
HAL Id: hal-03942988
https://hal.science/hal-03942988

Submitted on 17 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalised Pattern Matching Revisited
Bartlomiej Dudek, Pawel Gawrychowski, Tatiana Starikovskaya

To cite this version:
Bartlomiej Dudek, Pawel Gawrychowski, Tatiana Starikovskaya. Generalised Pattern Matching Re-
visited. 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020),
2020, Montpellier, France. �10.4230/LIPIcs.STACS.2020.18�. �hal-03942988�

https://hal.science/hal-03942988
https://hal.archives-ouvertes.fr

Generalised Pattern Matching Revisited
Bartłomiej Dudek
Institute of Computer Science, University of Wrocław, Poland
bartlomiej.dudek@cs.uni.wroc.pl

Paweł Gawrychowski
Institute of Computer Science, University of Wrocław, Poland
gawry@cs.uni.wroc.pl

Tatiana Starikovskaya
DIENS, École normale supérieure, PSL Research University, Paris, France
tat.starikovskaya@gmail.com

Abstract
In the problem of Generalised Pattern Matching (GPM) [STOC’94, Muthukrishnan and
Palem], we are given a text T of length n over an alphabet ΣT , a pattern P of length m over an
alphabet ΣP , and a matching relationship ⊆ ΣT × ΣP , and must return all substrings of T that
match P (reporting) or the number of mismatches between each substring of T of length m and P
(counting). In this work, we improve over all previously known algorithms for this problem:

For D being the maximum number of characters that match a fixed character, we show two
new Monte Carlo algorithms, a reporting algorithm with time O(D n logn logm) and a (1− ε)-
approximation counting algorithm with time O(ε−1D n logn logm). We then derive a (1− ε)-
approximation deterministic counting algorithm for GPM with O(ε−2D n log6 n) time.
For S being the number of pairs of matching characters, we demonstrate Monte Carlo algorithms
for reporting and (1 − ε)-approximate counting with running time O(

√
S n logm

√
logn) and

O(
√
ε−1S n logm

√
logn), respectively, as well as a (1− ε)-approximation deterministic algorithm

for the counting variant of GPM with O(ε−1√Sn log7/2 n) time.
Finally, for I being the total number of disjoint intervals of characters that match the m
characters of the pattern P , we show that both the reporting and the counting variants of GPM
can be solved exactly and deterministically in O(n

√
I logm+ n logn) time.

At the heart of our new deterministic upper bounds for D and S lies a faster construction
of superimposed codes, which solves an open problem posed in [FOCS’97, Indyk] and can be of
independent interest.

To conclude, we demonstrate first lower bounds for GPM. We start by showing that any
deterministic or Monte Carlo algorithm for GPM must use Ω(S) time, and then proceed to show
higher lower bounds for combinatorial algorithms. These bounds show that our algorithms are
almost optimal, unless a radically new approach is developed.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases pattern matching, superimposed codes, conditional lower bounds

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.18

Related Version A full version of the paper is available at https://arxiv.org/abs/2001.05976.

Funding Bartłomiej Dudek: partially supported by the National Science Centre, Poland, grant
number 2017/27/N/ST6/02719.

1 Introduction

Processing noisy data is a keystone of modern string processing. One possible approach
to address this challenge is approximate pattern matching, where the task is to find all
substrings of the text that are close to the pattern under some similarity measure, such as

© Bartłomiej Dudek, Paweł Gawrychowski, and Tatiana Starikovskaya;
licensed under Creative Commons License CC-BY

37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Christophe Paul and Markus Bläser; Article No. 18; pp. 18:1–18:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bartlomiej.dudek@cs.uni.wroc.pl
mailto:gawry@cs.uni.wroc.pl
mailto:tat.starikovskaya@gmail.com
https://doi.org/10.4230/LIPIcs.STACS.2020.18
https://arxiv.org/abs/2001.05976
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Generalised Pattern Matching Revisited

Hamming or edit distance. The approximate pattern matching approach assumes that noise
is arbitrary, i.e. that we can delete or replace any character of the pattern or of the text by
any other character of the alphabet.

The assumption that the noise is completely arbitrary is not necessarily justified, as in
practice we might have some predetermined knowledge about the structure of the errors.
In this paper we focus on the Generalised Pattern Matching (GPM) problem that
addresses this setting. We assume to be given a text T over an alphabet ΣT , a pattern P
over an alphabet ΣP , and we allow each character of ΣT to match a subset of characters
of ΣP . We must report all substrings of the text that match the pattern. This problem was
introduced in STOC’94 [35] by Muthukrishnan and Palem to provide a unified approach
for solving different extensions of the classical pattern matching question that has been
considered as separate problems in the early 90s. Later, Muthukrishnan [34] considered a
counting variant of GPM, where the task is to count the number of mismatches between
substrings of the text and the pattern. Formally, the problem is defined as follows:

Generalised Pattern Matching (GPM)
Input: A text T ∈ (ΣT)n, a pattern P ∈ (ΣP)m, and a matching relationship ⊆ ΣT×ΣP .
Output (Reporting): All i ∈ [n−m+ 1] such that T [i, i+m− 1] matches P .
Output (Counting): For each i ∈ [n−m+ 1], the number of positions j ∈ [m] such
that T [i+ j − 1] does not match P [j].
Muthukrishnan and Palem [35] and subsequent work [34, 36] considered three natural

parameters describing the matching relationship (D ,S) or the pattern (I). Viewing the
matching relationship as a bipartite graph with edges connecting pairs of matching characters
from ΣT ×ΣP , D is the maximum degree of a node and S is the total number of edges in the
graph. Next, the parameter I describes the pattern rather than the matching relationship.
For each character a ∈ ΣP , let I(a) be the minimal set of disjoint sorted intervals that
contain the characters that match a, and define I =

∑
j∈[m] |I(P [j])|.

The maximum number of characters that match a fixed character, D . For the reporting
variant of GPM, Muthukrishnan [34] showed a Las Vegas algorithm with running time
O(D n logn logm). Indyk [27] used superimposed codes to show a deterministic algorithm
with running time O(|ΣP |D 2 log2 n+D n log3 n logm). For the counting variant, Muthukrish-
nan [34] showed a (logm)-approximation Las Vegas algorithm with time O(D n logn logm).
Indyk [27] gave a (1 − ε)-approximation deterministic and Monte Carlo algorithm with
running time O(ε−2D 2n log3 n) and O(ε−2D n log3 n), respectively.

The number of matching pairs of characters, S . Muthukrishnan and Ramesh [36] gave
an O((Sm log2m)1/3n)-time algorithm for the reporting variant of GPM.

The number of intervals of matching characters, I . For this parameter, Muthukrish-
nan [34] gave an O(I + (mI)1/3n

√
logm)-time algorithm1.

1.1 Our Contribution
We improve existing randomised and deterministic upper bounds for GPM, and demonstrate
matching lower bounds. At heart of our deterministic algorithms for the counting variant of
GPM is a solution to an open problem of Indyk [27] on construction of superimposed codes.

1 [34, Theorem 9] claims O(n+ I + I 1/3(nm)2/3√logm), but the first sentence of the proof states that
for n ≤ 2m the algorithm takes O(I + I 1/3m4/3√logm) time, where the first term is the time that we
need to read the input. For a longer text, one needs to apply it n/m times for overlapping blocks of
length 2m, making the total time O(I + n/m · I 1/3m4/3√logm) = O(I + (mI)1/3n

√
logm).

B. Dudek, P. Gawrychowski, and T. Starikovskaya 18:3

Data-dependent superimposed codes. A z-superimposed code is a set of binary vectors
such that no vector is contained in a Boolean sum (i.e. bitwise OR) of z other vectors.
Superimposed codes find their main application in information retrieval (e.g. in compressed
representation of document attributes), and optimizing broadcasting on radio networks [30],
and have also proved to be useful in graph algorithms [1,25]. Indyk [27] extended the notion
of superimposed codes to the so-called data-dependent superimposed codes, and asked for
a deterministic construction for such codes with a certain additional property that makes
them useful for counting mismatches (see Section 2 for a formal definition). We provide such
a construction algorithm in Theorem 10. We briefly describe the high-level idea below.

We need the concept of discrepancy minimization. Given a universe U , each of its elements
is assigned one of two colours, red or blue. The discrepancy of a subset of U is defined as
the difference between the number of red and blue elements in it, and the discrepancy of
a family F of subsets is defined as the maximum of the absolute values of discrepancies
of the subsets in F . Discrepancy minimization is a fundamental notion with numerous
applications, including derandomization, computational geometry, numerical integration,
understanding the limits of models of computation, and so on (see e.g. [13]). A recent line of
work showed a series of algorithms for constructing colourings of low discrepancy in various
settings [5–10,32, 33]. For our applications, we need to work under the assumption that the
size of each subset in F is bounded by a given parameter k. In Theorem 7, we describe a
fast deterministic algorithm that returns a colouring of small discrepancy for this case. We
follow the algorithm described by Chazelle [13] that can be roughly summarized as based on
the method of conditional expectations tweaked as to allow for an efficient implementation.
In more detail, Chazelle’s construction assumes infinite precision of computation and does
not immediately translate into an efficient algorithm working in the Word RAM model of
computation, thus requiring resolving some technical issues to bound the required precision
and the overall complexity.

We apply discrepancy minimization to design in Lemma 9 a procedure that, given a
family F of subsets of U , partitions the universe U into not too many parts such that the
intersection of each part and each of the subsets in F is small. The procedure follows the
natural idea of colouring the universe with two colours, and then recursing on the elements
with the same colour. Every step of such construction introduces some penalty that needs
to be carefully controlled as to guarantee the desired property in the end. Because of this
penalty, we are only able to guarantee that the intersections are small, but not constant.
To finish the construction, we combine the partition with a hash function into the ring of
polynomials. We stress that this part of the construction is new and not simply a modification
of Chazelle’s (or Indyk’s) method.

Upper bounds for GPM. Similar to previous work, we assume that the alphabets’ sizes
are polynomial in n and that the matching relationship is given as a graph M on the set
of vertices ΣT ∪ ΣP . We also assume to have access to three oracles that can answer the
following questions in O(1) time:

1. Is there an edge between a ∈ ΣT and b ∈ ΣP (in other words, do a and b match)?
2. What is the degree of a character a ∈ ΣT or b ∈ ΣP (in other words, what is the number

of characters that match a given character)?
3. What is the k-th neighbor of a ∈ ΣT (in other words, what is the k-th character b ∈ ΣP

matching a)? We assume an arbitrary (but fixed) order of neighbors of every node.

Under these assumptions, we show the following upper bounds summarized in Tables 1 and 2:

STACS 2020

18:4 Generalised Pattern Matching Revisited

Table 1 Generalised Pattern Matching (reporting).

Time Det./Rand.

O(|ΣP |D 2 log2 n+D n log3 n logm) Det. [27]
O(D n log6 n) Det. This work
O(D n logn logm) Rand. [34]
O(D n logn logm) Rand. This work
O((Sm log2 m)1/3n) Det. [36]
O(
√
S n log7/2 n) Det. This work

O(
√
S n logm

√
logn) Rand. This work

O(I + (mI)1/3n
√

logm) Det. [34]
O(n
√
I logm+ n logn) Det. This work

Table 2 Generalised Pattern Matching (counting).

Time Det./Rand. Approx. factor

O(ε−2D 2n log3 n) Det. (1− ε) [27]
O(ε−2D n log6 n) Det. (1− ε) This work
O(D n logn logm) Rand. logm [34]
O(ε−2D n log3 n) Rand. (1− ε) [27]
O(ε−1D n logn logm) Rand. (1− ε) This work
O(ε−1√S n log7/2 n) Det. (1− ε) This work
O(
√
ε−1S n logm

√
logn) Rand. (1− ε) This work

O(I + (mI)1/3n
√

logm) Det. – [34]
O(n
√
I logm+ n logn) Det. – This work

1. We start by showing a new Monte Carlo algorithm for the parameter D with running
time O(D n logm logn) (Theorem 11). While its running time is the same as that
of [34], it encapsulates a novel approach to the problem that serves as a basis for
other algorithms. We then derive a Monte Carlo algorithm for the parameter S with
running time O(

√
S n logm

√
logn) (Theorem 12). As a corollary, we show a (1 − ε)-

approximation Monte Carlo algorithm that solves the counting variant of GPM in time
O(min{ε−1D logn,

√
ε−1S logn} · n logm) (Corollary 13). All three algorithms have

inverse-polynomial error probability.
2. Next, using the data-dependent superimposed codes, we construct (1− ε)-approximation

deterministic algorithms for the counting variant of GPM. The first algorithm requires
O(ε−2D n log6 n) time (Theorem 14), and the second algorithm O(ε−1

√
S n log7/2 n) time

(Theorem 15). By taking ε = 1/2, we immediately obtain deterministic algorithms for
the reporting variant of the problem with the same complexities.

3. Finally, we show that both the reporting and the counting variants of GPM can be solved
exactly and deterministically in O(n

√
I logm+ n logn) time (Theorem 17).

Lower bounds for GPM. We also show first lower bounds for GPM (see Section 4). We
start with a simple adversary-based argument that shows that any deterministic algorithm or
any Monte Carlo algorithm with constant error probability that solves GPM must use Ω(S)
time (Lemma 19 and 20). We then proceed to show higher lower bounds for combinatorial

B. Dudek, P. Gawrychowski, and T. Starikovskaya 18:5

algorithms by reduction from Boolean matrix multiplication2 parameterized by D ,S , I
(Lemma 21 and Corollary 23). All the lower bounds are presented for the reporting variant
of GPM, so they immediately apply also to the counting variant. These bounds show that
our algorithms are almost optimal, unless a radically new approach is developed.

1.2 Related Work
Degenerate string matching. A more general approach to dealing with noise in string
data is degenerate string matching, where the set of matching characters is specified for
every position of the text or of the pattern (as opposed to every character of the alphabets).
Abrahamson [3] showed the first efficient algorithm for a degenerate pattern and a standard
text. Later, several practically efficient algorithms were shown [26,37].

Pattern matching with don’t cares. In this problem, we assume ΣT = ΣP = Σ, where Σ
contains a special character – “don’t care”. We assume that two characters of Σ match if
either one of them is the don’t care character, or they are equal. The study of this problem
commenced in [21], where a O(n logm log |Σ|)-time algorithm was presented. The time
complexity of the algorithm was improved in subsequent work [18,28, 29], culminating in an
elegant O(n logm)-time deterministic algorithm of Clifford and Clifford [15]. Clifford and
Porat [17] also considered the problem of identifying all alignments where the number of
mismatching characters is at most k.

Threshold pattern matching. In the threshold pattern matching problem, we are given
a parameter δ, and we say that two characters a, b match if |a − b| < δ. The threshold
pattern matching problem has been studied both in reporting and counting variants [4,
11, 12, 16, 19, 20, 22, 38]. The best algorithm for the reporting variant of the threshold
pattern matching problem is deterministic and takes linear time (after the pattern has been
preprocessed). The best deterministic algorithm for the counting variant of threshold pattern
matching has time O((log δ + 1)n

√
m logm), while the best randomised algorithm has time

O((log δ + 1)n logm) [38].
In threshold pattern matching the matching relationship is described with a single interval

per character, so I = m. Hence from Theorem 17 immediately follows a faster deterministic
algorithm for the counting variant of the threshold pattern matching problem (Corollary 18).

2 Data-Dependent Superimposed Codes

We start by solving the open problem posed by Indyk [27]: provide a deterministic algorithm
for construction of a variant of data-dependent superimposed codes that is particularly
suitable for the counting variant of GPM. The algorithm that we present is rather involved,
a reader more interested in pattern matching applications can skip this section on the first
reading.

IDefinition 1. Let S1, . . . , Sz be subsets of a universe U . A family of sets C = {C1, . . . , C|U |},
where Cu ⊆ [`] and |Cu| = w for u ∈ U is called an ({Si}, τ)-superimposed code if for every Si
and u /∈ Si we have |Cu −

⋃
v∈Si Cv| ≥ τ . We call ` and w respectively the length and the

weight of the code C.

2 It is not clear what combinatorial means precisely. However, FFT and Boolean convolution often used
in algorithms on strings are considered not to be combinatorial.

STACS 2020

18:6 Generalised Pattern Matching Revisited

Suppose that the size of each Si is at most k, where k is some fixed integer. Indyk asked if
there exists a deterministic Õ((zk)/εO(1))-time algorithm that computes an ({Si}, (1− ε)w)-
superimposed code of some weight w and length ` = O(k polylog(zk)). It can be seen that
we cannot hope to construct such a code with ` independent of ε. In the following lemma we
show that even if we restrict to the case of k = 1 we still need that ` significantly depends
on ε.

I Lemma 2. For every constant δ ∈ (0, 1), function f(z) = O(polylog z), and z large
enough, there exists a family of singleton sets S1, S2, . . . , Sz and 0 < ε < 1 such that any
({Si}, (1− ε)w)-superimposed code of weight w must have length length ` > f(z)/εδ.

Proof. Consider sets Si = {i} for i ∈ [z], where z will be determined later. Let ε =
1/(2f(z))

1
1−δ and suppose that there is a ({Si}, (1− ε)w)-superimposed code C. Then, by

definition of superimposed codes and from w ≤ `, for i 6= j it holds{
|Ci − Cj | ≥ (1− ε)w = w − εw ≥ w − ε`,
ε` ≤ εf(z)/εδ = ε1−δf(z) = 1/2

so |Ci − Cj | > w − 1. Hence, |Ci − Cj | = w and every Ci and Cj must be disjoint, and
therefore ` ≥ zw ≥ z. Assume towards a contradiction that ` ≤ f(z)/εδ. We obtain

` ≤ f(z)/εδ = f(z) · (2f(z))
δ

1−δ = f(z)
1

1−δ · 2
δ

1−δ = O(polylog z) · 2
δ

1−δ < z

where the last inequality holds for sufficiently large z. This leads to a contradiction and the
claim follows. J

Therefore, one should allow ` = O(k polylog(zk)/εO(1)). We give a positive answer to this
natural relaxation. We start by showing an efficient deterministic algorithm for discrepancy
minimization that will play an essential role in our approach.

2.1 Discrepancy Minimization
Let us start with a formal definition of discrepancy.

I Definition 3 (Discrepancy). Consider a family F of z sets Si ⊆ U , i ∈ [z]. We call
a function χ : U → {−1,+1} a colouring. The discrepancy of a set Si is defined as
χ(Si) =

∑
u∈Si χ(u), and the discrepancy of F is defined as maxi∈[z] |χ(Si)|.

In [13, Section 1.1], Chazelle presented a construction of a colouring of small discrepancy
assuming infinite precision of computation. Our deterministic algorithm will follow the outline
of this construction (although crucial modifications are required in order to overcome the
infinite precision assumption), so we quickly restate Chazelle’s construction below. The main
idea is to assign colours so as to minimize the value of an objective function G = G(χ, {Si})
defined as follows: let ε be chosen so that log 1+ε

1−ε = α ·
√

log(3z)/k for some constant α > 2,
and let pi (respectively, ni) be the number of u ∈ Si such that χ(u) = +1 (respectively,
χ(u) = −1) for i ∈ [z]. Define

Gi = (1 + ε)pi(1− ε)ni + (1 + ε)ni(1− ε)pi and G =
∑
i∈[z]

Gi

Chazelle’s construction assigns colours to one element of U at a time, without ever back-
tracking. To assign a colour to an element u, it performs the following three simple steps.
First, it computes G+, the value of G assuming χ(u) = +1. Second, it computes G−, the

B. Dudek, P. Gawrychowski, and T. Starikovskaya 18:7

value of G assuming χ(u) = −1. Finally, if G+ ≤ G−, it sets χ(u) = +1 and G = G+, and
otherwise it sets χ(u) = −1 and G = G−. Note that for each i ∈ [z], we have

(1 + ε)pi+1(1− ε)ni + (1 + ε)ni(1− ε)pi+1 + (1 + ε)pi(1− ε)ni+1 + (1 + ε)ni+1(1− ε)pi

= 2 · ((1 + ε)pi(1− ε)ni + (1 + ε)ni(1− ε)pi)

and therefore the value of G can only decrease. This implies an important property of
Chazelle’s construction: since at initialization we have ni = pi = 0 for all i ∈ [z] and therefore
G = 2z, we have Gi ≤ G ≤ 2z for i ∈ [z] at any moment of the construction. Let us show
that small values of Gi’s imply small discrepancy. In order to do this, we follow the outline
of [13], but use a slightly higher bound for Gi’s to be able to apply this lemma later.

I Lemma 4 ([13]). If after all elements of U have been assigned a colour we have Gi ≤ 3z
for all i ∈ [z], then the discrepancy of the resulting colouring is at most α ·

√
k log(3z) for

any constant α > 2.

We will show a deterministic algorithm that computes a colouring for which the values Gi
are bounded by 3z. By Lemma 4, we therefore obtain that the discrepancy is bounded
by α ·

√
k log(3z). We must overcome several crucial issues: first, we must explain how to

compute ε. Second, we must design an algorithm that uses only multiplications and additions
so as to be able to control the accumulated precision error. And finally, we must explain
how to remove the assumption of infinite precision and to ensure that we never operate on
numbers that are too small.

I Proposition 5. Assume k > log(3z). There is a deterministic algorithm that computes
ε ∈ (0, 1) such that log 1+ε

1−ε = α ·
√

log(3z)/k for some constant α > 2 in O(log(zk)) time.
Both ε and 1− ε are bounded from below by 1/(kz)O(1).

We can implement Chazelle’s construction to use only multiplications and additions via
segment trees.

I Proposition 6. Assume that (1 + ε) and (1− ε) are known. Chazelle’s construction can
be implemented via O(zk log z) addition and multiplication operations.

Proof. We maintain a complete binary tree on top of {1, 2, . . . , 2t}, where 2t−1 < z ≤ 2t.
At any moment, the (2i − 1)-th leaf stores (1 + ε)pi(1 − ε)ni and the (2i)-th leaf stores
(1 + ε)ni(1− ε)pi for all i ∈ [z], while all the other leaves store value 0. Each internal node
stores the sum of the values in the leaves of its subtree. In particular, the root stores the
value G. To update G after setting χ(u) for u ∈ U , we must update the values stored in the
(2i− 1)-th and (2i)-th leaves for all i such that u ∈ Si, as well as the sums in the O(log z)
internal nodes above these leaves. For each leaf, we use one multiplication operation (we
must multiply the value by (1 + ε) or (1− ε) as appropriate), and for each internal node we
use one addition operation. In total, we need O(

∑
i∈[z] |Si| log z) = O(zk log z) addition and

multiplication operations. J

We are now ready to remove the infinite precision assumption and to show the final result
of this section. Our algorithm will follow the outline of Proposition 6, but the addition
and the multiplication operations will be implemented with precision ∆. Moreover, we will
guarantee that the algorithm only works with values in [∆,O(z)], which will imply that
both arithmetic operations can be performed in constant time and that the algorithm takes
O(zk log z) time.

STACS 2020

18:8 Generalised Pattern Matching Revisited

I Theorem 7. Given a family of z sets Si ⊆ U where |Si| ≤ k and |U | = zk, one
can find deterministically in O(zk log z) time a colouring χ : U → {−1,+1} such that
maxi∈[z] |χ(Si)| ≤ α ·

√
k log(3z) for some constant α > 2.

Theorem 7 can be used to partition the universe U into a small number of subsets such
that the intersection of every subset of the partition and every set Si is small. We start with
a simple technical lemma.

I Lemma 8. Consider a process that starts with x0 = x, and keeps computing xi+1 :=
bxi(1/2 + 1/√xi)c as long as xi > 4. The process ends after at most log x+O(log∗ x) steps.

I Lemma 9. Given a family of z sets Si ⊆ U where |Si| ≤ k and |U | = zk, one can construct
deterministically in O(|U | log z log k) time a function f : U → [k · 2O(log∗ k)] such that for
each c ∈ [k · 2O(log∗ k)] and for each Si, the intersection of {u ∈ U | f(u) = c} and Si contains
O(log z) elements.

Proof. We can reformulate the statement of the lemma as follows. We must show that there
is a partitioning of U into subsets Xc = {u ∈ U : f(u) = c} such that for every Si, the
intersection Xc ∩ Si has size at most O(log z).

We partition U recursively using the procedure from Theorem 7. We start with a single
set X = U . Suppose that after several steps we have a partitioning of U into sets Xc such
that |Si ∩Xc| ≤ y for all i and c and some integer y. We then apply Theorem 7 to the sets
Xc. Using the colouring output by the lemma, we partition each set Xc into sets Xc0 and
Xc1 , where the former contains all the elements of Xc of colour −1 and the latter all the
elements of Xc of colour +1. For j ∈ {0, 1} we choose cj (and also the value of f(x) for
x ∈ Xcj) so that its binary representation equals the binary representation of c appended
with j. By Theorem 7, there is a constant α such that

|Si ∩Xc0 |, |Si ∩Xc1 | ≤ y/2 + 1
2α ·

√
y log(3z) ≤ y(1/2 + 1/

√
y/α2 log(3z)).

We continue this process until |Si ∩Xc| ≤ 4α2 log(3z) for all i and c.
It remains to bound the number of iterations. By setting x = k/α2 log(3z) in Lemma 8, we

obtain that we need at most log x+O(log∗ x) ≤ log k+O(1)+O(log∗ k) = log k+O(log∗ k) = t

recursive applications of the partition procedure implemented with Theorem 7 to ensure
that every set Si has at most 4α2 log(3z) = O(log z) elements in common with every Xc.
Therefore, the size of the image of f is bounded by 2t = k2O(log∗ k). The overall construction
time is O(|U | log z log k). J

2.2 Superimposed Codes
We are now ready to show an efficient construction algorithm for data-dependent superimposed
codes (see Definition 1). At a high level, we will construct a family of functions which,
combined with the partition f from Lemma 9, will give us the superimposed code.

I Theorem 10. Given a family of z sets Si ⊆ U where |Si| ≤ k and |U | = zk, one
can construct an ({Si}, (1 − ε)w)-superimposed code of weight w = O(ε−1 log2 |U |) and
` = O(ε−2k log5 |U |) in O(ε−1|U | log2 |U |) time and space.

Proof. By applying Lemma 9, we obtain in O(|U | log z log k) = O(|U | log2 |U |) time a
function f : U → [k · 2O(log∗ k)] which gives a partitioning of U into subsets Xc = {u ∈
U | f(u) = c}, such that for some constant α, for every c and i holds |Xc ∩ Si| ≤ α log z.

B. Dudek, P. Gawrychowski, and T. Starikovskaya 18:9

Consider the ring of polynomials Z2[x]. Let U = {u1, u2, . . . , uzk}. We define a mapping
pol : U → Z2[x] as follows. Let u = uq and q = qtqt−1 . . . q0 be the binary representation
of q, where t = blog |U |c, then pol(u) =

∑t
i=0 qix

i.
Let H(U, d) be the family of functions hp : U → F2d of the form hp(u) = (pol(u) mod p)

for all irreducible polynomials p of degree d. By Gauss’s formula [14,23], there are Θ(2d/d)
irreducible polynomials of degree d over Z2, and so is the size of the family H(U, d). Consider
two distinct polynomials x, y of degree t. Observe that there are at most t/d irreducible
polynomials p that hash both x and y to the same value hp(x) = hp(y), because Z2[x] is a
unique factorization domain [23]. We choose d in such a way that the probability that x, y are
hashed to the same value while choosing a hash function uniformly at random from H(U, d)
is bounded by ε/(α log z): t/d

Θ(2d/d) ≤
ε

α log z and hence we can choose d = Θ(log t log z
ε).

If d > t, then ε < log2 |U |
|U | and we can take ` = |U |, w = 1 and set Cuq = {q}. From

now on, assume d ≤ t. Let f be as in Lemma 9. Consider u ∈ U such that u ∈ Xc, where
c = f(u) ∈ [k · 2O(log∗ k)]. We define Cu as follows:

Cu = {Hp(u) = num(hp(u)) + 2d · num(p) + 4d · c | hp ∈ H(U, d)},

where the mapping num(q) treats a polynomial q =
∑d−1
i=0 qix

i as a d-bit number qd−1 . . . q0.
Clearly, w = |Cu| = O(2d/d) = O(2d) = O(t log z

ε) = O(ε−1 log2 |U |) and Cu ⊆ [l] where:

` = 2d · 2d · k2O(log∗ k) = t2 log2 z

ε2 · k · 2O(log∗ k) = O(ε−2k log5 |U |).

We claim that the obtained code is a ({Si}, (1− ε)w)-superimposed code. Consider any
Si and u /∈ Si. We count elements of Cu that do not belong to any Cv, for v ∈ Si. Let
c = f(u) ∈ [k · 2O(log∗ k)] and so u ∈ Xc. By construction, |Xc ∩ Si| ≤ α log z. Thus, by
the union bound, the probability that hp(u) = hp(x) for some x ∈ Xc ∩ Si is at most ε
for hp chosen uniformly at random from H(U, d). Recall that Cu consists of elements
Hp(u) = num(hp(u)) + 2d · num(p) + 4d · c for hp ∈ H(U, d). The number of irreducible
polynomials p such that Hp(u) = Hp(x) for some x ∈ Xc ∩ Si is at most ε ·w. Consequently,
at least w − ε · w = (1− ε)w elements of Cu do not belong to any Cv, for v ∈ Si.

We now show that we can construct the above superimposed codes in O(|U |w) time. To
this end, we need to generate all irreducible polynomials of degree d and to explain how
we compute remainders modulo these polynomials. Note first that as we only operate on
polynomials of degree ≤ t = O(log |U |), they fit in a machine word and hence we can subtract
two polynomials or multiply a polynomial by any power of x in constant time. We can now
use this to generate the irreducible polynomials and compute the sets Cu at the same time.
We maintain a bit vector I that for each polynomial p of degree ≤ d stores an indicator bit
equal to 1 iff p, i.e. iff its remainder modulo any polynomial of degree smaller than deg(p) is
not zero. We consider the polynomials of degree 0, 1, 2, . . . , d in order. For every irreducible
polynomial p, we compute a table Modp[q] = (q mod p) for all polynomials q of degree ≤ t in
overall O(|U |) time using dynamic programming with the following recursive formula:

Modp[q] =
{
q, if deg(q) < deg(p)
Modp[q − p · xdeg(q)−deg(p)], otherwise

We use the table to compute Hp(u) for all u ∈ U . Also, if for a polynomial q the remainder
is zero, we zero out the corresponding bit in I. Here we use the fact that d ≤ t to guarantee
that we will find all irreducible polynomials of degree ≤ d in this way.

As there are w irreducible polynomials, in total we spend O(|U |w) = O(ε−1|U | log2 |U |)
time. At any moment, we use O(|U |) space to store the table and O(ε−1|U | log2 |U |) space
to store the codes. J

STACS 2020

18:10 Generalised Pattern Matching Revisited

3 Upper Bounds for Generalised Pattern Matching

In this section, we present new algorithms for the parameters D , S and I . Our algorithms
for the parameters D and S share similar ideas, so we present them together in Section 3.1.
The algorithm for I is presented in Section 3.2.

We start by recalling the formal statement of the Pattern Matching with Don’t
Cares problem that will be used throughout this section.

Pattern Matching with Don’t Cares (counting, binary alphabet)
Input: A text T ∈ {0, 1, ?}n and a pattern P ∈ {0, 1, ?}m, where “?” is a don’t care
character that matches any character of the alphabet.
Output: For each i ∈ [n−m+ 1], the number of positions j ∈ [m] such that T [i+ j− 1]
does not match P [j].

Clifford and Clifford [15] showed that this problem can be solved in O(n logm) time.

3.1 Parameters D and S
We first show Monte Carlo algorithms for the reporting and counting variants of GPM, and
then de-randomise them using the data-dependent superimposed codes of Section 2.

3.1.1 Randomised Algorithms
We start by presenting a new reporting algorithm for the parameter D . It does not improve
over the algorithm of [34], but encapsulates a novel idea that will be used by all our algorithms
for the parameters D and S . Essentially, we use hashing to reduce ΣT to a smaller set of
characters of size p = Θ(D) while preserving occurrences of the pattern in the text with
constant probability, and then show that this smaller instance of GPM can be reduced
to p = Θ(D) instances of Pattern Matching with Don’t Cares.

I Theorem 11. Let D be the maximum degree in the matching graph M and c be any
constant fixed in advance. There is a Monte Carlo algorithm that solves the reporting variant
of GPM in O(D n logm logn) time. The error is one-sided (only false positives are allowed),
and the error probability is at most 1/nc.

Proof. If D > m, we can use a naive algorithm that compares the pattern and each m-length
substring of the text character-by-character and uses O(mn) = O(D n) time in total. Below
we assume D ≤ m. We can also assume |ΣT | ≤ n.

We first choose a 2-wise independent hash function h : ΣT → [2D] of the form h(x) =
((a·x+b) mod p) mod (2D)+1, where p ≥ |ΣT | is a prime, and a, b are chosen independently
and uniformly from Fp. Note that we can find a prime p such that n ≤ p ≤ 2n, in O(n) time.
Consider a matching graph M ′ on the set of vertices [p] ∪ ΣP . For every character b = P [j]
and for every character a ∈ ΣT in the adjacency list of b, we add an edge (h(a), b) to M ′.
Overall, it takes O(Dm) = O(D n) time.

We claim that if M does not contain an edge (a, b), then the probability of M ′ to contain
an edge (h(a), b) is at most 1/2. By definition, if (h(a), b) belongs to M ′, then there exists a
character a′ ∈ ΣT such that (a′, b) is in M and h(a′) = h(a). Since h is 2-wise independent,
for a fixed character a′ the probability of h(a′) = h(a) is 1/(2D). Because the degree of b is
at most D , the probability of such event is at most 1/2 by the union bound.

Consider a text T ′, where T ′[i] = h(T [i]). If T [i, i+m− 1] does not match P under M ,
then T ′[i, i+m− 1] does not match P under M ′ with probability ≥ 1/2. Indeed, suppose
that for some j ∈ [m], T [i + j − 1] and P [j] do not match under M , or equivalently, an

B. Dudek, P. Gawrychowski, and T. Starikovskaya 18:11

edge (T [i+ j − 1], P [j]) does not belong to M . From above, with probability at least 1/2,
h(T [i + j − 1]) and P [j] do not match under M ′. It follows that we can use the GPM
algorithm for M ′, T ′, and P to eliminate every non-occurrence of P in T with probability at
least 1/2. We can amplify the probability in a standard way, i.e. by independently repeating
the algorithm c logn times.

It remains to explain how to solve GPM for M ′, T ′, and P . We use the fact that the
size of the alphabet of T ′ is O(D). For every a ∈ [2D] we create a new text T ′a[1, n] and a
new pattern Pa[1,m] as follows:

T ′a[j] =

{
0 if T ′[j] = a,

? otherwise.
Pa[j] =

{
0 if a matches P [j] under M ′,
1 otherwise.

We can construct T ′a and Pa in O(n + m) = O(n) time, or in O(D n) total time for
all a ∈ [2D]. It is not hard to see that T ′[i, i+m−1] matches P if and only if T ′a[i, i+m−1]
matches Pa for all a ∈ [2D]. Therefore, to solve GPM for M ′, T ′, and P , it suffices to solve
the 2D instances of Pattern Matching with Don’t Cares. By [15], this can be done in
total O(D n logm) time. As we repeat the algorithm c logn times, the theorem follows. J

We now show a new randomised algorithm for the parameter S . At a high level, we
divide ΣP into heavy and light characters based on their degree in M (a character of ΣP is
called heavy when it matches many characters of ΣT , and light otherwise). The number of
heavy characters is relatively small, and we can eliminate all substrings of T that do not
match P because of heavy characters by running an instance of Pattern Matching with
Don’t Cares for each of them. For light characters, we apply Theorem 11.

I Theorem 12. Let S be the number of edges in the matching graph M and c be any constant
fixed in advance. There is a Monte Carlo algorithm that solves the reporting variant of GPM
in O(

√
S n logm

√
logn) time. The error is one-sided (only false positive are allowed), and

the error probability is at most 1/nc.

Combining the techniques of Theorems 11, 12 and the approach of Kopelowitz and
Porat [31], we obtain the following corollary.

I Corollary 13. Let c be any constant fixed in advance, D be the maximum degree and S be
the number of edges in the matching graph M . There is a (1− ε)-approximation Monte Carlo
algorithm that solves the counting variant of GPM in O(min{ε−1D logn,

√
ε−1S logn} ·

n logm) time. The error probability is at most 1/nc.

3.1.2 Deterministic Algorithms
We are now ready to give (1− ε)-approximation deterministic algorithms for the counting
variant of GPM for the parameters D and S . By taking ε = 1/2, the algorithms for the
reporting variant follow immediately. We first remind the definition of superimposed codes,
which we will use throughout this section.

IDefinition 1. Let S1, . . . , Sz be subsets of a universe U . A family of sets C = {C1, . . . , C|U |},
where Cu ⊆ [`] and |Cu| = w for u ∈ U is called an ({Si}, τ)-superimposed code if for every Si
and u /∈ Si we have |Cu −

⋃
v∈Si Cv| ≥ τ . We call ` and w respectively the length and the

weight of the code C.

I Theorem 14. Let D be the maximum degree in the matching graph M . There is an
(1− ε)-approximation deterministic algorithm that solves the counting variant of GPM in
O(ε−2D n log6 n) time.

STACS 2020

18:12 Generalised Pattern Matching Revisited

Proof. First, note that we can assume D ≤ m and ε ≥ 1/m. If this is not the case, we can
run a naive algorithm that compares each m-length substring of the text T and the pattern
character-by-character in O(mn) = O(D n) time.

For each distinct character b of the pattern P , consider a set Sb containing all characters
in ΣT that match b. By definition, |Sb| ≤ D . We define the universe U = (

⋃
b∈ΣP Sb) ∪ {$},

where $ /∈ ΣT is a special character that we will need later, |U | = O(n). We apply
Theorem 10 that constructs ({Sb}, (1 − ε)w)-superimposed code for the universe U and
sets Sb in O(ε−1n log2 n) time, where the weight w = O(ε−1 log2 n) and the length ` =
O(ε−2D log5 n).

We define the code of a character a ∈ U to be a binary vector of length ` such that
its j-th bit equals 1 if Ca contains j, and 0 otherwise. For a character a′ ∈ ΣT \ U , we
define its code to be equal to the code of $. We define the code of a character b ∈ ΣP to
be a binary vector of length ` such that its j-th bit equals 1 if

⋃
a∈Sb Ca contains j, and 0

otherwise. Next, we create a text T ′[1, n`] and a pattern P ′[1,m`] by replacing the characters
in respectively T and P by their codes. To finish this step, we replace each 1 in P ′ with the
don’t care character and run the algorithm of Clifford and Clifford [15] for T ′ and P ′ that
takes O(n` log(m`)) = O(ε−2D n log6 n) time (here we use ε ≥ 1/m).

Let h′ be the number of mismatching characters between P ′ and T ′[(i−1)·`+1, (i+m−1)·`],
and h be the number of mismatches between P and T [i, i+m−1]. We claim that (1−ε)wh ≤
h′ ≤ wh. Indeed, if P [j] matches T [i + j − 1], then CT [i+j−1] is a subset of

⋃
a∈SP [j]

Ca.
Therefore, if the code of T [i+ j − 1] contains 1 in position k, the code of P [j] will have 1 in
position k as well. By replacing all 1s in P ′ with the don’t care characters, we ensure that
the corresponding fragments of P ′ and T ′ match. On the other hand, if P [j] does not match
T [i+ j − 1], then from the definition of the code it follows that the distance between the
corresponding chunks of P ′ and T ′ will be at least (1− ε)w and at most w. J

To show a deterministic algorithm for the parameter S , we again consider the partition
of the alphabet ΣP into heavy and light characters. To count the mismatches caused by
some heavy character, we create an instance of Pattern Matching with Don’t Cares.
As the number of heavy characters is small, the total number of the created instances is small
as well. For light characters, we use the superimposed codes similarly as in Theorem 14.

I Theorem 15. Let S be the number of edges in the matching graph M . There is an
(1− ε)-approximation deterministic algorithm that solves the counting variant of GPM in
O(ε−1

√
S n log7/2 n) time.

3.2 Parameter I
In this section, we show a deterministic GPM algorithm for the parameter I . The algorithm
solves the counting variant of the problem exactly, and we can immediately derive an
algorithm for the reporting version with the same complexities as a corollary. We will need
the following technical lemma.

I Lemma 16. Let b be a parameter, S = {x1, x2, . . . , x`} be a sequence of integers, and
s =

∑
i∈[`] xi. Then S can be partitioned into O(s/b + 1) ranges S1, S2, . . . such that, for

every i, either Si is a singleton or the sum of all elements in Si is at most b.

We are now ready to show the main result of the section.

I Theorem 17. For each character a ∈ ΣP consider a minimal set I(a) of disjoint sorted
intervals that contain the characters that match a, and define I =

∑
j∈[m] |I(P [j])|. There is

a deterministic algorithm that solves the counting version of GPM in O(n
√
I logm+n logn)

time.

B. Dudek, P. Gawrychowski, and T. Starikovskaya 18:13

Proof. If I > m2, we can use the naive algorithm that compares each m-length substring
with the pattern character-by-character and takes O(mn) time in total.

We first make a pass over T and retrieve the set of distinct characters a1, a2, . . . , al of ΣT
that occur in it, as well as their frequencies. This can be done in O(n logn) time using a
binary search tree. We partition a1, a2, . . . , al into ranges as follows. Let count(c), for c ∈ ΣT ,
be the frequency (i.e. the number of occurrences) of c in T . We apply Lemma 16 for b > 1
that will be specified later and the sequence count(a1), count(a2), . . . , count(al) which sums
up to n.

Let Σ′T be a new alphabet obtained by creating a character for every range in the
partition, where |Σ′T | = O(n/b + 1). For c ∈ Σ′T we denote by range(c) the range of ΣT

corresponding to c, and for a ∈ ΣT we denote by range−1(a) the character of Σ′T corres-
ponding to the range containing a. We create a new text T ′[1, n] and pattern P ′[1,m]
as follows. For every i ∈ [n], we set T ′[i] = range−1(T [i]). For every j ∈ [m], we set
P ′[j] = {c ∈ Σ′T | range(c) contains a character that matches P [j]}. As the number of the
ranges is O(n/b + 1), the size of the set P ′[j] is O(n/b + 1). We represent it as a binary
vector of length O(n/b + 1). Furthermore, we can construct T ′ in O(n) time, and P ′ in
O(I +m(n/b+ 1)) time.

After this initial step the algorithm consists of two phases. First, we solve the Subset
Pattern Matching for T ′ and P ′ that consists of counting, for every i ∈ [n −m + 1],
all positions j ∈ [m] such that T ′[i + j − 1] /∈ P ′[j]. To this end, we create an instance
of Pattern Matching with Don’t Cares for every c ∈ Σ′T , namely, we create a text
T ′c[1, n] and a pattern P ′c[1,m] as follows:

T ′c[i] =

{
0 if T ′[i] = c,

? otherwise.
P ′c[j] =

{
0 if c ∈ P ′[j],
1 otherwise.

We can solve all these instances in O(|Σ′T |n logm) = O((n/b+1)n logm) time [15]. Summing
up the results, we obtain the result for the subset matching problem.

In the second phase, we slightly adjust the results obtained for Subset Pattern
Matching to obtain the results for GPM. Consider a substring T [i, i+m− 1] that does
not match P because of a mismatch in position j of the pattern, i.e. T [i+ j − 1] does not
match P [j]. We have two possible cases. The first case is when T ′[i+ j − 1] /∈ P ′[j]. In this
case, the mismatch is detected by the Subset Pattern Matching algorithm. The second
case is when T ′[i+ j − 1] ∈ P ′[j]. Observe that in this case, range(T ′[i+ j − 1]) cannot be a
singleton and must contain an endpoint of some interval of characters that match P [j].

To detect such mismatches, we run the following algorithm. For each j ∈ [m], we consider
the intervals I(P [j]) of the characters that match P [j]. For every endpoint c ∈ ΣT of the
intervals in I(P [j]), we iterate over all a ∈ range−1(c) such that a does not match P [j] and
all occurrences of a in the text. Summing over all j and a, there are in total O(I · b) of the
occurrences due to the properties of the partition and the fact that range(T ′[i+ j − 1]) is not
a singleton. We can find the occurrences in O(I · b+n+mn/b) time as follows. First we find
the ranges containing the endpoints in O(I +m(n/b+1)) time similarly to above, and we can
generate the lists of occurrences of every character a ∈ ΣT in T by one pass over T inO(n logn)
time. For each such occurrence T [k] = a that does not match P [j], we increment the number
of mismatches for the substring T [k− j+ 1, k+m− j]. This correctly detects every mismatch
that has not been accounted for in the first phase, and hence allows counting all mismatches
in O(I +m(n/b+ 1) + (n/b+ 1)n logm+ n logn+ I · b) = O(n2 log(m)/b+ n logn+ I · b)
total time. Substituting b = n

√
logm/I gives us the claim of the theorem. J

STACS 2020

18:14 Generalised Pattern Matching Revisited

I Corollary 18. There is a deterministic algorithm that solves the counting variant of the
threshold pattern matching problem in O(n(

√
m logm+ logn)) time.

4 Lower Bounds for GPM

In this section we give lower bounds for GPM algorithms. All the lower bounds are presented
for the reporting variant of GPM, so they immediately apply also to the counting variant.
Recall that we assume to have access to three oracles that can answer the following questions
about the matching graph M in O(1) time:

1. Is there an edge between a ∈ ΣT and b ∈ ΣP ?
2. What is the degree of a character a ∈ ΣT or b ∈ ΣP ?
3. What is the k-th neighbor of a ∈ ΣT ?

n/2 n/2

m

m

1 2 . . .

diagonals

Figure 1 The adjacency matrix of the matching graph M . We show diagonals (solid lines) and a
quadruple of related cells (black). Note that among any quadruple of related cells, only one can
belong to a diagonal.

We first use an adversary-based argument to show an Ω(S) time lower bound.

I Lemma 19. Any deterministic algorithm for GPM requires Ω(S) time.

Proof. We will show that any deterministic algorithm checking if there exists at least one
occurrence needs to inspect Ω(S) entries of M in the worst case by an adversary-based
argument. In particular, this implies a lower bound of Ω(nm) when S = Θ(nm). The main
difficulty in the argument is to design the input so that the second oracle is essentially useless.

It will be convenient for us to think in terms of the adjacency matrix of the matching
graphM that we denote byM. Let us assume that n ≥ 2m is even, ΣT = [n], and ΣP = [2m].
We split both alphabets into halves. For every a ∈ [n/2] and b ∈ [m] we will choose one of
the following two possibilities:

1. M[a, b] =M[n/2 + a,m+ b] = 1 andM[n/2 + a, b] =M[a,m+ b] = 0,
2. M[a, b] =M[n/2 + a,m+ b] = 0 andM[n/2 + a, b] =M[a,m+ b] = 1.

We callM[a, b],M[n/2 + a, b],M[a,m+ b] andM[n/2 + a,m+ b] related. Observe that,
irrespectively of all such choices, the second oracle returns the same number for every b ∈ ΣP
and every a ∈ ΣT , and so the algorithm only needs to query the first oracle.

We choose the text T = 1 2 . . . n/2 1 2 . . . n/2 and the pattern P = 1 2 . . .m. Clearly, P
occurs in T when, for some a ∈ [n/2], we have M [1 + (a+ b− 2) mod n/2, b] = 1 for every
b ∈ [m]. We call the set of corresponding entries of M a diagonal (see Fig. 1).

B. Dudek, P. Gawrychowski, and T. Starikovskaya 18:15

Note that among any quadruple of related entries exactly one can belong to the diagonals.
Furthermore, suppose that an algorithm retrieves the values in a quadruple of related entries
M[a, b], M[n/2 + a,m + b], M[n/2 + a, b], M[a,m + b]. This can be done by one of the
following queries: ask for the value of any of these four entries, or retrieve the particular
neighbor of one of the nodes a, n/2 + a, b, or m + b. In both cases, we retrieve only the
related entries and spend Ω(1) time for any of the retrieved quadruples.

The adversary proceeds as follows. If the algorithm retrieves a quadruple contain-
ingM[a, b], for a ∈ [n/2] and b ∈ [m], such that the value ofM[a, b] is not yet determined,
the adversary checks if settingM[a, b] = 1 would result in creating a diagonal containing
only 1s. If so, the adversary setsM[a, b] = 0, and otherwise the adversary setsM[a, b] = 1.
In other words, the adversary sets M [a, b] = 0 when it is the last undecided entry on its
diagonal.

The algorithm can report an occurrence only after having verified that the corresponding
diagonal contains only 1s, and the adversary makes sure that this is never the case. On the
other hand, if the algorithm terminates without having reported an occurrence while there
exists a diagonal that has not been fully verified then the adversary could set its remaining
entries to 1s and obtain an instance that does contain an occurrence. Consequently, the
algorithm needs to retrieve all the entries in all the diagonals, and as we showed, it requires
Ω(mn) = Ω(S) time.

Note that above S = nm/2. The proof can be extended to S < nm/2 as follows.
If S ≥ m we set n′ = bS /mc and choose the text to be the prefix of length n of (1 2 . . . n′)∞
(the string 1 2 . . . n′ repeated infinitely many times). Then the above argument shows that
any algorithm needs to inspect n′m ≥ S /2 entries ofM. If S < m we choose the pattern
to be the prefix of length m of (1 2 . . .S)∞ (the string 1 2 . . .S repeated infinitely many
times), the text to be 1n (1 repeated n times) and proceed as above to argue that one must
inspect Ω(S) entries ofM. J

A similar argument can be used to show that this bound holds for Monte Carlo algorithms
with constant error probability as well.

I Lemma 20. Any Monte Carlo algorithm for GPM with constant error probability ε < 1/2
requires Ω(S) time.

We now show lower bounds for GPM conditional on hardness of Boolean matrix multi-
plication.

I Conjecture ([2]). For any α, β, γ, ε > 0, there is no combinatorial3 algorithm for multiply-
ing two Boolean matrices of size Nα ×Nβ and Nβ ×Nγ in time O(Nα+β+γ−ε).

A simple adaptation of the folklore lower bound for computing the Hamming distance
(cf. [24]) yields the following lower bounds.

I Lemma 21. For any α ≥ 1, and 1 ≥ β, ε > 0, there is no combinatorial algorithm that
solves GPM in time O(S 0.5−εn), for n = Θ(m(1+α)/2) and S = Θ(mβ).

Proof. We show a reduction from Boolean matrix multiplication. Consider a matrix A of
size x× y and a matrix B of size y × z, where x = Nα, y = Nβ , z = N . We transform the
matrix A by replacing every 1 by the number of the column it belongs to and every 0 by the
don’t care character ?. Similarly, we replace each 1 in B by the number of the row it belongs
to and every 0 by the don’t care character ?.

3 It is not clear what combinatorial means precisely, but fast matrix multiplication is definitely non-
combinatorial. Arguably neither is FFT used in our algorithms, thus making them non-combinatorial.

STACS 2020

18:16 Generalised Pattern Matching Revisited

I Example 22. Consider A = ((0, 0, 1), (1, 0, 1), (0, 1, 0)) and B = ((1, 0, 1), (0, 1, 0), (1, 1, 0)).
After the transform, they become ((?, ?, 3), (1, ?, 3), (?, 2, ?)) and ((1, ?, 1), (?, 2, ?), (3, 3, ?)),
respectively.

We define the text T =?z2
A1?z−y+1A2?z−y+1 . . . ?z−y+1Ax?z2 , where Ai is the i-th row

of A, and the pattern P = B1?z−yB2?z−y . . . ?z−yBz, where Bj is the j-th column of the
matrix B. The length of T is n = 2z2 + (x− 1)(z − y + 1) + xy = O(N1+α), and the length
of P is m = yz + (z − y)(z − 1) = O(N2). Next, we define the matching relationship as
follows. Every character different than the don’t care is defined to match all characters of
the alphabet but itself, and the don’t care character matches all characters of the alphabet.
Consequently, the alphabet has size y + 1 and the matching relationship matrix contains
S = Θ(y2) = Θ(N2β) set bits.

Let C = A×B. By definition, C[i, j] = 1 iff
∨y
k=1(Ai[k]∧Bj [k]) = 1. We claim that this

is the case iff, aligning Ai in the text and Bj in the pattern does not yield an occurrence
of the pattern. Suppose first that

∨y
k=1(Ai[k] ∧ Bj [k]) = 1. Then there is k0 such that

Ai[k0] = Bj [k0] = 1. In the text and in the pattern they are both encoded by the same
k0 6= ? and aligned, and k0 does not match itself. Therefore, we do not have an occurrence.
Assume otherwise. We need to show that for every character a 6= ?, a is not aligned with
itself. For Bj it follows from the fact that

∨y
k=1(Ai[k] ∧Bj [k]) 6= 1. For other columns of B

it follows from the shift caused by the don’t care characters.
It follows that a combinatorial algorithm that correctly outputs all occurrences of P in T

in O(S 0.5−εn) time implies a combinatorial algorithm for Boolean matrix multiplication
of matrices of size Nα × Nβ and Nβ × N in time O(S 0.5−εn) = O(N1+α+2β(0.5−ε)) =
O(Nα+1+β−2εβ), which contradicts the combinatorial matrix multiplication conjecture. The
lower bound follows. J

I Corollary 23. For any α ≥ 1, and 1 ≥ β, ε > 0, there is no combinatorial algorithm that
solves GPM in time O(D 1−εn), for n = Θ(m(1+α)/2) and D = Θ(mβ). For any α ≥ 1, and
1 ≥ ε > 0, there is no combinatorial algorithm that solves GPM in time O(I 0.5−εn), for
n = Θ(m(1+α)/2) and I = Θ(m).

Proof. To show the first part of the claim, note that in the constructed instance of generalized
pattern matching D = Θ(mβ/2). For the second part, we take β = 1. Then I = O(m),
and therefore a combinatorial algorithm that correctly outputs all occurrences of P in T
in O(I 0.5−εn) time implies a combinatorial algorithm for Boolean matrix multiplication of
matrices of size Nα×N and N×N in time O(I 0.5−εn) = O(N1+α+2(0.5−ε)) = O(Nα+2−2ε),
which contradicts the combinatorial matrix multiplication conjecture. J

References
1 Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer, Nikos Parotsidis,

Ohad Trabelsi, Przemyslaw Uznanski, and Daniel Wolleb-Graf. Faster algorithms for all-pairs
bounded min-cuts. In Proceedings of the International Colloquium on Automata, Languages,
and Programming, ICALP, pages 7:1–7:15, 2019. doi:10.4230/LIPIcs.ICALP.2019.7.

2 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In Proceedings of the 2014 IEEE 55th Annual Symposium
on Foundations of Computer Science, FOCS, pages 434–443. IEEE Computer Society, 2014.
doi:10.1109/FOCS.2014.53.

3 Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051, 1987.
doi:10.1137/0216067.

https://doi.org/10.4230/LIPIcs.ICALP.2019.7
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1137/0216067

B. Dudek, P. Gawrychowski, and T. Starikovskaya 18:17

4 Mikhail J. Atallah and Timothy W. Duket. Pattern matching in the Hamming distance with
thresholds. Information Processing Letters, 111(14):674–677, 2011. doi:10.1016/j.ipl.2011.
04.004.

5 Nikhil Bansal. Constructive algorithms for discrepancy minimization. In Proceedings of the
Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages 3–10, 2010.
doi:10.1109/FOCS.2010.7.

6 Nikhil Bansal, Moses Charikar, Ravishankar Krishnaswamy, and Shi Li. Better algorithms
and hardness for broadcast scheduling via a discrepancy approach. In Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 55–71, 2014. doi:
10.1137/1.9781611973402.5.

7 Nikhil Bansal, Daniel Dadush, and Shashwat Garg. An algorithm for Komlós conjecture match-
ing Banaszczyk’s bound. SIAM J. Comput., 48(2):534–553, 2019. doi:10.1137/17M1126795.

8 Nikhil Bansal, Daniel Dadush, Shashwat Garg, and Shachar Lovett. The Gram-Schmidt walk:
A cure for the Banaszczyk blues. In Proceedings of the Annual ACM SIGACT Symposium on
Theory of Computing, STOC, pages 587–597, 2018. doi:10.1145/3188745.3188850.

9 Nikhil Bansal and Shashwat Garg. Algorithmic discrepancy beyond partial coloring. In
Proceedings of the Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages
914–926, 2017. doi:10.1145/3055399.3055490.

10 Nikhil Bansal and Joel Spencer. Deterministic discrepancy minimization. Algorithmica,
67(4):451–471, 2013. doi:10.1007/s00453-012-9728-1.

11 Emilios Cambouropoulos, Maxime Crochemore, Costas S. Iliopoulos, Laurent Mouchard, and
Yoan J. Pinzon. Algorithms for computing approximate repetitions in musical sequences.
International Journal of Computer Mathematics, 79(11):1135–1146, 2002. doi:10.1080/
00207160213939.

12 Domenico Cantone, Salvatore Cristofaro, and Simone Faro. An efficient algorithm for δ-
approximate matching with α-bounded gaps in musical sequences. In Proceedings of the
International Conference on Experimental and Efficient Algorithms, WEA, pages 428–439,
2005. doi:10.1007/11427186_37.

13 Bernard Chazelle. The discrepancy method - randomness and complexity. Cambridge University
Press, 2001. doi:10.1017/CBO9780511626371.

14 Sunil Chebolu and Jan Minac. Counting irreducible polynomials over finite fields using the
inclusion-exclusion principle. Mathematics Magazine, 84(5):369–371, 2011. doi:10.4169/math.
mag.84.5.369.

15 Peter Clifford and Raphaël Clifford. Simple deterministic wildcard matching. Information
Processing Letters, 101(2):53–54, 2007. doi:10.1016/j.ipl.2006.08.002.

16 Peter Clifford, Raphaël Clifford, and Costas Iliopoulos. Faster algorithms for δ,γ-matching
and related problems. In Proceedings on the Annual Symposium on Combinatorial Pattern
Matching, CPM, pages 68–78, 2005. doi:10.1007/11496656_7.

17 Raphaël Clifford and Ely Porat. A filtering algorithm for k-mismatch with don’t cares.
Information Processing Letters, 110(22):1021–1025, 2010. doi:10.1016/j.ipl.2010.08.012.

18 Richard Cole and Ramesh Hariharan. Verifying candidate matches in sparse and wildcard
matching. In Proceedings of the Annual ACM Symposium on Theory of Computing, STOC,
pages 592–601, 2002. doi:10.1145/509907.509992.

19 Richard Cole, Costas Iliopoulos, Thierry Lecroq, Wojciech Plandowski, and Wojciech Rytter.
On special families of morphisms related to δ-matching and don’t care symbols. Information
Processing Letters, 85(5):227–233, 2003. doi:10.1016/S0020-0190(02)00430-1.

20 Maxime Crochemore, Costas S. Iliopoulos, Thierry Lecroq, Yoan J. Pinzon, Wojciech
Plandowski, and Wojciech Rytter. Occurrence and substring heuristics for δ-matching. Funda-
menta Informaticae, 56(1,2):1–21, October 2002.

21 Michael John Fischer and Michael Stewart Paterson. String-matching and other products.
Technical report, Massachusetts Institute of Technology, 1974.

STACS 2020

https://doi.org/10.1016/j.ipl.2011.04.004
https://doi.org/10.1016/j.ipl.2011.04.004
https://doi.org/10.1109/FOCS.2010.7
https://doi.org/10.1137/1.9781611973402.5
https://doi.org/10.1137/1.9781611973402.5
https://doi.org/10.1137/17M1126795
https://doi.org/10.1145/3188745.3188850
https://doi.org/10.1145/3055399.3055490
https://doi.org/10.1007/s00453-012-9728-1
https://doi.org/10.1080/00207160213939
https://doi.org/10.1080/00207160213939
https://doi.org/10.1007/11427186_37
https://doi.org/10.1017/CBO9780511626371
https://doi.org/10.4169/math.mag.84.5.369
https://doi.org/10.4169/math.mag.84.5.369
https://doi.org/10.1016/j.ipl.2006.08.002
https://doi.org/10.1007/11496656_7
https://doi.org/10.1016/j.ipl.2010.08.012
https://doi.org/10.1145/509907.509992
https://doi.org/10.1016/S0020-0190(02)00430-1

18:18 Generalised Pattern Matching Revisited

22 Kimmo Fredriksson and Szymon Grabowski. Efficient algorithms for (δ, γ, α) and (δ, kδ, α)-
matching. International Journal of Foundations of Computer Science, 19(01):163–183, 2008.
doi:10.1142/S0129054108005607.

23 Carl Friedrich Gauss. Untersuchungen über höhere Arithmetik. (Disquisitiones arithmeticae.
Theorematis arithmetici demonstratio nova. Summatio quarundam serierum singularium ó.).
Deutsch hrsg. von H. Mas, Berlin, 1889.

24 Paweł Gawrychowski and Przemysław Uznański. Towards unified approximate pattern match-
ing for Hamming and L1 distance. In Procedings of the International Colloquium on Automata,
Languages and Programming, ICALP, pages 62:1–62:13, 2018. doi:10.4230/LIPIcs.ICALP.
2018.62.

25 Loukas Georgiadis, Daniel Graf, Giuseppe F. Italiano, Nikos Parotsidis, and Przemyslaw
Uznanski. All-pairs 2-reachability in O(nw logn) time. In Proceedings of the 44th International
Colloquium on Automata, Languages, and Programming, ICALP, pages 74:1–74:14, 2017.
doi:10.4230/LIPIcs.ICALP.2017.74.

26 Jan Holub, William F. Smyth, and Shu Wang. Fast pattern-matching on indeterminate strings.
J. of Discrete Algorithms, 6(1):37–50, March 2008. doi:10.1016/j.jda.2006.10.003.

27 Piotr Indyk. Deterministic superimposed coding with applications to pattern matching. In
Proceedings of the Annual Symposium on Foundations of Computer Science, FOCS, pages
127–136, 1997. doi:10.1109/SFCS.1997.646101.

28 Piotr Indyk. Faster algorithms for string matching problems: Matching the convolution bound.
In Proceedings of the Annual Symposium on Foundations of Computer Science, FOCS, pages
166–173, 1998. doi:10.1109/SFCS.1998.743440.

29 Adam Kalai. Efficient pattern-matching with don’t cares. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 655–656, 2002.

30 William Kautz and Richard Singleton. Nonrandom binary superimposed codes. IEEE Trans.
Inf. Theor., 10(4):363–377, September 2006. doi:10.1109/TIT.1964.1053689.

31 Tsvi Kopelowitz and Ely Porat. A simple algorithm for approximating the text-to-pattern
Hamming distance. In Proceedings of the SIAM Symposium on Simplicity in Algorithms,
volume 61 of OASICS, pages 10:1–10:5, 2018. doi:10.4230/OASIcs.SOSA.2018.10.

32 Kasper Green Larsen. Constructive discrepancy minimization with hereditary L2 guarantees.
In Proceedings of the International Symposium on Theoretical Aspects of Computer Science,
STACS, pages 48:1–48:13, 2019. doi:10.4230/LIPIcs.STACS.2019.48.

33 Shachar Lovett and Raghu Meka. Constructive discrepancy minimization by walking on the
edges. SIAM Journal on Computing, 44(5):1573–1582, 2015. doi:10.1137/130929400.

34 Shan Muthukrishnan. New results and open problems related to non-standard stringology.
In Proceedings of the Annual Symposium on Combinatorial Pattern Matching, CPM, pages
298–317, 1995. doi:10.1007/3-540-60044-2_50.

35 Shan Muthukrishnan and Krishna Palem. Non-standard stringology: Algorithms and complex-
ity. In Proceedings of the Annual ACM Symposium on Theory of Computing, STOC, pages
770–779. ACM, 1994. doi:10.1145/195058.195457.

36 Shan Muthukrishnan and Hariharan Ramesh. String matching under a general matching
relation. Information and Computation, 122(1):140–148, 1995. doi:10.1007/3-540-56287-7_
118.

37 Gonzalo Navarro. NR-grep: A fast and flexible pattern-matching tool. Softw. Pract. Exper.,
31(13):1265–1312, October 2001. doi:10.1002/spe.411.

38 Peng Zhang and Mikhail J. Atallah. On approximate pattern matching with thresholds.
Information Processing Letters, 123:21–26, 2017. doi:10.1016/j.ipl.2017.03.001.

https://doi.org/10.1142/S0129054108005607
https://doi.org/10.4230/LIPIcs.ICALP.2018.62
https://doi.org/10.4230/LIPIcs.ICALP.2018.62
https://doi.org/10.4230/LIPIcs.ICALP.2017.74
https://doi.org/10.1016/j.jda.2006.10.003
https://doi.org/10.1109/SFCS.1997.646101
https://doi.org/10.1109/SFCS.1998.743440
https://doi.org/10.1109/TIT.1964.1053689
https://doi.org/10.4230/OASIcs.SOSA.2018.10
https://doi.org/10.4230/LIPIcs.STACS.2019.48
https://doi.org/10.1137/130929400
https://doi.org/10.1007/3-540-60044-2_50
https://doi.org/10.1145/195058.195457
https://doi.org/10.1007/3-540-56287-7_118
https://doi.org/10.1007/3-540-56287-7_118
https://doi.org/10.1002/spe.411
https://doi.org/10.1016/j.ipl.2017.03.001

	Introduction
	Our Contribution
	Related Work

	Data-Dependent Superimposed Codes
	Discrepancy Minimization
	Superimposed Codes

	Upper Bounds for Generalised Pattern Matching
	Parameters D and S
	Randomised Algorithms
	Deterministic Algorithms

	Parameter I

	Lower Bounds for GPM

