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Abstract
We propose a space-efficient data structure for orthogonal range search on suffix arrays. For general
two-dimensional orthogonal range search problem on a set of n points, there exists an n logn(1+o(1))-
bit data structure supporting O(logn)-time counting queries [Mäkinen, Navarro 2007]. The space
matches the information-theoretic lower bound. However, if we focus on a point set representing a
suffix array, there is a chance to obtain a space efficient data structure. We answer this question
affirmatively. Namely, we propose a data structure for orthogonal range search on suffix arrays
which uses O( 1

ε
n(H0 + 1)) bits where H0 is the order-0 entropy of the string and answers a counting

query in O(nε) time for any constant ε > 0. As an application, we give an O( 1
ε
n(H0 + 1))-bit data

structure for the range LCP problem.
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1 Introduction

In this paper we consider the problem of orthogonal range search on suffix arrays (ORS on
SA). The problem is defined as follows. We are given the suffix array SA[1, n] of a string T
of length n, which is a data structure for string matching [12]. Then we construct a two-
dimensional point set P = {pi = (i,SA[i]) | i = 1, . . . , n}. We consider two types of queries
on P : a reporting query and a counting query. Given a query region Q = [x1, x2]× [y1, y2],
the reporting query must output Q ∩ P , and the counting query |Q ∩ P |.

The problem is a special case of the general two-dimensional range search problem for
which there exists O(logn) time solutions for the counting query using O(n logn)-bit space [4]
or n logn(1 + o(1))-bit1 space [11]. However there are no data structures using the fact that
the point set represents a suffix array to reduce the data structure size.

1 Throughout the paper logn denotes log2 n.
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23:2 Compressed Orthogonal Search on Suffix Arrays

The orthogonal range search problem on suffix arrays has many applications in string
algorithms. A direct application is the position-restricted substring search problem [11].
Given a pattern P [1,m] and two integers 1 ≤ ` ≤ r ≤ n, count all the occurrences of P
in T [l, r] or locate them. This corresponds to the counting and reporting problems on the
point set P for the suffix array. Other problems are the interval LCP problem introduced by
Cormode and Muthukrishnan [5] and the range LCP problem introduced by Amir et al. [2].
For a string T [1, n], let lcp(i, j) denote the length of the longest common prefix between
T [i, n] and T [j, n]. An interval LCP query ilcp(i, α, β) takes three integers i, α, β ∈ [1, n]
and must return maxj∈[α,β] lcp(i, j). A range LCP query rlcp(α, β) receives two integers
α, β ∈ [1, n] and must return maxi,j∈[α,β] lcp(i, j).

Although the orthogonal range search problem on suffix arrays plays an important role
in string algorithms, a bottleneck is its space usage. For a string of length n on an alphabet
of size σ, its suffix array uses n logn bits [12]. A data structure for orthogonal range search
uses n logn+ o(n logn) bits, which can be used solely without the standard representation
of the suffix array. If σ < n, this can be much more than the n log σ bits of space required to
store the string itself.

It seems n logn bits are necessary for storing suffix arrays or ORS data structures because
it can represent a permutation of {1, 2, . . . , n} which requires Ω(n logn) bits to represent.
For suffix arrays, however, there are data structures for storing them in O(n log σ) bits [8] or
O(n(H0(T ) + 1)) bits [18] where H0(T ) is the order-0 entropy of T . This is not surprising, if
we do not consider query time, because the suffix arrays is computed from the string that
can be compressed in O(n(H0(T ) + 1)) bits. This should hold also for ORS data structures
on suffix arrays. However there are no such data structures for ORS which have o(n) query
time.

In this paper, we propose a space-efficient data structure for orthogonal range search on
suffix arrays. The main result is as follows.

I Theorem 1. For a string T of length n, consider orthogonal range search on the suffix
array of T . For any constant ε > 0, there exists a data structure using O( 1

ε · n(H0(T ) + 1))
bits which supports a counting query in O(nε) time and a reporting query in O((occ + 1) · nε)
time.

This is the first data structure to achieve linear (O(n log σ)-bit) space and sub-linear query
time.

As an application, we give space-efficient solutions for the interval LCP and the range
LCP problems. For the interval LCP problem, [5, 9] introduced two different data structures
that use O(n logn) bits of space and have query time O(log1+ε n), where ε > 0 is an arbitrary
constant (in fact, both works show a series of data structures with different space-time
trade-offs, we only give the data structures with lowest space requirements here). In this
work, we show a data structure that requires O( 1

εn(H0(T ) + 1)) bits of space and maintains
interval LCP queries in O(nε) time.

As for the range LCP queries, Amir et al. [2] gave two data structures; one uses
O(n log2+ε n) bits with query time O(log logn) and the other uses O(n logn) bits with
query time O(δ log logn), where δ = β−α+ 1 is the length of the range. Patil et al. [15] gave
a data structure of O(n logn) bits with query time O(

√
δ logε δ). Abedin et al. [1] gave a

data structure of O(n logn) bits with query time O(log1+ε n). In addition, Amir, Lewenstein,
and Thankanchan [3] considered range LCP queries with a bounded number of mismatches.

In this work, we develop a new data structure for range LCP queries that requires
O( 1

εn(H0(T ) + 1)) bits of space and achieves O(nε) query time.



K. Matsuda, K. Sadakane, T. Starikovskaya, and M. Tateshita 23:3

2 Preliminaries

2.1 Succinct data structures
A succinct data structure is a data structure whose size asymptotically achieves the
information-theoretic lower bound for representing the data. In this paper, we use succinct
data structures for bit-vectors. A bit-vector is a string B[1, n] on the binary alphabet {0, 1}.
Its information-theoretic lower bound is n bits, and there exists a succinct data structure
using n+ o(n) bits supporting the following operations in constant time [16]:

rankc(B, i): returns the number of c’s in B[1, i] (c = 0, 1),
selectc(B, j): returns the position of the j-th c from the beginning in B (c = 0, 1).

2.2 Suffix arrays
Consider a string T [1, n] of length n on an alphabet A of size σ. We add the unique terminator
$ at the end of the string, that is, T [n+ 1] = $. We assume the terminator is alphabetically
smaller than any letter in A. The suffix array of T stores lexicographic order of suffixes of T .
Let SA[0, n] be the suffix array of T . Then SA[i] = j means that the lexicographically i-th
smallest suffix of T is the suffix T [j, n+ 1] starting at position j of T . It holds SA[0] = n+ 1
and for i = 1, . . . , n, 1 ≤ SA[i] ≤ n and the values are a permutation of {1, 2, . . . , n}. A
pattern search for pattern length m can be done in O(m logn) using the string T and its
suffix array SA. The required space is n log σ bits for T and n logn bits for SA [12].

2.3 Compressed suffix arrays
Compressed suffix arrays [8] are data structures for compressing suffix arrays from n logn
bits to O(n log σ) bits. This is further compressed into O(n(H0(T ) + 1)) bits [18]. There are
several variants of the compressed suffix arrays and the most basic one takes O(logn) time
to compute an entry SA[i] of the suffix array.

Instead of SA, compressed suffix arrays stores the Ψ function defined as follows:

Ψ[i] =
{

SA−1[SA[i] + 1], if SA[i] ≤ n;
SA−1[1], otherwise.

Figure 1 shows an example of the suffix array and the compressed suffix array. An important
property of the Ψ function is that it is piece-wise monotone.

I Lemma 2 (Prop. 4.1 in [18]). For a string of length n on an alphabet of size σ, consider its
suffix array SA and Ψ. For any 1 ≤ i < j ≤ n, if T [SA[i]] = T [SA[j]], it holds Ψ[i] < Ψ[j].

Proof. For any 1 ≤ i ≤ n, Ψ[i] = SA−1[SA[i] + 1] is the lexicographic order of the suffix
T [SA[i]+1, n+1], which is obtained by removing the first character of the suffix T [SA[i], n+1].
For any 1 ≤ i < j ≤ n, if T [SA[i]] = T [SA[j]], the suffixes T [SA[i], n+ 1] and T [SA[j], n+ 1]
have the same first character and their relative order is determined by the suffixes made by
removing the first characters. This means Ψ[i] = SA−1[SA[i]+1] < SA−1[SA[j]+1] = Ψ[j]. J

From this property, the Ψ function consists of at most σ increasing sequences and it can be
compressed into O(n(H0(T ) + 1)) bits, and an entry of the suffix array can be computed
from Ψ in O(logn) time. An entry of the inverse suffix array ISA[j] = SA−1[j] can be also
computed in O(logn) time. For more details, see [18].

CPM 2020



23:4 Compressed Orthogonal Search on Suffix Arrays

0

1

2

3

4

5

6

7

8

9

10

11

Ψ
3
0
6
7
8
9
10
11
5
2
1
4

SA
12
11
8
1
4
6
9
2
5
7
10
3

T [SA[i], n+ 1]
$
a$
abra$
abracadabra$
acadabra$
adabra$
bra$
bracadabra$
cadabra$
dabra$
ra$
racadabra$

0

1

2

3

4

5

6

Ψ0
3
4
5
6
2
0
1

SA0
1
4
6
2
5
7
3

T [SA0[i], n+ 1]
abraca dabra$
aca dabra$
a dabra$
braca dabra$
ca dabra$
dabra$
raca dabra$

0

1

2

3

4

5

6

Ψ′0
3
4
5
0
6
3
2

SA′0
7
1
4
6
2
5
3

T [SA′0[i], n1 + 1]
$
abraca$
aca$
a$
braca$
ca$
raca$

Figure 1 An example of the suffix array and its sub-array.

2.4 Suffix trees and compressed suffix trees
Suffix tree [21] is a data structure for storing all the suffixes of a string T by a tree structure.
Leaves of the suffix tree have one-to-one correspondence with all the suffixes. An internal
node v of the suffix tree corresponds to a substring s of T so that the suffixes corresponding
to the leaves in the subtree rooted at v share the same prefix s. The string depth of v is
defined as the length of s.

Compressed suffix tree [19] reduces the space of the suffix tree from O(n logn) bits to
6n + o(n) + SIZESA(n, σ) bits where SIZESA(n, σ) is the size of a data structure for the
suffix array. Let TIMESA(n, σ) denote the time to compute an entry of the suffix array or
the inverse suffix array using a compressed suffix array. Then the string depth of a node
is computed in O(TIMESA(n, σ)) time. Also, given two positions i, j in the string, lcp(i, j)
is computed in O(TIMESA(n, σ)) time. Note that there is a data structure [18] satisfying
SIZESA(n, σ) = O(n(H0(T ) + 1)) bits and TIMESA(n, σ) = O(logn).

By augmenting the compressed suffix tree with a constant time level ancestor query data
structure [13], we can answer weighted level ancestor queries in O(TIMESA(n, σ) logn) time.
A weighted level ancestor query WLA(u, d) on a suffix tree is to find the nearest ancestor
of a node u in the suffix tree with string depth at most d. This is solved by simply binary
searching nodes on the path from u to the root using string depths of nodes as keys.

2.5 Wavelet trees and orthogonal range search
Wavelet tree [7] is a data structure for computing rank and select on strings efficiently
for large alphabets. The wavelet tree of a string T of length n on an alphabet of size σ
occupies (n + o(n)) log σ bits of space and allows computing rankc(T, i) and selectc(T, j)
for any character c in the alphabet in O(log σ) time. Wavelet trees can be used to answer
two-dimensional orthogonal range searches in O(log σ) time [11]: Given a two-dimensional
rectangle query Q = [x1, x2] × [y1, y2], the orthogonal range reporting query must output
Q ∩ P , and the orthogonal range counting query |Q ∩ P |.

Because in this paper we consider wavelet trees only for strings consisting of suffix array
entries, we explain the data structure of the wavelet tree using suffix arrays.
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Figure 2 An example of a point set for the suffix array of Figure 1 (left), and its wavelet tree
representation (right).

The wavelet tree W of the suffix array SA of length n is defined recursively. In the root
node of W , we store a bit-vector B[1, n], where B[i] is the first bit of the binary encoding
of SA[i] for i = 1, . . . , n. We construct two arrays, SA0 and SA1, where SA0 stores all the
entries of SA whose first bit is 0 in the same order as in SA, and SA1 stores the rest (all
the entries of SA whose first bit is 1) in the same order as in SA. We consider that the
first bits of entries of SA0 and SA1 are removed. The left and the right children of the
root node of W store the wavelet trees for SA0 and SA1, respectively. We say that the
root node is in level 0 and its children are in level 1, and so on. Let B0 and B1 denote
the bit-vectors in the left child and the right child, respectively. Then the length of B0 is
rank0(B,n) and if B[i] = 0, SA[i] corresponds to SA0[rank0(B, i)]. Similarly, the length of
B1 is rank1(B,n) = n− rank0(B,n) and if B[i] = 1, SA[i] corresponds to SA1[rank1(B, i)].
We add the auxiliary data structures for computing rank and select on the bit-vectors.

3 Compressed Orthogonal Range Search on Suffix Arrays

In this section, we prove Theorem 1 and give an O(n(H0(T ) + 1))-bit space implementation
of the orthogonal range search queries on the point set P = {pi = (i,SA[i]) | i = 1, . . . , n}.
The wavelet tree [11] on SA occupies n logn + o(n logn) bits of space and maintains the
orthogonal range queries in O(logn) time. We will show that for this special case of P one
can achieve O(n(H0(T ) + 1)) space complexity (at an expense of higher query time).

If we store the bit-vectors of the nodes of the wavelet tree explicitly, we need O(n logn)
bits. However, each bit in the bit-vectors is some bit of an entry of the suffix array, and the
suffix array can be represented in O(n(H0(T ) + 1)) bits. We will use this fact to develop a
data structure for orthogonal range queries by imitating the wavelet tree and decoding the
required information on the fly from the compressed suffix array of the string.

3.1 Orthogonal range search
In the orthogonal range search algorithm using wavelet trees, we need to compute rank(Bv, i)
on the bit-vector Bv of node v of the wavelet tree. To compute it using the compressed suffix
array, we need the relation between bits of the bit-vector and entries of the suffix array.

CPM 2020
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We divide B into blocks of length ∆, where ∆ is a parameter to be determined later. Let
Bj = B[j∆ + 1, (j + 1)∆] be the j-th block (j = 0, 1, . . . , n/∆). For each block j, we store
Bj .rank0: the number of 0’s in the blocks to the left of Bj .

Similarly, for the bit-vector Bv of node v, we create d n∆e many blocks Bjv. The block
Bjv contains the entries corresponding to the entries of SA such that they belong to Bj and
their binary representation starts with v. For the j-th block Bjv, we store

Bjv.rank0: the number of 0’s in the blocks to the left of Bjv,
Bjv.blocknum: the total number of bits in the blocks to the left of Bjv.

To compute rank0(Bv, i), we first find the block j of the bit-vector in the root node that
contains the i-th bit of Bv, extract the entries of the compressed suffix array for the block of
length ∆, compute the number of 0’s in the block up to position i, and add it to the number
of 0’s before the block in Bv, which is stored in Bjv.rank0.

However, this approach requires even more space than the wavelet tree: at depth logn,
there are n nodes and therefore d n∆e · n blocks. To overcome this, we stop the recursion for
blocks at every k = dε logne steps, and restart the data structure construction. Details are
as follows.

Consider the nodes of the wavelet tree at depth dk (d = 0, 1, . . . , 1
ε − 1). There are 2dk

such nodes, and for each such node v′, we divide the bit-vector Bv′ into d n
∆·2dk e many blocks

Bjv′ (j = 0, . . . , b n
∆·2dk c) of length ∆ each. Similarly to the above data structure, we store,

for each j, Bjv′ .rank0: the number of 0’s in the blocks to the left of block Bjv′ .
Then, each bit-vector Bv′′ of a node v′′ at depth dk+ 1 to (d+ 1)k is divided into d n

∆·2dk e
many blocks Bjv′′ , corresponding to the blocks of a bit-vector in a node at depth dk which is
the ancestor of v′′ with that level. For the j-th block Bjv′′ , we store

Bjv′′ .rank0: the number of 0’s in the blocks to the left of Bjv′′ ,
Bjv′′ .blocknum: the total number of bits in the blocks to the left of Bjv′′ .

The number of blocks between depths dk+1 and (d+1)k is d n
∆·2dk e·2k ·2dk = 2k ·d n∆e = nε·d n∆e.

Therefore, the total space is O( 1
ε · n

ε n
∆ logn) bits.

At depth dk of the wavelet tree, there are 2dk many bit-vectors B00...00, B00...01, . . .,
B11...11. Each bit-vector corresponds to a sub-array SAv of SA such that the first dk bits
of the binary encodings of the suffix array entries are equal to v. That is, the bit-vector
B00...00 corresponds to the sub-array SA00...00 containing entries in the range [1, n

2dk ], B00...01
to SA00...01 containing entries in [ n

2dk + 1, 2n
2dk ], and B11...11 to SA11...11 containing entries in

[ (2dk−1)n
2dk + 1, n].

I Lemma 3. The sub-array SAv, which consists of the entries SA[`(v − 1) + 1, `v] where
` = n

2dk , contains positions in the substring Tv = T [`(v− 1) + 1, `v], and it can be compressed
in O(`(H0(Tv) + 1)) bits. Each entry of SAv can be computed in O(log `) time.

Proof. SAv stores positions of suffixes between `(v − 1) + 1 and `v. From the construction
of the wavelet tree, SAv stores positions of Tv. We insert one entry `v + 1 to the sub-array,
whose position in the sub-array is determined by the lexicographic order of the corresponding
suffixes in the entire string. Let p be this position. We subtract `(v − 1) + 1 from each entry
in SAv so that they become integers from 0 to ` to obtain an array SA′v. (See Figure 1 for
an example.) For any 0 ≤ i ≤ v + 1 except for p, we define Ψ′v[i] = SA′v

−1[SA′v[i] + 1]. By
Lemma 2, Ψ′v consists of at most σ increasing sequences and the values are in [0, `]. Then
we can compress Ψ′v in O(`(H0(Tv) + 1)) bits, and each entry of SA′v[i] can be computed in
O(log `) time (Theorem 4.1 in [18]). J
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Algorithm 1 calcblock(v, level, k): Given a node v with depth level, find the node v′ that is the
nearest ancestor of v whose depth is a multiple of k.

1: v′ = v

2: for i = 1, . . . , level − k do
3: v′ = b v

′−1
2 c

4: return v′

Algorithm 2 calcblockrank(v, level, j, c, k): returns the rank0 value at Bv[c] in the bit-vector Bv

by extracting ∆ entries of the compressed suffix array in the block that contains Bv[c].

1: blockvalue = c−Bjv.blocknum
2: v′ = calcblock(v, level, k)
3: rank = 0
4: i = 1
5: cnt = 0
6: while cnt < blockvalue do
7: if the highest (level − k · b levelk c) bits of SAv′ [j ·∆ + i] are equal to those of v then
8: cnt = cnt+ 1
9: if the (level − k · b levelk c+ 1)-st bit of SAv′ [j ·∆ + i] is 0 then
10: rank = rank + 1
11: i = i+ 1
12: return rank

For each node v of depth dk of the wavelet tree, we represent SAv as in Lemma 3.
Therefore, the total space for depth dk is

∑
v O(`(H0(Tv) + 1)) bits. From concavity of

logarithm, this is upper bounded by O(n(H0(T ) + 1)) bits. Then the total for all levels
which are multiple of k is O( 1

ε · n(H0(T ) + 1)) bits. Levels that are not multiples of k require
O( 1

ε · n
ε n

∆ logn) bits of space.
Using this data structure for orthogonal range search, the counting query is solved by

Algorithms 1–3. The rank operations take O(∆ · logn) time for nodes of depths which
are multiples of k, and O(∆) time for other nodes. Therefore, the total query time is
O(∆ · logn · 1

ε + ∆ · logn) = O(∆ · logn). The reporting query is solved analogously, and for
output of size occ takes O(occ ·∆ · logn) time. By letting ∆ = nε logn, we obtain a data
structure of O( 1

ε · n(H0(T ) + 1)) bits and O(nε log2 n) query time. To improve the query
time to O(nε), we use another parameter ε′ < ε such that nε′ log2 n = O(nε) and 1

ε′ = O( 1
ε ).

Then we obtain Theorem 1.

3.2 Range successor/predecessor
As a simple extension, we consider 2-dimensional range successor and predecessor queries [14]
defined as follows.

I Definition 4. Let P be a set of n points on the [1, n]× [1, n] grid. The two-dimensional
range successor and predecessor queries are defined as:

ORSxSucc([x,+∞], [y, y′]) = argmini{(i, j) ∈ P ∩ [x,+∞]× [y, y′]},
ORSxPred([−∞, x′], [y, y′]) = argmaxi{(i, j) ∈ P ∩ [−∞, x′]× [y, y′]},
ORSySucc([x, x′], [y,+∞]) = argminj{(i, j) ∈ P ∩ [x, x′]× [y,+∞]},
ORSyPred([x, x′], [−∞, y′]) = argmaxj{(i, j) ∈ P ∩ [x, x′]× [−∞, y′]}.

CPM 2020
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Algorithm 3 ORS_SA([x1, x2], [y1, y2]): For the point set pi = (i,SA[i]) (i = 1, . . . , n) where
SA is the suffix array of a string of length n, return the number of points pi ∈ Q = [x1, x2]× [y1, y2].

1: return count([x1, x2], [y1, y2], ε, 0, [0, 0], [1, n], k)
2:
3: function count([x1, x2], [y1, y2], v, level, j1, j2, [a, b], k)
4: #leftchild(v): returns the bit-vector of the left child of v, i.e., the bit-vector of v to

which 0 is appended at the end.
5: #rightchild(v): returns the bit-vector of the right child of v, i.e., the bit-vector of v to

which 1 is appended at the end.
6: if x1 > x2 then
7: return 0
8: if [a, b] ∩ [y1, y2] = ∅ then
9: return 0

10: if [a, b] ⊂ [y1, y2] then
11: return x2 − x1 + 1
12: k = dε logne
13: if level % k = 0 then
14: j1 = bx1−1

∆ c
15: j2 = bx2

∆ c
16: xl1 = calcblockrank(v, level, j1, x1 − 1, k) +Bj1v .rank0 + 1
17: xl2 = calcblockrank(v, level, j2, x2, k) +Bj1v .rank0
18: xr1 = x1 − xl1 + 1
19: xr2 = x2 − xl2
20: m = ba+b

2 c
21: return count([xl1, xl2], [y1, y2], leftchild(v), level + 1, j1, j2, [a,m], k)+

count([xr1, xr2], [y1, y2], rightchild(v), level + 1, j1, j2, [m+ 1, b], k)

We focus on range successor and predecessor queries on suffix arrays. In addition to the
data structure in Section 3.1, we store the following.

Bjv.xSucc: the index i such that SA[i] attains the minimum value in blocks Bjv to Bb
n
∆ c

v .
Bjv.xPred: the index i such that SA[i] attains the maximum value in blocks B0

v to Bjv.
Bjv.ySucc: min{SA[x] | x ∈ [ n∆ ·j,

n
∆ ·(j+1)−1] and SA[x] ∈ [`, n]} where ` is the leftmost

index corresponding to node v
Bjv.yPred: max{SA[x] | x ∈ [ n∆ · j,

n
∆ · (j + 1) − 1] and SA[x] ∈ [0, r]} where r is the

rightmost index corresponding to node v

Using these data structures, we can answer ORSxSucc([x,+∞], [y, y′]) (ORSxPred([−∞,
x′], [y, y′])) as follows. First, we extract SA[x, (b x∆c + 1) ·∆ − 1] (SA[bx

′

∆ c ·∆, x
′]), and if

there is a value in [y, y′], the one with the smallest (largest) index is the answer. This is done
in O(∆ · logn) time. Otherwise, we perform an ORS query. During the search every time
we compute rank(Bv, c), if Bv[c] belongs to Bjv and the range of characters [s, t] for node
v satisfies [s, t] ⊂ [y, y′], we store Bj−1

v .xSucc (Bj−1
v .xPred) as a candidate of the answer

and compare it with the minimum (maximum) index of the extracted suffix array values in
[y, y′] If ∆ = nε logn, the time complexity is O(∆ · logn+ ∆ · logn) = O(nε log2 n). This can
be easily reduced to O(nε) time. ORSySucc([x, x′], [y,+∞]) (ORSyPred([x, x′], [−∞, y′])) is
solved similarly.

We obtain the following.
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I Theorem 5. For a string T of length n, there exists an O( 1
ε · n(H0(T ) + 1))-bit data

structure supporting two-dimensional range successor/predecessor queries in O(nε) time.

Keller et al. [10] showed the following.

I Lemma 6 (cf. [10]). The interval LCP queries can be reduced to two-dimensional range
successor/predecessor queries.

Proof. We reduce an interval LCP query ilcp(p, α, β) to the two-dimensional range suc-
cessor/predecessor queries on a set P = {(i,SA[i]) | i ∈ [1, n]} for the string. Let q =
SA−1[p]. We compute the largest lexicographic order x < q such that SA[x] ∈ [α, β]
and the smallest lexicographic order y > q such that SA[y] ∈ [α, β]. This is done by
x = ORSxPred([−∞, p − 1], [α, β]) and y = ORSxSucc([p + 1,+∞], [α, β]). Then it holds
ilcp(p, α, β) = max{lcp(p, x), lcp(p, y)}. J

From Theorem 5 and Lemma 6, we obtain:

I Corollary 7. For a string T of length n, there exists an O( 1
ε · n(H0(T ) + 1))-bit data

structure supporting interval LCP queries in O(nε) time.

4 Range LCP queries

In this section, we will show a data structure that occupies O( 1
εn(H0(T ) + 1)) bits of space

and supports rlcp queries in O(nε) time. We follow the outline of the data structure presented
in [1], but improve the space complexity of the key components of the data structure.

I Definition 8 (Bridges). Let i and j be two distinct positions in the string T with i < j and
let h = lcp(i, j) and h > 0. Then, we call the tuple (i, j, h) a bridge. Moreover, we call h its
height, i its left leg and j its right leg, and lcp(T [i, n], T [j, n]) its label.

The set of all bridges is denoted by Ball. Next, we will define the set of special bridges
Bspe via the heavy-path decomposition of the suffix tree ST of the string T .

I Definition 9 (Heavy Path Decomposition [20]). Let τ be a tree. The nodes in τ are
categorised into light and heavy ones. The root node is light. Furthermore, for each node
of τ , exactly one of its children is heavy and the others are light. The heavy child has the
largest number of leaves in its subtree among the children (ties are broken arbitrarily). When
all edges incoming to light nodes are deleted, τ is decomposed into (heavy) paths.

Recall that there is one-to-one correspondence between the suffixes of T and the leaves
of ST. By `i we denote the leaf corresponding to T [ISA[i], n].

I Definition 10 (Special Bridges). Let ui, uj in ST be the children of the lowest common
ancestor of `i and `j on the path to `i, `j , respectively. A bridge (i, j, h) ∈ Ball is special if it
satisfies at least one of two following conditions.
1. ui is a light node and j = min{x | (i, x, h) ∈ Ball}
2. uj is a light node and i = max{x | (x, j, h) ∈ Ball}

The reason to introduce this definition is that we can express range LCP queries via the
special bridges.

I Lemma 11 (cf. [1]). Let Bspe be the set of all special bridges. Then |Bspe| = O(n logn)
and for any α, β we have rlcp(α, β) = max{h : (i, j, h) ∈ Bspe and i, j ∈ [α, β]}.
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I Definition 12 (cf. [1]). For i, j ∈ N and h ∈ N, we define

crightLeg(i, h) =
{

min{x | (i, x, h) ∈ Bspe} if there exists a bridge (i, ·, h) ∈ Bspe;
+∞, otherwise.

cleftLeg(j, h) =
{

max{x | (x, j, h) ∈ Bspe} if there exists a bridge (·, j, h) ∈ Bspe;
−∞, otherwise.

I Lemma 13. By maintaining a data structure of space O( 1
εn(H0(T ) + 1)) bits, we can

answer crightLeg(k, h) and cleftLeg(k, h) queries in O(nε) time.

Proof. By [1], we can reduce computing crightLeg(k, h) and cleftLeg(k, h) to four range
successor/predecessor queries on the suffix array of T and standard operations on ST. The
claim follows by Theorem 1. J

I Lemma 14 (cf. [1]). Suppose that (i, j, h) ∈ Bspe. Then, ∀k ∈ [1, h − 1], there exists
at least one (i + k, ·, h − k) ∈ Bspe such that crightLeg(i + k, h − k) ∈ (i + k, j + k] and
(·, h+ k, h− k) ∈ Bspe such that crightLeg(i+ k, h− k) ∈ (i+ k, j + k].

Let S be a set of m weighted points in a [1, n] × [1, n] grid. A 2D-RMQ with input
(a, b, a′, b′) asks to return the highest weighted point in S within the orthogonal region
corresponding to [a, b]×[a′, b′]. There is a data structure for this problem that uses O(m logn)
bits of space and O(log1+γm) query time [4]. Let ∆ = log2 n and Bx (mod ∆)

spe be the set
of special bridges of heights congruent to x modulo ∆. For some π ∈ [0,∆ − 1] we have
|Bπ (mod ∆)
spe | = O(n/ logn) as a corollary of Lemma 11 and the Pigeonhole principle. We

map each special bridge (i, j, h) ∈ Bπspe into a 2D point (i, j) with weight h and maintain the
2D-RMQ data structure over these points.

Let (α∗, β∗, h∗) be the tallest special bridge, such that both α∗, β∗ ∈ [α, β]. We query the
2D-RMQ structure and find the tallest bridge (i′, j′, h′) ∈ Bπ (mod ∆)

spe , such that i′, j′ ∈ [α, β].

B Claim 15. If h∗ ≥ π, then (i′, j′, h′) is well-defined. Furthermore, we have τ ≤ rlcp(α, β) ≤
τ + ∆, where τ = max{ilcp(p, α, β)|p ∈ (β −∆, β]} ∪ {h′}.

Proof. If β∗ ∈ (α, β − ∆], then there is h∗ ∈ [h′, h′ + ∆) by Lemma 14. Else, there is
h∗ = max{ilcp(p, α, β) : p ∈ (β −∆, β]}. J

Below, we consider two possible cases: h∗ < π and π ≥ h∗. In the second case, by
Claim 15, we can find τ such that τ ≤ rlcp(α, β) ≤ τ + ∆ in O(logγ n + ∆ · nε) = O(nε′)
time for some ε′ > ε. We will now explain how to find the true value of h∗.

4.1 Case 1: π ≤ h∗

By Claim 15, in this case we know the interval [π + ∆ · k, π + ∆ · (k + 1)) that contains all
possible values for h∗. Therefore, to find the true value of h∗ in this case it suffices to check,
for each h ∈ [π+ ∆ · k, π+ ∆ · (k+ 1)] if there is a special bridge (i, j, h) with legs i, j ∈ [α, β].

Recall that Bhspe is the set of all special bridges with height h. For each h ∈ [1, n], we
maintain a separate structure that can answer whether there is a bridge of height h with
legs in [α, β]. For k = 1, 2, . . . , |Bhspe|, let Lh[k] (resp., Rh[k]) denote the left leg (resp., right
leg) of k-th bridge among all bridges in Bhspe in the ascending order of the left (resp., right)
legs. Based on whether h ≡ π (mod ∆) or not, we have two subcases.
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4.1.1 Subcase 1a: h ≡ π (mod ∆)
Let RLh[k] = crightLeg(Lh[k], h) for all k = 1, 2, . . . , |Bhspe|. We maintain the y-fast trie [22]
over Lh and a succinct range minimum query data structure [6, 17] over RLh. The total
space is O(|Bπ (mod ∆)

spe | logn) = O(n) bits. We can then decide if there is a bridge (i, j, h)
such that i, j ∈ [α, β] via the following steps:

Find the smallest k such that Lh[k] ≥ α using the y-fast trie;
Find the index k corresponding to the smallest element in RLh[k, |Bhspe|] using a range
minimum query;
Find crightLeg(Lh[k], h) and report YES if it is ≤ β, and report NO otherwise.

The time complexity is O(log logn+ nε) = O(nε) by Lemma 13.

4.1.2 Subcase 1b: h 6≡ π (mod ∆)
Let q be the largest integer smaller than h that is congruent to π (mod ∆) and z =
(h − q). Note that for each special bridge (i, j, h), there exists at least one special bridge
(i+ z, j′, h− z) = (i+ z, j′, q) and (i′, j + z, h− z) = (i′, j + z, q) (see Lemma 14).

Now, define arrays RLh and LRh of length |Bqspe|, such that for any k = 1, 2, . . . ,Bspe,
RLh[k] = crightLeg(Lq[k]− z, h) and LRh[k] = cleftLeg(Rq[k]− z, h). To handle Subcase 1b,
we maintain y-fast tries over Lq and Rq, and a range minimum query data structure over
RLh and a range maximum query data structure over LRh for each h 6= π (mod ∆).

I Lemma 16. The range minimum query data structures over RLh and the range maximum
query data structures over LRh, for all h 6= π (mod ∆), can be implemented in O(1/ε ·
n(H0(T ) + 1)) bits of space with query time O(nε).

Proof. We show how to implement the data structures for the arrays RLh, for the arrays
LRh they can be implemented analogously.

First, we store the data structure of Lemma 13. Second, for each h, we divide the
array RLh into non-overlapping blocks of length logn. For each block, we compute the
minimum value in it to obtain an array RL′h of length |Bqspe|/ logn. On top of RL′h, we
maintain a succinct range minimum query data structure. In total, the data structures
occupy O(1/ε · n(H0(T ) + 1) + ∆ · |Bπ (mod ∆)

spe | logn) = O(1/ε · n(H0(T ) + 1)) bits of space.
To answer a range minimum query on RL′h, we first find the index of a block that contains

the minimum, and then compute the value of each entry in the block using the data structure
of Lemma 13. J

We can now decide if there is a bridge (i, j, h) such that i, j ∈ [α, β] via the following
steps:

Find the smallest k such that Lq[k]− z ≥ α using the y-fast trie over Lq.
Find the index k′ corresponding to the smallest element in RLh[k, |Bqspe|] using a range
minimum query.
Return YES if crightLeg(Lq[k′]− z, h) ≤ β, otherwise continue to the next step.
Find the largest l such that Rq[l]− z ≤ β. We use the y-fast trie for Rq for this.
Find the index l′ corresponding to the largest element in LRh[1, l] using a range maximum
query.
Return YES if cleftLeg(Rq[l′]− z, h) ≥ α, and return NO otherwise.

The time complexity is O(nε polylogn), and the space complexity is O( 1
εn(H0(T ) + 1))

bits.
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4.2 Case 2: h∗ < π

In this case, we must check, for every 0 < h < π, if there is a special bridge (i, j, h), where
i, j ∈ [α, β]. We will use the same reduction as in Case 2 with q = 1.

Note that Bqspe can be of size Θ(n), so we cannot store the y-fast trie for Lq and Rq, it
could take Θ(n logn) bits of space. Recall, however, that we only use the y-fast tries to
answer predecessor (resp., successor) queries: given an integer x, find the smallest (resp., the
largest) index k such that Lq[k] (resp., Rq[k]) is larger or equal (resp., smaller or equal) to x.

I Lemma 17. The predecessor (resp., successor) queries on Lq (resp., Rq) can be answered
in O(n) bits of space and O(1) query time.

Proof. We show a data structure for Lq, a data structure for Rq can be defined analogously.
Let L′q be the sequence obtained by encoding the number of special bridges (i, j, q) with
i = k for all k(1 ≤ k ≤ n) in unary code and concatenating them in order. |L′q| ≤ 3n because
there are at most 2n special bridges with height q by the definition. Therefore, to answer
a predecessor query for an integer x it suffices to answer rank and select queries on L′q: we
return rank1(L′q, select0(L′q, x)) + 1. Both rank and select queries can be answered in O(n)
bits of space and O(1) time. J

By using the data structures above, we can use our solution for Case 1 to obtain similar
complexities.
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