at least 1− 1/n4

(for a proof, see e.g. [21]).

Dimension reduction. We will exploit a computationally efficient variant of the Johnson–
Lindenstrauss lemma [17] which describes a low-distortion embedding from a high-dimensional
Euclidean space into a low-dimensional one. Let ‖·‖ be the Euclidean (L2) norm of a vector.
We will exploit the following claim which follows immediately from [2, Theorem 1.1]:

I Lemma 4. Let P be a set of n vectors in R`, where ` ≤ n. Given α = α(n) > 0 and a
constant β > 0, there is d = Θ(α−2 logn) and a scalar c > 0 such that the following holds. Let
M be a d× ` matrix filled with i.u.d. ±1 random variables. For all U ∈ P , define skα(U) =
c ·MU . Then for all U, V ∈ P there is ‖U − V ‖2 ≤ ‖skα(U)− skα(V )‖2 ≤ (1 +α)‖U − V ‖2
with probability at least 1− n−β.

Since the Hamming distance between binary strings U, V is equal to ‖U − V ‖2, the
matrix M defines a low-distortion embedding from an `-dimensional into a d-dimensional
Hamming space as well. For non-binary strings, an extra step is required. Let the alphabet
be Σ = {1, 2, . . . , σ} and consider a morphism µ : Σ → {0, 1}σ, where µ(a) = 0a−110σ−a
for all a ∈ Σ. We extend µ to strings in a natural way. Note that for two strings U, V over
the alphabet Σ the Hamming distance between µ(U), µ(V ) is exactly twice the Hamming
distance between U, V . We therefore obtain:

1 Here δ is a function of ε for which the explicit form is not known (a condition inherited from [22]).

CPM 2020



16:4 Approximating Longest Common Substring with k Mismatches

I Corollary 5. Let P be a set of n strings in Σ`, where ` ≤ n. Given α = α(n) > 0 and a
constant β > 0, there is d = Θ(α−2 logn) and a scalar c > 0 such that the following holds.
Let M be a d× (σ · `) matrix filled with i.u.d. ±1 random variables. For all U ∈ P , define
skα(U) = c ·Mµ(U). Then for all U, V ∈ P there is dH(U, V ) ≤ ‖skα(U) − skα(V )‖2 ≤
(1 + α)dH(U, V ) with probability at least 1− n−β.

We will use the corollary for dimension reduction, and also to design a simple test that
checks whether the Hamming distance between two strings is at most k.

I Corollary 6. Let P be a set of n strings in Σ`, where ` ≤ n. With probability at least
1− n−β, for all U, V ∈ P :
1) if ‖skα(U)− skα(V )‖2 ≤ (1 + α)k, then dH(U, V ) ≤ (1 + α) · k;
2) if ‖skα(U)− skα(V )‖2 > (1 + α)k, then dH(U, V ) ≥ k.

2.1 The Twenty Questions game
Consider the following version of the classic game “Twenty Questions”. There are two players:
Paul and Carole; Carole thinks of two numbers A,B between 0 and N , and Paul must return
some number in [A,B]. He is allowed to ask questions of form “Is x ≤ A?”, for any x ∈ [0, N ].
If x ≤ A, Carole must return YES; If A < x ≤ B, she can return anything; and if B < x,
she must return NO. Paul must return the answer after having asked at most Q questions
where Carole can tell at most dρQe lies, and only in the case when x ≤ A.

We show that Paul has a winning strategy for Q = Θ(logn) and any ρ < 1/3 by a
black-box reduction to the result of Dhagat, Gács, and Winkler [11] who showed a winning
strategy for A = B.

I Theorem 7 ([11]). For A = B, Paul has a winning strategy for all ρ < 1
3 asking

Q = d 8 logN
(1−3ρ)2 e questions.

This result is obtained by maintaining a stack of trusted intervals. Once Paul knows that
A is between ` and r, where ` ≤ r, he checks whether A is in the left or the right half of the
interval [`, r]. If no inconsistencies appear (like A < ` or r < A), he pushes the new interval
to the stack, else he removes the interval [`, r] from the stack of trusted intervals. After Q
rounds, Paul returns the only number in the top interval in the stack, which is guaranteed to
have length 1 and to contain A. We give the pseudocode of Paul’s strategy in Algorithm 1.
By Carole(x), we denote the answer of Carole for a question “Is x ≤ A?”.

Algorithm 1 The Twenty Questions game.

1: Q← d 8 logN
(1−3ρ)2 e

2: S ← {[0, N ]}
3: for i = 1, 2, . . . , Q/2 do
4: I = [`, r]← S.top()
5: mid ← d `+r2 e
6: if Carole(mid) then
7: if Carole(r) then S.pop() . The answer is inconsistent with I; remove I.
8: else S.push([mid, r])
9: else

10: if Carole(`) then S.push([`,mid − 1])
11: else S.pop() . The answer is inconsistent with I; remove I.

We now a show a winning strategy for our variant of the game.
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I Corollary 8. For A ≤ B, Paul has a winning strategy for all ρ < 1
3 asking Q = 8 logN

(1−3ρ)2

questions.

Proof. We introduce just one change to Algorithm 1, namely, we return the argument of the
largest YES obtained in the course of the algorithm. From the problem statement it follows
that the answer is at most B. We shall now prove that the answer is at least A. If Carole
ever returned YES for A < x ≤ B, then it is obviously the case. Otherwise, Carole actually
behaved as if she had A = B in mind: apart from the small fraction of erroneous answers,
she returned YES for x ≤ A, and NO for x > A. Thus, the strategy of Dhagat, Gács, and
Winkler ends up with A as the answer (and this must be due to a YES for x = A). J

3 LCS with Approximately k Mismatches

In this section, we prove Theorem 2. Let us first introduce a decision variant of the LCS with
Approximately k Mismatches problem.

I Problem 9. Two strings X,Y of length at most n, integers k, `, and a constant ε > 0 are
given. We must return:
1. YES if ` ≤ LCSk(X,Y );
2. Anything if LCSk(X,Y ) < ` ≤ LCS(1+ε)k(X,Y );
3. NO if LCS(1+ε)k(X,Y ) < `.
If we return YES, we must also give a witness pair of length-` substrings S1 and S2 of X
and Y , respectively, such that dH(S1, S2) ≤ (1 + ε)k.

The decision variant of the LCS with Approximately k Mismatches problem can be reduced
to the following (c, r)-Approximate Near Neighbour problem.

I Problem 10. In the (c, r)-Approximate Near Neighbour problem with failure probability f ,
the aim is, given a set P of n points in Rd, to construct a data structure supporting the
following queries: given any point q ∈ Rd, if there exists p ∈ P such that ‖p− q‖ ≤ r, then
return some point p′ ∈ P such that ‖p′ − q‖ ≤ cr with probability at least 1− f .

Using the reduction, we will show our first solution to the LCS with Approximately k
Mismatches decision problem based on the result of Andoni and Razenshteyn [5], who showed
that for any constant f , there is a data structure for the (c, r)-Approximate Near Neighbour
problem that has O(n1+ρ+o(1) + d · n) size, O(d · nρ+o(1)) query time, and O(d · n1+ρ+o(1))
preprocessing time, where ρ = 1/(2c2 − 1).

I Lemma 11. Assume an alphabet of constant size σ. The decision variant of the LCS with
Approximately k Mismatches problem can be solved in space O(n1+1/(1+2ε)+o(1)) and time
O(n1+1/(1+2ε)+o(1)). The answer is correct with constant probability.

Proof. Let P be the set of all length-` substrings of X and Q be the set of all length-`
substrings of Y , all encoded in binary using the morphism µ (see Section 2). We start
by applying the dimension reduction procedure of Corollary 5 to P and Q with α =
1/(log logn)Θ(1) and β = 2 to obtain sets P ′ and Q′. We can implement the procedure in
O(σn log2 n(log logn)Θ(1)) = O(n log2+o(1) n) time by encoding X,Y using µ and running
the FFT algorithm [12] for each of the O(log1+o(1) n) rows of the matrix and µ(X), µ(Y ).

To solve the decision variant of LCS with Approximately k Mismatches, we build the data
structure of Andoni and Razenshteyn [5] for (

√
(1 + ε)(1− α),

√
(1 + α)k)-Approximate Near

Neighbour over Q′. We make a query for each string in P ′. If, queried for skα(S1) ∈ P ′,
where S1 is a length-` substring of X, the data structure outputs skα(S2) ∈ Q′, where S2 is

CPM 2020



16:6 Approximating Longest Common Substring with k Mismatches

a length-` substring of Y , then we compute ‖skα(S1)− skα(S2)‖2. If it is at most (1 + ε)k,
we output YES and the witness pair (S1, S2) of substrings. As the length of vectors in P ′,
Q′ is d = O(log1+o(1) n), we obtain the desired complexity.

To show that the algorithm is correct, suppose that there are length-` substrings S1 and
S2 of X and Y , respectively, with dH(S1, S2) ≤ k. By Corollary 5, ‖skα(S1), skα(S2)‖ ≤√

(1 + α)k holds with probability at least 1− 1/n. Then, when querying for skα(S1), with
constant probability the data structure will output a string skα(S′2) such that ‖skα(S1)−
skα(S′2)‖2 ≤ (1 + ε)(1− α2)k ≤ (1 + ε)k. Then, our algorithm will return YES.

On the other hand, if we output YES with a witness pair (S1, S2), then ‖skα(S1) −
skα(S2)‖2 ≤ (1 + ε)k implies dH(S1, S2) ≤ (1 + ε)k with high probability by Corollary 5. J

While this solution is very fast, it uses quite a lot of space. Furthermore, the data
structure of [5] that we use as a black box applies highly non-trivial techniques. To overcome
these two disadvantages, we will show a different solution based on a careful implementation
of ideas first introduced in [4] that showed a data structure for approximate text indexing
with mismatches. In [19], the authors developed these ideas further to show an algorithm
that solves the LCS with Approximately k Mismatches problem in O(n1+1/(1+ε)) space and
O(n1+1/(1+ε) log2 n) time for ε ∈ (0, 2) with constant error probability. In this work, we
significantly improve and simplify the approach to show the following result:

I Theorem 12. Assume an alphabet of arbitrary size σ = nO(1). The decision variant of
LCS with Approximately k Mismatches can be solved in O(n1+1/(1+ε) log2 n) time and O(n)
space. The answer is correct with constant probability.

Let us defer the proof of the theorem until Section 3.1 and start by explaining how we
use Lemma 11 and Theorem 12 and the Twenty Questions game to show Theorem 2.

Proof of Theorem 2. We will rely on the modified version of the Twenty Questions game
that we described in Section 2.1. In our case, A = LCSk(X,Y ) and B = LCS(1+ε)k(X,Y ).
For Carole, we use either the algorithm of Lemma 11, or the algorithm of Theorem 12, with
an additional procedure verifying the witness pair (S1, S2) character by character to check
that it indeed satisfies dH(S1, S2) ≤ (1 + ε)k. We output the longest pair of (honest) witness
substrings found across all iterations. We will return a correct answer assuming that the
fraction of errors is ρ < 1

3 . Recall that the algorithm solves the decision variant of the
LCS with Approximately k Mismatches problem incorrectly with probability not exceeding a
constant δ, and we can ensure δ < 1

3 by repeating it a constant number of times. It means
that Carole can answer an individual question erroneously with probability less than 1

3 .
Therefore, for a sufficiently large constant in the number of queries Q = Θ(logn), the fraction
of erroneous answers is ρ < 1

3 with high probability by Chernoff–Hoeffding bounds. The
claim of the theorem follows immediately from Lemma 11 and Theorem 12. J

3.1 Proof of Theorem 12
We first give an algorithm for the decision version of the LCS with Approximately k Mismatches
problem that uses O(n logn) space and O(n1+1/(1+ε) logn + σn log2 n) time, and then we
improve the space and time complexity.

We assume to have fixed a Karp–Rabin fingerprinting function ϕ for a prime q =
Ω(max{n5, σ}) and an integer r ∈ Zq. With error probability inverse polynomial in n, we
can find such q in O(logO(1) n) time; see [23, 3].
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Let Π be the set of all projections of strings of length ` onto a single position, i.e., the
value πi(S) of the i-th projection on a string S of length ` is simply its i-th character S[i].
More generally, for a length-` string S and a function h = (πa1 , . . . , πam

) ∈ Πm, we define
h(S) as S[a1]S[a2] · · ·S[am].

Let p1 = 1 − k/` and p2 = 1 − (1 + ε)k/`. We assume that (1 + ε)k < ` in order to
guarantee p1 > p2 > 0; the problem is trivial if (1 + ε)k ≥ `. Further, let m = dlogp2

1
ne.

We choose a set H of L = Θ(n1/(1+ε)) hash functions in Πm uniformly at random. Let CH`
be the mutliset of all collisions of length-` substrings of X and Y under the functions from H,
i.e. CH` = {(X[i, i+ `− 1], Y [j, j+ `− 1], h) : ϕ(h(X[i, i+ `− 1])) = ϕ(h(Y [j, j+ `− 1])), 1 ≤
i ≤ |X| − `, 1 ≤ j ≤ |Y | − `}.

We will perform two tests. The first test chooses an arbitrary subset C ′ ⊆ CH` of size
|C ′| = min{4nL, |CH` |} and, for each collision (S1, S2, h) ∈ C ′, computes ‖skε(S1)−skε(S2)‖2.
If this value is at most (1 + ε)k, then the algorithm returns YES and the pair (S1, S2) as
a witness. The second test chooses a collision (S1, S2, h) ∈ CH` uniformly at random and
computes the Hamming distance between S1 and S2 character by character in O(`) = O(n)
time. If the Hamming distance is at most (1 + ε)k, the algorithm returns YES and the
witness pair (S1, S2). Otherwise, the algorithm returns NO. See Algorithm 2.

Algorithm 2 LCS with Approximately k Mismatches (decision variant).

1: Choose a set H of L functions from Πm uniformly at random
2: CH` ={(S1, S2, h) : S1, S2 – length-` substrings of X,Y resp. and ϕ(h(S1)) = ϕ(h(S2))}
3: Choose an arbitrary subset C ′ ⊆ CH` of size min{4nL, |CH` |}
4: Compute skε(·) sketches for all length-` substrings of X,Y
5: for (S1, S2, h) ∈ C ′ do
6: if ‖skε(S1)− skε(S2)‖2 ≤ (1 + ε)k then return (YES, (S1, S2))
7: Draw a collision (S1, S2, h) ∈ CH` uniformly at random
8: if dH(S1, S2) ≤ (1 + ε)k then return (YES, (S1, S2))
9: return NO

We must explain how we compute CH` and choose the collisions that we test. We consider
each hash function h ∈ H in turn. Let h = (πa1 , . . . , πam

). Recall that for a string S of length `
we define h(S) as S[a1]S[a2] · · ·S[am]. Consequently, ϕ(h(S)) = (

∑m
i=1 r

i−1S[ai]) mod q.
We create a vector U of length ` where each entry is initialised with 0. For each i, we add
ri−1 mod q to the ai-th entry of U . Finally, we run the FFT algorithm [12] for U and X,Y
in the field Zq, and sort the resulting values. We obtain a list of sorted values that we can
use to generate the collisions. Namely, consider some fixed value z. Assume that there are x
substrings of X and y substrings of Y of length ` such that the fingerprint of their projection
is equal to z. The value z then gives xy collisions, and we can generate each one of them in
constant time. This explains how to choose the subset C ′ in O(nL logn) time.

To draw a collision from CH` uniformly at random, we could simply compute the total
number of collisions across all functions h ∈ H, draw a number in [1, |CH` |], and generate the
corresponding collision. However, this would require to generate the collisions twice. Instead,
we use the weighted reservoir sampling algorithm [9]. We divide all collisions into subsets
according to the values of fingerprints. We assume that the weighted reservoir sampling
algorithm receives the fingerprint values one-by-one, as well as the number of corresponding
collisions. At all times, the algorithm maintains a “reservoir” containing one fingerprint value
and a random collision corresponding to this value. When a new value z with xy collisions
arrives, the algorithm replaces the value in the reservoir with z and a random collision with
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16:8 Approximating Longest Common Substring with k Mismatches

some probability. Note that to select a random collision it suffices to choose a pair from
[1, x]× [1, y] uniformly at random. It is guaranteed that if for a value z we have xy collisions,
the algorithm will select z with probability xy/|CH` |. Consequently, after processing all
values, the reservoir will contain a collision chosen from CH` uniformly at random.

I Lemma 13. Algorithm 2 uses O(n1+1/(1+ε) logn+ σn log2 n) time and O(n logn) space.

Proof. Computing the sketches (Line 4) takes O(σn log2 n) time and O(n logn) space.
Computing the collisions and choosing the collisions to test takes O(n1+1/(1+ε) logn) time
and O(n) space in total. Testing min{4nL, |CH` |} collisions (Line 5) takes O(n1+1/(1+ε) logn)
time and constant space. Computing the Hamming distance for a random collision (Line 8)
takes O(`) = O(n) time and constant space. J

I Lemma 14. Let S1 and S2 be two length-` substrings of X and Y , respectively, with
dH(S1, S2) ≤ k. If L = Θ(n1/(1+ε)) is large enough, then, with probability at least 3/4, there
exists a function h ∈ H such that h(S1) = h(S2).

Proof. Consider a function h = (πa1 , . . . , πam
) drawn from Πm uniformly at random. The

probability of h(S1) = h(S2) is at least pm1 . Due to p1 ≤ 1, we have

pm1 = p
dlogp2

1
n e

1 ≥ p1+logp2
1
n

1 = p1 · n−
log p1
log p2 .

Moreover, p1 = 1− k
` and (1+ε)k < ` yield p1 > 1− 1

1+ε = ε
1+ε , whereas Bernoulli’s inequality

implies p2 = 1− (1 + ε)k` ≤ (1− k
` )1+ε = p1+ε

1 , i.e., log p2 ≤ (1 + ε) log p1. Therefore,

pm1 ≥ p1 · n−
log p1
log p2 ≥ ε

1+ε · n
− 1

1+ε .

Hence, we can choose the constant in L = |H| so that the claim of the lemma holds. J

I Lemma 15. If |CH` | > 4nL and (S1, S2, h) is a uniformly random element of CH` , then
Pr[dH(S1, S2) ≥ (1 + ε)k] ≤ 1

2 .

Proof. Consider length-` substrings S1, S2 of X,Y , respectively, such that dH(S1, S2) ≥
(1 + ε)k, and a hash function h. Let us bound the probability of (S1, S2, h) ∈ CH` . There
two possible cases: either h(S1) 6= h(S2) but ϕ(h(S1)) = ϕ(h(S2)), or h(S1) = h(S2).
The probability of the first event is bounded by the collision probability of Karp–Rabin
fingerprints, which is at most 1/n. Let us now bound the probability of the second event.
Since dH(S1, S2) ≥ (1+ε)k, we have Pr[h(S1) = h(S2)] ≤ pm2 ≤ 1/n, where the last inequality
follows from the definition of m. Therefore, the probability that for some function h ∈ H we
have ϕ(h(S1)) = ϕ(h(S2)) is at most 2/n.

In total, we have n2|H| possible triples (S1, S2, h) so by linearity of expectation, we
conclude that the expected number of such triples is at most 2

nn
2L = 2nL. Therefore the

probability to hit a triple (S1, S2, h) such that dH(S1, S2) ≥ (1 + ε)k when drawing from CH`
uniformly at random is at most 2nL/|CH` | ≤ 2nL/4nL = 1/2. J

Below, we combine the previous results to prove that, with constant probability, Al-
gorithm 2 correctly solves the decision variant of the LCS with Approximately k Mismatches
problem. Note that we can reduce the error probability to an arbitrarily small constant
δ > 0: it suffices to repeat the algorithm a constant number of times.

I Corollary 16. With non-zero constant probability, Algorithm 2 solves the decision variant
of LCS with Approximately k Mismatches correctly.
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Proof. Suppose first that ` ≤ LCSk(X,Y ), which means that there are two length-` substrings
S1, S2 of X,Y such that dH(S1, S2) ≤ k. By Lemma 14, with probability at least 3/4, there
exists a function h ∈ H such that h(S1) = h(S2). In other words, (S1, S2, h) ∈ CH` with
probability at least 3

4 . If |C
H
` | < 4nL, we will find this triple and it will pass the test with

probability at least 1 − n−6. If |CH` | ≥ 4nL, then by Lemma 15 the Hamming distance
between S1, S2, where (S1, S2, h) was drawn from CH` uniformly at random, is at most
(1 + ε)k with probability ≥ 1/2, and therefore this pair will pass the test with probability
≥ 1/2. It follows that in this case the algorithm outputs YES with constant probability.

Suppose now that ` > LCS(1+ε)k(X,Y ). In this case, the Hamming distance between any
pair of length-` substrings of X and Y is at least (1 + ε)k, so none of them will ever pass the
second test and none of them will pass the first test with constant probability. J

We now improve the space of the algorithm to linear. Note that the only reason why
we needed O(n logn) space is that we precompute and store the sketches for the Hamming
distance. Below we explain how to overcome this technicality.

First, we do not precompute the sketches. Second, we process the collisions in C ′ in
batches of size n. Consider one of the batches, B. For each collision (S1, S2, h) ∈ B we must
compute ‖skε(S1)− skε(S2)‖2. We initialize a counter for every collision, setting it to zero
initially. The number of rounds in the algorithm will be equal to the length of the sketches,
and, in round i, the counter for a collision (S1, S2, h) ∈ B will contain the squared L2 distance
between the length-i prefixes of skε(S1) and skε(S2). In more detail, let S be the set of all
substrings of X,Y that participate in the collisions in B. Recall that all these substrings
have length `. At round i, we compute the i-th coordinate of the sketches of the substrings
in S. By definition, the i-th coordinate is the dot product of the i-th row of c ·M , where
c and M are as in Corollary 5, and a substring encoded using µ. Hence, we can compute
the coordinate using the FFT algorithm [12] in O(σn logn) time and O(n) space. When we
have the coordinate i computed, we update the counters for the collisions and repeat.

At any time, the algorithm uses O(n) space. Compared to the time consumption proven in
Lemma 13, the algorithm spends an additional O(σn1+1/(1+ε) log2 n) time for computing the
coordinates of the sketches. Therefore, in total the algorithm uses O(σn1+1/(1+ε) log2 n) =
O(n1+1/(1+ε) log2 n) time and O(n) space. For constant-size alphabets, this completes the
proof of Theorem 12. For alphabets of arbitrary size, we replace the sketches from Section 2
with the sketches defined in [19] to achieve the desired complexity. We note that we could
use the sketches [19] for small-size alphabets as well, but their lengths hide a large constant.

4 Experiments

We now present results of experimental evaluation of the second solution of Theorem 2.

Methodology and test environment. The baselines and our solution are written in C++11
and compiled with optimizations using gcc 7.4.0. The experimental results were generated
on an Intel Xeon E5-2630 CPU using 128 GiB RAM. To ensure the reproducibility of
our results, our complete experimental setup, including data files, is available at https:
//github.com/fnareoh/LCS_Approx_k_mis.

Baseline. The only other solution to the LCS with Approximately k Mismatches problem was
presented in [19]. However, it has a worse complexity and is likely to be unpractical because
it uses a very complex class of hash functions. We therefore chose to compare our algorithm
against algorithms for the LCS with k Mismatches problem. To the best of our knowledge,
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none of the existing algorithms has been implemented. We implemented the solution to LCS
with k Mismatches by Flouri et al., which we refer to as FGKU [13]. (The other algorithms
seem too complex to be efficient in practice.) The main idea of the algorithm of Flouri et al.
is that if we know that the longest common substring with k mismatches is obtained by a
substring of X that starts at a position p and a substring of Y that starts at a position p+ i,
then we can find it by scanning X and Y [i, |Y |] in linear time.

Details of implementation. We made several adjustments to the theoretical algorithm
we described. First, we use the fact that A = LCS(X,Y ) + k ≤ LCSk(X,Y ) ≤ B =
(k + 1) · LCS(X,Y ) + k to bound the interval in the Twenty Questions game. We also treated
the number of questions in the Twenty Questions game and L, the size of the set of hash
functions H, as parameters that trade time for accuracy, and put the number of questions to
2 log(B −A) in the Twenty Questions game and L = n1/(1+ε)/16. In Line 6 of Algorithm 2,
we used sketches to estimate the Hamming distance. In practice, we computed the Hamming
distance via character-by-character comparison when ` is small compared to k and via
kangaroo jumps [14] otherwise. Also, when ` ≤ 2 logn in Algorithm 2, we computed the hash
values of the length-` substrings of S1 and S2 naively, instead of using the FFT algorithm [12].

Data sets and results. We considered k ∈ {10, 25, 50} and ε ∈ {1.0, 1.25, 1.5, 1.75, 2.0}. We
tested the algorithms on pairs of random strings (each character is selected independently
and uniformly from a four-character alphabet {A, T,G,C}) and on pairs of strings extracted
at random from the E. coli genome. The lengths of the strings in each pair are equal and
vary from 0 to 60000 with a step of 5000. All timings reported are averaged over ten runs.
Figures 1–3 show the results for k = 10, 25, 50. We note that for ε = 1 and k = 10, 25,
the standard deviation of the running time on the E. coli data set is quite large, which is
probably caused by our choice of the method to compute the Hamming distance between
substrings, but for all other parameter combinations it is within the standard range. We can
see that the time decreases when ε grows, which is coherent with the theoretical complexity.

As for the accuracy, note that our algorithm cannot return a pair of strings at Hamming
distance more than (1 + ε)k, and so the only risk is returning strings which are too short.
Consequently, we measured the accuracy of our implementation by the ratio of the length

(a) Random, k = 10. (b) E. coli, k = 10.

Figure 1 Comparison of the FGKU algorithm versus our algorithm for k = 10 and different
values of ε. Large standard deviation for length 60000 is caused by an outlier with very long longest
common substring with k mismatches.
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(a) Random, k = 25. (b) E. coli, k = 25.

Figure 2 Comparison of the FGKU algorithm versus our algorithm for k = 25 and different
values of ε.

(a) Random, k = 50. (b) E. coli, k = 50.

Figure 3 Comparison of the FGKU algorithm versus our algorithm for k = 50 and different
values of ε.

Table 1 Accuracy of the LCS with Approximately k Mismatches algorithm. For each k and ε, we
show rmin(ε, k), rmax(ε, k), as well as the error rate.

Random E. coli
k = 10 k = 25 k = 50 k = 10 k = 25 k = 50

ε = 1.0 0.95 1.41 1.12 1.46 1.27 1.54 0.89 1.34 0.94 1.48 0.97 1.59
error = 3% error = 0% error = 0% error = 33% error = 13% error = 3%

ε = 1.25 0.97 1.47 1.15 1.63 1.44 1.78 0.88 1.48 0.98 1.56 0.99 1.73
error = 1% error = 0% error = 0% error = 28% error = 5% error = 3%

ε = 1.5 1.05 1.57 1.37 1.76 1.55 1.91 0.88 1.45 0.96 1.67 0.99 1.89
error = 0% error = 0% error = 0% error = 17% error = 3% error = 3%

ε = 1.75 1.02 1.69 1.46 1.86 1.72 2.12 0.88 1.58 0.95 1.84 1.02 2.15
error = 0% error = 0% error = 0% error = 17% error = 2% error = 0%

ε = 2.0 1.10 1.72 1.59 2.00 1.89 2.24 0.91 1.77 1.01 2.10 1.00 2.19
error = 0% error = 0% error = 0% error = 9% error = 0% error = 1%
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LCSk̃(X,Y ) returned by our algorithm divided by LCSk(X,Y ) computed by the dynamic
programming. We estimate rmin(ε, k) = minX,Y (LCSk̃(X,Y )/LCSk(X,Y )) and rmax(ε, k) =
maxX,Y (LCSk̃(X,Y )/LCSk(X,Y )) by computing LCSk̃(X,Y ) and LCSk(X,Y ) for 10 pairs
of strings for each length from 5000 to 60000 with step of 5000, as well as the error rate,
i.e., the percentage of experiments where LCSk̃(X,Y ) < LCSk(X,Y ) (see Table 1). Not
surprisingly, rmin and rmax grow as k and ε grow, while the error rate drops. Even though
there is no theoretical upper bound on rmax, the latter is at most 2.24 at all times. We also
note that even in the cases when the error rate is non-negligible, LCSk̃ ≥ 0.86 · LCSk; in
other words, our algorithm returns a reasonable approximation of LCSk.

5 Proof of Fact 3

We now show the lower bound of Fact 3 by a reduction from the (1 + γ)-approximate
Bichromatic Closest Pair problem.

I Problem 17 ((1 + γ)-approximate Bichromatic Closest Pair). Given a constant γ > 0 and
two sets of binary strings (Ui)i∈[1,N ] and (Vj)j∈[1,N ], each of length d = O(logN), if the
smallest Hamming distance between a pair (Ui, Vj)i,j∈[1,N ] is h, we must output (possibly
another) pair of binary strings (Ui, Vj) with Hamming distance in [h, (1 + γ)h].

Rubinstein [22] proved that for every constant δ > 0, there exists γ = γ(δ) such that any
randomised algorithm that solves (1 + γ)-approximate Bichromatic Closest Pair correctly with
constant probability requires O(N2−δ) time assuming SETH:

I Hypothesis 18 (SETH). For every δ > 0, there exists an integer q such that SAT on
q-CNF formulas with m clauses and n variables cannot be solved in mO(1)2(1−δ)n time even
by a Monte-Carlo randomised algorithm (with error probability bounded by a small constant)2.

We show the lower bound by reducing a single instance of (1 +γ)-approximate Bichromatic
Closest Pair to a polylogarithmic number of instances of LCS with Approximately k Mismatches.
We assume that Ui, Vj are over the alphabet {0, 1}. Let us introduce a string H = (adb)d+1

and construct X = HU1HU2H . . .HUNH and Y = HV1HV2H . . .HVNH.

I Observation 19. For every integer k ≥ 0, if there exist i, j ∈ [1, N ] such that dH(Ui, Vj) ≤
k, then LCSk(X,Y ) ≥ 2(d+ 1)2 + d.

Proof. If dH(Ui, Vj) ≤ k for some i, j, then dH(HUiH,HVjH) ≤ k and LCSk(X,Y ) ≥
|HUiH| = 2(d+ 1)2 + d. J

I Lemma 20. For every integer 0 ≤ k ≤ d, if LCSk(X,Y ) ≥ 2(d+ 1)2 + d, then there exist
i, j ∈ [1, N ] such that dH(Ui, Vj) ≤ k.

Proof. By the assumption of the lemma, there exist substrings S1 and S2 of X and Y ,
respectively, with |S1| = |S2| ≥ 2(d+ 1)2 + d and dH(S1, S2) ≤ k. The substring S2 contains
either HVj or VjH for some j. Without loss of generality, we can assume that S2 contains a
copy of H followed by Vj for some j. Let us consider the substring S of X aligned with the
copy of H in S2. Below we will prove that S = H, and since S is followed by Ui for some i,
this will imply that dH(HUiH,HVjH) ≤ k.

2 Impagliazzo, Paturi, and Zane [16] stated the hypothesis for deterministic algorithms only, but nowadays
it is common to extend SETH to allow randomisation. If we condition on the classic version of the
hypothesis, we will obtain a lower bound for deterministic algorithms. See [27] for more discussion.
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X . . . . . .H Ui−1 H Ui H

Y . . . . . .Vj−1 H Vj H

S1

S2

S
s

Figure 4 Substrings S1 and S2 of X and Y , respectively, substring S aligned with a copy of H
in S2, and the shift s.

Suppose that S 6= H, and let 0 < s < (d+ 1)2 + d be the distance between the starting
positions of S and the nearest copy of H from the left. If s < d + 1 or (d + 1)2 < s, then
each occurrence of b in H creates a mismatch. There are d+ 1 > k of them, a contradiction.
If d+ 1 ≤ s ≤ (d+ 1)2, then S contains Ui, creating d mismatches with H. Since |Ui| = d

and |H| = (d+ 1)2, we will have at least one more mismatch from the alignment of the copy
of H in Y and the copies of H in X that surround Ui. Therefore, in total there are at least
d+ 1 > k mismatches, a contradiction. To conclude, both cases are impossible, and hence
s = 0. The lemma follows as explained above. J

With this lemma, we can now proceed to prove Fact 3. Define ε = γ/3 and consider all
k = 1, (1 + ε), (1 + ε)2, (1 + ε)3, . . . until d/(1 + ε). For each k, we run log logn independent
instances of an algorithm for LCS with Approximately k Mismatches. Let k0 be the smallest
k such that the identified longest common substring with approximately k mismatches has
length at least 2(d+ 1)2 + d.

By the definition of k0, Observation 19 and Lemma 20, there do not exist i, j ∈ [1, N ] such
that dH(Ui, Vj) ≤ k0/(1 + ε), but there exist i, j ∈ [1, N ] such that dH(Ui, Vj) ≤ k0(1 + ε).
In the (1 + γ)-approximate Bichromatic Closest Pair problem, this translates to k0/(1 + ε) <
h ≤ k0(1 + ε), where h is the minimal distance between all pairs Ui, Vj . This is equivalent to

h ≤ k0(1 + ε) < h(1 + ε)2 = h(1 + 2
3γ + 1

9γ
2) ≤ h(1 + γ),

which means that the pair (Ui, Vj) found by the algorithm for k0 is a valid solution for
(1 + γ)-approximate Bichromatic Closest Pair. It follows that, for some k, the algorithm for
LCS with Approximately k Mismatches must spend Ω(N2−δ/ log1+ε logN) time. We have
n = |X| = |Y | = O(d2N) = O(N log2N), which implies N = Ω(n/ log2 n). Fact 3 follows.
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