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Abstract
Motivated by applications in fluid dynamics involving the harmonic Bergman projection, we aim to
extend the theory of single and double layer potentials (well documented for functions with H},. regularity)
to locally square integrable functions. Having in mind numerical simulations for which functions are usually
defined on a polygonal mesh, we wish this theory to cover the cases of non-smooth domains (i.e.with Lipschitz
continuous or polygonal boundaries).
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1 Introduction

Let £2 be a smooth bounded domain in the plan. The harmonic Bergman projection is the orthogonal projection in L?(£2)
onto the closed subspace of harmonic functions (see [5, Chap. 8] and [18]). This operator is known mainly for playing
an important role in complex analysis and operator theory but has also applications in the field of partial differential
equations ([12], [13, Chap. 4]). In fluid dynamics, it appears in the article [17] and more recently in [14] for the analysis
of the Navier-Stokes equations in non-primitive variables (stream function and vorticity). Indeed, for an incompressible
fluid flow, the vorticity field is orthogonal in L? to the harmonic functions (see [14] and references therein).

The Bergman projection is a kernel operator but this kernel can be explicitly computed only for particular geometries
(when 2 is a disk or a half plane for instance). From a numerical point of view, the discretization of the Bergman
projection requires the inversion of the mass matrix corresponding to the L? scalar product restricted to the subspace
of harmonic functions. For this purpose, a discrete basis of harmonic functions in L? is needed and an efficient way
to construct such a basis consists in using boundary elements and layer potentials. However, while the theory of layer
potentials in Hj,.(R?) is well documented (see the classical book [4] for instance), little is known on locally square
integrable layer potentials. In this paper, we aim to provide a theoretical framework for this notion. Furthermore, in
numerical simulations, functions are usually defined on a polygonal mesh, so we want to cover this case, which adds a
substantial difficulty.

In its classical meaning, the single layer potential maps the Sobolev space H™/2(I') into H},,(R?) (I stands here
for a Lipschitz continuous Jordan curve). A natural guess is that the Hj,, regularity could be lowered to L%,. by
extending the single layer potential to the space H73/2(F). However the space HB/Q(F)7 and then also its dual space
H3/ 2(I') are ill defined on a Lipschitz continuous boundary, any intrinsic definition of these spaces requiring that the
boundary be at least of class C*!. On the other hand, denoting by ~4 the classical Dirichlet trace operator on I, the
space H>/? (I') = v4HE,.(R?), although complex to describe in terms of Sobolev regularity, is well defined (and coincides
with H3/2(F) when I' is smooth). The main idea of the paper is to define the single-layer potentials as Laplacians of
biharmonic functions in R? \ I', the asymptotic behavior of the functions being taken into account by introducing an
appropriate functional framework based on weighted Sobolev spaces. This approach will prove successful and will allow
to extend the single layer potential to the space H~3/2(I").

Considering the double layer potential, based on similar arguments, it will be extended to Ho? (I"), the dual space
of HY?(I') = v, HE,.(R?), where 7, stands for the Neumann trace operator on I'. It is worth noticing that H'/?(I") is
equal to H'/2(I") when I is smooth but this is no longer true as soon as I" has corners for instance.

Throughout the paper, we will assume without loss of generality that the logarithmic capacity of I" is lower than
1, using translation and dilatation of the coordinates system if necessary (see [16, Page 263] on this matter). Roughly
speaking, we shall prove the following result (that will be rigorously reformulated in Theorem 4.1 thereafter):



Theorem 1.1. Let I' be a Lipschitz Jordan curve. Then the single layer potential, considered as an operator defined on
H~Y2(I') valued in L2, .(R?) extends by density to a bounded operator on H~3/2(I"). The double layer potential, seen as
an operator from HY?(I") into L2,.(R?) extends by density to a bounded operator on H~*/*(I").

Denote by 2~ the planar open set enclosed by I" and by £27F its complement in R2. Providing that I” is a polygon,
we will be able to reach our initial goal (to represent harmonic functions in L3,. by surface potentials) by proving (this
result is rigorously reformulated later in Corollary 8.1 and Corollary 8.2):

Theorem 1.2. Any harmonic function in L*(£27) can be represented by the restriction to 27 of a single or a double
layer potential as defined in Theorem 1.1. The same conclusion applies for harmonic functions in L3,.(27F), assuming
additional properties on their asymptotic behaviors.

The remainder of the introduction is devoted to giving the reader an overview of the main steps of the analysis. As
with Theorems 1.1 and 1.2, we do not seek to be rigorous at this stage but simply to give a taste of the results. For the
sake of brevity, we will focus only on the single layer potential.

The first step of the analysis is to extend the notions of Dirichlet and Neumann traces to functions in L7,.(R?),
harmonic in R?\ I". This task will be carried out in the case where I' is a curvilinear C'*' polygon (i.e. a generalization
of the notion of polygon for which the edges are C''! curves) and requires the introduction of the spaces:

HYA(D) = {rau : ue Hioo(R?), ynu = 0} and ’HFI/Q(F) ={yu:ue Hioo(R?), yau = 0}.

When I is smooth, we simply have H5/>(I") = H*/>(I") = H**(I") and H;/Q(F) = HY*(I") = H'2(I'). However, all
these equalities turn out to be false when I' is a C'*! polygon (this is what makes the analysis tricky). The topologies
of which these spaces are provided (and which will be specified thereafter) entail the continuity and the density of the
following inclusions:

HY2(D) c HYA(r) c LX) and  HYA() c HY*(r) ¢ HYA(I) € LX(T).

As usual, we denote by ’H;S/Q(F) the dual space of ’H?/Q(F) and by HEI/Q(F) the dual space of H(li/g (I"), using L*(I")
as pivot space. More interesting for our purpose, the inclusions between dual spaces are also continuous and dense:

LX) CcH Y2 cHY*(r)  and LX) € HY2(I) ¢ H™¥/2(I) € 1,2/2(I).

Theorem 1.3. Any function u in L3,.(R?), harmonic on both sides of I admits one-sided Dirichlet traces (denoted by
y7u and v u) in 7—{;1/2 (I'). The function u admits also one-sided Neumann traces (denoted by v, u and v} u) in the

space 7-[;3/2 (I"). Moreover, the trace opemtorﬂdi and wf are the extensions by density of the classical trace operators
defined for functions in H*(27) and in H},.(02F).

This notion of trace being clarified, we will turn again to the layer potentials and investigate the question of their
Dirichlet and Neumann traces on I'. Let . : H-Y2(I") — H},.(R?) be the classical single layer potential and recall
the properties:

vEo s HY2(I) — HY*(I) and Vo S+ 0 S =1d, (1a)

this latter identity being usually called the “jump relation”. Let now 5”;5 : 7—[71/2(F) — L3,.(R?) stands for the

extended single layer potential defined in Theorem 1.1. According to Theorem 1.3 we have in this case:

a0 S HTIA(D) — H (D), (1b)
where H73/2(F) is continuously and densely embedded in H;S/Q(F) but in general different from H;S/Q(F), which
suggests that the jump relation is not likely to apply in this case. Surprisingly enough, the relation is well and truly
satisfied. More generally, concerning the traces of the single layer potential, we will establish:

Theorem 1.4. The two one-sided Dirichlet traces on I' of a single layer potential (as defined in Theorem 1.1) coincide.
The “jump” across I of the one-sided Neumann traces of a single layer potential of density q € 7-[_3/2(F) is equal to q.

Actually, we will show that there do exist single layer potentials for which the one-sided Neumann traces are both
in 7-[;3/2(1“) but not in H~>/2(I"), although their difference is in this latter space. This means that some singular
contributions of the normal derivatives cancel out by forming their difference. This notable phenomenon seems to be
typical of the single layer potential on non-smooth boundaries.

The next point we shall discuss in the paper is the solvability of the Dirichlet and Neumann Laplace equations with
boundary data in 'H;l/ 2(F ) and H,, 3/2 (I"). As for the Laplace equation with Dirichlet boundary conditions for example,
we will prove:

Theorem 1.5. Assume that I' is a (straight) polygon. For every p € H;l/ﬂ) there exists a function u~ € L*(27)
harmonic in £~ such that y;u~ = p and there ezists a function u™ € L;,.(2F) (with a suitable asymptotic behavior),
harmonic in 27 such that Wju'*' = p. There is no uniqueness in general.



The existence of (non zero) harmonic functions in L? with vanishing Dirichlet data in a domain with corners has
long been known (see for instance [7] where an example of such a function is provided).

At this point, a kind of reciprocal of Theorem 1.4 will still be needed to prove Theorem 1.2. This result can be stated
as follows:

Theorem 1.6. Let u be in L7, .(R?), harmonic in R* \ I', with an appropriate asymptotic behavior. If u satisfies
Yy u =y u then ¢ = ynu+yiu is in H**(I') and u = Iq.

The proof of Theorem 1.2 now relies on a proper combination of Theorems 1.3, 1.4 and 1.5. Thus, denote by p the
one-sided trace v, u~ of a given function v~ , harmonic in L?*(27). Theorem 1.5 ensures the existence of a harmonic

function u™ in L7,.(£2F) (with an appropriate asymptotic behavior) such that v} ut = p. Define ¢ = v, u™ +~u™ (the
jump of the Neumann trace) and conclude, applying Theorem 1.6 that y}q| or =ut.

We shall also provide a negative result, contrasting with what happens for harmonic functions u such that u|,- €
H'(27) and u|o+ € H},.(2F). Indeed, such a function harmonic in R? \ I" (and with a suitable asymptotic behavior)

can be represented as the sum of a single and double layer potentials. On the contrary:

Theorem 1.7. There exist functions in L3,.(R?), harmonic in R*\ I' (with a suitable asymptotic behavior) that cannot
be represented as the sum of a single and a double layer potentials.

We will end the article by studying the invertibility of the boundary operators introduced in (1). Recall that the
logarithmic capacity of I" is assumed to be lower than 1 and define:

H,22(0) = {q € Hy* (D) + (a, 1r)_s 3, =0},

where (-, -)) stands for the duality pairing on H;S/Q(F) X H?L/Q(F) that extends the L? inner product.

_33,
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Theorem 1.8. The bounded operators vq o %} : H™3/*(I') — H;lm(]“), Yo o L HTVHD) — H,¥2(I) and

o Y; : 7-[73/2(11) — 7-[;3/2(F) are surjective but not injective in general.

The paper is organized as follows: The following section is dedicated to the reminder of some basic notions about
trace operators and surface potentials. The main function spaces on which the analysis is based when I" is Lipschitz
continuous, are introduced in Section 3. They are used in Section 4 to extend the notion of surface potential to square
integrable functions. From Section 5 the boundary I is assumed to be a C*' (curvilenar) polygon. This additional
regularity allows the introduction of new function spaces involved in new trace theorems stated in the next section. The
“Sump relations” for surface potentials are proved in Section 6. From Section 7, the analysis focuses on the case where I"
is a straight polygon. Section 7 is dedicated to solvability issues for the Laplace equation with Dirichlet and Neumann
boundary data. Finally, in section 8, we discuss some transmission problems and address the issue of representing locally
square-integrable harmonic functions as surface potentials. We end the paper with the proof of Theorem 1.8.

For the ease of the reader, the appendix contains a list of the main function spaces and operators.

2 Notations and recalls

Geometric settings

Let 27 be an open and bounded planar domain whose boundary I" is a Jordan curve. The (unbounded) complement
of 2 is denoted by 27. In the sequel, we shall consider four levels of regularity for I': It will be either of class C*
(referred to as the smooth case), either Lipschitz continuous (see [10, Definition 1.2.1.1] for a precise definition of this
notion), either a C** polygon (see [10, Definition 1.4.5.1]), or simply a classical (straight) polygon. In either case, the
unit tangent vector field 7 (oriented counterclockwise) is a.e. well defined on I" and the same applies to the outer unit
normal vector field n~ = —r and to the inner normal vector field n* = 7+ (the superscript L meaning that the vector
is counterclockwise rotated of an angle 7/2). To lighten the notations, we shall sometimes write simply n instead of n™.

Traces on the boundary of a Lipschitz domain

In this subsection, we collect some definitions and properties about the Dirichlet and Neumann trace operators in the
case where I is Lipschitz continuous. On the space

Do+ (R?) = {ulgs :ue 2(R*)},
the one-sided Dirichlet and Neumann trace operators are classically defined by:

Vi D ®) — D) it Do (R — LA(T)

u— ulp u»—>Vu~ni| (2)

Ir.



According to [1, §9.2], when I' is Lipschitz continuous, the sobolev space H*(I") is well (invariantly) defined only for
those indices s that belong to [—1, 1] and rephrasing [1, Theorem 9.2.1] (or [16, Theorem 3.38]), we have:

Theorem 2.1. The one-sided Dirichlet trace operators 'yj: extend by density to bounded operators from Hs+1/2((2i) to
H*(I') for every 0 < s < 1.

According to [15, Theorem 1] we can also state:

Theorem 2.2. The Dirichlet and Neumann trace operators (2) extend by density to bounded operators on HQ(Qi)
(valued in L*(I')) and ker v Nker v = HE(2F), where we recall that HE(2F) is the closure of 2(2%F) in H*(QF).

The Neumann trace operator can actually be defined on a larger space than H2(.Qi), namely on:
HY(25,A) = {u e H'(2F) : Aue L*(029)}.
Thus, according to [16, Lemma 4.3], for every w € H* (2, A), there exists a unique g, € H71/2(F) such that:

<gu,'y;tv> = (Au,v)p2(0%) — (Vu, V) 20t 2 for all v € H'(02%),

11
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where (-,-) _ 1 stands for the duality bracket between the spaces H'/2(I") and H'/?(I), that extends the L? inner

product. Since Z+ (R?) is dense in H' (2%, A) (see [10, Lemma 1.5.3.9]), we are allowed to denote g, = ~;-u and we
have (see [16, Theorem 4.4] for the Green’s identity):

1
3

Proposition 2.1. The Neumann trace operators ;= defined in (2) extend by density to bounded operators from H* (Qi, A)
into H=Y2(I"). Moreover, the second Green’s identity holds:

(Au,v) 2 0=y — (U, Av) 2 0ty = <7§u,70iv>7 — <7§v,%iu> for all u,v € Hl(Qi,A). (3)

11 11
2°2 272

) T}f space H¥2(0Q*F, A) = {ue H2(02%) : Au € LQ(Qi)} (provided with the graph norm) is a subspace of
H*(£2%,A) and according to [9, Lemma 3.2]:

Proposition 2.2. The operators v : H3/2(02%F, A) — L*(I') are bounded and onto.
Finally, the following density result will be useful in the sequel:
Proposition 2.3. The spaces ¥4Po= (R?) and vn Zo= (R?) are dense in L*(T).

The first assertion is proved in [9, page 88] and the second results from Proposition 2.2 and [6, Lemma 3].

Surface potentials on a Lipschitz boundary

A general presentation of the theory of surface potentials on the boundary of a Lipschitz domain can be found in the
book [16], to which we will refer in the following for more details on this subject. For the ease of the reader, let us recall
some basics: The fundamental solution of the Laplace’s equation is defined by:
1
G(z) = ~or In |z| for all = € R*\ {0}.
The single layer potential is the weakly singular integral operator defined for any ¢ € L?(I") by:

Irq(x) = / Gz —y)q(y)dy for all z € R*\ I,
r

and extended by density to a bounded operator Y7 : H71/2(F) — H},.(R?). The double layer potential is the singular
integral operator: Zr : H/?(I') — H},.(R?), defined by:

Drp(z) = /FVG(:C —vy)-n(y)q(y) dy for all z € R*\ I".

The single layer potentiel and the double layer potential both admit one-sided Dirichlet and Neumann traces on both
sides of I'. In [16] it is proved that the following operators are well defined and bounded:

o HYVA(I) — HY*(I) and  ~To9r: HY*(I') — HY*(I),
VEoSr H YA — HY*I) and  ~fo9p: HY*(I') — H V(D).



Moreover ’yj o .t =5 oS (for the single layer potential, one-sided Dirichlet traces on I" coincide) and v,;} o0 Zr =
—Yn 0 Dr (for the double layer potential, one-sided Neumann traces on I" have opposite signs). To simplify the notation,
we shall drop the superscripts + and — when the Dirichlet traces coincide or when the Neumann traces have opposite
signs. Thus, we denote Sp = v4 0 % and Dy = v, o Zr. The operator Sr : H~Y? (r — Hl/Q(F) is an isomorphism
(recall that the logarithmic capacity of I" is assumed to be lower than 1, see [16, Theorem 8.6] about this question). The
operator Dy : HY/2(I'y —s H~Y*(I') is Fredholm of index 0 with a one dimensional kernel spanned by the function 1
(the constant function equal to one on I') and with range H~'/?(I") = {qe H™Y2(T) : {q,1r)_ ’

1

3
HY(I') = {p € H/*(I') : (p,1r)p2(ry = 0}, we deduce that Dp : H'/*(I') — H~'/*(I') is an isomorphism. The
following identities are usually referred to as the “jump relations” on I":

=0 } . Introducing

1
2

o Sr 4 oSr=1d and N oPr—~; 0o Pr =1d.

The space o7 of the affine functions in R? plays a particular role in the asymptotic behavior of the single layer potential.
Indeed, for |z| large, the single layer potential admits the following asymptotic expansion:

2
+O0(1/|z|). (4a)

1 1 X1 1 i)
Yrq(m)=*7r lnle%W(q,yl)_ + o= (4 y2) -

33 or |z|?

1
The three first terms in the right hand side are not in L?(R?) while the remainder is. Let <77 be the three dimensional

_1 1
subspace of H1/2(F) spanned by the traces of the affine functions. Let &7/ * = ;1;2{32 (a three dimensional subspace
in H=Y2(I")) and define {qi,qz2,93} a basis of this space normalized in such a way that (q;,Srqr)_1 1 = ;4 (the

1
~23
Kronecker symbol) for every indices j,k € {1,2,3}. Notice that .#rq; is not an affine function in R? but there exist
affine functions P; such that .#rq;|o- = Pjlo- ( =1,2,3).

Considering now the double layer potential, it can be expanded for |z| large as:

1.%'1

~5rE +0(1/|z]?), (4b)

Drp(x) = (n1,p)_ (n2,p)_

b4 2 jep PP 14
1

where we recall that n = (n1,n2) is the unit normal vector field on I" directed toward the exterior of 27. Let o/, 2 be

the two dimensional subspace of H ™/ 2(I") spanned by n1 and na. Its preimage by Dr is a two dimensional subspace

of H'/?(I') denoted by .Q{é. Let {p1, p2} be a basis of this space normalized in such a way that (Drp;, pk>7;7% =0k
(4,k = 1,2). As for the single layer potential, the double layer potential Zrp; is not an affine function in R? but there
exists an affine function @; such that Zrp;|o- = Q;|o- (for j =1,2).

To be complete on the questions of asymptotic behavior of harmonic functions, let us mention a last result borrowed

from [5, Chap. 10, Ex. 1]. Any function v harmonic outside a compact set can be expanded in this region as:

—+o0 —+o0
(@) = 3 pnl) + 0 Infel + 3 P
7=0

Jj=0

x)
m’

(4¢)

where qo € R and, for every integer m, P, qm are harmonic polynomials on R? of degree m.
We will mainly rely on the following characterization of the surface potentials in the sequel:

Proposition 2.4. Assume that I' is Lipschitz continuous. The single layer potential of density q € H_1/2(F) is the
unique distribution u € 9'(R?) satisfying:

1 for all § € 2(R?); (5a)
G(z)+o(1l) as |z|] — 4o0. (5b)

(1, ~ D)5 a2 o3ty = (0:70)
u(z) = (g, 1r)_

b
The double layer potential of density p € HY?(I') is the unique distribution v € 9’ (R?) satisfying:

(v, =A0) g 82), pz2) = (b, p) 1,1 for all 8 € Z(R?); (6a)

v(z) = 0(1) as |z| — +o0. (6Db)

Notice that any distribution u satisfying (5a) and any distribution v satisfying (6a) is harmonic in 2% so that,
according to the generalization to distributions of Weyl’s lemma, they are C* in 2% and the asymptotic conditions (5b)
and (6b) make sens.

Proof. Let ¢ be in H71/2(F). Applying the second Green’s identity (3), we easily verify that the single layer potential
#rq satisfies both conditions (5). On the other hand, if u; and us are two distributions satisfying these conditions,
then u = u1 — uy is a distribution harmonic in the whole plane. According to Weyl’s lemma, it is C> in R? and since it
tends to 0 at infinity, we conclude with Liouville’s theorem that v = 0. The same arguments apply for the double layer
potential. O



Since in Proposition 2.4, u = /rq and v = Prp, it turns out that the distribution u is actually in H},.(R?) while
the distribution v is such that v|,- € H'(27) and v|o+ € H},.(2F). Our purpose is now to weaken the regularity of
q and p and to generalize the definition of the single and double layer potentials in order to represent every function in
L3,.(R?), harmonic in R? \ I" with asymptotic behaviors as in (5b) or (6b).

3 Main function spaces
Following an idea of [2, §7], we introduce the weight fonctions p and lg:
p(x) = /14 |z|? and lg(x) = In(2 + |z|?) for all z € R?, (7)

which enter the definition of the weighted Sobolev space:

9%u

a’tjal'k

€ I*(R?), Tllg% € I*(R?) and
J

u
p*lg

W2(R2):{u6@'(R2) : ELQ(R2)7Vj7k:1,2}.

Proposition 3.1. The space W?(R?), provided with its natural norm, enjoys the following properties (borrowed from [2,
Theorem 7.2] for the first and second points and from [2, Theorem 9.6] for the third one):

1. The space D(R?) is dense in W2 (R?);
2. There exists a sequence of truncation functions (éx)r>1 in P(R?) such that, for every u € W?(R?), ¢ru — u in
W2(R?);
3. The Laplace operator A : W?(R?)/o/ — L*(R?) is an isomorphism (we recall that </ is the space of the affine
functions in R?).
For p € L*(I"), we denote by p(p) the mean value of p on I', i.e. u(p) = |F|71(1p,p)L2(F). The original idea at this
point is to endow the space W?(R?) with the following inner products (for u,v € W?2(R?)):

3

(u,v)s = (Au, AU)LZ(]RQ) + Z(qj, ’ydu>7%,% (qy, fydv>7%’% (8a)
j=1
2
(u,v)p = (Au, Av) p2g2y + Z(Pj,’YnU)L2(F)(Pj7’YnU)L2(F) + p(yauw) u(yav), (8b)
j=1

where the subscripts S and D refer to “single” (layer) and “double” (layer), as it will become clear in the sequel. The
corresponding norms, denoted by || - ||s and || - ||p are both equivalent to the natural norm of W?2(R?), the proof being
a straightforward consequence of [2, Corollary 8.4]. It is already worth noting that:

g ={ue W (R?) : (yau, vaf)y =0 Vo€ o} in (W2R»: || - |ls),
t = {ue WR?) : (yu, ) r2(r) + p(raw)u(yad) =0 VO €/} in (W R; |- |p).
Next, we introduce the boundary spaces:
HYA(D) = vaW2(R?)  and  HYA(D) = WA (R?). (9)

Since the weight functions (7) do not modify the local properties of the space, we could as well replace the space w2 (]R2)
by the space H7,.(R?) in these definitions. We emphasize that the superscripts 3/2 and 1/2 in (9) have no other meaning
than to recall that #3/2(I") = H¥*(I") and HY?(I") = HY*(I") when I is smooth. We introduce as well the closed
subspaces of W?(R?):

Wi(R?) = {u e W?(R?) : vqu=0} and  W2(R?) = {uec W*(R?) : you =0}.

The images of W3 (R?) and W?2(R?) by v, and 74 respectively are subspaces of H>/2(I") and H'/?(I"). We denote them
by:

H A1) =W (R and M) = m Wi (RY). (10)
It is well known that when I is of class C"!, the spaces s/ >(I') and H*/>(I") coincide, both being equal to H3/?(T").
In the same way, in the smooth case, H;/z (I') = H'2(I') = H'Y?(I'). This is no longer true however when I is a C*!
(curvilinear) polygon (and a fortiori when I' is only Lipschitz continuous) as explained in [8] where a counterexample is

provided. Indeed in this case, a pair of functions (f, g) € H*(I") x L*(I') is equal to the Dirichlet and Neumann traces of
a function in HZ,.(R?) if and only if the vector field (9f/d7)T +gn is in HY/?(I";R?). This condition implies in particular



that the functions f and g have to satisfy some compatibility conditions at the vortices of the domain (as indicated in
[10, Theorem 1.5.2.4]).
For every p € H3/2(F), we define L5p as the unique fonction in W?(R?) achieving:

inf {|julls : u € W3(R?), yqu = p} (11)

Thus Lp is the orthogonal projection of any preimage of p by 4 on the closed subspace W3 (R?)* of (W2(R?), || - |s)-
It is not difficult to verify that for every p € H>/? (I):

A*(Lip)=0 in 2/ (R*\I') and ~4(Lip) =p. (12)

In the same fashion, we define L2 p by replacing the norm | - ||s with the norm || - ||p in (11). The function LYp verifies
both identities (12) as well. This allows us to define two scalar products in H3/2(I"):

(prp2)§ = (Lip1,Lip2),  A€{S D},

whose associated norms, denoted by || - ||4 are equivalent. The space H*/2(I") provided with any of these norms is a
2

Hilbert space. We denote by IT7 the orthogonal projection onto W3 (R?)* in (W?(R?),|| - ||4). The following identities
are obvious:
vgolfd =1d and L% oryg=II7. (13)
The very same procedure can be carried out by replacing the Dirichlet trace operator v4 with the Neumann trace operator
Yn. This leads us to define for A € {S, D} the operators L%, the projectors IIi, the scalar products (-,-)4 and the norms
2

I| - H‘g in the space #'/2(I"). As in (12), the functions L% ¢ verify:

ALA) =0 in Z/(R®\I) and 7u(Liq)=q forall g € H2 (D). (14)
By construction, the following operators are isometric for any A € {S, D}:
La = (H2D), 11 115) — (WE®) 5 - la), (15a)
L (H2(D), - 115) — (W RS- ]|a)- (15b)
The space H>/?(I") is continuously embedded in L?(I") since there exists a constant Cr > 0 such that:
Ipllz2(ry = llva o Lipllrzcry < Crilipllwees) = lIpll3  for all p € HY*(I).

The embedding is also dense (because the space 74 2(R?) is densely embedded in L?(I") as claimed in Proposition 2.3).
Identifying L?(I") with its dual space by means of Riesz representation theorem, we obtain a so-called Gelfand triple of
Hilbert spaces (see [14, Appendix A)):

H¥2(r) c LA(I') ¢ H¥/4(I), (16a)
in which #~3/2(I") is the dual space of H>/?(I") and L*(I') is the pivot space. Similarly, we define #~'/2(I") the dual
space of H'/?(I") and the Gelfand triple:

HY(I) c L2(I') ¢ H V(D). (16b)

The Gelfand triples (16) justify that the duality brackets (-, )}7%% (between the spaces H~>/2(I") and H*/*(I")) and

{-)—1.1 (between the spaces H~Y2(I') and HY?(I')) “extend” the L*(I") inner product. Concerning embedding
results, we can also state:

Proposition 3.2. The inclusions H**(I') ¢ H?(I") and HY/*(I') € H~Y2(I") are continuous and dense.

Proof. The first inclusion is proved the same way as the inclusion #*/2(I") € L*(I"). The second inclusion results from
the continuity and the density of the inclusion L*(I") ¢ H~Y*(TI'). O

It remains to make precise the topologies of the spaces H/ %(I') and H}i/ 2(I') introduced in (10). For every p €
3/ *(I), we define L,p as the unique fonction in W2(RR?) achieving:
inf {|jullp : u € W2(R?), yau = p}. (17)

Thus £,p is the orthogonal projection of any preimage in W,2(R?) of p by ~4 on the closed subspace (Wd2 (R*)NW2 (Rz)) +
in the space (W2 (R?),| - ||p). The function L,p is biharmonic in R* \ I" and satisfies v4(Ln)p = p and v, (Lnp) = 0.

The space H3/> (I") is endowed with the inner product:

(plypZ)%,n = (‘CnplwcnPZ)D = (ALnp1, Aﬁnpz)L2<R2) + w(p1)p(p2), for all p1,p2 € Him(f‘). (18)



We denote by || - ||
W3(R?) achieving:

3.0 the corresponding norm. Similarly, for any ¢ € Hcll/ 2(F ), Laq stands for the unique function in

inf {|julls : u€ WI(R?), yau = q}. (19)

Thus L4q is a function biharmonic in R? \ I" that satisfies ya(Laq) = 0 and vn(Laq) = g. The space H;/Q(F) is provided
with the scalar product:

(@1,92) 1,4 = (Laqn, Lagz) g = (ALaqr, ALag2) 2 (r2), for all q1,q2 € 1y *(I), (20)

and the corresponding norm is denoted by || - ||%!d. The spaces (’H?/Q(F), |- H%n) and (7—[61/2(F)7 Il - \|%7d) are Hilbert
spaces and by construction, the following operators are isometric:

Lo (HPD), [ 13.,.) — (Bu(®), ] [Ip), (21a)
La: (Hy (D), 11 N1y.0) — (Ba®), - |5), (21b)
where %,,(R?) = (W3(R?) N W2(R?)" N W2(R?) and %,4(R?) = (W3(R?) N W2(R?))™ N WZ(R?). The functions in

Bn(R?) are those in W2 (R?) which are biharmonic in R? \ I" with homogeneous Neumann boundary data and the
functions in %4(R?) are biharmonic in R? \ I" with homogeneous Dirichlet boundary data.

4 Square integrable surface potentials

In this section, we still assume that I is Lipschitz continuous. To every q € 7-[73/2(11) (applying Riesz representation
Theorem), we can associate a unique u, € W?(R?) such that:

(uq, 9)S = ((q,’yﬁ))fg}g for all § € W?(R?), (22a)

and we define: X

=71tq = —Aug + Z(qja’Yduq>f

Jj=1

;. (22b)
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Similarly, to every p € H~Y/2(I"), we can associate a unique v, € W?2(R?) such that:

(05,0) ), = (P, 70) 1,1 forall g € W?(R?), (23a)
and we define: "
Dip=—Dvy + ) (i ¥nvp) L2 Zrp;- (23b)
P 'p Pj, YnVUp)L2(r)ZrPj
=1

The expressions of the functions uq and v, with respect to ¢ and p can be made precise. Considering the Gelfand triple
(16a) and (16b), we can classically (see [14, Appendix A]) define the isometric operators
Ta: HY2(I) — H™¥2(D)
P ()3

T, : HY2(I) — H-Y2(D)

d
an q— (g, ~)§-

(24)
Lemma 4.1. For every q € 7—[73/2(F), the function ug defined by (22a) is equal to L5 oT;'q. For everyp € Hfl/z(F),
the function v, defined by (23a) is equal to LY o T, p. It follows that the applications:

M) — (WS ) HYA) — (WRED - o)
q— Uq P Up,

are isometric and that:

3
Sa=-ALieT q+ Y (a;, Ty 'a)_1 1 Fra;  forall g € HTP/(D), (25a)
j=1
2
Do =—AL7 o T p+ > (T p,ps) 11 Zrp;  for allp € H™V3(D). (25b)

j=1



Proof. Let ¢ € H™*/*(I") and § € W?(R?). By definition of the operator Ty:

(4:700) 3 3 = (Ti'a,7a60)3 = (Li 0 Ty 'q, L 07ab) .

’

According to (13):
(LS 0T g Liovab) = (LS o T g, 1050) = (L7 0 Ty 'q,0) 4,

which means that u, = L5 o T, 'q considering (22a). The result concerning v, is proved in the same way. O

Theorem 4.1. The linear operators &% : H™/*(I'") — L2,.(R?) and 2}, : H™/2(I') — L%,.(R?) are bounded and
they satisfy:

— For every q € H™ 3/2( ):

(S1a,=80) ) o) o2y = §07a0) 3.3 for all § € Z(R?); (26a)

Ha@) = (a.1r) 3 3G(@) +o1) as o] — +oo; (26b)

~ For every p € H™Y/(I'):
(Z1p, —A0) g (r2) 2r2) = (P, 1m0) 1.1 for all 6 € D(R®); (27a)
Dip(x) =o(1) as |z| — +oo. (27b)
The operators YT and 9} are the extensions by density of the classical single and double layer potentials to the spaces
H2(I) cmd?-[ Y2(I) respectively.
Proof. For every q € H™3/2(I'), we can rewrite (22a):

3
(Auqv A9)L2(1R2) + Z(qjv ’YduCI>7

j=1

(aj:7a0) 1.1 = (@,7a0)_s 3 forall 0 € Z(R?).

11 11
2°'2 2°2

According to (5a), we can transform the second term in the left and side to obtain:

3
<Auq Z Qj, Ydlq) 1 17745, A0

= 0
) oty ey = $0700) 3

3 for all § € 2(R?),

)

which is (26a). Let now z be a point in 2% and denote by d(x, I') the distance from z to I'. On the disk D(z,d(z, I))
of center = and radius d(z, I"), the function Aug is harmonic. It follows that:

3
1
_ _ ot § - -
Bual) == Frala) k=1 (%, Yata ’%’%yqu(x) md(z, I)? /D(ac d(z,I)) Aualy) v,

from which we deduce that:

3
qu ks Yatq) — 1, 1STAr(2)| < | Aug|| L2 (m2 (28)
) =) ey Al
Taking into account the asymptotic expansion (4a), we obtain on the one hand:
3 3
D ak, vaug)_y 1 Fra(e) = <Z<Qkﬁduq>_;,;<qky 1F>_;,;> G(z)+ 0(1/|z|). (29a)
k=1 k=1

On the other hand, equality (22a) with 6 = 12 yields:

(29b)

1
2

3
(@:1r)_ s s = ;qk,wuq EERERCITS VN

Combining both equations (29) with (28) and letting |z| go to 400, we obtain (26b). The proof of equalities (27) is
similar. The only difficulty consists in noticing that the function v, in (23a) achieves:

min ||v||D {p, ynv) _

vEW2(R2) 2 ’

11
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and therefore that pu(v,) = 0.
According to (16a) and Propositions 3.2, all the following inclusions are continuous and dense:

HY2(r) c HY*(I) ¢ L2(I') ¢ H™Y2(I) ¢ #32(1).
It entails that for every q € H*1/2(F) and p € ’;’-[3/2(11)7 we are allowed to write:

{e.p) 3.5 =(a:P) -1 1
Comparing (5) and (26), we conclude that ,Vltq = .Fpq for every g € H™1/? (I"). In the same fashion, we can prove that
@}p = Yrp for every p € H1/2(F). It remains only to verify that 5”;5 and 9}: are bounded but this is a straightforward
consequence of the expressions (25) in Lemma 4.1. O

5 Further function spaces

In this section, we assume that I" is a C'! curvilinear polygon and we denote by Iy its Ch! edges and by c; its vertices
(j=1,...,N). In the sequel we will need some particular test functions in W?(R?). Their existence is asserted in the
Lemma below:

Lemma 5.1. 1. Any function 0 in W?(R?) supported in R*\ {ci,...,cx} can be decomposed into a sum of two
functions 04 + 6, with 64 € Wd2 (RQ) and 0, € W2 (RQ).

2. For every index k € {1,..., N}, there exists a function 0 in W2(R?) such that 0(cx) = 1 and 0(c;) = 0 when j # k,
je{l,...,N}.

Proof. Addressing the first point of the lemma, we apply [10, Theorem 1.5.2.4] which makes precise the range of the
operator (v;,7y, ) defined on the space H*(£27). Since, in [1, Theorem 10.4.1], the author proves the existence of a
universal extension operator from H?(£27) to H*(R?), the range of (74 »7n ) is the same when we consider this operator
as defined on Hj,.(R?) or on W2(R?). So let 6 be given in W?(R?) and denote respectively by f; and g; the restrictions
of ;0 and ~,, 0 to the edge I'; (for j ranging from 1 to N). According to [10, Theorem 1.5.2.8], the pair (f;, g;) belongs
to the space H3/2(Fj) X HI/Q(I}) for every index j = 1,...,N. Considering now the pairs (f;,0) in the same space
H3?(I;) x HY?(Iy), they trivially satisfy the compatibility conditions at the vertices cj described in [10, Theorem
1.5.2.8] since every fonction f; is compactly supported on I';. Therefore they belong to the range of (v, ,7, ) and there
exists a function 6,, in W? (RQ) such that 'ygﬁn\pj = 'yd0n|pj = f; and 759n|pj = 'ynﬁn\pj = 0. We define 3 =0 — 0,
and the former assertion of the lemma is proved.

The proof of the latter rests roughly on the same arguments. Let k be given in {1,..., N} and let f be a smooth
function defined on I" that vanishes on a neighborhood of every vertex c¢; when j # k and is constant in a neighborhood
of ¢x. Denote by f; the restriction of f to I; (j =1,...,N). The pairs (f;,0) belong to H*?(I';) x H'/?(I'}) and they
trivially satisfy the compatibility conditions at the vertices described in [10, Theorem 1.5.2.8] (since df;/07 vanishes
near the vertices), what ensures the existence in W?2(R?) of a preimage 6 by the operator (v4,¥n). O

Recall that the spaces 15/ 2(I') and ’H}i/ (I are defined in (10). The following result will play an important role in
the rest of the paper:

Theorem 5.1. The space Hf/Q(F) is dense in H*'*(I") and the space H;/Q(F) is dense in HY/*(T').

Proof. The proofs of both assertions are similar so let us focus on the latter. Using the isometric operator (15b) and
since LY o, = IIY, we are led to prove that IIZWZ(R?) is dense in IIZW?(R?) = W2(R?)1. This is equivalent to
showing that W37 (R?) @ W2(R?) is dense in W?(R?) or, still equivalently, that W3 (R?)~ N W2(R?)* = {0} (where both
superscripts L refer to the same scalar product (-,-)p).

So, let u be in W7 (R?)*. Then v = II7« and therefore:

_ (pD _ (D D _nb D _ D 22
(u,0)p = (g u,0) , = (gu,1130) , = (Lg ©yau,Lg 0vab) , = (vau, vaf) 3 for all § € W?(R?). (30a)

In the same fashion, assuming that the function u belongs also to W2(R?)* we get:
(u,0)p = ('ynu,yne)g for all € W?(R?). (30b)

In addition, u achieves:
inf {||v|p : v e W2(R?), yov = Ynu},

and therefore p(u) = 0. Now, recall that {c1,...,cn} are the vertices of the polygon I'. According to Lemma 5.1,
every function 6 in W?(R?) compactly supported in R?\ {ci,...,cn} can be decomposed into the sum of two functions

10



0, € WZ(R?) and 0, € W2(R?). Tt is easy to verify that both functions can be chosen compactly supported in
R?*\ {ci,...,cn}. If follows that for such a function @, we have:

(u,0)p = (u,04)p + (u,0n)p =0,
where we have used (30a) for the former term in the right hand side and (30b) for the latter. Thus, we have proved in

particular that:

2
(Au, AG)L%R?) + Z(Pja’Ynu)w(r)(Pj»’Yne)L?(r) =0 for all 6 € @(R2 \{et,. . en}),

j=1
and this can be rewritten, according to (6a) as:
2
< —Au+ Z(pj,%u)Lz(p)@ppj,A@ =0 forall@e 2R\ {c1,...,en)).

et 2! (R2),2(R2)

This equality means that the function
2

v=—Au+ > (pj,tt)r2(r)Zrp;, (31)
j=1
is harmonic in R?\ {c1, ..., cn} and the distribution Av is supported in the points ci, ..., cn. According to [11, Theorem
1.5.3], we deduce that this distribution is a finite linear combination of Dirac measures and derivatives of Dirac mesures
at the points ¢; (j = 1,..., N). Derivatives of Dirac measures must be excluded however since v is in L7,,(R?). Finally,
v can only take the form:
n
9;
== ln|-—ci|+h 32
v==3 Rl ol +h (32)

with g; € R and h harmonic in R%. Proceeding as in the proof of Theorem 4.1, we deduce from identity (31) that
v(z) = o(1) as |z| — +o0. It follows that >°7_, 0; = 0 and h = 0 with Liouville’s theorem. Let k € {1,..., N} be given
and let 6 be a function in W2(R?) compactly supported such that 6(c;) = 0 for j # k and 6(cx) = 1. Such a function
exists according to Lemma 5.1 and yields, applying Green’s identity (3):

2
(u,0)p = (Au, A9)L2(1R2) + Z(Pja’YnU)LZ(F)(Pj7’Yn9)L2(r) = (v, A9)L2(1R2)~

j=1

Using the expression (32) of the function v, we classically obtain that (u,0)p = gr. On the other hand, identity (30b)
leads to (u,0)p = 0, what completes the proof. O

Considering back the Gelfand triples (16), we are allowed to write when I" is a curvilinear C*'* polygon:
Hy/2(D) € HY*() ¢ HY*(D) ¢ LX(D) ¢ H V(D) ¢ H¥2(0) € 1,22 (D), (33a)

where all the inclusions are continuous and dense, LQ(F) is the pivot space (i.e. the space identified via Riesz represen-

tation theorem with its dual space) and 7-{,,:3/2(1“) is the dual space of 7-{,,31/2(1“). In a similar way, we have also:

HY2(I) ¢ HY2() € LX) € V2 < 1y YA(D). (33b)

We denote respectively by (-, ))7% s, and {-,-) _1 1, the duality pairings on H;S/Q(F) X ’Hip(F) and on H;l/Q(F) X

20 272
7—[;”(1“) and we introduce the isometric operators, based on the Gelfand triple structure:

Ti: MY — HYA(D) wd R 32y — HA(D)

34
7 (0) 1.0 I (DF (39

We end this section by defining the closed subspaces of L?(R?) consisting in functions that are harmonic in 27 U27:
AO(RP\T) ={ue L*(R?) : (u,A0) 252y =0, VO€ Z(R>\I)}.
Combining Proposition 3.1 with Theorem 2.2, it follows that:
HORE\T) = {Au : u e (Wi([R*) NWZ(R?)"}, (35)

where the superscript | refers to any of the two scalar products (8) defined on W?2(R?) (both leading to the same space).
We will also consider more regular harmonic functions:

A REN\T) ={ue L*(R?) : ulpr € H'(2) and u|,- € H'(27)}.

11



Proposition 5.1. The space s (R?\ I') is dense in S#°(R*\ I').
Proof. We introduce the closed subspace of H~'/2(I") x H/?(I'):
E(I) = {(q,p) € H (') x H'*(I') : (g, 1r)_

We claim that:

HHR\T) ={Srq+ Zrp : (q,p) € E(I')}. (36)
For any (q,p) € E(I'), the function v = #rq + Prp is in s (R* \ I') according to the asymptotic expansions (4).
Reciprocally, let u be in ' (R? \ I') and denote ¢ = ;7 u +,, u and p = yju — 4 w. The function v = rq+ %Zrp—u
is harmonic on R?. Since, by hypothesis, v € L? (]RQ) we can proceed as in the proof of Proposition 4.1 to show that
u(z) = O(1/|z|) for |z| large. Taking into account (4) again, we deduce that:

o(@) = — (g, 17)_

g 11 Inl|z|+ 0(1/|z]) as |z| — 400,

and invoking [5, Theorem 9.10], we conclude that the function v vanishes on R?. It follows that u is equal to /rq+ Zrp
and since this function is in L?(R?), the pair (q,p) is in E(I") and identity (36) is proved. We can now determine the
space 1 (R?2\ I')* in #°(R?\ I"). Let w be in #°(R?\ I') such that:

(w,u)p2r2)y =0 for all u € 2" (R*\ I),

or equivalently:
(w7yFQ+-@Fp)L2(R2> :O fOI‘ all (q7p)€E(F)

From (35), we know that there exists a function v € (W7 (R*)NW,? (RQ))J' such that w = Av. Following Proposition 3.1,
2(R?) is a dense subspace in W?(R?) so let (vx)r>0 be a sequence in Z(R?) that converges to v in W?2(R?). For every
k > 0 we can apply the second Green’s formula (3) to obtain:

(ynve,p)_1 1 — (@, 7vavx) 1 1 = (= Avk, Srq+ Zrp)

L2(R2)"

Letting k go to +00, it comes:

:(—Av,ypq-l-@pp) =0,

L2(R%)
and since the inclusions HY/?(I") ¢ H~Y/2(I") and H=Y*(I") € H™3/2(I") are dense (see (33)), we deduce that:

33 = 0, (37a)
for every (g,p) € H™*/*(I") x H~'/2(I") such that:

(a.1r) 33 =0 and {gu) 33— (pe) 31 =0 (k=1,2) (37b)

Notice that, for £ = 1,2, yx and ny are the Dirichlet and Neumann traces of affine functions and therefore that they are
respectively in H3/?(I") and H'/?(I"). Both equalities (37) mean that there exist three real numbers A;, A2 and A3 such

that:
1
(o) = () e )+ ().
InU ni n2 0

We deduce that v minus a linear combination of affine functions is in W7 (R?) N W;2(R?). But since & C (WZ(R*) N
i

w2 (RQ))J' and v € (W7 (R?) N W, (]RQ))J', this function is also in (W7 (R?*) N W73 (R?))". If follows that v € & and
w = Av = 0, which concludes the proof. O

6 Traces and jump relations

According to Theorem 2.1 and Proposition 2.1, the one-sided trace operators ’ydi and fy?f are well defined on ! (R2 \I")
and bounded. The purpose of this section is to extend these operators to the space .#°(R?\ I'). Since the single and
double layer potentials defined in Theorem 4.1 are equal to the sum of a function in #° (]R2 \ I') plus a classical single
or double layer potential, we will be able to deduce at once traces results for surface potentials. As in Section 5, we
continue assuming that I" is a C"' curvilinear polygon. Recall that %,(R*) = (W7 (R*) N W,?(]RQ))L N W2(R?) and
Ba(R?) = (W2(R?) N W2(R?))" N W2(R).

To every v € #°(R?\ I'), we associate Jqu the element of 7—[;1/2(1") defined by:

(Jav,a) 1 1 4= —(v,ALaq) o ey forallge HY2(I), (38)

12



where the operator L4 is given in (21b). We are going to show that Jqv is the “jump” of the one-sided Dirichlet traces
of v across I'. We denote by 5 (R? \ T") the image of the space %4(R?) by the Laplacian. The operator:

Ag: Ba(R?) — 2 (R*\T)
u — Au,

being isometric, s (R? \ I') is closed and we denote by IIS the orthogonal projection on this space in L*(R?). It can be
readily verify that:
Jaov=—TaoL; oA oTlqv  for all v € #°(R*\ 1), (39)

where the operator 75 is defined in (34). Since the operators T4, L4 and Aq are isometric, it follows that:
HJdU|L%,d e HH2U||L2(R2) < ||'U||L2(]R2) for all v € %O(RQ \T). (40)

We turn now our attention to the Neumann trace operator. For every v € s#°(R?\ I'), we denote by J,v the element
of Hy,*/?(I") defined by:
_ 3/2
((Jnv,p)L%’%’n =—(v, A[’”p)H(R% for all p € #;/°(I). (41)

When p = 1p (which is indeed in H3/? (1), Lnp = 1pe2 and therefore, the operator J, is valued in:

Ha () = {q € H*(D) : {9, 1r) 5.5, =0} (42)

Looking for an expression like (39) for J,,, we introduce the orthogonal decomposition %, = B @ (1g2) of the space %,,
where %, = {u € %, : p(yau) = 0}. We introduce as well the space J, (R*\I') = {v € J (R*\I') : (1o—,v) 22y =
0} and the isometric operator:
An i (Bu, |l - ID) — A (RZ\T)
u — Au.
Recalling that the operator T, is defined in (34) and denoting by II% the orthogonal projector onto £ (R>\ I') in L?(R?),
we establish that: B B
Jov=—ThoL, oA ollbv  for all v e #°(R*\ I).
We deduce that:

Hnvll g, = T 0| L2 g2y < [0l p2@ey  for all v € #°(R*\ I). (43)
On the other hand, for every v € s#°(R?\ I') we can define v™ and v~ in J#°(R*\ I) by:
ot = 0 on {2 and o — v|g- on 2
v|p+ on nt 0 on 1.

We can now make precise the notion of trace for functions in J#°(R? \ I'):

Definition 6.1. For every function v € #°(R?\ I'), we define the one-sided Dirichlet trace operators 7;“ and v, by:

+ 0 /(M2 -1/2
Vgt HRINT) — Hy (D)
VvV — in’Ui. (44&)

We define as well the one-sided Newmann trace operators v," and -y, by:

NE AR\ T) — H ()

44b
v —> Jnvi. ( )

As expected, we have:

Proposition 6.1. The operators (44) are bounded and are the extensions by density of the operators 'ydi and v (defined
on STR2\T)) to #°(R2\ T).

Proof. The boundedness results from (40) and (43). Let v be in J#'(R*\ I") and ¢ be in H;/Q(F). Green’s formula (3)
leads to:

(v ALaq) 1o oy = (@70 0) 31 = (@72 V2w = (Ya v @)1 1 a0

11
202
the last equality resulting from (33b) (the inclusions allowing ;v to be considered as an element of H;l/ 2(F ) and
asserting that the duality pairing (-, ~))7%7%’d extends the L? inner product). On the other hand, according to (38):

(’U?’ A‘qu) L2(R2) = _<<‘Jdv77 q>>—

It follows that (Jav™ + v, v, q))_%%,d = 0 for every ¢ € 7—[;/2(1") and therefore Jqv~ = —vy, v in 7-[;1/2 (I"). The proof
of the other equalities (y7v = Jgvt and v;Fv = J,vF) follows from the same arguments. O
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For every u € s#°(R?\ I'), we introduce the classical notations:

[%zU] r= VJUJF —Yau and [’ynu} r= fy:[u+ +vu

so that ['ydu] = Jav in (38) and ['ynu] p = Jnv in (41). Before proving the jump relations for the single and the double
layer potentials, we need to establish a preliminary technical result:

Lemma 6.1. 1. For every p € H¥*(I"), [’YdALgp} = 0 and for every q € HY2(ID), [’y”AL,?p]F =0.
2. Recall the the operator Ty and T, are defined in (24) and the operators Tq and T, in (34). The following identities

hold:

3
- [V”ALgp]p + ;(qk,ﬁ_%,%qk = Tap for allp € 7—[3/2(F), (45a)

2
—[vaALYq) -+ (Pi @) 2P = Tag  for all g € 1P (D), (45b)

j=1

~[WmALwp] .+ u@) ) 1r =Tap  for all p € HY*(I) (45¢)
—[WALag) . =Tag  for all g € HY*(D). (45d)

From (45a) and (45b) we deduce in particular that the operators:
To:dd? — g and Ty — ) (45¢)
are isometric.

Proof. The first assertion of the Lemma results from the combination of (15) and (21) (that make precise the ranges of
the operators L5, LY, £4 and £,,) and the definitions (38) and (41) of the jumps of the Dirichlet and Neumann one-sided
traces. For the second assertion, let us verify that for every p € H3/?(I'):

3
~[vALIP] . + > (akp)
k=1

where Ty is the isometric operator defined in (24). Thus, we have:
(Tap, ’7d0>)7%’% — (Lgp7 L5 o 'de)S for all § € W?(R?).
On the other hand, according to (13):
(Lip, Li 0 va)s = (Lip,1130)s = (Lip, 0)s.

Choosing 8 = L,p with p any element in the space Hi/Q(F), we get:

3
% = (Lgpv ‘Cnﬁ)s = (ALgpy A[’nﬁ)Lz(RQ) =+ Z<qk’p>_%

k=1

(Tap,p) 3 (ak, )1

1 1,
, '3 '3
which, once compared with (41), yields the result. The proof of the other equalities are similar.
Regarding (45e), it suffices to notice that LSp is an affine function when p € 42751 /2 and the same observation applies

to LY ¢ if ¢ belongs to ;2%51/2. We conclude with equalities (45a) and (45b). O
With the definition of the trace operators given in Definition 6.1:
Proposition 6.2 (Jump relations). The following equalities hold:
Vi oSt =g eIt =0 Al ePl 4y 0h =0 (46a)

Wo Sty ot =1d  ~F oDl —~7 0 9 =1d. (46b)

Notice that the operators v;f o.#) map H~*/?(I") into the larger space H, o2 (I'). The first relation in (46b) means
that there is some sort of compensation which makes the sum of both terms ~f o ,V; more regular than each one
taken separately. The same remark holds for the second identity in (46b) with the spaces H~/2(I") and H;1/2(F),
This contrasts with what happens when the domain is of class C"'' where H~%3(I') = H,**(I') = H™*/*(I') and
HY2(D) = H,;2(r) = HY2(D).
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Proof. Let q be in #~3/%(I"). According to (25a):

3
Srg=-AlgoTi g+ (a4, Ty a)-

j=1

yqu.

11
272
For every G € H(li/z(l“):

(ALS o T g, AL4d)
because L; o T;'q € W7 (R*)™ (see (15a)) and LG € W7 (R?) (see (21b)). According to (38), we deduce that

S _ .
L2(R2) = (Ld © Td 1Q7 Edq)s =0,

Ja(ALT o T q) = [1aALT o T, Yq] . =0,

and since ['ydj’qu}r = 0 for j = 1,2,3, we have proved the first equality in (46a). Continuing with the single layer
potential, the first equality in (46b) is a straightforward consequence of (45a). The proofs of the relations related to the
double layer potential are similar. O

The rest of this section is devoted to establishing additional properties concerning the traces of harmonic functions
in LZ,.(R?). To do this, we must first establish a technical lemma.

Lemma 6.2. For every u € #°(R*\ I), there exist
- p1 € HS/Z(F) and q1 € HCIZ/Q such that u = ALSp1 + ALaqr;
- p2 € HZ/2(F) and qa € HY? such that u = AL,ps + ALY go.

Proof. Let u be in #°(R*\ I'). According to (35), there exists v € (W7 (R?) N W,%(]RQ))L such that v = Awv. In line
with the orthogonal decomposition in (W?(R?);|| - ||s):

(WER) NW2(R?) " = [(WI[RY) NW2[R?Y)) " nWi(R?)] eWi(®R?)*

Ba(R?)

we can decompose v as v = v1 + v2 and there exists ¢1 € ’Hcll/2(F) such that v = Laq1 (see (21b)) and p1 € H3/?(I)
such that vy = L5p; (see (15a)). This proves the first point of the Proposition. For the second, we use the orthogonal
decomposition in (W?(R?); || - ||p):

1

(Wi (R*) nWA(R?) " = [(W3(R*) nW2(R*) " N W2 (R)] @W: (R,

P (R?)

and we conclude the same way. O

Theorem 6.1. Let u be in #°(R*\ I").
1. If [yaulr € H™Y2(D) or [yaulr € H™3/2(T) then ([yaulr, [yaulr) € H™Y2(I) x H3/X(I).
2. If [yavlr = 0, then v = L} ynv]r. If [yav]lr = 0, then v = Pl [yav]r-
3. If [yau]r = 0 and [you]r = 0 then u = 0.

The first point seems particularly noteworthy. It means that as soon as the jump of the one-sided Dirichlet traces
or the jump of the one-sided Neumann traces is “regular” (in full generality [yqu]r is only in H;l/ 2(F) and [ypu|r in
7{;3/2(1“)), the other jump inherits the same regularity.

Proof. Addressing the first point of the Theorem, let assume that [yqu]r € H~'/?(I"). According to (4) (the asymptotic
expansions of the single layer potential and of harmonic functions) there exists q € %571/ % such that _@It [Yau]lr — <rq €
L*(R?). Let v = u — Z}.[vau]r + #rq. This function is in #°(R?\ I') and satisfies [yqv]r = 0 and [y.v]r = [yaulr +q.
This entails that for our purpose, up to replacing u by v, we can assume that [yqu]r = 0. According to Lemma 6.2, the

function u can be decomposed as u = ALSp1 + ALqyq: with p; € H3/? (') and q1 € ’Hcll/2. Invoking next the first point
of Lemma 6.1, we obtain:

[au ;. = [vaALipi] . + [vaALagr] . = [yaALaar] . =0,

which entails that g1 = 0 with (45d). It follows that [’ynu] r= [’ynALgpl} - and therefore [’ynu] r€ 7—[73/2(F) according
to (45a).

In a similar fashion, assuming that [y,u]r € H~3/2(I") can be reduced to assuming that [y,u]r = 0 up to replacing
u by u — 5”11: [vnu]r + Zrp for some p € @7[1,/2. Then we use the latter decomposition provided by Lemma 6.2:

u=ALyps + ALY o,

15



1/2

for some py € Hi/Q(F) and g2 € H'/“. Based on Lemma 6.1, we deduce that:

ynulr = [ ALnp2] . + [0 ALY g2] . = [yaALnp2] . = 0.

This condition means, according to (45c), that Tope = p(p2)|I"| ' 1r where the operator 7Ty, is defined in (34). We deduce
that p2 = u(p2)1r and then that L£,p2 = p(p2)lge. Finally, AL,p: = 0 and [yqu]r = [’ydALT?qz]F which belongs to
H~Y2(I") according to (45b).

We consider now the second assertion of the Theorem. If [y4v]r = 0 then [y,v]r belongs to H~*?(I") according
to the first point of the Theorem. Let q be in ,;275_1/2 such that .} ([y.v]r — q) is in S#°(R? \ I') and introduce
u=v— .} ([ynv]r — q). This function is in s#°(R?\ I") and satisfies [yau]r = 0 and [y,u]r = q. Proceeding as in the
proof of the first point of the theorem, this entails that « = AL3p for some p € 7—[3/2(11)7 with [%ALSp]p = ¢. This

means, with (45a) that
3

Tap = Z(%J’L%,

k=1
and therefore that p € ,;2%51/2 taking into account (45e). It follows that LYp € o and then u = 0, ¢ = 0 and finally

v = Y; [Ynv]r. We proceed in the same manner to prove the other statements involving the double layer potential and
since the last point of the theorem is obvious, the proof is complete. O

qr — 9,

1
2

7 The Laplace equation in L?
In this section, we assume that I is a straight polygon. An important point to keep in mind when looking for solutions

in L2, to Dirichlet and Neumann problems in a polygonal domain, is the loss of uniqueness. Indeed, there exist non-zero
harmonic functions in L*(£27) and in L?(£27) with zeros Dirichlet data or with zero Neumann data. As explained in

0+

Figure 1: Examples of domains for which there exist square integrable harmonic functions with vanishing
boundary data.

[7], in the domain 27 on the left of Fig. 1, there exists a square integrable harmonic function with zero Dirichlet data.
In polar coordinates define the function U(r,0) = r~2/3sin(20/3) and let n € 2(R?) be a cut-off function equal to 1
near the corner. Then let X be the variationnal solution in Hg (£27) to the problem AX = A(nU) (notice that the right
hand side is smooth in £27). The function nU — X is in L*(£27), non zero (because X belongs to H'(27) and nU does
not), harmonic in 2~ and equal to zero on the boundary of the domain. There exists also a harmonic function with
zero Neumann data which is equal, near the corner to r—2/3 cos(260/3) (this is actually the harmonic conjugate of the
preceeding one). The same constructions apply with the domain on the right of Fig. 1 and provide examples of non-zero
harmonic functions in 2% with zero Dirichlet or Neumann data.

Theorem 7.1 (Solvability of the interior Dirichlet problem). For every p € H;l/Q(F), there exists v, in S°(27) such
that v; vp = p. Moreover, the application p — vy, is continuous from H;l/Q(F) to #°(027).

Proof. Recall that, for every q € ’H;/Q (I):
lgll 4 = inf {|[ulls : u € Wi(R?*), yau = ¢} = ||Laq]s.

According to [1, Theorem 10.4.1], there exists an extension operator from H?(27) to H?*(R?) and since H?*(R?) is
continuously embedded in W?(R?), we can assume that this operator is valued in this latter space. This yields the
existence of a constant C' > 0 such that:

gl 1.0 < CllLagla-llm2 (- for all g € Hy/*(I). (47a)

16



On the other hand, according to [10, Theorem 4.3.1.4] and since {2~ is assumed to be a straight polygonal domain, there
exists a constant C' > 0 such that:

1£aq| o Nl 20—y < C(I1ALagl 20—y + |1LagllL2(0-)) for all ¢ € H;/Z)(F) (47b)
We deduce from both estimates (47) that, on the space 7-[;/ 2 (I"), the norm deriving from the scalar product:
(ALaqr, ALag2) 1oy + (Laqr; Lag2) 2,y forall gigo € M),

is equivalent to the norm || - || 1a associated to the scalar product (20). Riesz representation theorem asserts that for
every p € H;l/Z(F), there exists ¢, € "H;M(F) such that:

<<p7 q>>7l 14= (AﬁdQP, A‘qu)L2(9_) + (»qujm LdQ) L2(027) for all qc€ H;/Q(FL

2°2

and that the mapping p — g, is continuous from H;l/Q(F) to H;/Q(F). Let now wj, be the unique solution in H} (£27)
of the variational Dirichlet problem:

(Vwp, V) 12(0- w2y = —(qu,,,o)Lz(Q,) for all € Hy(27).

Since p — Lagp|- is continuous from 7-[;1/2 (I") to H?(£27), we deduce that p — w), is also continuous from 'H;l/Q([‘)
to Hy(27). Applying Green’s formula (3), we then obtain that:

(Latps £aq) 2oy = (Wpr ALaq) oy Torall g € HY2(I).

Let TIo— : L2(27) — s°(£27) be the Bergman projection i.e. the orthogonal projection in L?(£27) onto the closed
subspace J#°(£27) of the harmonic functions and define the function v, = ALaqp + - w,. It is clear that the mapping
p — vp is continuous from 7—[‘;1/2 (I") to A#°°(027) and since:

(pa) 1

the proof is completed. O

1= (vp, Aﬁdq)Lz(Qf) for all g € 7—[(1/2(F)7

1
L

1
Recall that «/¢ is the three dimensional subspace of H v 2(I') spanned by the traces of the affine functions. Since
1
HY2(I') ¢ L*(I') € H;"*(I'), the space /2 can also be seen as a subspace of H;/*(I') and we denote by ,szfsl,{f
1
the space T, '/¢, where the operator 75 is defined in (34). Therefore MS{/; is the subspace of Hcll/2(F) such that
[vaALag)r € 52{51/2 for every q € d;{f. It follows that

A =g e HYAD) 1 (¢,0) 12 =0 forall § € zl/?).
S,d d () S
The spaces szfs},{f and (,sz{é}’{f)L will be used in the proof of the next theorem.

Theorem 7.2 (Solvability of the exterior Dirichlet problem). For every p € 7—[;1/2 (I), there exists v, in HA°(27) and
ap € M571/2 such that v3 (vp + Srap) = p.

The continuity of the solution with respect to the boundary data is not clear so far. The proof relies on the following
Lemma:

_ 1
Lemma 7.1. Let & be a distribution in H='(27) compactly supported in 2+. Then there exists p € /¢ such that the
Dirichlet problem

—“Au=¢ in 2T and yiu=p onT, (48)

admits a solution in H'(27). If € € L*(QT), this solution is in H'(21,A).

Proof. Following the method described in [3], we introduce the weighted Sobolev space (remind that the functions p and
lg were defined earlier in (7)):
ou

€ L’ (27), 7 € L(2"), (j=1,2) and 7 u = 0}.
J

u

Wi = {u AURE PP

This space is strictly bigger than H&(Q*) and its purpose is that the norm deriving from the scalar product:

(Vua, VUQ)L2(Q+;R2) for all ui,us € Wdl(.(2+),
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is equivalent to the natural norm (i.e. Poincaré inequality holds true). Furthermore, the space 2(£2") is dense in
W3 (£2%) so that W;(£27) is a distribution space. Let v be the solution in W (£27) of the variational problem:

(Vv,V0) 2(otm2) = (&, 0) g-1(a+ymi(o+)  forall & € Wi(2F). (49)

Since Wdl(_(2+) C H}OC(QJr) the term in the right hand side makes sens, recalling that ¢ is assumed to be compactly
supported. The function v being harmonic outside a compact set, according to (4c), it can be expanded in this region

as:
me +qoln\x|+z mm,

where qo € R and, for every integer m, P, 4 are harmonic polynomials on R? of degree m. By definition of W (£27),
the function v/(plg) is in L?*(£27), which entails that p,, = 0 for every m > 1 and qo = 0. On the other hand, according
o (4a), there exists q € 42{571/2 (I') (the subspace of H~'/2(I") spanned by qi,q2 and g2) such that, for |z| large:

rafa) = B+ 001/ jaP)

The function u = v — .#rq|o+ — polg+ is the solution we are looking for (in particular it is in L*(£27)).

We can now carry out the

Proof of Theorem 7.2. Let D~ and DT be two large open disks containing 2~ such that 2— C D~ anidF C DT. Let
X be a smooth cut-off function defined in R? such that 0 < x < 1, x = 1 in D~ and x = 0 in R? \ D+. Following the
lines of the proof of Theorem 7.1, the norm deriving from the scalar product:

(AXLaqr, AXLaq2) 12 oy T (XLaq1,XLad2) 2oy forall 1,02 € Hy2(I),

is equivalent to the norm ||-|| 1d associated to the scalar product (20) in the space Hfl/Q (I"). Applying Riesz representation

Theorem we deduce that for every p € H;UQ(F), there exists g, € H;/Q(F) such that:

(p.a)_1.1.4= (AXLadp, AXLA) 2 g1y + (XLalps XLad) 12 o1,  forall g€ M1y 2(D). (50)

The first term in the right hand side is next expanded as follows:

(AxLadp, AXLaq) 12 1) = (XAXLadp, ALaG) o g1y + 2(AXLadp VX, VLAG) 124 52
+ (AXAXLadp, Laq) 24, (51)

Focusing on the second term of this expansion, Lemma 7.1 ensures the existence of a function u1 € H'(£2T) such that
Yiul € MS}/Q and:

(Vui, VO) 2o+ g2y = (AxLagpVx, VO) for all 0 € W (01).

L2(02+ R2)

For every k > 1 denote by £Xq the function ¢rLaqq where ¢y is the truncation function mentioned in Proposition 3.1.
For k large enough, since the function AxLqq,Vx is compactly supported, we are allowed to write:

(AXLagpVx,VLaq) = (Vu, V[,Zq)

L2(02+ R2) L2(2+,R2)

+ k
= _(’Vd Ui, q)LQ(F) - (uh A‘ch)L2(Q+)'
Assume from now on that ¢ is in (%gf)% If follows that ('yjul, q)r2(ry = 0 and letting k go to +oo we obtain:

(Axﬁdqux, Vﬁdq) — (ul, Aﬁdq) (52a)

L2(0+R2) L2(0+)"

Considering now the last term in (51), we denote by us the function in H'(£2"), provided by Lemma 7.1, satisfying
1
—Aus = AxAxLagp and fy('l"uz € &g . For k large enough, we can write that:

(AXAX‘quP: ‘CdQ) L2(n+) = - (Au27 ‘Cflq) L2(02+)

= _(q7 7;“2)L2(p) - (u2’ AL"l‘;q)LZ(Q+)'
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Again, since ¢ is assumed to be in (szif)J‘ the boundary integral vanishes and letting k go to +00 we are left with:
(AXAXLagp, Laq) L2(Q+) = —(u2, ALag) L2(0+) (52b)
In the same manner, for the second term in the right hand side of (50), there exists a function uz in H'(£2%) such that:
(Xﬁd(h)v X‘qu) L2(0+) = (X2£de» ['dq) L2(0+) = - (U3, Aﬁdq) L2(0+) (52C)

Using the expressions (52) in (51) and (50), we obtain eventually:
oy L
(pa)1,1.0=—(vrALag) ogey  forallge (si)™

where v, = 1+ (2u1 + u2 + u3z — XAxEdqp) and I+ stands for the Bergman projection in L*(£27).

It remains to construct q, € 52%571/ ? as announced in the statement of the theorem. Let {P1, P>, P3} be a basis of
o/ such that (Py, Pj)2(o-) = ;6. For every j = 1,2,3, let ; € ,Q/S_l/z and §; € ,27317{12 be such that .#rq;|o- =
AL4dj|g- = Pj|o-. If follows that

(qu]-,qk)LQ(F) = (P}, Pr) 20—y = 0.k for all j,k=1,2,3.
This proves that we can always define q, € Ms_l/ ? such that:

(Srqp,q)L2(F) = —(p, q))f%’%’d — (vp,AEdq)Lz(m_) for all ¢ € szsly/dz,
and completes the proof. O
Let us address now the Neumann problems. Recall that:
() = o € M0« (0.10) 3.3, =0},
Theorem 7.3 (Solvability of the interior Neumann problem). For every q € H, %2 (I there exists vg in H°(£27) such
that v, vg = q. Moreover, the application q — vq is continuous from ~;3/2(F) to A°(£27).
‘We omit the proof which is similar to that of Theorem 7.1.

Theorem 7.4 (Solvability of the exterior Neumann problem). For every q € H, %2 (I) there exists vy in H°(27) and
pq € 427;/2 such that v, (vq + @ppq) =gq.

The proof is roughly the same as the one of Theorem 7.2 and rests on the following lemma:

Lemma 7.2. Let € be a distribution in H='(2F) either compactly supported in 27 orin L?(£2%) and compactly supported

in 2+ and define the constant o = ||~ (€, 1o+ ) r-1(0+),m1(0+)- Then there exists q € ,QY'D_I/Q such that the Dirichlet
problem
—Au=¢ in0" and vu=alr+q onl, (53)

admits a solution in H'(27). The solution is in H* (27, A) if € is in L*(27).

If ¢ is compactly supported in £27, the solution w is harmonic near the boundary I" and the Neumann trace is well
defined. If ¢ is in L?(027), then v is in H'(£27, A) and again the boundary condition makes sens.

Proof. The only notable difference with the proof of Lemma 7.1 is that the space W (£21) must be replaced with the
space:

whHh) = {u e 7(2%) . L e LX), Ou

2 e LA(0M), (=12
e ba € L), 2},

provided with the scalar product:
(Vu1, Vuz) 2o+ g2y + p(vaus ) p(yauz) for all uy,uz € W' (£27),

whose corresponding norm is equivalent to the natural norm. O
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8 Transmission problems

We continue assuming that I" is a straight polygon. We are interested in the following transmission problems:

Problem 1: Let p be in H;l/Q(F) and ¢ be in H~**(I'"). Find u € L%,.(R?) such that, for some a € R:

Au=0 in2 upt (54a)
[yau]lr =0, (54b)
Yau=p or [yulr =g, (54c)
u(z) =aln|z|+ O0(1/|z]) as |z| — +oo. (54d)

Theorem 8.1. Problem 1 admits always a solution. Any solution u is a single layer potential f;(j for some q €
7—[73/2(11). This solution is unique if condition (54c) is [ynulr = ¢, in which case § = q. If condition (54c) is yqu = p,
the solution is not unique in general.

Proof. Let u be a solution to Problem 1. Then, according to (4a), there exists q € 427571/ % such that the function
v =u — .%rq belongs to s#°(R* \ I'). This functions satisfies furthermore [y4v]r = 0 which means, applying point 2 of
Theorem 6.1, that v and hence also u is a single layer potential.

If condition (54c) is [yau]r = g, the function u = .#}.q is indeed a solution of the transmission problem. To prove
uniqueness, assume that u is a solution to the problem with ¢ = 0. According to (4a), there exists q € Ms_lﬂ such that
v =wu+.7rqis in L*(R?). This function is in s#°(R?\ I') and satisfies [yqv]r = 0 and [y,v]r = q. The second point of
Theorem 6.1 asserts that v = .#7q whence we deduce with (4a) again that q = 0, and then v = 0.

Assume now that condition (54c) is yqu = p for some given p in H;l/Q(F). Applying Theorem 7.2, there exists v in
H°(02F) and qp € ,Qis_l/?' such that ~; (vf + #rap) = p. On the other hand, Theorem 7.1 provides us with a function
v, € H#°(£27) such that v v, = p — v, -Zrdp. Define now v, € #°(R*\ I') by setting v,|o+ = v and vyl = v, .
Since [yaup]r = 0 we are entitled to apply Theorem 6.1 which ensures us that v, = . [y,v,]r. It follows that u = .%\g
with ¢ = [Ynvp]r + qp. O

From this proof, we easily deduce:

Corollary 8.1. For every u in #°(27), there exists ¢ € H™*/*(I") such that .#}.q|g- = u. For every u in L}, (027F),
harmonic and such that u(z) = aln|z| + 6(1/|z]) as || — 400 (for some a € R) there exists ¢ € H™%/*(I") such that
yzt'ﬂrﬁ = u.

Problem 2: Let p be in #~'/?(I") and ¢ be in ?-7;3/2(1“). Find u € L7,.(R?) such that:

Au=0 in 2 UNt (55a)
[ynu]lr =0, (55b)
[yaulr =p or ymu=gq, (55¢)

u(z) = 0(1/|z|) as |z| — +oo. (55d)

The proofs of the following Theorem and Corollary are omitted because they are similar to those of Theorem 8.1 and
Corollary 8.1. Introducing the space:

HVA) = {pe” (D) : (p,1r)_
they are stated as follows:

Theorem 8.2. Problem 2 admits always a solution. Any solution u is a double layer potential @};ﬁ for some p €
H~Y2(I). This solution is unique if condition (55¢) is [yau]r = p, in which case p = p. If condition (55¢) is you = q,
P can be chosen in 7-[_1/2(F) and the solution is not unique in general.

Corollary 8.2. For every u in #°(27), there exists p € H™/*(I") such that P}.p|o- = u. For every u in L3, (27F),
harmonic and such that u(x) = O(1/|z]) as |z| — +oo there exists p € H™'/2(I") such that P}p|o+ = u.

Problem 3: Let p € H;lm(F) and g € H;3/2(F) be such that p € H'/2(I') or ¢ € H~3/%(I"). Find u € L?,.(R?) such
that, for some a € R:

Au=0 in 2 UnN* (56a)
[vaulr =p and [yu]r =g, (56b)
u(z) =aln|z|+ O(1/|z]) as |z| — 4o0. (56¢)
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Theorem 8.3. Problem 8 admits a unique solution given by u = yltq + Q}p.

Proof. According to the first point of Theorem 6.1, (p,q) € H~/*(I") x H™3/2(I") and u = .#}.q + Z|.p solves System
(56). The uniqueness is proved in the same way as in the proof of Theorem 8.1. O

Proposition 8.1. On the contrary to what happens for functions in S (R* \ I') (see (36)), there exist functions
u € HP(R?\ T') that cannot be achieved as the sum of a single and a double layer potential.

Proof. Let v~ be in S#(§27) such that y;u~ = p with p € H;UQ(F) but p ¢ H~'/2(I"). Define u in s#°(R*\ I') by
setting u|o— = u~ and u|p+ = 0. Then [yqu]r = p ¢ H~*/?(I') and therefore u cannot be the sum of a single and a
double layer potential. O

We end this section with the question of representing the harmonic functions defined in Theorems 7.1, 7.2, 7.3 and
7.4 as layer potentials. We need to define first:

HYAI) = {pe VA « (p.1r) 5, =0},

Theorem 8.4. The bounded operators vq o .7\ : H™*/*(I') — H;l/Q(F), Y o L HTVHD) — H,¥2(I) and
vl o ,5”;5 cHT3? (r) — H, 22 (I") are surjective but not injective in general. The same conclusion applies for v, o @lt :
HY2D) — HL (D) and v; 0 D) - HTYA(ID) — HY VP (D).

Proof. The subjectivity of y4 0 &} : H™3/*(I") — 7—[;1/2 (I") results from Theorem 8.1.

Let now g be given in 7—~[;3/2(F). According to Theorem 7.3, there exists a function v~ in #(£27) whose normal
trace v, v~ is equal to q. We apply next Theorem 7.2 which asserts the existence of a function v (the sum of a function
in °(£2") and a single layer potential) such that vj v =~ v~. The function v defined by v|o+ = vt and v|,- =v~.
This function v is a solution to the transmission problem 1 and therefore, according to Theorem 8.1, it is a single layer
potential, what proves that ~,, o zt is surjective.

Let us verify that the range of 7, o Y;ﬂ is H73/2(F). Any ¢ in H73/2(F) can be decomposed as ¢ + alpr with
ge HPI) and a = |F|_1<q,1p)_%’%. According to Theorem 7.4, there exists vy € #°(21) and p; in ,sz{Dl/z
such that v, (vg + Q}pq) = @. Denote by p the external one-sided Dirichlet trace v} (vs + Q}pq) which belongs to
”H;lﬂ(l“) and apply Theorem 7.1: There exists u~ € s#°(£27) such that v; u~ = p. Define now a function v by setting
vlg+ = (vg + @;pq)|_(z+ and v|o- = u”. Since [yqv]r = 0, we can apply Theorem 8.1 and conclude that v is a single
layer potential. Denote by er the equilibrium density of I" i.e. the unique element in H~/? (I") such that v4 0 Srer is a
constat function on I" normalized in such a way that (er, 1p>7%% =1 (see [16, page 263]). The function v+ (a/cr)Srer
(cr is the constant value taken by .#rer on I') is a preimage of ¢ by vt

The remaining two results are proved in the same way, so the proof is omitted. O

The last operator however deserves a special treatment:

Theorem 8.5. Let p be given in 7—[;1/2 (I"). There exists a constant ¢ and p € ’}-l71/2(F) such that 'y;' o @};5 =p+ec.

Proof. Let p be given in 7-[;”2 (I"). According to Theorem 8.1, there exists g € H73/2(F) such that 4 oylt(j = p. Next,
denote by § the external one-sided Neumann trace 7, o Y;(j and let @ € R be such that (¢ + aer,1r) 3 3, = 0.

—55m
It holds 4 © 5’}(@ + aer) = p+ acr (recall that cr is the constant value taken by the function v4 o Yrer) and
v 0 S+ aer) = G+ aer since v, o Srer = 0. We define now a function v be setting v|ot = (L7 + aer))|o+
and v|,- is the solution, provided by Theorem 7.3, to the interior Neumann problem with boundary data ¢+ aer. The

function v is a solution to Problem 2 and therefore, according to Theorem 8.2, it is a double layer potential. O

A List of the main function spaces and operators

Weigthed Sobolev spaces
The space

8%u
6:rj8mk

1o
" plg Oz,

u
p*lg

W2(R?) = {u c 7' R : L*(R?) L*(R?) and € L’(R), Vi, k=1, 2},
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and its subspaces

WiR?) = {u e W*R?) : yau =0},
W2 (R?) = {ue W2(R?) : you = 0},
Ba(R?) = (W3 (R?) nW2(R?))" nWZ(R?),
Ba(R?) = (WE(R?) N W2(R?) ™" NWE(R),

o = {(x1,22) —> a+ bix1 + bax2 : a,b1,b2 € R} (the affine functions)

are provided with either one of the scalar products:

(v)s =(A A ) 2@ + Z(%’/Yd')f

11(d5,74 ) 11
j=1
2
(D = (A A ) paggey + D _(P5: ¥ )2y (P Y 2y + (v ) u(va )
j=1

Boundary spaces

H2(D) = aW3(R?)  and  HYZ(D) = v, W3(R?).
Ho2(D) =3 WE(R®) and  HY* (D) = Wi (R®),

Ay =yl and ;P =Sl
A M = it and @) =Dty
Space and dual space | Duality bracket | Scalar product
HY2(D), H™YAI) | () 1 () =(p )11
H1/2(F)7 H71/2(F) <<7>>—% 1 ( ) )11 = LA . ;3 )A7 Ae {S7D}
’ 2
HYD), HAD) | ()os s (,)a = (L Li)a, Ae{s D}
’ 2
Hy2(D), Hg ) | () g ()1a= (ﬁdwﬁd )s
A, M) [ G)ogse | )30 = (Las La)p
AV = {pe H7VHD) « (p1r)_ 11 =0},
Ho (1) = {a € Ha2(1) : (@, 1r)_g 5., =0}

Some isometric operators

A =S5 or A= D in the definitions below:
L (H2(D), - 113) — (Wi R ]| -[|a)
pr— inf {|ulla : w € W*(R?), yau = p},
L s (20 1) — (W2 @)% -[1a)
g — inf {Jlulla : u € W?(R?), you = q},
Lo (D). Ny ) — (Za(®),]- 1)
pr—inf {|julls : u € W2(R?), yau = p},
La: (D) Ny 0) — (Ba®), |- |Is)
g— inf {||ulls : u e W2 (R?), you = q}.

Continuous and dense inclusions

H32(r)y c H¥*(I) c HY2(I') ¢ L2(I') ¢ H~Y*(I') ¢ H32() < H,,2/2(I),
HY2(I) c HY2() € LA(F) € VA < 1 YA(D).
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Further isometric operators

T M) — HPVAD) L T M) — M)
p— (pa )% qr— (q7 )57
T — 1) R D) — D)

a—(¢,)1.0 P (P)s

We use L2 (I") as pivot space, so none of these operators reduce to the identity.
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