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Abstract We characterize trade-offs between the end-to-end communication delay and the energy in urban
vehicular communications with infrastructure assistance. Our study exploits the self-similarity of the location
of communication entities in cities by modeling them with the hyperfractal model which charaterize the
distribution of mobile nodes and relay nodes by a fractal dimension dF and dr, both larger than the
dimension of the embedded map. We compute theoretical bounds for the end-to-end communication hop
count considering two different energy-minimizing goals: either total accumulated energy or maximum energy
per node. Let δ > 1 the attenuation factor in the street, we prove that when we aim to a total energy cost
of order n(1−δ)(1−α) the hop count for an end-to-end transmission is of order n1−α/(dF−1), with α < 1 is a
tunable parameter. This proves that for both goals the energy decreases as we allow choosing routing paths
of higher length. The asymptotic limit of the energy becomes significantly small when the number of nodes
becomes asymptotically large. A lower bound on the network throughput capacity with constraints on path
energy is also given. We show that our model fits real deployments where open data sets are available. The
results are confirmed through simulations using different fractal dimensions in a Matlab simulator.

Keywords Wireless Networks · Delay · Energy · Fractal · Vehicular Networks · Urban networks.

Bart lomiej B laszczyszyn
INRIA, France
E-mail: bartlomiej.blaszczyszyn@inria.fr

Philippe Jacquet
INRIA, France
E-mail: philippe.jacquet@inria.fr

Bernard Mans
Macquarie University, Sydney, Australia
E-mail: bernard.mans@mq.edu.au

Dalia Popescu was with
Nokia Bell Labs, France.



2 Bart lomiej B laszczyszyn et al.

1 Introduction

1.1 Motivation and Background

Vehicular communications, to other vehicles, to infrastructure or to everything (V2X), are key components of
the 5th Generation (5G) communications. In cities, with an ever increasing connectedness and complexity, it
is paramount to provide an effective integration of vehicular networks within a complex urban environment.
In addition, sensors allowing automated and autonomous driving in such complex environments generate
a huge amount of data demanding high bandwidth and data rates [35]. All these needs require a careful
design for optimal connectivity, low interference, and maximum security.

5G NR is essentially a multi-beam system, generated by millimeter-wave (mmWave) technology [3]. For
a long time these frequencies have been disregarded for cellular communications due to their large near-field
loss, and poor penetration through common material, yet recent research and experiments have shown that
communications are feasible in ranges of 150-200 meters dense urban scenarios with the use of such high
gain directional antennas [20]. Meanwhile the embedding space of vehicular networks leads mostly to a one
dimensional topology since roads are mainly built as straight lines [11].

Given the numerous challenges of mmWave [19] and the important place the vehicular communications
hold in the new communications era, it cannot be ignored that the effectiveness of the communications
are influenced by the environmental topology. Cars are located on streets and streets are conditioned by
a world-wide common generic architecture that has interesting features. One major feature of the urban
architecture that we exploit in this work is self-similarity.

Although being extensively studied in diverse research fields such as biology and chemistry, self-similarity
has been only recently introduced in wireless communication design and performance. Self-similarity is
present in every aspect of urban environment [7]. The hierarchic organization with different degrees of
scaling of cities is a perfect illustration of the fractal structure of human society [6]. Figure 1 presents a
snapshot of the traffic in a neighborhood of Minneapolis. Common patterns and hierarchical organizations
can easily be identified in the road traffic and shall be further exploited in this paper.

Figure 1: Minneapolis traffic snapshot
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In this paper, we exploit the “hyperfractal” model introduced in [17,18] to capture the impact of the
network topology on the fundamental performance limits of vehicular networks in urban settings. The model
consists of assigning self-similar traffic densities to city streets, thus avoiding both the extremes of regularity
of the basic Manhattan grid and the uniform randomness of Poisson point process. The fitting of the model
with traffic data of real cities having been showcased in [29]. The hyperfractal model is characterized by
a dimension that is larger than the dimension of the Euclidean dimension of the embedding space, that is
larger than 2 when the whole network lays in a 2-dimensional plane as it is the case for city maps.

Previous results in [18] revealed that the number of hops in a routing path between an arbitrary source-
destination pair increases as a power function of the population n of nodes when n tends to infinity. However,
we showed that the exponent tends to zero when the fractal dimension tends to infinity. An initial observation
for this model is that the optimal path may have to go through streets of low density where inter-vehicle
distance can become large, therefore the transmission becomes expensive in terms of energy cost. Hence, in
this paper, we focus on the study of the relationship between efficient communications and energy costs.

1.2 Contributions and paper organization

Our goal is to characterize trade-offs between the end-to-end communication delay and the energy in urban
vehicular communications with infrastructure assistance in cities. We will consider the communication with
internal routing between mobile nodes and relays. We initially consider that the relays are not connected
with an underground wired network (just beacon on traffic lights) and only act as wireless relay between
mobile nodes. We will then compare with the case where the relays are connected to an underground
network.

Our first contribution is to give an accurate description of the hyperfractal distribution model in the
more general frame work of stochastic geometry and point processes. Our main contributions are theoretical
bounds for the end-to-end communication energy and delay budget as a function of the number of nodes and
relays. We will consider two different energy-minimizing goals: (i) total accumulated energy or (ii) maximum
energy per node. We will prove that the delayDn, measured by the hop count for an end-to-end transmission,
is bounded by DdF−1

n O(ndF−1−α) where α is a tunable constant less than 1 which also affects the path

energy En such that for the accumulated energy path E
1/(δ−1)
n DdF−1

n = O(ndF−2) where δ > 1 is the

attenuation factor of radio transmissions. For the maximum energy path we have E
1/δ
n DdF−1

n = O(ndF−2).
In both cases the energy constraint tends to zero when n tends to infinity.

Finally we will show that our model fits real deployments where open data sets are available. The
results are confirmed through simulations using different fractal dimensions and path loss coefficients, using
a discrete-event simulator in Matlab.

The paper is organized as follows:

– In Section 3, we describe our hyperfractal geometric model. First, via an initial model based on a
grid map, second with real data extracted from relay city maps. We end this section by deriving some
fundamental properties of the archetypal model in the stochastic geometry framework.

– In Section 4, we describe the physical models of the telecommunication system over a city map and in
particular we address the energetic balance of the ad hoc routing strategy between nodes.

– In Section 5, we list and prove our main results in particular we quantify the energy-delay trade-off of
the end to end communications between mobile nodes. The result are given in order of magnitude as
function of the number of nodes n and the intensity ρ of the fixed infrastructure. In particular we prove
that for an end-to-end transmission in a hyperfractal setup, the energy (either accumulated along the
path or bounded for each node) decreases if we allow the path length to increase. We also prove a lower
bound on the network throughput capacity with constraints on path energy.
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– In Section 6 we compare with the scenario where the hop by hop routing strategy is replaced by the
interconnection of the fix relays via an underground cabled network. In this case we show that the
underground network greatly improve the performance in the way that for the same number of relays,
in order to keep the energy cost bounded the hop by hop routing strategy implies a delay increasing in
n1/2 while it is kept constant constant via the underground network.

– Finally, Section 7 validates our analytical results using a discrete-time event-based simulator developed
in Matlab.

2 Related Works

Millimeter-wave is a key technological brick of the 5G NR networks, as foreseen in the ground-breaking
work done in [30] and already proved by ongoing deployments. The research community has been already
investigating challenges that may appear and proposing innovative solutions. Vehicular communications are
one of the areas that are to benefit from the high capacity offered by the mmWave technology. In [33], the
authors propose an information-centric network (ICN)-based mmWave vehicular framework together with a
decentralized vehicle association algorithm to realize low-latency content disseminations. The study shows
that the proposed algorithm can improve the content dissemination efficiency yet there is no consideration
about the energy. The purpose of [12] is optimizing energy efficiency in a cellular system with relays with
D2D (device-to-device) communications using mmWave.

As mmWave is highly directional and blockages raise concerns, the authors of [4] propose an online
learning algorithm addressing the problem of beam selection with environment-awareness in mmWave
vehicular systems. The sensitivity to blockages is generally solved with the assistance of the relaying
infrastructure. The authors of [25] attempt to solve the dependency of infrastructure for relaying in vehicular
communications by exploiting social interactions. In [34], the problem of relay selection and power is solved
using a centralized hierarchical deep reinforcement learning based method. Yet the authors use a simplified
highway scenario, which cannot scale for a city structure.

Stochastic geometry studies have shown results on the interactions between vehicles on the highways or
in the street intersections [14,32]. The work in [13] performs statistical studies on traces of taxis to identify
a planar point process that matches the random vehicle locations. The authors find that a Log Gaussian
Cox Process provides a good fit for particular traces. In [21] the authors propose a novel framework for
performance analysis and design of relay selections in mmWave multi-hop V2V communications. More
precisely, the distance between adjacent cars is modeled as shifted-exponential distribution.

Self-similarity for urban ad hoc networks has been introduced in [17,18], where the hyperfractal model
exploits the fractal features of urban ad hoc networks with road-side infrastructure. In [29], we presented an
analysis of the propagation of information in a vehicular network where the cars (the only communication
entities) are modeled using the hyperfractal model. The setting is different to this paper: without relays at
the intersections the network is disconnected but becomes connected over time with mobility. The packets
are being broadcast and results on typical metrics for delay tolerant networks were presented without
investigation on power or energy. The study in [18] provides results on the minimal path routing using the
hyperfractal model for static nodes to model the road-side infrastructure that assumes an infinite radio
range, creating concerns for allowed transmission power and network energy consumption. In contrast, in
this paper, we add constraints on these quantities to provide insights on the achievable trade-offs between
the end-to-end transmission energy and delay.
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Figure 2: (top) Hyperfractal support; (bottom) Relays process construction.

3 Geometric Model

3.1 Hyperfractal distribution of street traffic in a city archetypal model

In this model we consider that the city map is a unit square supporting a network of North-South streets
intersecting a collection of West-East streets. Thus we imagine a city map organized like a Manhattan map
with the difference that the network is dense and that the traffic density varies to sum to finite value even
if the number of streets is infinite.

If we rank the streets by traffic density the latter will decays in k1−dF where k is the rank of the street.
In the archetypal model displayed in Figure 2 the central cross is assigned at level 0. The other streets

will be assigned at higher levels. For H ≥ 0 there will be 2H North-South streets at level H and and 2H

West-East streets at level H. The density of mobile users on a street of level H will be

λH =
p

2

(q
2

)H
with 0 < p < 1 and q = 1− p. With this definition it comes that:

dF =
log(4/q)

log 2
≥ 2.

The placement process of a mobile user is described on [17,18]. In short, with probability p the user is
placed uniformly on the central cross, otherwise it goes uniformly in one the four quadrants and the process
is repeated until it finds a cross in one of the sub-·-sub quadrants. At each iteration, the level of the streets
of central crosses is incremented by one.

The recursive placement process makes that starting from a unity mass, we place p on the central cross,
and q/4 is placed in each quadrant and that the quadrant strictly similar to the main initial map with
exception halving the lengths. Therefore the fractal dimension dF should satisfy.

q

4
=

(
1

2

)dF

.

3.2 Hyperfractal distribution of relay placement of relays in the city archetypal model

Relays will have the same technology as the mobile nodes and will be placed at street intersection in order
the radio coverage. The placement will be hyperfractal, and the abscissa and the ordinate are independent.
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We fix a parameter 0 < pr < 1 and qr = 1 − pr. For each coordinate we have a recursive placement. Let
us concentrate on the selection. With probability pr the abscissa is exactly the middle of the segment and
is level 0. Otherwise it will be in the left or right segment, the process repeat, the level increments, until
it is placed in the middle of one of the sub-· · · -sub segment. Let H be the attained level. We do the same
with the ordinate, let V the level obtained. The point obtained is exactly at the intersection of a West-East
street of level H and a North-South street of level H. See Figure 2. The probability that a relay is at a
given intersection of two streets of respective level H et V is

p(H,V ) = p2r

(qr
2

)H+V
.

The set of relay positions on a segment is an hyperfractal set of dimension (2/qr)
log 2 . The combination of

abscissa or ordinate multiplies by two this dimension:

dr = 2
(2/qr)

log 2
≥ 2.

In the following we consider that the total number of relays is a Poisson random variable of mean ρ.
This is a simplifying assumption in order to cope with the dependencies introduced by a fixed number of
relays. The probability that an intersection of two streets of level H and V does not contain a relay is
exp(−ρp(H,V )) and the event is independent of the other intersection. If a street intersection were to carry
more than one relay, these relays will be merged in a single one.

In [18] we show that the average total number of merged relays R(ρ) is sublinear since

R(ρ) =
∞∑

k=0

(k + 1)2k
(qr
2

)nk
= O(ρ2/dr log ρ).

3.3 Fitting the hyperfractal model for traffic distribution to real city maps

First of all it is not needed for a city map to be grid-like with a binary organisation of the streets levels in
order to fit a hyperfractal model [6,7]. The condition is that the street densities decays in a heavy polynomial
tail, and that the streets of low density are arbitrary close to the streets of higher densities. In the following
we will concentrate on the heavy tail aspect.

The hyperfractal models for traffic and for relays distributions have been derived by making observations
on the scaling of traffic densities and the scaling of the infrastructures, with road lengths, distances between
intersections which allow rerouting of packets, etc.

In our previous works [29], we have introduced a procedure which allows transforming traffic flow maps
into hyperfractal by computing the fractal dimension dF of each traffic flow map then quantify the metrics
of interest. The fitting procedure exploits the scaling between the length of different levels of the streets
and the scaling of the 1-dimensional intensity per street and street intersection. The difficulty is that the
roads rarely have an explicit level hierarchy since the data we have about cities are in general about road
segment lengths and average street traffic densities. To circumvent this problem, we do a ranking of the
road segments in the decreasing order of their traffic density. If S is a segment we denote η(S) its density
and L(S) the accumulated length of the segment ranked before S (i.e. of larger density than η(S)). For
ξ > 0 we denote µ(ξ) = η(L−1(ξ)). Formally L−1(ξ) is the road segment S with the smallest density such
that L(S) ≤ ξ. The hyperfractal dimension will appear in the asymptotic estimate of µ(ξ) when ξ → ∞ via
the following property:

µ(ξ) = Θ
(
ξ1−dF

)
. (1)
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The following table summarize several hyperfractal dimensions of nodes analysed so far:
City dF
Adelaide 2.8
Minneapolis 2.9
Nyon 2.3
Seattle 2.3

3.4 Fitting the hyperfractal model for relay nodes to real city maps

The procedure is similar to the previous procedure and has the following steps. First, we consider the set
of road intersections I defined by the pair of segments (S1,S2) such that S1 and S2 intersect. Let ξ1, ξ2
be two real numbers we define p(ξ1, ξ2) as the probability that two intersecting segments S1 and S2 such
that Cl(S1) ≤ ξ1 and Cl(S2) ≤ ξ2 contains a relay. The hyperfractality of the distribution of the relay
distribution implies when ξ1, ξ2 → ∞:

p(ξ1, ξ2) = Θ
(
(ξ1ξ2)

−dr/2
)
. (2)

Since the probability is not directly measurable we have to estimate it via measurable samples. Indeed
let N(ξ1, ξ2) be the number of intersections (S1,S2) ∈ I such that Cl(S1) ≤ ξ1 and Cl(S2) ≤ ξ2 and let
R(ξ1, ξ2) be the number of relays between segments (S1,S2) such that Cl(S1) ≤ ξ1 and Cl(S2) ≤ ξ2. One
should have:

R(ξ1, ξ2)

N(ξ1, ξ2)
= Θ

(
(ξ1ξ2)

−dr/2
)

(3)

and from here get the fractal dimension of the relay process.

3.5 Data Fitting Examples

Using public measurements [1], we show that the data validates the hyperfractal scaling of relays distribution
with density and length of streets. While traffic data is becoming accessible, the exact length of each street
segment is difficult to find, therefore the fitting has been done manually.

Figure 3 shows a snapshot of the traffic lights locations in a neighborhood of Adelaide, together with
traffic densities on the streets, when available. As the roadside infrastructure for V2X communications has
not been deployed yet or not at a city scale, we will use traffic light data as an example for relays [22].
By applying the described fitting procedure and using equation (3) the estimated fractal dimension of the
traffic lights distribution in Adelaide is dr = 3.5 which is significantly larger than the fractal dimension for
the traffic distribution (2.8). In Figure 3 we show the fitting of the data for the density distribution function.

Note that it is the asymptotic behavior of the plots that are of interest (i.e., the increasing accumulated
distance with decreasing density therefore decreasing the probability of having a relay installed) since the
scaling property comes from the roads with low density, thus the convergence towards the rightmost part
of the plot is of interest.

3.6 Fundamental properties of the Hyperfractal point processes

We come back to our hyperfractal archetypal model with the grid binary street model.
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Figure 3: (top) Traffic and lights data in Adelaide; (bottom) Computation of dr

As we saw the support of the population of n mobile nodes is a grid of streets. Let us denote this
structure by X =

⋃∞
l=0 XH with

XH =
⋃
b

{b2−(H+1)} × [0, 1] ∪ [0, 1]× {b2−(H+1)}

where l denotes the level and l starts from 0, and b denotes all odd integer between 1 and 2H+1−1. Figure 2
displays three first levels, H = 0, 1, 2. Observe that the central “cross” X0 splits

⋃∞
H=1 XH in 4 “quadrants”

which all are homothetic to X with the scaling factor 1/2.

3.6.1 Street traffic

Following [18], the Poisson point process Φ of (mobile) users on the support X with total intensity (mean
number of points) n (0 < n < ∞) having 1-dimensional intensity nλH on each street of level H.

The process Φ is neither stationary nor isotropic. However, it has the following self-similarity property:
the intensity measure of Φ on X is hypothetically reproduced in each of the four quadrants of

⋃∞
l=1 Xl with

the scaling of its support by the factor 1/2 and of its value by q/4.
The fractal dimension is a scalar parameter characterizing a geometric object with repetitive patterns.

It indicates how the volume of the object decreases when submitted to an homothetic scaling. When the
object is a convex subset of an euclidian space of finite dimension, the fractal dimension is equal to this
dimension. When the object is a fractal subset of this euclidian space as defined in [24], it is a possibly
non integer but positive scalar strictly smaller than the euclidian dimension. When the object is a measure
defined in the euclidian space, as it is the case in this paper, then the fractal dimension can be strictly larger
than the euclidian dimension. In this case we say that the measure is hyperfractal (i.e., when dF > 2).

Notice that when p = 1 the model reduces to the Poisson process on the central cross, while for p → 0,
dF → 2 it corresponds to the uniform measure in the unit square.

3.6.2 Relays

We denote the relay process by Ξ. To define Ξ it is convenient to consider an auxiliary Poisson process Φr

with both processes supported by a 1-dimensional subset of X namely, the set of intersections of segments
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constituting X . We assume that Φr has discrete intensity p(H,V ) at all intersections XH ∩ XV for H,V =
0, . . . ,∞ for some parameter, recalling that ρ > 0 is the relay intensity parameter. That is, at any such
intersection the mass of Φr is Poisson random variable with parameter ρp(H,V ) and ρ is the total expected
number of points of Φr in the model. The self-similar structure of Φr is explained by its construction as
explained before, as illustrated in Figure 2. The Poisson process Φr is not simple: we define the relay process
Ξ as the support measure of Φr, i.e., only one relay is installed at crossings where Φr has at least one point.

Remark 1 Note that the relay process Ξ forms a non-homogeneous binomial point process (i.e. points are
placed independently) on the crossings of X with a given intersection of two segments from XH and XV

occupied by a relay point with probability 1− exp(−ρp(H,V )).

A complete hyperfractal map with mobile nodes and relays is illustrated in Figure 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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mobile nodes
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Figure 4: Complete hyperfractal map with mobile nodes (”+”) and relays (”o”)

3.7 Fundamental properties of the Poisson processes Φ, Φr, and Ξ

In the following, we shall provide some fundamental tools that allow one to handle our model in a typical
stochastic geometric framework. This section gives insights about the theoretical foundations of hyperfractal
point process which is of independent interest to our main results and can be used in other works.

Let L+ 1 be a geometric random variable with parameter p (i.e., P(L = l) = p(1− p)l, l = 0, 1, . . .) and
given L, let x0 be the random location uniformly chosen on XL. We call x0 the typical mobile user of Φ.
More precisely, we shall consider the point process Φ ∪ {x0} where x0 is sampled as described above and
independently of Φ.

Similarly, let U + 1 and W + 1 be two independent geometric random variables with parameter pr and
given (U,W ), let x∗ be a crossing uniformly sampled from all the intersections of XU ∩XW . We call x∗ the
typical auxiliary point of Φr. More precisely, we shall consider point process Φr ∪ {x∗} where x∗ is sampled
as described above and independently of Φr.

Finding the definition of the typical relay node ξ0 is less explicit yet similar to the typical point definition.
Informally, the conditional distribution of points “seen” from the origin given that the process has a point
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there is exactly the same as the conditional distribution of points of the process “seen” from an arbitrary
location given the process has a point at that location.

We define it as the random location on the set of the crossings of X involving the following biasing of
the distribution of x∗ by the inverse of the total number of the auxiliary points co-located with x∗

P(ξ0 = x) =
E

[
1(x∗=x)

1+Φr({x∗})

]
E

[
1

1+Φr({x∗})

] .
More precisely we consider Ξ′ ∪ {ξ0} (which distribution is given for any intersection x of segments in X
and a possible configuration ϕ of relays) by considering

P( ξ0 = x,Ξ′ = ϕ ) =
E

[
1(x∗=x)1(supp(Φr)\{x}=ϕ)

1+Φr({x∗})

]
E

[
1

1+Φr({x∗})

]
where Φr and x∗ are independent (as defined above). Note that, in contrast to the typical points of Poisson
processes Φ and Φr, the typical relay ξ0 is not independent of remaining relays Ξ′.

In what follows, we shall prove that our typical points support the Campbell-Mecke formula (see [5,
10]) thus justifying our definition and also providing an important tool for future exploiting the model in a
typical stochastic geometric framework.

Theorem 1 (Campbell-Mecke formula) For all measurable functions f(x, ϕ) where x ∈ X and ϕ is a
realization of a point process on X ,

E

[∑
xi∈Φ

f(xi, Φ)

]
= nE [f(x0, Φ ∪ {x0})] (4)

E

[ ∑
xi∈Φr

f(xi, Φr)

]
= ρE [f(x∗, Φr ∪ {x∗})] (5)

and

E

[ ∑
xi∈Ξ

f(xi, Ξ)

]
= E [Ξ(X )]E

[
f(ξ0, Ξ

′ ∪ {ξ0})
]

(6)

where the total expected number of relay nodes E [Ξ(X )] = R(ρ)

Proof (Proof of Theorem 1.) First, consider the process of users Φ. The Campbell-Mecke formula and the
Slivnyak theorem [9] for the non-stationary Poisson point processes Φ give

E

[∑
xi∈Φ

f(xi, Φ)

]
=

∫
X
E [f(x, Φ ∪ {x})]µ(dx), (7)

where µ(dx) is the intensity measure of the process Φ. Specifying this intensity measures the right-hand
side term of (7), thus this becomes

∞∑
l=0

∫
Xl

E [f(x, Φ ∪ {x})]n(1− p)lpdx.
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In this expression, one can recognize E [f(x0, Φ ∪ {x0})] which concludes the proof of (4). The proof of (5)
follows the same lines. Consider now the relay process Ξ. By the definition of Ξ, one can express the
left-hand side of (6) in the following way:

E

[ ∑
xi∈Ξ

f(xi, Ξ)

]
= E

[ ∑
xi∈Φr

f(xi, supp(Φr))

Φr({xi})

]
,

where supp(Φr) denotes the support of Φr. Using (5), we thus obtain:

E

[ ∑
xi∈Ξ

f(xi, Ξ)

]
= ρE

[
f(x∗, supp(Φr ∪ {x∗}))

1 + Φr({x∗})

]
. (8)

By the definition of the joint distribution of x∗ and supp(Φr ∪ {x∗}) the right-hand side of (8) is equal to

ρE

[
1

1 + Φr({x∗})

]
E

[
f(ξ0, Ξ

′ ∪ {ξ0})
]
.

This completes the proof of (5) with

E [Ξ(X )] = ρE

[
1

1 + Φr({x∗})

]
.

4 Hyperfractal Properties and Communication model, Canyon effect

In this section we extract the relevant properties of the Hyperfractal model and relate them to our
communication model. We also provide some additional insights into these models via the framework of
the stochastic geometry and point process. These latter results are of independent interest and allow to lay
foundations for other works.

As explained in our previous works [29], the poor penetration capability of the millimeter waves leads to
the so-called “canyon effect”, which basically tells that radio signals emitted by mobile user mostly propagate
on streets and do not penetrate buildings. In this work we consider a hop by hop routing strategy between
mobile nodes in a store and forward ad hoc mode. We consider that the mobility of users will be considerably
slow compared to the speed of packet commutation. Assuming that mobile nodes stay a negligible time at
intersection (indeed in the archetypal model nodes are distributed like a uniform Poisson in each street
and the intersection points with the other streets make a non measurable set), their communication would
unlikely escape their original street in absence of fixed relays at intersection. The fixed relays are assumed
to cover their two streets and will be instrumental to extend connectivity to (mostly) the whole city.

As we primarily seek to understand the relationship between end-to-end communications and energy
costs, we do not consider detailed aspects of the communication protocol that impact these (e.g., the
distributed aspects needed to gather position information and construct routing tables in every node). The
transmission is done in a half-duplex way, a node is not allowed to transmit and receive during the same
time-slot. The received signal is affected by additive white Gaussian noise (AWGN) noise N and path-loss
with pathloss exponent δ ≥ 2.

As a consequence of the high directivity and low permeability of the waves in high frequency (6GHz,
28GHz, 73 GHz as candidates for 5G NR), the next hop is always the next neighbor on a street, i.e.
there exists no other node between the transmitter and the receiver. Indeed, while a lot of work is still
dedicated to characterising the exact overall network connectivity for mmWave communications V2V in
urban setting [27], it is known that intermediate vehicles create significant blockage and a severe attenuation
of the received power for vehicles past near neighbours [28,31]. Thus the routing strategy considered is a
nearest neighbor routing. In fact, we can show that, under reasonable assumptions, this strategy is optimal.
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Lemma 1 If the noise conditions are the same around each node, then the nearest neighbor routing strategy
is optimal in terms of energy.

Proof To simplify this proof we ignore the signal attenuation due to the mobile users positioned as radio
obstacles between the sender and the receiver of one hop packet transmission, although this will have an
important impact on energy. Consider the packet transmission from a node at a location x to a node at
location y on the same street. If N is the noise level and K is the required SNR, then the transmitter must
use a signal of power |y−x|δNK. Assume that there is a node at position z between x and y. Transmitting
from x to z and then from z to y would require a cumulated energy (|z−x|δ + |y− z|δ)NK which is smaller
than the required energy for the direct transmission, since |x− z|δ + |z − y|δ ≤ (|x− z|+ |z − y|)δ.

Let us make the simplifying assumption that all nodes on a street transmit with the same nominal power
Pm which depends only on the number m of nodes on the street. We argue that a good approximation is
to suppose that:

Pm =
Pmax

mδ
(9)

where Pmax is the transmitting power necessary for a node at one end of the street to transmit a packet
directly to a node at the other end of the street. In other words, assume a road of infinite length where
the nodes are regularly spaced by intervals of length L is the length of our street. If in this configuration
every node has a nominal power of Pmax, then the nominal power to achieve the same performance with a
density m times larger but with the same noise values should be Pmaxm

−δ in order to cope with the loss
effect. Thus would give expression (9) if the nodes were regularly spaced by intervals of length L/m. But
since the spacing intervals are irregular, one should cope with the largest gap Lm/m, this brings a small
complication in the evaluation of Pm. But the probability that there exists a spacing larger than a given
value x/m is smaller than m(1− x

mL )m ≤ mx/L. Thus we have Lm = O(logm/m) (asymptotically almost

surely, and in fact as soon as lim infm Lm/ logm > 1), and consequently Pm = O(Pmax log
δ m/mδ). To help

the reader, we focus on the expression (9) as we are mainly interested in the order of magnitude.

Definition 1 The end-to-end transmission delay is represented by the total number of hops the packet
takes in its path towards the destination.

As the energy to transmit a packet is the transmission power per unit of time, we consider the time
necessary to send a packet as being equal to the length of a time-slot. We thus do not consider any MAC
protocol for re-transmission and acknowledgment of the reception (e.g., we do not consider CSMA-like
protocols). In any case, as it will be later observed throughout our derivations, varying the MAC protocol
would just change some constants but not the overall scaling. Therefore, from now on, we will refer to Pmax

as the nominal power. Following this reasoning, the accumulated energy to cover a whole street containing
m nodes with uniform distribution via nearest neighbor routing is mPm = Pmax

mδ−1 . In this case, the larger
the population of the street the smaller the nominal power and the smaller the energy to cover the street.

Relays stand in intersections, and thus on two streets with different values of m. We consider a relay
to use two different radio interfaces, each with a transmission power according to the previously mentioned
rule for each of the streets. This is a perfectly valid assumption, in line with 5G devices specifications for
dual connectivity [2].

5 Main Results

We now provide our theoretical bounds for the end-to-end communication hop count. The number of mobile
nodes is exactly n, where n is an integer which runs to infinity.
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5.1 Energy vs Delay

Given that the transmitting power is dependent on the average density of the nodes on the streets and
that the transmission power per node is limited by the protocols to a value of Pmax, the connectivity is
restricted. We introduce the following notions and notations. Let t be a node and let P (t) be the nominal
transmission energy of this node.

Definition 2 Let T be a sequence of nodes that constitutes a routing path. The path length is D(T ) = |T |.
The relevant energy quantities related to the paths are:

– The path accumulated energy is the quantity C(T ) =
∑

t∈T P (t).
– The path maximum energy is the quantity M(T ) = maxt∈T P (t).

The path accumulated energy is of interest as we want to optimize the quantity of energy expended
in the-end-to-end communication, and respectively, the path maximum power as we want to find the path
which maximum power does not exceed a given threshold depending on the energy sustainability of the
nodes or the protocol. For example, it is unlikely that a node can sustain a nominal power of Pmax equal
to the power needed to transmit in a range corresponding to the entire length of a street. In this case it is
necessary to find a path that uses streets with enough population to reduce the node nominal power and
communication range (due to the mmWave technology limitations).

Definition 3

– Let G(n,E) be the set of all nodes connected to the central cross with a path accumulated energy not
exceeding E.

– Let Gk(n,E) be the subset of G(n,E), where the path to the central cross should not go through more
than k fixed relays.

Definition 4 Let G′(n,E) and G′
k(n,E) be the respective equivalents of G(n,E) and Gk(n,E) but with

the consideration of the path maximum power instead of accumulated energy.

5.2 Path accumulated energy

The following theorem gives the asymptotic connectivity properties of the hyperfractal in function of the
accumulated energy and in function of the path maximum power. This shows that for n large, even for
some sequences of energy thresholds En tending to zero, the sets G1(n,En) asymptotically dominate the
network. The same holds for the sets sequence G′

1(n,En).

Theorem 2 In an urban network with n mobile nodes following a hyperfractal distribution, when ρn both
tend to infinity the following holds:

lim
n→∞

E
{
|G1(n, n

−γPmax)|
n

}
= 1 (10)

for γ < δ − 1, and

lim
n→∞

E
{
|G′

1(n, n
−γPmax)|
n

}
= 1 (11)

for γ < δ, where δ is the pathloss coefficient.

The following lemma ensures the existence of nodes in a street (with proof in the Appendix).
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Lemma 2 There exists a > 0 such that, for all integers H and n, the probability that a street of level H
contains less than nλH/2 nodes or more than 2nλH nodes is smaller than exp(−anλH).

The following corollary gives a result on the scaling of the number of nodes in a segment of street and
the accumulated energy, getting us one step closer to the results we are looking for.

Corollary 1 Let 0 < ϕ ≤ 1, assume an interval corresponding to a fraction ϕ of the street length. If the
interval is on a street of level H, the probability that it contains less than ϕλHn/2 nodes and it is covered
with accumulated energy greater than ϕ(nλH)1−δPmax is smaller than e−anϕλH . The probability that the
energy for each transmission is smaller than (nλH)−δPmax is smaller than e−anλH

Proof This is a slight variation of the previous proof. If we denote by NH(n, ϕ) the number of nodes on the
segment, we have E[etNH(n,ϕ)] = (1 + λHϕ(ez − 1))n. The previous proof applies by replacing λH by ϕλH .

The accumulated energy has the expression Pmax
NH(n,ϕ)

Nδ
H(n)

. Further applying the previous reasoning to each

of the random variables NH(n) and NH(n, ϕ) gets the first result.
The second result is simpler to get because at level H the energy for transmission is equal to m−δPmax

where m is the number of mobile in the streets. Since this number is larger than nλH with probability larger
1− exp(−anλH).

Proof (of Theorem 2)
We will prove first for G1(n, n

−γPmax). Let Hn be a sequence of integer which tends to infinity.
We consider the horizontal street of the central cross. The probability that all the intersections with

the streets of level smaller than Hn contains a relay is greater than (1 − exp(−ρnp
2
r(qr/2)

Hn))2
Hn

(with qr = 1 − pr) and finally greater than 1 − 2Hn exp(−ρnp
2
r(qr/2)

Hn). This probability tends to 1

when Hn = ⌊1
2 log(ρnp

2
r)/ log(2/qr)⌋ since it is larger than (1 − xν

n exp(−xn)) with xn = e−
√

ρnp2
r and

ν = log(2)/ log(2/qr).
Let us reduce Hn if necessary in order to have nλHn

> nγ/(δ−1). Applying corollary 1 (with Φ = 1),
we cover all nodes in each streets of level Hn or lower by a cumulated energy smaller than n−γPmax with
probability smaller than 2Hn exp(−nγ/(δ−1)) since Hn = O(logn).

To terminate this part of the proof it suffices to notice that the proportion of the mobile nodes carried
by all the streets of level Hn compared to the total population of nodes tends to 1 in probability.

The part on the coverage of the giant component G′
1(n, n

−γPmax) proceeds the same way but with the
second result of Corollary 1.

Throughout the rest of the paper, we consider ρn = nθ (or of the order of) for some 0 < θ < 1.
The following theorem is the main result of our paper and shows that increasing the path length

decreases the accumulated energy. In fact, for n → ∞, the limiting energy goes to zero.

Theorem 3 In a hyperfractal city with n nodes, with mobile fractal dimension dF and relays fractal
dimension dr, with the condition dr > (dF − 1)θ the shortest path of accumulated energy En =
cEn(1−δ)(1−α)Pmax, where cE > 0 and α < dF−1

dr
θ, between two nodes belonging to the giant component

G1(n,En), passes through a number of hops:

Dn = O(n
1− α

dF −1 ) (12)

Although the source and the destination belong to G1(n,En), it is not necessary that all the nodes
constituting the path also belong to G1(n,En), i.e., the path may include nodes that are more than one
hop from the central cross.

Remark 2 We have the identity (
En

Pmax

)1/(δ−1)

DdF−1
n = O(ndF−2). (13)
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Figure 5: (a) Diverted path with three fixed relays; (b) with five fixed relays.

Let us now prove the theorem.

Proof The main part of our proof is to consider the case when the source, denoted by mH , and the
destination, mV , both stand on two different segments of the central cross. In this case, we consider the
energy constraint 1

3En. We can easily extend the result to the case when the source and the destination
stand anywhere in the giant component G1(n,En) by taking En as energy constraint and the theorem
follows.

When mH and mV are on the central cross, there exists a direct path that takes the direct route by
staying on the central cross, more specifically, in Figure 5(a), the segments [SA],[AO],[OC],[CD]. Then, the
path length is of order Θ(n) while the accumulated energy of order Θ(n1−δ)Pmax.

In order to significantly reduce the order of magnitude of the path hop length, one must consider a
diverted path with three fixed relays, as indicated in Figure 5(a). The diverted path proceeds into two
streets of level x. Let T be the path. It is considered that, for 0 < β < 1/2,

x = β
log(ρn)

log(2/qr)
(14)

The path is made of two times two segments: the segment of street [SA] on the central cross which
corresponds to the distance from the source to the first fixed relay to a street of level x, and then the
segment [AB] between this relay and the fixed relay to the crossing street of level x. The second part of
the path is symmetric and corresponds to the connection between this relay and the destination through
segment [BC] and [CD].

Denote by L(x, y) the distance from an arbitrary position on a street of level y to the first fixed relay to
a street of level x. The probability that a fixed relay exists at a crossing of two streets of respective level x
and y is 1− exp(−ρnp(x, y)). Since the spacing between the streets of level x is 2−x, it is known from [18]
that

L(x, y) ≤ 2−x

1− exp(−ρnp(x, y))

where ρn is the effective intensity of relays in the map The average distance from mH to the first relay to
a street of level x is L(x, 0). Since ρnp(x, 0) = p2rρ

1−β
n which tends polynomially to infinity when n → ∞

(with ρn = nθ). Therefore the probability that the relay does not exist at the intersection with the first
street of level x decays exponentially fast and L(x, 0) ∼ 2−x. If we assume that the two diverted routes
from mH and mV , namely [AB] and [BC] have a relay at their intersection point, denoted B in Figure 5(a),
then T is a valid path and has with high probability the following energy score:

E(T ) = O(L(x, 0)n1−δPmax) +O((nλx)
1−δPmax)
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which holds under the condition of corollary 1, namely that nλx → ∞ so that the estimates be valid almost
surely. The number of nodes on the path, D(T ), satisfies with probability tending to 1, exponentially fast:

D(T ) = O(L(x, 0)n) +O(nλx).

The second term in the both right-hand side assumes the worst case when [AB] and [BC] segments span
from end to end on their respective street. The condition for this is that nλx → ∞. We have

nλx =
p

2
nρ

−2 β
dr

(dF−1)
n

which tends to infinity since ρn = nθ, β < 1/2 and 2 β
dr
(dF − 1)θ < 1. We detect that the main contributor

of the accumulated energy are the segments [mHA] and [CmV ] with a cumulated energy which is with

high probability O(2−xn1−δPmax) or O

((
nρ

−2β/dr
n

)1−δ
Pmax

)
while [AB] and [BC], have a contribution

which is O((nλx)
1−δPmax), of order

(
nρ

−2β(dF−1)/dr
n

)1−δ
which is preponderant over the contribution

of [mHA] and [CmV ] (since δ > 1 and dF > 2), thus E[T ] = O

((
nρ

−2β(dF−1)/dr
n

)1−δ
Pmax

)
. But

regarding the number of hops, the segments [mHA] and [CmV ] have the preponderant contributions and

D[T ] = O
(
nρ

−2β/dr
n

)
. In summary we have with high probability


E[T ] = O

(
n1−δρ

−2 β
dr

(dF−1)(1−δ)
n Pmax

)
D[T ] = O

(
nρ

−2 β
dr

n

)
.

(15)

The probability that the two streets of level x have a fixed relay at their crossing is 1− exp(−ρnp(x, x)).
Since ρnp(x, x) = p2rρ

1−2β
n the probability tends to 1 when α < 1/2 . Thus the energy-delay balance formula

of (15) is valid when β < 1/2.

By translating α = 2 β
dr
(dF − 1)θ we end the proof of Theorem 3.

In Theorem 3, it is always assumed that En → 0, since α < 1. In this case,Dn spans from O(n1−1/(dF−1))
to O(n) (corresponding to a path staying on the central cross). When the fractal dimension dF is large it
does not make a large span. In fact, if En is assumed to be constant, i.e. α = 1, then we can have a
substantial reduction in the number of hops, as described in the following theorem.

Theorem 4 In a hyperfractal unit map with n nodes, with mobile fractal dimension dF and relays fractal
dimension dr, and θ = 1, the shortest path of accumulated energy En = vEPmax with vE > 6, between two
nodes belonging to the giant component G1(n,En), passes through a number of hops :

Dn = O
(
n
1− 2

dr(1+1/dF )

)
The theorem shows the achievable limits of delay and number of hops when the constraint on the path

energy is let loose. In fact, this allows taking the path with five fixed relays as in Figure 5(b). The condition
on vE > 6 comes from the 5 relays plus the step required to escape the giant component.

Remark 3 When dr → 2 then Dn = O(n1/(dF+1)), and the hyperfractal model is behaving like a hypercube
of dimension dF + 1. Notice that in this case Dn tends to be O(1) when dF → ∞.
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Proof In the proof of Theorem 3, it is assumed that x < log ρn

2 log(2/qr)
in order to ensure that the number of

hops on the route of level x tends to infinity. However, we can rise the parameter x in the range log ρn

2 log(2/qr)
≤

x < logn
2 log(2/q) .

We have nλx → 0. In this case, E(T ) → 2Pmax since the streets of level x are empty of nodes with
probability tending to 1. Let us denote x = γ logn

2 log(2/q) with γ < 1. We have D(T ) = O(L(x, 0)n) =

O(n1−γ/dr ). Clearly, γ cannot be greater than 1 as, in this case, the two streets of level x will not hold a
fixed relay with high probability and the packet will not turn at the intersection. Therefore the smallest
order that one can obtain on the diverted path with three relays is limited to n1−1/dr , which is not the
claimed one.

To obtain the claimed order, one must use the diverted path with five fixed relays, as shown in Figure 5(b).
The diverted path is composed by the segments: [SA′],[A′E],[EF ],[FG],[GC′] and [C′D′]. It is shown in [18]
that the order can be decreased to n1−2/((1+1/dF )dr).

5.3 Path maximum power

The next results revisit the previous theorems on the path accumulated energy in the alternative case of
the imposed constraint on the path maximum power.

Theorem 5 Let dr > 2 (dF−1)
dF+1 dF θ. The shortest path of maximum power less than Mn = n−δ(1−α)Pmax

with α < 2 (dF−1)dF

(dF+1)dr
θ, between two nodes belonging to the giant component G′

1(n,Mn), passes through a
number of hops:

Dn = O
(
n1−α/(dF−1)

)
It is important to note that although the orders of magnitude of path length Dn are the same in both

Theorem 3 and Theorem 5, the results consider two different giant components: (accumulated) G1(n,En)
and (maximum) G′

1(n,Mn).

Remark 4 We have the identity (
Mn

Pmax

)1/δ

DdF−1
n = O(ndF−2). (16)

Proof The proceed the same way as with Theorem 3 and we same construction with β < 1/2 we get
again (15) (as we only need to replace 1 − δ by −δ) (with M [T ] as the maximum transmission power on
the path T ): 

M [T ] = O

(
n−δρ

2 β
dr

(dF−1)δ
n Pmax

)
D[T ] = O

(
nρ

−2 β
dr

n

)
,

But if we look carefully this would give a value for the α parameter which could not go beyond dF−1
dr

θ while

the theorem claims 2 (dF−1)dF

(dF+1)dr
θ which would make β to go slightly beyond 1/2.

To this end we relies to the construction of Figure 5(b) where we make a derivation from point E and
point G which are intersection to streets of level y with

y = (1− β)
log ρn

log(2/qr)
,

The derivation is needed because the point B′ will not contain a relay with a probability tending to 1.
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The points E and G are the first intersections from point B′ with streets of level y which contains relays.
The two streets intersect at point F . The probability that point F contains a relay is 1− exp(−ρnp(y, y)).
Since ρnp(y, y) = p2rρ

1−β
n and tends to infinity because β < 1, thus the probability tends to 1.

Similarly the average distance between B′ and the points E and G is L(y, x) and is equivalent to 2−y

since the probability of holding a relay is 1− exp(−ρnp(x, y)) which tends to 1 since ρnp(x, y) = p2rρ
1/2
n .

Thus the maximum energy in the new path T , M(T ), satisfies with high probability

M [T ] = O(L(x, 0)n1−δPmax) +O((nλx)
1−δPmax)

+O(L(y, x)(nλy)
1−δPmax)

D[T ] = O(L(x, 0)n) +O(nλx) +O(L(y, x)nλy)

Here the condition taken from corollary 1 are less demanding since it is nλx and nλy to be tending to
infinity when n → ∞ that is we wantnλx = p

2nρ
−2 β

dr
(dF−1)

n → ∞

nλy = p
2nρ

−2 1−β
dr

(dF−1)
n → ∞

which is the direct consequence of the fact that 1−β < β < dF

dF+1 Taking away the non preponderant terms

and using the fact that L(y, x) ∼ 2−y and 2−yλy = p
2ρ

−2(1−β)dF /dr
n we get

M [T ] = O

(
n−δρ

2 β
dr

(dF−1)δ
n Pmax

)
D[T ] = O

(
n

(
ρ
−2 β

dr
n + ρ

−2
(1−β)dF )

dr
n

)) (17)

Since β < dF

dF+1 the above formula is equivalent to (17). increasing β above dF

dF+1 will not decrease the order
of D[T ] as expected because we already know that this is the optimal order for the delay obtained in [18].

Corollary 2 Let θ = 1 the maximum path transmitting power between two points belonging to the
giant component, G′

1(n,Mn) be Mn at most O(Pmax). The number of hops Dn on the shortest path is

O
(
n1−2/(dr(1+1/dF )

)
.

Proof It suffices to consider θ = 1 and α → (dF−1)dF

(dF+1) dr in Theorem 5.

This corollary gives the path length when no constraint on transmitting power exists (the maximum
transmitting power allowed is the highest power for a transmission between two neighbors in the hyperfractal
map). We obtain here the same results of [18], where an infinite radio range is considered, which is not a
feasible result for mmWave technology deployments.

5.4 Remarks on the network throughput capacity

Let us consider the scaling of the network throughput capacity with constraints on the energy. In [23], the
authors express the throughput capacity of random wireless networks as:

ζ(n) = Θ

(
n2∑

i∈G ωi(n)∑
i,j∈G rij

)
. (18)
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where ζ(n) is the throughput capacity, defined as the expected number of packets delivered to their
destinations per slot, ωi(n) is the expected transmission rate of each node i among all the nodes n and
G is the giant component. In the following, denote by C the transmission rate of each node.

Using our results of Theorems 3 and 5 and substituting them in (18), we obtain the following corollary
on a lower bound of the network throughput capacity with constraints on path energy.

Corollary 3 In a hyperfractal with n nodes, fractal dimension of nodes dF , α < 1 and C the transmission
rate of each node when either

– En = O
(
n(1−δ)(1−α)Pmax

)
is the maximum accumulated energy of the minimal path between any pair

of nodes in the giant component G1(n,En)

or

– Mn = O(n−δ(1−α)Pmax) is the maximum path power of the minimal path between any pair of nodes in
the giant component G′

1(n,Mn),

a lower bound on the network throughput is:

ζ(n) = Ω
(
Cn

α
dF −1

)
(19)

Remark 5 We notice that with α < 1 and dF > 3 we have ζ(n) of order which can be smaller than n1/2

which is less than the capacity in a random uniform network with omni-directional propagation as described
in [15].

Remark 6 When α = 1, i.e. with no energy constraint En = cEPmax the path length can drop down to

Dn = O
(
n1−2/((1+1/dF )dr)

)
and, in this case, we have ζ(n) = Ω(n2/((1+1/dF )dr)) which tends to be in

O(n) when dF → ∞ and dr → 2. In this situation the capacity is of optimal order since Dn tends to be
O(1).

6 Variation of city areas, underground network

In the previous analysis we assumed that the area of the city was not varying with the number n of mobile
nodes and the intensity ρ of relays. We assumed that the area stay constant (the unit square). Although we
can imagine the number of mobile nodes can vary during the day, but it is difficult to imagine that the fixed
relays infrastructure could be partially disabled accordingly (although it could be for the sake of energy
saving).

By definition, cities are conceived of networks that constitute the essential functioning of cities [6]. The
physical form of cities is the ultimate result of a multitude of hardware and software processes, constrained
by the geometry of the man-made world. It is known that their population correlate to their level of activity,
and although varying with cultural and functional backgrounds, the city density is more or less constant in
the same area [8,26]. In the following the area A of the city will depend on the population of the mobile
node: the quantity A(n) is proportional to n, with A(n) = Ω(n).

Under this model a mapping of a city in a square as the one we use for the hyperfractal archetypal
model, will imply that the side of the square will be Ω(

√
n). In other word, the energy needed to transmit

a packet from one end of a street to the other end will something like Pmax = P1n
δ/2 where P1 is the

maximum nominal emission power of the wireless nodes. The consequence will be that the parameter Pmax

must be modified in the previous results, with the consequence that the energy balance may no longer tend
to zero.
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Figure 6: Minimum accumulated end-to-end energy versus hops for a transmitter-receiver pair (fixed and
allowed number of hops in red circles, and maximum number of hops in black stars).

Theorem 6 Assuming θ < dr

dF−1 , in variable area hyperfractal city with a bounded maximum emission
power, when path accumulated energy tends to zero or stay bounded we necessary have the delay or hop
count Dn of order n1/2.

Proof Following Theorem 5 it tends to zero when α < δ/2−1
δ−1 which is possible, assuming that θ < dr

dF−1
which allows that θ can be significantly smaller than 1. But this would imply a hop count of greater than
n1−θ/dr which cannot go below the order n1/2.

On the other hand in [16] we only consider the coverage by fixed relay, e.g. by assuming that the relays
are connected via an underground wired network. In the following result we consider that we remove the
hop by hop routing option between mobile nodes.

Theorem 7 In the hypothesis of the relays connected to an underground wired network, when θ > dr

4 , then
for nodes in the giant component the energy balance is almost surely bounded and the hop count limited to
one hop.

Proof We are in the conditions of [16] because the maximal radio range is O(
√
n) and when θ > dr

4 , the
covered fraction of the network by a single hop from the fixed relays tends to 1 when n → ∞.

Remark 7 We notice that in both situations the parameter θ can be significantly smaller than 1 but in the
second case it cannot go below 1/2 which is the limit when dr → 2.

7 Numerical Evaluation

We evaluate the accuracy of the theoretical findings in different scenarios by comparing them to results
obtained by simulating the events in a two-dimensional network. We developed a MatLab discrete time
event-based simulator following the model presented in Section 3. The length of the map is 1000 and,
therefore, Pmax is just 1000δ, where δ is the pathloss coefficient that will be chosen to be 2, 3 or 4, in
line with millimeter-wave propagation characteristics. Figure 6 shows the trade-offs between accumulated
end-to-end energy and hop count for a transmitter-receiver pair by selecting randomly pairs of vehicles in
a hyperfractal map with n = 800, pathloss coefficient δ = 4, fractal dimension of nodes dF = 4.33 and
fractal dimension of relays dr = 3. The plot shows the minimum accumulated energy for the end-to-end
transmission for a fixed and allowed number of hops, k, in red circle markers. Note that the energy does not
decrease monotonically as forcing to take a longer path may not allow to take the best path. However when
considering the minimum accumulated energy of all paths up to a number of hops, the black star markers
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in Figure 6, the energy decreases and exhibits the behavior claimed in Theorem 3. That is, the minimum
accumulated energy is indeed decreasing when the number of hops is allowed to grow (and the end-to-end
communication is allowed to choose longer, yet cheaper, paths).

Let us further validate Theorem 3 through simulations performed for 100 randomly chosen transmitter-
receiver pairs in hyperfractal maps with various configurations. We run simulations for different values of
the number of nodes, n = 800 nodes and 1000 nodes respectively, different values of pathloss, δ = 2 and
δ = 3 and different configurations of the hyperfractal map. The setups of the hyperfractal maps are: node
fractal dimension dF = 4.33 and relay fractal dimension dr = 3.3 for the first setup and dF = 3.3 and
dr = 2.3 for the second setup.

15 20 25 30 35
0.6

0.8

1

1.2

1.4
x 10

5

k hops

m
in

im
um

 e
ne

rg
y

10
1.3

10
1.410

4

10
5

10
6

k hops

m
in

im
um

 e
ne

rg
y

(a) (dF , dr, n) =
4.3, 3.3, 800

22 24 26 28 30 32
200

250

300

350

400

k hops

m
in

im
um

 e
ne

rg
y

10
1.37

10
1.43

10
1.49

10
2.4

10
2.5

k hops

m
in

im
um

 e
ne

rg
y

(b) (dF , dr, n) =
4.3, 3.3, 1000

0 20 40 60 80
0.5

1

1.5

2

2.5

3
x 10

5

k hops

m
in

im
um

 e
ne

rg
y

10
1.3

10
1.810

4

10
5

10
6

k hops

m
in

im
um

 e
ne

rg
y

(c) (dF , dr, n) =
3.3, 2.3, 800

20 30 40 50 60 70
1

2

3

4

5
x 10

5

k hops

m
in

im
um

 e
ne

rg
y

10
1.5

10
1.6

10
1.7

10
5.1

10
5.3

10
5.5

k hops

m
in

im
um

 e
ne

rg
y
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3.3, 2.3, 1000

Figure 7: Minimum accumulated end-to-end energy versus hops, averaging over 100 transmitter-receiver
pairs, δ = 2, linear scale left side of sub-figures, logarithmic scale right side of sub-figures

The results exhibited in Figure 7 are obtained by computing, for each of the transmitter-receiver pair,
the minimum accumulated end-to-end energy for a path smaller than k, then averaging over the 100 results.
The left-hand sides of the Figures 7 (a) and 7 (b) show the variation of the minimum path accumulated
energy for the path with the increase of the number of hops in a hyperfractal setup of dF = 4.33 and dr = 3
for n = 800 in 7 (a) and n = 1000 in 7 (b). The figures illustrate that, indeed, allowing the hop count to
grow decreases the energy considerably. The decay of the maximum accumulated energy with the allowed
number of hops is even more visible in logarithmic scale in the right side of the same figures.

The decays remain substantial when changing the hyperfractal setup to dF = 3.3, dr = 2.3. Figures 7 (c)
and 7 (d) show the results for n = 800 and n = 1000 in the new setup. The decay is dramatic as shown with
a logarithmic scale. Even though there can be oscillations around the linearly decreasing characteristic, as
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(b) Logarithmic scale

Figure 8: Minimum accumulated end-to-end energy versus hops, averaging over 100 transmitter-receiver
pairs, δ = 3
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Figure 9: Path Maximum Energy trade-off with delay (i.e. path length)

seen in Figure 7 (d), left-hand side, the global behavior stays the same, decreasing, as better noticed in
logarithmic scale in Figure 7 (d), right-hand side.

When changing the pathloss coefficient to δ = 3, the effect of Theorem 3 remains, as illustrated in
Figure 8 for a hyperfractal setup of dF = 4.33, dr = 3, n = 800 nodes.

To validate the results of Theorem 5 on the variation of path length with the imposed constraint on
maximum energy per node, we choose randomly 100 transmitter-receiver pairs belonging to the central
cross and compute the shortest path by applying a constraint on the maximum transmission energy of
nodes belonging to the path. The hyperfractal setups are: nodes fractal dimension dF = 3.3, relays fractal
dimension dr = 2.3, pathloss coefficient δ = 3 and we vary the number of nodes, n to be either n = 500
or n = 800. For both values of n, Figure 9 (a) confirms that decreasing the constraint of path maximum
energy increases the path length.

Changing the fractal dimensions does not change the behavior, as illustrated in Figure 9 (b). The
hyperfractal configurations are: nodes fractal dimension dF = 4.33, relays fractal dimension dr = 3, pathloss
coefficient δ = 4 and we vary the number of nodes, n to be either n = 500 or n = 800. Again, making a
tougher constraint on the path maximum energy leads to the increase of the path length, showing that
achievable trade-offs in hyperfractal maps of nodes with RSU.
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8 Conclusion

This paper presented results on the trade-offs between the end-to-end communication delay and energy spent
on completing a transmission in millimeter-wave vehicular communications in urban settings by exploiting
the “hyperfractal” model. This model captures self-similarity as an environment characteristic. The self-
similar characteristic of the road-side infrastructure has also been incorporated.

Analytical bounds have been derived for the end-to-end communication hop count under the constraints
of total accumulated energy, and maximum energy per node, exhibiting the achievable trade-offs in
a hyperfractal network. The work presented a lower bound on the network throughput capacity with
constraints on path energy. Further examples of model fitting with data have been given. The analytical
results have been validated using a discrete-time event-based simulator developed in Matlab.

9 Appendices

9.1 Proof of Lemma 2

Proof Let NH(n) be the number of nodes contained in the street of level H.
Let z be a real number. By Chebyshev’s inequality, we have:

E[ezNH(n)] = (1 + (ez − 1)λH)n

If z > 0:

P

(
NH(n) <

nλH

2

)
= P

(
e−zNH(n) > eznλH/2

)
≤ E[e−zNH(n)]

e−znλH/2

Therefore
E[e−zNH(n)]

e−znλH/2
= exp

(
n
(
log
(
1 + (e−z − 1)λH

)
+ zλH/2

))
.

For |z| bounded there exists b > 0 such that |ez − 1| ≤ b|z| and there exists c such that ez − 1 ≤ z+ cz2.
For |x| bounded there exists d such that log(1+x) ≤ x−cx2. From these steps we obtain that, for sufficiently
small |z|, one has:

log
(
1 + (e−z − 1)λH

)
+ z

λH

2
≤ −z

λH

2
+ bλHz2 − cλ2

Hz2

≤ −aλH .

which settles that
E[e−zNH(n)]

e−znλH/2
≤ e−anλH . (20)

The proof of the second part of the lemma proceeds via similar reasoning, by using the inequality:

P (NH(n) > 2nλH) ≤ E[ezNH(n)]

e2znλH
. (21)
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