Bart Lomiej Dudek
email: bartlomiej.dudek@cs.uni.wroc.pl

Pawe L Gawrychowski

Tatiana Starikovskaya
email: tat.starikovskaya@gmail.com

All non-trivial variants of 3-LDT are equivalent

The popular 3-SUM conjecture states that there is no strongly subquadratic time algorithm for checking if a given set of integers contains three distinct elements that sum up to zero. A closely related problem is to check if a given set of integers contains distinct x 1 , x 2 , x 3 such that x 1 + x 2 = 2x 3 . This can be reduced to 3-SUM in almost-linear time, but surprisingly a reverse reduction establishing 3-SUM hardness was not known.

. In fact, we consider a more general problem called 3-LDT parameterized by integer parameters α 1 , α 2 , α 3 and t. In this problem, we need to check if a given set of integers contains distinct elements x 1 , x 2 , x 3 such that α 1 x 1 + α 2 x 2 + α 3 x 3 = t. For some combinations of the parameters, every instance of this problem is a NO-instance or there exists a simple almost-linear time algorithm. We call such variants trivial. We prove that all non-trivial variants of 3-LDT are equivalent under subquadratic reductions. Our main technical contribution is an efficient deterministic procedure based on the famous Behrend's construction that partitions a given set of integers into few subsets that avoid a chosen linear equation.

Introduction

The well-known 3-SUM problem is to decide, given a set X of n integers, whether any three distinct elements of X sum up to zero. This can be easily solved in quadratic time by first sorting X and then scanning the sorted sequence with two pointers. For many years no faster algorithm was known, and it was conjectured that no significantly faster algorithm exists. This assumption led to strong lower bounds for multiple problems in computational geometry [START_REF] Gajentaan | On a class of O(n 2) problems in computational geometry[END_REF] and, more recently, became a central problem in the field of fine-grained complexity [START_REF] Vassilevska | Hardness of easy problems: Basing hardness on popular conjectures such as the strong exponential time hypothesis (invited talk)[END_REF]. Furthermore, it has been proven that in some restricted models of computation 3-SUM requires Ω(n 2) time [START_REF] Ailon | Lower bounds for linear degeneracy testing[END_REF][START_REF] Erickson | Lower bounds for linear satisfiability problems[END_REF].

However, in 2014 Grønlund and Pettie [START_REF] Grønlund | Threesomes, degenerates, and love triangles[END_REF] proved that the decision tree complexity of 3-SUM is only O(n 1.5 √ log n), which ruled out any almost quadratic-time lower bounds in the decision tree model. This was later improved by Gold and Sharir to O(n 1.5) [START_REF] Gold | Improved bounds for 3SUM, k-SUM, and linear degeneracy[END_REF] and finally to O(n log 2 n) by Kane et al. [START_REF] Daniel | Near-optimal linear decision trees for k-SUM and related problems[END_REF]. The upper bounds for the decision tree model were later used to design a series of algorithms for a harder version of 3-SUM where the set X can contain real numbers. Grønlund and Pettie [START_REF] Grønlund | Threesomes, degenerates, and love triangles[END_REF] derived an O(n 2 (log log n) 2 / log n) time randomized algorithm and an O(n 2 (log log n/ log n) 2/3) time deterministic algorithm for the real RAM model. The deterministic bound was soon improved to O(n 2 log log n/ log n) by Gold and Sharir [START_REF] Gold | Improved bounds for 3SUM, k-SUM, and linear degeneracy[END_REF] and (independently) Freund [START_REF] Freund | Improved subquadratic 3SUM[END_REF] and then to O(n 2 (log log n) O(1) / log 2 n) by Chan [START_REF] Chan | More logarithmic-factor speedups for 3SUM, (median, +)-convolution, and some geometric 3SUM-hard problems[END_REF]. These results immediately imply similar bounds for the integer version of 3-SUM. In the word RAM model with machine words of size w, Baran et al. [START_REF] Baran | Subquadratic algorithms for 3SUM[END_REF] provided an algorithm with O(n 2 / max{ w log 2 w , log 2 n (log log n) 2 }) expected time. Even though asymptotically faster than O(n 2), these algorithms are not strongly subquadratic, meaning working in O(n 2-ε) time, for some ε > 0. This motivates the popular modern version of the conjecture, which is that the 3-SUM problem cannot be solved in O(n 2-ε) time (even in expectation), for any ε > 0, on the word RAM model with words of size O(log n) [START_REF] Pǎtraşcu | Towards polynomial lower bounds for dynamic problems[END_REF]. By now we have multiple examples of other problems that can be shown to be hard assuming this conjecture, especially in geometry [4, 8-10, 13, 15, 18, 19, 25, 26, 28, 37, 42], but also in dynamic data structures [START_REF] Abboud | Popular conjectures imply strong lower bounds for dynamic problems[END_REF][START_REF] Kopelowitz | Higher lower bounds from the 3SUM conjecture[END_REF][START_REF] Pǎtraşcu | Towards polynomial lower bounds for dynamic problems[END_REF], string algorithms [START_REF] Abboud | Consequences of faster alignment of sequences[END_REF][START_REF] Amir | On hardness of jumbled indexing[END_REF], finding exact weight subgraphs [START_REF] Abboud | Exact weight subgraphs and the k-SUM conjecture[END_REF][START_REF] Vassilevska | Finding, minimizing, and counting weighted subgraphs[END_REF] and finally in partial matrix multiplication and reporting variants of convolution [START_REF] Goldstein | How hard is it to find (honest) witnesses? In 24th ESA[END_REF].

In particular, it is well-known that the 3-SUM problem defined above is subquadratically equivalent to its 3-partite variant, where we are given three sets A 1 , A 2 , A 3 containing n integers each, and must decide whether there is x 1 ∈ A 1 , x 2 ∈ A 2 , and x 3 ∈ A 3 such that x 1 + x 2 + x 3 = 0. To reduce 3-partite 3-SUM to 1-partite, we can add a multiple of some sufficiently big number M to all elements in every set and take the union, for example:

X = {3M + x : x ∈ A 1 } ∪ {M + x : x ∈ A 2 } ∪ {-4M + x : x ∈ A 3 }
M is chosen so that the only possibility for the three elements of X to sum up to 0 is that they correspond to three elements belonging to distinct sets A 1 , A 2 , and A 3 . To show the reduction from 1-partite 3-SUM to 3-partite, a natural approach would be to take A 1 = A 2 = A 3 = X. However, this approach does not quite work as in the 1-partite variant we desire x 1 , x 2 , x 3 to be distinct. In the folklore reduction, this technicality is overcome using the so-called color-coding technique by Alon et al. [START_REF] Alon | Color-coding[END_REF].

A natural generalization of 3-SUM is 3-variate linear degeneracy testing, or 3-LDT [START_REF] Ailon | Lower bounds for linear degeneracy testing[END_REF]. In this problem, we are given a set X of n integers, integer parameters α 1 , α 2 , α 3 and t, and must decide whether there are 3 distinct numbers x 1 , x 2 , x 3 ∈ X such that 3 i=1 α i x i = t. Similar to 3-SUM, the 3-LDT problem can be considered in the 3-partite variant as well.

A particularly natural variant of the 1-partite 3-LDT problem is as follows: given a set X of n numbers, are there three distinct x 1 , x 2 , x 3 ∈ X such that x 1 + x 2 -2x 3 = 0? Following Erickson [START_REF] Erickson | Finding longest arithmetic progressions[END_REF], we call this problem AVERAGE. It is easy to see that AVERAGE reduces to O(log n) instances of 3-partite 3-SUM where the j-th instance consists of the sets A j , X \ A j , -2X where A j = {x i ∈ X : the j-th bit of i is 1} (and X = {x 1 , . . . , x n }). However, a reverse reduction seems more elusive and in fact according to Erickson [START_REF] Erickson | Finding longest arithmetic progressions[END_REF] it is not known whether AVERAGE is 3-SUM-hard1 . This suggests the following question. Question 1.1. Can we design a reduction from 3-SUM to AVERAGE? Or is AVERAGE easier than 3-SUM?

A more ambitious question would be to provide a complete characterisation of all variants of 3-LDT parameterized by α 1 , α 2 , α 3 , t. We know that in the restricted 3-linear decision tree model solving every variant where all coefficients α i are nonzero requires quadratic time [START_REF] Ailon | Lower bounds for linear degeneracy testing[END_REF][START_REF] Erickson | Lower bounds for linear satisfiability problems[END_REF], but by now we know that this model is not necessarily the most appropriate for such problems.

Question 1.2. Which variants of 3-LDT are easier than others? Or are they all equivalent?

Formal definitions of 3-LDT, 3-SUM, and AVERAGE. We are interested in connecting the complexity of AVERAGE and more generally speaking any variant of 3-LDT to the 3-SUM conjecture, and so from now on assume that the input consists of integers. 3-SUM is widely believed to be hard even for polynomial universes, because one can always hash down the universe to {-n 3 , . . . , n 3 } while maintaining the expected running time [START_REF] Pǎtraşcu | Towards polynomial lower bounds for dynamic problems[END_REF] (although a deterministic reduction is not known). In fact, the so-called strong 3-SUM conjecture stipulates that there is no subquadratic time algorithm even if the universe is {-n 2 , . . . , n 2 }. A similar randomized reduction can be applied to any variant of the 3-LDT problem, so for concreteness we will assume that the universe is {-n 3 , . . . , n 3 } and work with the following formulation:

1-partite 3-LDT(1, ᾱ, t) Parameters: Integer coefficients α 1 , α 2 , α 3 and t. Input: Set X ⊆ {-n 3 , . . . , n 3 } of size n. Output: Are there distinct x 1 , x 2 , x 3 ∈ X such that 3 i=1 α i x i = t?

3-partite 3-LDT(3, ᾱ, t) Parameters: Integer coefficients α 1 , α 2 , α 3 and t.

Input: Sets A 1 , A 2 , A 3 ⊆ {-n 3 , . . . , n 3 } of size n. Output: Are there x 1 ∈ A 1 , x 2 ∈ A 2 , x 3 ∈ A 3 such that 3 i=1 α i x i = t?
The 3-SUM problem is defined as 3-LDT(p, ᾱ, 0), where p = 1 or p = 3 depending on the partity, and ᾱ = (1, 1, 1). The AVERAGE problem, introduced by Erickson [START_REF] Erickson | Lower bounds for linear satisfiability problems[END_REF], is defined as 3-LDT(1, ᾱ, 0), where ᾱ = (1, 1, -2).

Our contribution and techniques. We start by introducing a definition that plays a crucial role in the characterization of the 3-LDT variants. Definition 1.3. We call a variant 3-LDT(p; ᾱ; t) of the 3-LDT problem trivial, if either 1. Any of the coefficients α i is zero, or 2. t = 0 and gcd(α 1 , α 2 , α 3) t and otherwise non-trivial.

Notice that if any of the coefficients is 0, then we need to find at most two numbers satisfying a linear relation, which can be done in total O(n log n) time by first sorting and then scanning the sorted sequence with two pointers. Also, if both t = 0 and gcd(α 1 , α 2 , α 3) t then every instance of such a variant is a NO-instance, and we can return the answer in constant time. Our main contribution is a series of deterministic subquadratic reductions establishing the following theorem.

Theorem 1.4. All non-trivial variants (1-and 3-partite) of 3-LDT are subquadratic-equivalent.

In particular, this implies the following.

Corollary 1.5. AVERAGE is subquadratic-equivalent to 3-SUM.

Thus, we completely resolve both Question 1.1 and Question 1.2.

To design the most interesting of our reductions, from 3-LDT(3; ᾱ; 0) to 3-LDT(1; ᾱ; 0), we need the following notion. We call a set S ⊆ [n] progression-free if it contains no non-trivial arithmetic progression, that is, three distinct elements a, b, c such that a + b -2c = 0. Erdős and Turan [START_REF] Erdös | On some sequences of integers[END_REF] introduced the question of exhibiting a dense subset with such a property, and presented a construction with Ω(n log 3 2) elements. This was improved by Salem and Spencer [START_REF] Salem | On sets of integers which contain no three terms in arithmetical progression[END_REF] to n 1-O(1/ log log n) , and then again by Behrend [START_REF] Adalbert | On sets of integers which contain no three terms in arithmetical progression[END_REF] to Ω(n/2 2

√ 2• √ log n • log 1/4 n). More recently,
Elkin [START_REF] Elkin | An improved construction of progression-free sets[END_REF] showed how to construct a set consisting of Ω(n log

1/4 n/2 2 √ 2• √ log n) elements.
One could naturally ask for a dense subset that avoids a certain linear equation

α 1 x 1 + α 2 x 2 = (α 1 + α 2)x 3
, where α 1 , α 2 are positive integers. Indeed, it turns out that Behrend's argument works with minor modifications also for such equations [START_REF] Imre | Solving a linear equation in a set of integers I[END_REF]Theorem 2.3]. We use Behrend's set to partition an arbitrary set into a small number of progression-free sets. The main idea is that we can deterministically choose a shift so that the intersection of Behrend's set and a given set is a large progression-free set, which is always possible due to the density of Behrend's set.

Related work. Surprisingly few reductions to 3-SUM are known. It is known that 3-SUM is equivalent to convolution 3-SUM [START_REF] Pǎtraşcu | Towards polynomial lower bounds for dynamic problems[END_REF], which is widely used in the proofs of 3-SUM-hardness. In addition, Jafargholi and Viola [START_REF] Jafargholi | 3SUM, 3XOR, triangles[END_REF] showed that solving 3-SUM in Õ(n 1+ε) time for some ε < 1/15 would lead to a surprising algorithm for triangle listing.

Other variants of 3-SUM have been also considered. Among them are clustered 3-SUM and 3-SUM for monotone sets in 2D that are surprisingly solvable in truly subquadratic time [START_REF] Chan | Clustered integer 3SUM via additive combinatorics[END_REF]; algebraic 3-SUM, a generalization which replaces the sum function by a constant-degree polynomial [START_REF] Barba | Subquadratic algorithms for algebraic 3SUM[END_REF]; and 3-SUM + in which, given three sets A, B, S one needs to return (A + B) ∩ S [START_REF] Baran | Subquadratic algorithms for 3SUM[END_REF][START_REF] Grønlund | Threesomes, degenerates, and love triangles[END_REF]. An interesting generalisation of the 3-SUM conjecture states that there is no algorithm preprocessing two lists of n elements A, B in n 2-Ω(1) time and answering queries "Does c belong to A + B?" in n 1-Ω(1) time. Very recently, this conjecture was falsified in two independent papers [START_REF] Golovnev | 3SUM with preprocessing: Algorithms, lower bounds and cryptographic applications[END_REF][START_REF] Kopelowitz | The strong 3SUM-indexing conjecture is false[END_REF].

Preliminaries

Notation. Below we use the following notation: x denotes the triple (x 1 , x 2 , x 3), when omitting superscript in the sum i we mean all possible values of i;

[k] = {1, 2, . . . , k}; f [A] = {f (a) : a ∈ A}
is the image of f over A; adding a number to a set denotes adding the number to all elements from the set A + x = {a + x : a ∈ A}. All numbers in the considered problems and reductions are integer. All reductions, unless said otherwise, are deterministic.

Subquadratic reductions.

We provide the formal definition of a subquadratic reduction: Definition 2.1 (cf. [START_REF] Vassilevska | Subcubic equivalences between path, matrix, and triangle problems[END_REF]). Let A and B be computational problems with a common size measure m on inputs. We say that there is a subquadratic reduction from A to B if there is an algorithm A with oracle access to B, such that for every ε > 0 there is δ > 0 satisfying three properties:

1. For every instance x of A, A(x) solves the problem A on x.

2.

A runs in O(m 2-δ) time on instances of size m.

3. For every instance x of A of size m, let m i be the size of the ith oracle call to B in A(x).

Then i m 2-ε i ≤ m 2-δ .
We use the notation A ≤ 2 B to denote the existence of a subquadratic reduction from A to B. If A ≤ 2 B and B ≤ 2 A, we say that A and B are subquadratic-equivalent.

Size of the universe. Some of our reductions increase the size of the universe by a constant factor. This is possibly an issue, as in any instance of 3-LDT on n numbers we want to keep the universe {-n 3 , . . . , n 3 }. To mitigate this, in Section 4 we design a simple reduction that decreases the size of the universe by a constant factor. We start with the following preliminary lemma.

Lemma 2.2. All non-trivial 3-partite variants of 3-LDT are subquadratic-equivalent.

Proof. We need to show a reduction between any two non-trivial 3-partite variants of 3-LDT.

To this end, we establish three reductions: 3-LDT(3; ᾱ; 0) ≤ 2 3-LDT(3; ᾱ; t), 3-LDT(3; ᾱ; t) ≤ 2 3-LDT(3; ᾱ; 0) and 3-LDT(3; ᾱ; 0) ≤ 2 3-LDT(3; β; 0) for all possible ᾱ, β and t = 0. Reductions between other variants can be obtained by combining at most three of the above.

1. 3-LDT(3; ᾱ; 0) ≤ 2 3-LDT(3; ᾱ; t). We have gcd(α 1 , α 2 , α 3)|t because 3-LDT(3; ᾱ; t) is a nontrivial variant of 3-LDT, so by the Chinese remainder theorem there exist an integer triple ȳ such that i α i y i = t. Given the three sets A 1 , A 2 , A 3 we construct an instance of 3-LDT(3; ᾱ; t) consisting of three sets A 1 , A 2 , A 3 where

A i = {x + y i : x ∈ A i }. Then there is x ∈ A 1 × A 2 × A 3 satisfying i α i x i = 0 iff there is x ∈ A 1 × A 2 × A 3 satisfying i α i x i = t.
2. 3-LDT(3; ᾱ; t) ≤ 2 3-LDT(3; ᾱ; 0) as above but subtracting the y i terms.

3. 3-LDT(3; ᾱ; 0) ≤ 2 3-LDT(3; β; 0). Define q = lcm(β 1 , β 2 , β 3) so that α i q β i is an integer. In the reduction we set

A i = {x α i q β i : x ∈ A i }.
By the above lemma, to prove Theorem 1.4 we only need to establish an equivalence between 1and 3-partite variants with the same coefficients ᾱ and t. To show 3-LDT(1; ᾱ; t) ≤ 2 3-LDT(3; ᾱ; t), we can apply the folklore reduction from 1-partite 3-SUM to 3-partite 3-SUM based on the colorcoding technique of Alon et al. [START_REF] Alon | Color-coding[END_REF]. As a corollary, we obtain the following result (we provide the proof in the appendix for completeness).

Theorem 2.3. For all coefficients ᾱ and t, we have 3-LDT(1; ᾱ; t) ≤ 2 3-LDT(3; ᾱ; t).

From 3-partite to 1-partite

In this section, we show how to reduce an arbitrary non-trivial 3-partite variant of 3-LDT to a 1-partite one with the same coefficients ᾱ and t.

Let C be a sufficiently big number to be fixed later. We would like to construct the set X by setting X = i {Cx + γ i : x ∈ A i }, where γ are coefficients chosen so as to ensure that all triples x consisting of distinct elements from X satisfying i α i x i = t also satisfy that x i corresponds to an element of A i , for i ∈ [START_REF] Abboud | Consequences of faster alignment of sequences[END_REF].

Combination is a function f : [START_REF] Abboud | Consequences of faster alignment of sequences[END_REF] → [START_REF] Abboud | Consequences of faster alignment of sequences[END_REF] encoding that x i corresponds to an element of A f (i) , for every i ∈ [START_REF] Abboud | Consequences of faster alignment of sequences[END_REF]. For example, suppose that x 1 comes from set A 2 and x 2 and x 3 from A 3 , then f (1) = 2 and f (2) = f (3) = 3. The desired combination of elements from X satisfying i α i x i = t a triple x is the identity (f (i) = i), so in particular we want to forbid using more than one number from the same set (|{f (i) : i ∈ [3]}| < 3). However, some coefficients from ᾱ might be equal, so we need also to allow combinations in which we permute the elements with the same values of α i . This is formalized in the following definition. Definition 3.1. For any coefficients ᾱ, we call a combination

f allowed if ∀i ∈ [3]{f (x) : x ∈ [3], α x = α i } = {x : x ∈ [3], α x = α i },
and otherwise we call it forbidden. In addition, if for some fixed j ∈ [START_REF] Abboud | Consequences of faster alignment of sequences[END_REF], for all i ∈ [START_REF] Abboud | Consequences of faster alignment of sequences[END_REF] we have f (i) = j, then we call the combination constant. Now we show that it is always possible to find a triple γ which excludes solutions from most of the forbidden combinations. Clearly, we need to ensure that in the allowed combination the C-part cancels out, so we require that i α i γ i = 0. Lemma 3.2. For any triple ᾱ of nonzero coefficients there exists a triple γ of nonzero coefficients such that i α i γ i = 0 and for every non-constant forbidden combination f we have i α i γ f (i) = 0.

Proof. Consider the 3-dimensional space R 3 . The set of all triples γ such that i α i γ i = 0 spans a plane Γ id there. There are less than 3 3 = O(1) non-constant forbidden combinations f and each of them gives an equation i α i γ f (i) = 0 that must be avoided, which also corresponds to a forbidden plane Γ f . By the definition of a forbidden combination f , we have Γ f = Γ id . Next, as we need all the coefficients γ i to be nonzero, we add forbidden planes Γ i = {γ : γ i = 0}, for i ∈ [START_REF] Abboud | Consequences of faster alignment of sequences[END_REF]. Clearly, Γ i = Γ id because the coefficients ᾱ are nonzero. Then let F = {Γ f : f is non-constant and forbidden} ∪ {Γ i : i ∈ [3]} be the set of all forbidden planes. Now we need to show that Γ id \ F ∈F F = ∅.

Clearly all planes f ∈ F contain the origin o = (0, 0, 0). Consider an arbitrary line ∈ Γ id that does not pass through the origin o and contains infinitely many points with all coordinates rational. For example, we can take the line passing through (1, 0, -α 1 /α 3) and (0, 1, -α 2 /α 3). Observe that for any F ∈ F, Γ id ∩ F = , because otherwise there would be three non-collinear points (two from and o) belonging to two distinct planes Γ id and F . Hence ∩ F is either empty or a point. Recall that there is a constant number of planes in F. Then Γ id \ F ∈F F ⊇ \ F ∈F F contains some point with rational coordinates, because there are infinitely many such points on . This gives us a point in Q 3 that belongs to Γ id and does not belong to any F ∈ F. By scaling its coordinates, we obtain γ.

The case of t = 0. First we show the reduction for the case of t = 0. Lemma 3.3. Assume t = 0. Any non-trivial 3-partite variant of 3-LDT with coefficients ᾱ and t can be subquadratically reduced to a 1-partite one with the same coefficients ᾱ and t.

Proof. From Lemma 2.2, we know that 3-LDT(3; ᾱ; t) ≤ 2 3-LDT(3; ᾱ; 0), so it suffices to show that 3-LDT(3; ᾱ; 0) ≤ 2 3-LDT(1; ᾱ; t). By the Chinese remainder theorem, we can choose an integer triple ȳ such that i α i y i = t, and apply Lemma 3.2 on ᾱ to obtain γ. We construct the set X as follows:

X = i {C 2 x + Cγ i + y i : x ∈ A i },
where C is a sufficiently big constant such that the absolute value of any linear combination of γ's or y's with coefficients α i is smaller than C (formally, we can take

C = 1 + (max i max{|γ i |, |y i |}) • i |α i |).
If there is a triple x such that x i ∈ A i and i α i x i = 0, then by the choice of γ and ȳ we have i α i z i = t, where

z i = C 2 x i + Cγ i + y i .
Now consider a triple z such that z i ∈ X and

α i z i = t. Let z i = C 2 x f (i) +Cγ f (i) +y f (i) , where x f (i) ∈ A f (i)
. By the definition of C and the fact that i α i z i = t, it holds that α i x f (i) = 0, α i γ f (i) = 0 and α i y f (i) = t. We will show that f is an allowed combination which guarantees that x f (1) , x f (2) , x f (3) is a valid solution of 3-LDT(3; ᾱ; 0). By Lemma 3.2, i α i γ f (i) = 0 implies that the combination f is either constant or allowed. If f is constant, i.e. for some fixed j ∈ [START_REF] Abboud | Consequences of faster alignment of sequences[END_REF], f (i) = j for all i ∈ [3], from i α i γ f (i) = 0 we have i α i γ j = 0 and therefore i α i = 0 as γ j = 0. It implies i α i y f (i) = i α i y j = 0 = t, hence f cannot be constant and is allowed.

The case of t = 0. For t = 0 we would like to proceed as in the proof of Lemma 3.3. We apply Lemma 3.2 on ᾱ to obtain γ and construct the set X = i {Cx + γ i : x ∈ A i }. This is enough to exclude all non-constant forbidden combinations and, if i α i = 0, also the constant combinations. However, if i α i = 0 then we cannot exclude the constant combinations. In other words, no matter what the chosen γ's are we are not able to exclude the solutions that use three distinct elements corresponding to the elements of the same set A j . This suggests that we should partition each of the sets A j into a few sets that contain no triple x of distinct elements such that i α i x i = 0. Definition 3.4. For any γ, δ > 0, a set X is (γ, δ)-free if no three distinct elements a, b, c ∈ X satisfy γa + δb = (γ + δ)c. Proof. By the result of Behrend [START_REF] Adalbert | On sets of integers which contain no three terms in arithmetical progression[END_REF], there exists a (1, 1)-free set

Q ⊆ [N] of size N/w for w = O(2 2 √ 2• √ log N • log 1/4 N).
In other words, this set contains no three elements forming an arithmetic progression. As mentioned by Ruzsa [START_REF] Imre | Solving a linear equation in a set of integers I[END_REF]Theorem 2.3], this construction can be modified for any parameters γ, δ > 0 in such a way that Q is (γ, δ)-free at the expense of setting w = 2 O(√ log N) . Next, we choose c numbers ∆ i from [-(N -1), N -1] uniformly at random and create sets

S i := Q + ∆ i = {x + ∆ i : x ∈ Q}. For every y ∈ [N], the probability that y ∈ S i is |Q| 2N -1 ≥ 1/2w, so the probability that y / ∈ i S i is at most (1 -1/2w) c < 1/N for sufficiently large c = O(w log N) = 2 O(√ log N)
. By the union bound, there exists a collection of sets with the sought properties.

We now explain how to partition the sets A i into a few sets that contain no triple x consisting of distinct elements such that i α i x i = 0. Recall that it suffices to focus on the case i α i = 0. In this case, the sets should not contain a triple x consisting of distinct elements such that α j 1 x j 1 + α j 2 x j 2 = (α j 1 + α j 2)x 3 , where α j 1 , α j 2 > 0 and j 1 , j 2 , j 3 is a permutation of [START_REF] Abboud | Consequences of faster alignment of sequences[END_REF].

We put N = 2n 3 + 1, γ = α j 1 and δ = α j 2 and consider the sets S 1 , S 2 , . . . , S c ⊂ [N] of Lemma 3.5. We shift the sets by -n 3 -1 so that they cover [-n 3 , n 3] while preserving that they are (γ, δ)-free. We partition every set A i into c subsets A i,j := A i ∩ S j such that every A i,j is (γ, δ)free. We have c = 2 O(√ log n) . We reduce the 3-LDT(3; ᾱ; 0) instance of 3-LDT to c 3 instances of 3-LDT(1; ᾱ; 0) by considering all possible combinations of the subsets. To show that the reduction is subquadratic, we must analyze the sizes of the obtained instances. As 2

O(√ log n) < n ε for any ε > 0, 2 O(√ log n) • n 2-ε < n 2-δ
for all 0 < δ < ε. Hence, to prove the following theorem it remains to show how to efficiently (and deterministically) construct the sets A i,j . Theorem 3.6. For all nonzero coefficients ᾱ, we have 3-LDT(3; ᾱ; 0) ≤ 2 3-LDT(1; ᾱ; 0).

Derandomization and efficient implementation of Lemma 3.5

Since N = 2n 3 + 1, we cannot compute the set Q and the sets S i explicitly. Instead, we will construct a family of (γ, δ)-free sets Q 0 , Q 1 , . . . , Q R ⊆ [N] with a guarantee that at least one of them is large, and we will show that for any sets A i and Q r we can efficiently construct the shift ∆ which maximizes |A i ∩ (Q r + ∆)|. Behrend's existential proof actually implies the following statement: Lemma 3.7 (cf. [START_REF] Adalbert | On sets of integers which contain no three terms in arithmetical progression[END_REF][START_REF] Imre | Solving a linear equation in a set of integers I[END_REF]). For any γ, δ > 0 there exist (γ, δ)-free sets

Q 0 , Q 1 , . . . , Q R ⊆ [N] such that R = 2 O(√ log N) and |Q r | ≥ N/2 O(√ log N) for some r.
Proof. (Sketch, see the appendix for details.) Let p be the smallest power of two larger than γ + δ.

Let d = log p N and m = p d-1 . The sets Q r , 0 ≤ r ≤ d(m -1) 2
, are defined as follows:

Q r = {x = d-1 i=0 x i (pm) i : d-1 i=0
x 2 i = r and 0 ≤ x i < m for all 0 ≤ i ≤ d -1}

The sets Q r are (γ, δ)-free and at least one of them is larger than

N/2 O(√ log N) . Consider a set A = A i ⊆ [-N, N].
To partition A into a small number of (γ, δ)-free sets, we will show how to efficiently find r and ∆ such that (Q r + ∆) ∩ A is large. By iterating this procedure on the remaining part of A sufficiently many times, we will obtain the desired partition. We will start by showing two technical lemmas.

Note that given x and r there is a deterministic algorithm that can check if x ∈ Q r in constant space and O(√ log N) time, as it is enough to represent a number in base pm and check the conditions of Lemma 3.7. We will also exploit the following generalization of this algorithm:

= A (if B = 0) or A = A + 1 (if B > 0) digits, where each digit is in [0, 2 k). Let x = x d-1 x d-2 . . . x 0 . To compute |Q r ∩ [x, x + 2 k)| = |{y ∈ [0, 2 k) :
x + y ∈ Q r }|, we will use a dynamic programming algorithm over the digits of y. Let dp[i, c, s] be the number of y's from [0, 2 ik) such that all i least significant digits of x + y are smaller than m, their sum of squares is 0 ≤ s ≤ d(m -1) 2 and there is a carry c ∈ {0, 1} to the (i + 1)-th digit of x + y. Clearly, dp[0, 0, 0] = 1 and dp[0, •, •] = 0 for the remaining entries. Then:

dp[i, c, s] = y ∈[0,2 k),c ∈{0,1} dp[i -1, c , s -σ 2 x i ,y ,c ,c] • [σ x i ,y ,c ,c ∈ [0, m)]
where σ x i ,y ,c ,c := x i + y + c -c2 k is the digit that will appear at the i-th position of x + y after adding y and the carry c to x i , and carrying c to the (i + 1)-th position. This way we process the A least significant digits of y. Next, if B = k mod k is greater than 0, we need to check all possible remaining B bits of y. For this purpose we iterate over y ∈ [0, 2 B) and all possible carries c ∈ {0, 1} to the (A + 1)-th digit of x + y. We now show how to use the above algorithm to compute the optimal shift for the given sets Q r and A. Lemma 3.9. For any r, we can deterministically find

∆ ∈ [-N +1, N -1] such that |(Q r +∆)∩A| ≥ |A||Q r |/2N in |A| • 2 O(√ log N) time.
Proof. First, we shift all elements of A by N -1 and then we need to find ∆ ∈ [0, 2(N -1)]. We will use the method of conditional expectations setting the bits of ∆ from the most significant to the least. Let K be the smallest number such that 2 K > 2(N -1). We will narrow down the set of possible values ∆ maintaining the following invariant:

E[|(Q r + ∆) ∩ (A -τ)| ∆ ∈ [0, 2 k)] ≥ |A||Q r | 2 K
where k goes from K to 0 and τ is a variable accumulating all the bits of ∆ found so far. In the beginning we have τ = 0 and E

[|(Q r + ∆) ∩ A| ∆ ∈ [0, 2 K)] = |A||Qr| 2 K . For each k such that K ≥ k > 0, we have E[|(Q r + ∆) ∩ (A -τ)| ∆ ∈ [0, 2 k)] = 1 2 E[|(Q r + ∆) ∩ (A -τ)| ∆ ∈ [0, 2 k-1)] + E[|(Q r + ∆) ∩ (A -τ -2 k-1)| ∆ ∈ [0, 2 k-1)]
To compute the (k -1)-th bit of ∆, we compare the two right-hand terms, choose the bit corresponding to the larger one and accumulate it in τ . Then, the above expected value does not decrease, so the invariant is preserved. After K steps we obtain

E[|(Q r + ∆) ∩ (A -τ)| ∆ ∈ [0, 2 0)] = |(Q r + τ) ∩ A| ≥ |A||Q r | 2 K ≥ |A||Q r |/2N
and τ is the value of ∆ with the desired properties. Finally, we need to show how to efficiently compute the conditional expectation:

E[|(Q r + ∆) ∩ (A -τ)| ∆ ∈ [0, 2 k)] = 2 -k ∆∈[0,2 k) |(Q r + ∆) ∩ (A -τ)| = 2 -k ∆∈[0,2 k) a∈A |Q r ∩ {a -τ -∆}| = 2 -k a∈A |Q r ∩ [a -τ -2 k + 1, a -τ]| which can be calculated with |A| queries about |Q r ∩ [x, x + 2 k)| for different values of x.
As we compute the conditional expectation O(log N) times, the time complexity follows.

To sum up, we obtain that any subset of [-N, N] can be efficiently partitioned into few (γ, δ)-free sets.

Theorem 3.10. For any γ, δ > 0 and set

A = A i ⊆ [N], it is possible to construct c = 2 O(√ log N) sets A i,1 , A i,2 , . . . , A i,c such that every A i,j is (γ, δ)-free and j A i,j = A. The construction is deterministic and runs in |A| • 2 O(√ log N) time.
Proof. We consider every set Q r as a candidate for the largest set among Q 0 , . . . , Q R . For each candidate Q r , we iteratively choose the next value of ∆ using Lemma 3.9 and then extract from In some of the above reductions we might increase the size of the universe by a constant factor. This is possibly an issue, because some conjectures assume a particular upper bound on its size, say {-n 3 , . . . , n 3 } or even {-n 2 , . . . , n 2 }. In this section we show how to decrease the size of universe by a constant factor by reducing to a constant number of instances on a smaller universe of the same variant of 3-LDT. We first run the procedure from the following lemma to decrease the universe and only then apply the reduction. Proof. We assume U to be large enough. Let V be the largest multiple of α 3 smaller than

U 2c i |α i | .
We divide numbers from sets A i into d = Θ(c i |α i |) buckets of size V where the j-th bucket consists of elements from B j = [jV, (j + 1)V) for j ∈ [-U V , U V]. We will choose the bucket B j i containing x i ∈ A i and represent x i as x i = x i + V j i . For each of the d 3 triples j ∈ [-U V , U V] 3 of the buckets, we create the following instance of 3-LDT over a smaller universe [-U/c, U/c] by setting A i = {x : (x + V j i) ∈ (A i ∩ B j i)} for i ∈ {1, 2} and

A 3 = x + V α 3 i α i j i : (x + V j 3) ∈ (A 3 ∩ B j 3) ∩ - U c|α 3 | , U c|α 3 | .
From the definition, α 3 divides V so A 3 consists of integers. We claim that there is a solution of 3-LDT(3; ᾱ; t) over [-U, U] if and only if at least one of the created instances has a solution over [-U/c, U/c]. Assume first that x is a solution of 3-LDT(3; ᾱ; t). Consider the instance corresponding to the triple j = (x 1 /V , x 2 /V , x 3 /V). We define the triple x as follows: x 1 = x 1 -V j 1 , x 2 = x 2 -V j 2 and x 3 = (x 3 -V j 3) + V α 3 i α i j i . It is easy to see that i α i x i = t. It remains to show that x 3 ∈ [-U c|α 3 | , U c|α 3 |]. This is indeed the case as

|α 3 x 3 | = |t -α 1 x 1 -α 2 x 2 | ≤ t + U/2c ≤ U/c.
To show the other direction, consider x that is a solution of the instance over [-U/c, U/c] corresponding to a triple j. We then take x 1 = x 1 + V j 1 ∈ A 1 , x 2 = x 2 + V j 2 ∈ A 2 , and

x 3 = x 3 + V j 3 -V α 3
i α i j i ∈ A 3 which obviously satisfies i α i x i = t.

Lemma 3 . 5 .

 35 For any N, γ, δ > 0, there exists a collection of (γ, δ)-free sets S 1 , S 2 , . . . , S c ⊆ [N] where c = 2 O(√ log N) and i S i = [N].

Lemma 3 . 8 .

 38 For any r, x, and k, there is a deterministic algorithm that calculates|Q r ∩[x, x+2 k)| in 2 O(√ log N) time and space.Proof. Recall from Lemma 3.7 that pm = 2 k for some integer k . We must compute the number of y ∈ [0, 2 k) such that x + y ∈ Q r . Let k = A • k + B, where B < k . Then the base-2 k representation of possible numbers y has either A

 Finally, we need to verify that the first d -A digits of x + y are smaller than m and choose the appropriate value of s to lookup from the dynamic program. The dynamic program has O(d • dm 2) states and requires O(2 k) = O(pm) computation time per state. As d = log p N and m = p d-1 , in total the algorithm uses O(d 2 m 3 p) = 2 O(√ log N) time and space.

Algorithm 1

 1 A a (γ, δ)-free subset equal to the intersection of A and Q r + ∆. Having extracted c = 2 O(√ log N) subsets, we stop. If A is empty, we obtain a partition of A into at most c (γ, δ)-free sets. See Algorithm 1 for more details. Let us show that the algorithm does return a partition of A into at most c (γ, δ)-free sets. By Lemma 3.7, there exists r such that |Q r | ≥ N/2 O(√ log n) . Lemma 3.9 guarantees that for this value of r, the size of A decreases by a factor of (1 -1/2 O(√ log N)) in each iteration. Therefore, after c iterations, the size of A will become |A|(1 -1/2 O(√ log N)) c < 1. Partitioning a set into (γ, δ)-free sets.

1 :4

 1 function Partition(A, N, γ, δ) 2:for r = 0, . . . , R do Decreasing the size of the universe

Lemma 4 . 1 .

 41 Let c > 1 be any parameter. We can reduce an instance of any variant of 3-LDT(3; ᾱ; t) over [-U, U] to a constant number of instances of the same variant of 3-LDT over [-U/c, U/c].

Also see https://cs.stackexchange.com/questions/10681/is-detecting-doubly-arithmetic-progressions-3sum-hard/ 10725#10725

A From 1-partite to 3-partite Theorem 2.3. For all coefficients ᾱ and t, we have 3-LDT(1; ᾱ; t) ≤ 2 3-LDT(3; ᾱ; t).

Proof. In this reduction, given one set X we need to create a number of 3-partite instances of 3-LDT in such a way that there exist distinct x 1 , x 2 , x 3 ∈ X satisfying the given equation iff at least one of the 3-partite instances is a YES-instance. The reduction will not change coefficients α i and the parameter t. Note that simply creating a single 3-partite instance by making all three sets equal to X does not work, as we are not able to forbid taking the same element of X more than once.

We use the color-coding technique introduced by Alon et al. [START_REF] Alon | Color-coding[END_REF], in which we choose a number of colorings of the elements of X with k colors in such a way that, for every k-element subset of X, there is a coloring in which all elements from the subset have distinct colors. This can be achieved with high probability by simply choosing sufficiently many random colorings, but we will use the deterministic construction by Schmidt and Siegel [START_REF] Schmidt | The spatial complexity of oblivious k-probe hash functions[END_REF].

Lemma A.1 (cf. [START_REF] Schmidt | The spatial complexity of oblivious k-probe hash functions[END_REF]). There exists a family We work with k = 3, so the above lemma gives us a family F consisting of O(log 2 n) functions. Given a set X = {x 1 , . . . , x n }, for every function f ∈ F and every permutation π ∈ S 3 we obtain a 3-partite instance of 3-LDT by setting A π(i) = {x c : f (c) = i} for i ∈ [START_REF] Abboud | Consequences of faster alignment of sequences[END_REF]. In every 3-partite instance the sets A i correspond to a partition of the original set X, and for any distinct x 1 , x 2 , x 3 ∈ X there exists a 3-partite instance such that x 1 ∈ A 1 , x 2 ∈ A 2 , and x 3 ∈ A 3 . Thus, we showed how to reduce a 1-partite instance of 3-LDT to O(log 2 n) instances of 3-partite 3-LDT with the same coefficients ᾱ and t. The reduction works in O(n log 2 n) time.

B Behrend's construction

Lemma 3.7 (cf. [START_REF] Adalbert | On sets of integers which contain no three terms in arithmetical progression[END_REF][START_REF] Imre | Solving a linear equation in a set of integers I[END_REF]). For any γ, δ > 0 there exist (γ, δ)-free sets Q

Proof. Let p be the smallest power of two larger than γ + δ. Let d = log p N and m = p d-1 . We consider the set P of all integer points in {0, . . . , m -1} d . Let P r be the subset of points from P at distance √ r from the origin, that is, P r = {p ∈ P : d 2 (o, p) = r}, where 0 ≤ r ≤ d(m -1) 2 . Clearly, the sets P r are disjoint and r P r = P .

We map the points in P to numbers as follows: φ(x 0 , . . . , x d-1) := i x i (pm) i . The mapping is injective and reversible. We define the set Q r , 0 ≤ r ≤ d(m -1) 2 , as φ[P r]. In other words, a number x = i x i (pm) i ∈ Q r iff:

Note that the numbers in each set Q r are bounded by (pm

We claim that the sets Q r are (γ, δ)-free. Suppose the contrary, that there are three distinct elements a, b, c ∈ Q r such that γa + δb = (γ + δ)c. Consider their (pm)-base representations ā, b, c. Observe that as all coordinates are smaller than m, the equation γa + δb = (γ + δ)c holds for every digit in their (pm)-base representations, so for every 0 ≤ i < d we have γa i + δb i = (γ + δ)c i . We combine this with the triangle inequality