
HAL Id: hal-03942953
https://hal.science/hal-03942953

Submitted on 17 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quasi-Periodicity in Streams
Pawel Gawrychowski, Jakub Radoszewski, Tatiana Starikovskaya

To cite this version:
Pawel Gawrychowski, Jakub Radoszewski, Tatiana Starikovskaya. Quasi-Periodicity in Streams.
30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019), 2019, Pisa (IT), Italy.
�10.4230/LIPIcs.CPM.2019.22�. �hal-03942953�

https://hal.science/hal-03942953
https://hal.archives-ouvertes.fr

Quasi-Periodicity in Streams
Paweł Gawrychowski
University of Wrocław, 50-137 Wrocław, Poland
gawry@cs.uni.wroc.pl

Jakub Radoszewski
Institute of Informatics, University of Warsaw, 02-097 Warsaw, Poland
jrad@mimuw.edu.pl

Tatiana Starikovskaya
DIENS, École normale supérieure, PSL Research University, 75005 Paris, France
tat.starikovskaya@gmail.com

Abstract
In this work, we show two streaming algorithms for computing the length of the shortest cover
of a string of length n. We start by showing a two-pass algorithm that uses O(log2 n) space and
then show a one-pass streaming algorithm that uses O(

√
n logn) space. Both algorithms run in

near-linear time. The algorithms are randomized and compute the answer incorrectly with probability
inverse-polynomial in n. We also show that there is no sublinear-space streaming algorithm for
computing the length of the shortest seed of a string.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Streaming algorithms, quasi-periodicity, covers, seeds

Digital Object Identifier 10.4230/LIPIcs.CPM.2019.22

Funding Jakub Radoszewski is supported by the “Algorithms for text processing with errors and
uncertainties” project carried out within the HOMING programme of the Foundation for Polish
Science co-financed by the European Union under the European Regional Development Fund.

1 Introduction

One of the major tasks in processing data streams is trend analysis. In this work, we focus
on a specific representative trend of streaming data, namely, periodicity. The motivation for
analyzing the periodicity trend is that it can be used for detecting anomalies in streams, for
example, in streams of financial data.

The study of periodicity in data streams was initiated by Ergün et al. in [20]. For a
stream of length n, they showed a one-pass streaming algorithm to compute the length of the
shortest period of the stream in polylogarithmic space assuming that the length of the period
is at most n/2. On the other hand, they showed that there is no sublinear-space algorithm for
computing periods of length larger than n/2. Motivated by real-life applications, where data
streams are almost never exactly periodic, this work was later extended to allow approximate
periods with mismatches and wildcards [18,19].

We consider a different relaxation of the notion of periods, that of quasi-periodicity. Quasi-
periodicity has been extensively studied in the RAM model of computation, starting from
the early works of Apostolico and Ehrenfeucht [7], and by now is a well-established approach
to detecting repetitive structure of a string when the classical definition of periodicity fails.
There are two basic definition of quasi-periods that allow detecting different kinds of repetitive
structure of a string: covers and seeds. Informally, a cover of a string T is a substring C of
T such that every position of T lies within some occurrence of C. A string S is said to be
a seed of T if S is a cover of some string containing T as a substring. The shortest cover
and the shortest seed of a string can be computed in linear time; see [8] and [30, 31] (and

© Paweł Gawrychowski, Jakub Radoszewski, and Tatiana Starikovskaya;
licensed under Creative Commons License CC-BY

30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019).
Editors: Nadia Pisanti and Solon P. Pissis; Article No. 22; pp. 22:1–22:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gawry@cs.uni.wroc.pl
mailto:jrad@mimuw.edu.pl
mailto:tat.starikovskaya@gmail.com
https://doi.org/10.4230/LIPIcs.CPM.2019.22
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Quasi-Periodicity in Streams

a much older O(n logn)-time algorithm [27]), respectively. Other works include computing
all covers [37, 38] and shortest covers of all prefixes of a string [2, 11, 34]; left and right
seeds being notions intermediate between covers and seeds [14, 16]; combinatorial studies
on covers [3, 15]; computing approximate quasi-periodicities called enhanced covers [1, 22],
partial covers [32,36], partial seeds [33], approximate covers [4–6,39], approximate seeds [13],
and other variations [25, 35]; as well as quasi-periodicities that consist of multiple strings,
called λ-covers, k-covers, and λ-seeds [17,23,24,26,41].

In this work, we commence a study of quasi-periodicity in streams. Recall that in the
streaming model of computation, the input arrives as a stream, one character at a time, and
we must account for all the space used, including the space used to store the input. We show
two streaming algorithms for computing the shortest cover of a string of length n. We start
by showing a two-pass algorithm that uses O(log2 n) space (Section 3, Theorem 12) and then
show a one-pass streaming algorithm that uses O(

√
n logn) space (Section 4, Theorem 18).

Both algorithms run in near-linear time. The algorithms are randomized and compute the
answer incorrectly with probability inverse-polynomial in n. We also show that there is no
sublinear-space one-pass streaming algorithm for computing the shortest seed of a string
(Section 6).

2 Preliminaries

We assume that the characters of a string T are numbered 1 through |T |. By T [i] we denote
the i-th character of T and by T [i, j] we denote T [i] . . . T [j] which we call a substring of T .
If i = 1, the substring T [i, j] is called a prefix of T , and if j = |T |, a suffix of T . For strings
T and X, we denote OccT (X) = {i : T [i, i+ |X| − 1] = X}.

2.1 Periods and quasi-periods

I Definition 1 (Periods, borders). We say that a positive integer p is a period of a string T
if T [i] = T [i + p] for all i = 1, . . . , |T | − p. By per(T) we denote the smallest period of T .
The string T is called periodic if 2 per(T) ≤ |T |. We say that a string B is a border of T if
B is both a prefix and a suffix of T .

I Lemma 2 (Fine and Wilf’s periodicity lemma [21]). If a string Q has two periods p and q
and p+ q ≤ |Q|, then Q also has a period gcd(p, q).

Let OccT (X) = {a1, . . . , am} such that a1 < · · · < am. We say that aj , . . . , ak, for
1 ≤ j ≤ k ≤ m, form a chain of occurrences of X in T if for every i = j + 1, . . . , k, we have
ai − ai−1 ≤ |X|2 . A chain is called maximal if k = m or ak+1 − ak > |X|

2 .

I Corollary 3 (of Lemma 2). Every chain of occurrences of X in T is an arithmetic progression
with difference per(X).

Proof. Assume to the contrary that ai − ai−1 6= per(X) = d for some chain aj , . . . , ak and
j < i ≤ k. Then ai − ai−1 is a period of X. By the periodicity lemma, it is a multiple of d.
Hence, ai−1 + d ∈ OccT (X), a contradiction. J

For a set of integers A = {a1, . . . , am}, a1 < a2 < · · · < am, by maxgap(A) we denote the
maximum distance between consecutive elements of A: maxgap(A) = max{ai − ai−1 : i =
2, . . . ,m}.

P. Gawrychowski, J. Radoszewski, and T. Starikovskaya 22:3

I Definition 4 (Covers, seeds). A string C is a cover of a string T if

maxgap(OccT (C) ∪ {−|C|+ 1, |T |+ 1}) = |C|.

We say that a string C is a seed of T if |C| ≤ |T | and C is a cover of some string containing
T as a substring.

I Example 5. aabaa is the shortest cover and aba is a shortest seed of aabaabaa.

I Observation 6. Any cover of a string T is a border of T . Moreover, the shortest cover
of T is not periodic.

2.2 Reminder: Streaming pattern matching
I Definition 7 (Rabin–Karp fingerprint [28, 40]). The Rabin–Karp fingerprint of a string
X = X[1] . . . X[`] is defined as ϕ(X) = (

∑`
i=1 X[i] · ri) mod p, where p is a prime and r is

a random integer in Fp. We assume that together with the Rabin–Karp fingerprint we store
r` mod p and r−` mod p.

If we choose p to be large enough, then the collision probability of any two `-length strings
X and Y , where ` ≤ n, will be at most 1/nO(1) [28, 40]. We will also need the following fact
which follows immediately from the definition.

I Fact 8. Let X,Y be two strings and Z = XY be their concatenation. From the Rabin–Karp
fingerprints of two of the strings X, Y , Z one can compute the Rabin–Karp fingerprint of
the third string in O(1) time using the formula:

ϕ(Z) = (ϕ(X) + r|X| · ϕ(Y)) mod p.

I Corollary 9. Let X be a string and Z = Xα be the α-th power of X for positive integer
α, i.e. the concatenation of α copies of X. From the Rabin–Karp fingerprint of X one can
compute the Rabin–Karp fingerprint of Z in O(logα) time.

We recall the main idea of the streaming pattern matching algorithm by Porat and
Porat [40] in a simplified form by Breslauer and Galil [12]. The algorithm takes as an
input a pattern Q and a streaming text T of length n, and outputs all occurrences of Q
in T . The algorithm is randomized and can output an incorrect answer with probability
inverse-polynomial in n. It uses O(log |Q|) space and takes O(log |Q|) time per text character.

We assume that the algorithm receives the pattern first, in a form of a stream, and
computes the Rabin–Karp fingerprints of Q and of the prefixes Q[1, 2j] for all j. During the
main stage, the algorithm stores O(log |Q|) levels of positions of T . Positions in level j are
occurrences of Q[1, 2j] in the suffix of the current text T of length 2j+1. The algorithm stores
the Rabin–Karp fingerprints of the prefixes of T up to each of these positions. If there are at
least 3 such positions at one level, then, by the periodicity lemma, all the positions form a
chain (that is, a single arithmetic progression with difference per(Q[1, 2j]); see Corollary 3).
This allows storing the aforementioned information very compactly, using only O(log |Q|)
space in total. Finally, the algorithm stores the Rabin–Karp fingerprint of the current text.
When a new character T [i] arrives, the algorithm considers the leftmost position `j in each
level j. If i − `j + 1 is smaller than 2j+1, the algorithm does nothing. Otherwise if the
fingerprints imply that `j is an occurrence of Q[1, 2j+1], the algorithm promotes it to the
next level, and if `j is not an occurrence of Q[1, 2j+1], the algorithm discards it. When a
position reaches the level j = blog |Q|c+ 1, which corresponds to the whole pattern Q, it is
an occurrence of Q and the algorithm outputs it. For more details, see [40].

CPM 2019

22:4 Quasi-Periodicity in Streams

The complexity of [40] has been later improved by [12] to use O(log |Q|) space and O(1)
time per character of the text. Given a prefix of a streaming text T , we can use either of the
algorithms to find all occurrences of the prefix in T .

3 Two-pass algorithm for shortest cover

In this section we give a two-pass streaming algorithm for computing the length of the shortest
cover of a stream T of given length n. We start with the following simple observation.

I Lemma 10. There is a streaming algorithm that checks if T (|T | = n) has a cover of
length ` in O(log `) space and O(1) time per character. The algorithm is randomized and
has error probability inverse-polynomial in n.

Proof. We apply the streaming pattern matching algorithm [12] to compute the subsequent
elements of the set A = OccT (T [1, `]). It suffices to check if

maxgap(A ∪ {−`+ 1, n+ 1}) ≤ `. J

In the first pass of the algorithm, we identify O(logn) candidates for the length of the
shortest cover. In the second pass, we apply Lemma 10 to verify the candidates.

For a positive integer x, let I(x) = [x, 3
2x). Let us consider a sequence x1, x2, . . . , xr of

length r = O(logn) such that {1, . . . , n} ⊆
⋃r
i=1 I(xi). From now on let us focus on a single

x = xi. In the first pass, our goal is to find a candidate for the shortest cover of length in
the interval I(x). To this end, we run streaming pattern matching for X = T [1, x] in T . We
choose the candidate using the following algorithm:

Algorithm 1: Find-Candidate(x).
1. Find the maximal chain of occurrences of X = T [1, x] in T that starts at position 1.

Let d be its length.
2. Let i ∈ OccT (X) be the last position that starts a maximal chain of occurrences of

length d. Choose n− i+ 1 as the candidate.
If the candidate is outside the interval I(x), we discard it.

I Lemma 11. If the shortest cover C of T (|T | = n) has length |C| ∈ I(x), then |C| = n−i+1
where i is the last position that starts a maximal chain of occurrences of X of length d and d
is the length of the maximal chain of occurrences of X that contains position 1.

Proof. Let a1, . . . , ad be the maximal chain of occurrences of X in T that starts with a1 = 1.
Corollary 3 asserts that every chain is an arithmetic progression with difference per(X).
Hence, by Observation 6, |C| ≥ ad + x − 1 (|C| > ad + x − 1 if d > 1), so C contains the
whole chain. Clearly, any occurrence of C at position j in T implies a chain of length at least
d starting at j. Moreover, it is easy to show that in this case the maximal chain starting at
position j has length exactly d. Indeed, assume to the contrary that it has length at least
d + 1 and j′ is its (d + 1)-th element. If j′ + x − j ≤ |C|, then this would imply that the
chain starting at position 1 also has length at least d+ 1. Otherwise, C would be periodic
with period per(X), contradicting Observation 6.

Let i′ < i be two positions where a maximal chain of length d starts. We will show that
i′ cannot be the last occurrence of C. Then i− i′ > x

2 , so n− i
′ + 1 > n− i+ 1 + x

2 ≥
3
2x.

Hence, n− i′ + 1 6∈ I(x). This shows that only the last position where a maximal chain of
length d starts may be the last occurrence of the shortest cover of length in I(x). J

P. Gawrychowski, J. Radoszewski, and T. Starikovskaya 22:5

I Theorem 12. The length of the shortest cover of a string of length n can be computed by
a two-pass streaming algorithm which uses O(log2 n) space and O(n logn) time in each pass.
The algorithm is randomized and has error probability inverse-polynomial in n.

Proof. In the first pass we run Find-Candidate(xi) for each i = 1, . . . , r. The algorithm
requires onlyO(1) time and space in addition to the streaming pattern matching algorithm [12]
for pattern Xi = T [1, xi] in text T . Indeed, at each moment it suffices to store the rightmost
inclusion-maximal chain of occurrences of Xi, represented in O(1) space as an arithmetic
sequence. We compute the length d of the first chain. Afterwards, when a chain ends, we
can compute the d-th element from its end (if any) and store it until the next such element
is encountered.

This produces at most r = O(logn) candidates for the length of the shortest cover. In
the second pass, we use Lemma 10 to verify them. The complexities of the algorithm follow.
The error probability follows from the union bound. J

4 One-pass algorithm for shortest cover

In this section we give a one-pass streaming algorithm for computing the length of the
shortest cover of a stream T of given length n. It consists of two processes that we run in
parallel. The first one finds the length of the shortest cover if it is at most

√
n logn and the

second if it is greater than
√
n logn.

4.1 Covers of small length

Our first algorithm computes the length of the shortest cover if it is at most
√
n logn. It is

based on the online algorithm of Breslauer [11] which we briefly recall below.

I Definition 13 (Super-primitivity). A string is called super-primitive if it is equal to its
shortest cover.

The algorithm makes use of three arrays B, C, R, where B[i] is the length of the longest
proper border of the prefix T [1, i], C[i] is the length of the shortest cover of T [1, i], and R[i]
is not defined if T [1, i] is not super-primitive and otherwise stores the length of the longest
prefix of T , up to the latest arrived character T [k], such that T [1, i] is its cover. In the end,
C[n] contains the length of the shortest cover of the text.

The algorithm applies the Knuth–Morris–Pratt algorithm [29] that computes B in O(n)
space and time.

Algorithm 2: Compute-Shortest-Cover.
1. for k = 1 to n do

B[k] = the length of the longest proper border of T [1, k]
if B[k] > 0 and R[C[B[k]]] ≥ k − C[B[k]] then

#If the shortest cover of B[k] covers T [1, k],
#then it is the shortest cover of T [1, k].
C[k] = C[B[k]]; R[C[k]] = k

else #If B[k] = 0 or C[B[k]] does not cover T [1, k], then T [1, k] is
#super-primitive.

C[k] = k; R[k] = k

CPM 2019

22:6 Quasi-Periodicity in Streams

We now explain our streaming algorithm that computes the length of the shortest cover
if it is at most

√
n logn. Similar to the algorithm of Breslauer, it uses three arrays B′, C ′,

and R′. B′[i] is defined to be the largest 0 ≤ i′ ≤
√
n logn, i′ < i, such that T [1, i] has a

border of length i′, C ′[i] is the length of the shortest cover of T [1, i] if it is at most
√
n logn

(and otherwise undefined), and R′[i], for 1 ≤ i ≤
√
n logn is not defined if T [1, i] is not

super-primitive and otherwise stores the length of the longest prefix of T , up to the latest
arrived character T [k], such that T [1, i] is its cover.

Our algorithm proceeds exactly as the algorithm of Breslauer except that it uses C ′, R′, B′
instead of C,R,B. To compute B′, we use the following straightforward corollary of [29].

I Corollary 14 (of Knuth, Morris, Pratt [29]). There is a (deterministic) streaming algorithm
that computes B′ using O(

√
n logn) space and O(n) time.

Proof. We take as a basis the Knuth–Morris–Pratt algorithm. We then note that to compute
B′[k] it suffices to know only B′[k − 1] and the first

√
n logn entries of the array B′. The

complexities follow. J

Let T [k] be the last arrived character of T . The algorithm first computes B′[k]. If
B′[k] > 0, it checks if the shortest cover of T [1, B′[k]] covers T [1, k] (using the condition
R′[C ′[B′[k]]] ≥ k − C ′[B′[k]]) and, if so, sets C ′[k] = C ′[B′[k]] and R′[C ′[k]] = k. Otherwise,
if k ≤

√
n logn, it sets C ′[k] = R′[k] = k, else it leaves C ′[k] undefined. The final answer is

C ′[n].
The algorithm uses O(

√
n logn) space and O(n) time in total. We now argue that the

algorithm is correct. From Observation 6 it follows that any cover of T [1, k] must be its
border. That is, the only possible candidates for the shortest cover of T [1, k] that have length
≤
√
n logn are the borders of T [1, k] of length ≤

√
n logn. Correctness of our algorithm for

the case B′[k] = 0 follows. For the case B′[k] > 0 we use the following claim:

I Fact 15 (Breslauer [11]). If a string W is a cover of a string Z, and another string V ,
such that |W | ≤ |V |, is a border of Z, then W is a cover of V . Hence, if a string Z has two
covers W and V , such that |W | ≤ |V |, then W is a cover of V .

It follows that if the length of the shortest cover of T [1, k] is at most
√
n logn, then it is

the length of the shortest cover of T [1, B′[k]], which concludes the proof.

4.2 Covers of large length
We now give an algorithm that computes the length of the shortest cover of T if it is larger
than

√
n logn. Let x1, . . . , xr and I(x) be defined as in Section 3. For all xi+1 >

√
n logn,

we seek for the shortest cover of length in I(xi) (if any). From now on we focus on a single
x = xi. Let X = T [1, x].

Let a be the last element of the maximal chain of occurrences of X in T that starts at
position 1 and x′ = a+ x− 1, X ′ = T [1, x′]. We obtain the following lemma as a corollary of
Lemma 11.

I Lemma 16. If the shortest cover C of T has length |C| ∈ I(x), then max OccT (C) =
max OccT (X ′).

Proof. It suffices to note that the last position that starts a maximal chain of occurrences of
X of length d is exactly the last occurrence of X ′. Indeed, any occurrence of X ′ starts a
chain of occurrences of X of length at least d (and conversely). If the length of the chain
was greater than d, then X ′ would also occur per(X) positions later. J

P. Gawrychowski, J. Radoszewski, and T. Starikovskaya 22:7

In the beginning, we compute the maximal chain of occurrences of X in T that starts at
position 1 and compute x′ and ϕ(X ′). We then continue with streaming pattern matching to
find all occurrences of X ′ in T . We note that we can do the preprocessing for the streaming
pattern matching algorithm simultaneously with computing X ′.

One small technical difficulty here is that x′ is known only once we know that the initial
chain of occurrences of X does not extend, which can take place at position x′ + x

2 . To
overcome this, whenever a new occurrence of X in the chain is found, say at position j, we
assume that x′ = j + x− 1 and start the pattern matching algorithm for X ′ = T [1, x′]. If
the next occurrence in the same chain is found, x′ is overwritten. Note that the pattern
matching algorithm for X ′ always looks for occurrences of prefixes of X ′ of lengths being
powers of two, so it can be easily updated when the chain is extended.

We use the following key observation.
I Observation 17. For every maximal chain of occurrences of X ′ in T , only the last position
in it can be an occurrence of the shortest cover C.

X ′ can be periodic and there can be many occurrences of X ′ in T , but by Observation 17,
only the last position in every maximal chain can be an occurrence of C. Occurrences
that satisfy this condition are henceforth called relevant. We maintain a stack of relevant
occurrences (the topmost one can be non-relevant). When a new occurrence p of X ′ arrives,
we check if it is in the same maximal chain at the occurrence in the top of the stack. If it is,
we first pop from the stack, and then push p to the stack (in other words, we replace the
occurrence in the top of the stack with p). Otherwise, we simply push p to the stack.

Suppose that in the end, the stack contains occurrences p1, p2, . . . , pk. Let lj = pj+1 − pj .
Note that lj > x

2 for every j = 1, . . . , k − 1, as the relevant occurrences are in different
maximal chains. Therefore, there are O(n/x) = O(

√
n/ logn) occurrences in total. For each

pj , we memorize the fingerprint ϕ(T [1, pj − 1]). By Lemma 16, there is only one possible
candidate for the shortest cover in I(x), the suffix C of T that starts at pk. Then ϕ(C) can
be computed from ϕ(T) and ϕ(T [1, pk − 1]) via Fact 8.

If we have a way to test whether pj is a starting position of an occurrence of C, then we
can check if C is a cover of T using the maxgap. We now explain how we test pj . If any of the
differences lj satisfies lj > |C|, we immediately return NO. If lj = |C|, we can check whether
pj is a starting position of an occurrence of C by computing ϕ(T [pj , pj+1−1]) and comparing
it with ϕ(C). From now on, we focus on j such that lj < |C|. From |C| < 3

2x, it follows
that |C| − lj ≤ x′ and therefore T [pj+1, pj+1 + |C| − lj − 1] = T [1, |C| − lj]. Consequently, if
we know ϕ(T [1, |C| − lj]), we can check whether pj is a starting position of an occurrence
of C in O(1) time in three steps: first, compute ϕ(T [pj , pj+1 − 1]) = ϕ(T [pj , pj + lj − 1]),
second, compute ϕ(T [pj , pj + |C| − 1]) from ϕ(T [pj , pj + lj − 1]) and ϕ(T [1, |C| − lj]) via
Fact 8, and finally, compare ϕ(T [pj , pj + |C| − 1]) and ϕ(C). If the fingerprints are equal, pj
is an occurrence of C with high probability.

We compute the fingerprints ϕ(T [1, |C| − lj]) as follows. Assume that we know the
fingerprints ϕ(T [1, n − lj]) and recall that C starts at pk. By Fact 8, we can compute
ϕ(T [1, |C| − lj]) for all j = 1, 2, . . . , k − 1 from ϕ(T [1, pk − 1]). Namely, we compute
ϕ(T [pk, n− lj]) = ϕ(T [1, n− lj − pk + 1]), and

n− lj − pk + 1 = n− pk + 1− lj = |C| − lj .

We now explain how we compute the fingerprints ϕ(T [1, n − lj]). First, consider all j
such that n− lj ≥ pj+1 + x′ − 1. Note that since lj < |C| < 3

2x and the distance between
any two consecutive positions is greater than x

2 , this inequality holds for all j ≤ k − 4:

n− lj > n− 3
2x ≥ pk + x′ − 1− 3

2x > pj+1 + (k − j − 1)x2 + x′ − 1− 3
2x ≥ pj+1 + x′ − 1.

CPM 2019

22:8 Quasi-Periodicity in Streams

We maintain a balanced BST of all lj . Say that the streaming pattern matching algorithm
reports a new occurrence p of X ′ (which happens when T [p + x′ − 1] arrives). If the
previous occurrence pj was more than x

2 positions earlier, we assume for now that pj+1 = p,
compute lj = pj+1 − pj and insert it to the BST. If the previous position pj was at most x

2
positions earlier, it is popped from the stack, we assume that pj = p and lj−1 is recomputed.
Furthermore, when a new position i of the text arrives, we check whether the BST contains
lj = n− i and, if so, memorize the fingerprint of T [1, i] = T [1, n− lj]. The algorithm will
indeed compute ϕ(T [1, n− lj]) for all j such that n− lj ≥ pj+1 + x′ − 1.

It remains to compute ϕ(T [1, n− lj]) for all j ≤ k − 1 such that n− lj < pj+1 + x′ − 1.
As explained above, this inequality can hold only for j ∈ {k − 3, k − 2, k − 1}. We note that,
additionally, we have pj+1 ≤ n− lj . Indeed, from lj < |C|, we have

n− lj ≥ n− |C|+ 1 = pk ≥ pj+1.

For all such j we use a different subroutine. The subroutine is initialised at the position
pj + x′ − 1 and must output ϕ(T [1, n− lj]) at the position pj+1 + x′ − 1 if pj+1 ≤ n− lj <
pj+1 + x′ − 1. In Section 5 we will show such a subroutine that takes O(logn) space and
O(logn) time per character of the text.

We use the subroutine in the following way. When we find a new occurrence p of X ′ such
that n < p+ x′ − 1 + 2 · 3

2x, we initialize a new instance of the subroutine. If later we find
out that p is not a relevant occurrence, we kill the process. Note that at any time, there
will be a constant number of instances of the subroutine running (because the number of
survived processes is equal to the number of occurrences pj satisfying n < pj + x′ − 1 + 3x,
and every two occurrences pj are at least x

2 positions apart). Therefore, in total this step
takes O(logn) space and O(logn) time per character.

In conclusion, we can compute ϕ(T [1, n− lj]) for all j ≤ k − 1 using O(
√
n/ logn) space

and O(logn) time per character of the text.

The whole algorithm for a given x can be stated as below.
1. Perform streaming pattern matching for X in T . Compute x′ and X ′.

#x′ can be updated several times due to “guessing”
2. Start streaming pattern matching for X ′ in T :

Using a stack, compute subsequent relevant occurrences of X ′. When occurrence pj+1
is found, store ϕ(T [1, pj+1 − 1]) and insert lj = pj+1 − pj to a BST.
#lj can be updated several times due to “guessing” of pj+1
When T [i] is read and the BST contains lj = n − i, memorize the fingerprint of
T [1, i] = T [1, n− lj].
For every occurrence pj that satisfies n < pj + x′ − 1 + 3x, start the subroutine of
Section 5 to compute T [1, n− lj].
#If the occurrence turns out not to be relevant, kill the subroutine.

3. When the end of the text is reached:
If lj > |C| for any j = 1, . . . , k − 1, where C = T [pk, n], return NO.
Compute ϕ(C) from ϕ(T [1, pk − 1]) and ϕ(T).
Compute ϕ(T [pj , pj + |C| − 1]) for all j = 1, . . . , k − 1 using ϕ(T [pj , pj+1 − 1]) and
ϕ(T [1, n− lj]) (if lj < |C|).
Let P = {pj : ϕ(T [pj , pj + |C| − 1]) = ϕ(C)}. If maxgap(P ∪ {−|C|+ 1, n+ 1}) = |C|,
return |C|. Otherwise, return NO.

The algorithm uses O(k+ logn) = O(
√
n/ logn) space and spends O(logn) time per text

character, apart from the last position of the text where it spends O(
√
n/ logn) time. Over

P. Gawrychowski, J. Radoszewski, and T. Starikovskaya 22:9

all x = xi for i = 1, . . . , r such that 3
2xi >

√
n logn, the algorithm uses O(

√
n logn) space

and O(n log2 n) time in total. Combining this algorithm with the algorithm of Section 4.1,
we arrive at the following result.

I Theorem 18. The length of the shortest cover of a string of length n can be computed by
a one-pass streaming algorithm which uses O(

√
n logn) space and O(n log2 n) time in total.

The algorithm is randomized and has error probability inverse-polynomial in n.

5 Computing the fingerprint of T [1, n− lj] for
j ∈ {k − 3, k − 2, k − 1}

We will show how to solve a more general problem.

I Problem 1. Let T be a streaming text of a given length n and y ≤ n be a positive integer.
For some position start, y ≤ start ≤ n, when we have read T [start], we are given an integer z.
Let len(q) = z−2q. For each q such that T [q, q+y−1] = T [1, y], at the moment when we have
read T [q + y − 1], we are to report ψ(q) = ϕ(T [q, q + len(q)]) provided that start ≤ q + len(q)
and 0 ≤ len(q) < y.

If we take start = pj + x′ − 1, y = x′, z = n+ pj , then for q = pj+1 we have q + len(q) =
z − q = n+ pj − pj+1 = n− lj . We also have pj + x′ − 1 = start ≤ q + len(q) = n− lj since
pj + x′ − 1 + lj = pj+1 + x′ − 1 ≤ n. Finally, we require that pj+1 ≤ n− lj < pj+1 + x′ − 1
which translates to 0 ≤ len(q) < y − 1. Therefore, using an algorithm for Problem 1 we can
compute ϕ(T [pj+1, n− lj]), and therefore, by Fact 8, ϕ(T [1, n− lj]) from ϕ(T [1, pj+1 − 1])
that is stored by the exact pattern matching algorithm for X ′ and T .

We now show an algorithm for Problem 1 that takes O(logn) space and O(logn) time
per character of the text. Denote Y = T [1, y] and let

OccT (j) = {q ∈ OccT (Y [1, 2j]) | start ≤ q + len(q) and 2j ≤ len(q) + 1 < 2j+1}.

For j = dlog ye, we additionally assume that len(q) < y. Note that the second condition in
the above definition can be written equivalently as

z+1
2 − 2j < q ≤ z+1

2 − 2j−1.

which concludes, in particular, that OccT (j) either contains at most one element or is a
single chain of occurrences of Y [1, 2j].

I Observation 19. The set of all q ∈ OccT (Y), start ≤ q + len(q), such that 0 ≤ len(q) < y,
is a subset of ∪0≤j≤blog ycOccT (j).

We will show how to compute and store a small amount of additional information for
each set OccT (j) that we will use to retrieve the fingerprints ψ(q) for q ∈ OccT (j)∩OccT (Y).

We will build our solution upon the streaming pattern matching algorithm for Y in T .
Recall that the algorithm stores, for every j = 0, . . . , blog yc, a subset of OccT (Y [1, 2j]) that
corresponds to occurrences in the suffix of length 2j+1 of T [1, i]. Let us denote this subset
by Sj(i). The set Sj(i) is stored as either at most two single occurrences or a chain with
period ∆j = per(Y [1, 2j]), so that one can check in O(1) time if q ∈ Sj(i). Moreover, for
every q ∈ Sj(i), we can recover ϕ(T [1, q − 1]); we also store ϕ(T [1, i]).

For every position i ≥ start, we can compute the position q that satisfies q + len(q) = i;
we have q = z − i. Let j be such that 2j ≤ len(q) + 1 < 2j+1. If q 6∈ Sj(i), then q 6∈ OccT (Y)
and we can ignore it. Otherwise, at this point we can compute ψ(q) using Fact 8. If we could

CPM 2019

22:10 Quasi-Periodicity in Streams

store ψ(q) for every q ∈ OccT (j), then, when the streaming pattern matching algorithm
outputs a position q ∈ OccT (Y), we could in O(logn) time find j such that q ∈ OccT (j) and
then output ψ(q), as desired.

Unfortunately, if |OccT (j)| is large, we cannot afford to store ψ(q) for every position
q ∈ OccT (j). Moreover, at the time when q is processed, we actually do not know if q will
be an occurrence of Y and only this information makes this value relevant. We will use
periodicity to overcome these setbacks and design a small representation of values ψ(q) of all
potentially relevant elements q ∈ OccT (j); see Example 20 for an illustration.

For a given j, let us consider the first moment i = i′ (if any) when q′ = z − i′ ∈ OccT (j),
for any i ≥ start. We then have q′ = max OccT (j). If q ∈ OccT (j), then q + len(q) ≥ i′

but len(q) < 2j+1, so q ∈ Sj(i′). In other words, OccT (j) ⊆ Sj(i′). Let {q1, . . . , qr},
with q1 < . . . < qr, be the subsequence of consecutive elements of Sj(i′) such that q1 is
the smallest element of Sj(i′) and qr = q′. There is an index ` ∈ {1, . . . , r} such that
OccT (j) = {q`, . . . , qr}. If r − `+ 1 ≤ 2, we will store ψ(qk) for every k = `, . . . , r explicitly.
Otherwise, q`, . . . , qr is a chain of occurrences of Y [1, 2j] with step ∆j .

In the beginning, the pattern matching algorithm computes the set Sj(2j+1). Let dj be
the length of the longest chain of occurrences of Y [1, 2j] in Sj(2j+1) that starts at position 1.
We will store this value in the algorithm.

Let ik = z − qk. When i increases from ir to i`, the algorithm computes ψ(qk) for
subsequent k = r, . . . , `. We will store ψ(qr) as well as ψ(qk) for the last element qk that
was considered. Let us now consider i = ik for k < r. Let qr+1, . . . , qtk be the subsequent
elements of the chain that contains qr in Sj(ik). If qtk + 2j − 1 ≥ ik+1, then T [qk+1, ik+1] is
periodic with period ∆j . Hence, for every k′ > k,

T [qk′ , ik′] = T [1,∆j]2(r−k′) T [qr, ir].

Thus ψ(qk′) for any k′ > k can be computed from ψ(qr) (which is stored) and ϕ(T [1,∆j])
(which can be computed from ϕ(T [1, qr − 1]) and ϕ(T [1, qr−1 − 1]) using Fact 8) in O(logn)
time via Corollary 9.

As for the opposite case, let us consider the first k < r for which qtk + 2j − 1 < ik+1. If
it exists, let us denote this value of k by k0. This means that the chain of occurrences of
Y [1, 2j] that contains qr definitely ends at position qtk0

. Then Y can occur at position qp for
p ∈ {`, . . . , r} only if tk0 − p+ 1 = dj . If p > k0 + 1, ψ(qp) can be restored as shown above.
If p = k0 + 1, ψ(qp) is still stored from the previous step. Otherwise, we will store ψ(qp)
when the position ip is processed.

If the position k0 is not found, we also store ψ(q`) since T [q`, i`] might not have period ∆j .

I Example 20. Let us consider the setting from Fig. 1 with j = 5. Assume that z is such
that OccT (j) = {q2, . . . , q6} (i.e., ` = 2 and r = 6) and ik = qk + len(qk) for k = 2, . . . , 6.
Further assume that start ≤ i6.

When i = i6, only the occurrences q1, . . . , q6 are known. At this moment we compute
and store ψ(q6).

When i = i5, only the occurrences q1, . . . , q7 are known (i.e., t5 = 7) and T [q6, i6] has
period ∆j (since q7 + 2j − 1 ≥ i6), so k0 6= 5. At this moment we compute ψ(q5) and store it
until the next step. We also compute and store ϕ(T [1,∆j]).

When i = i4, all the occurrences q1, . . . , q8 are known (i.e., t4 = 8) and T [q5, i5] has period
∆j (since q8 + 2j − 1 ≥ i5), so k0 6= 4. We compute ψ(q4) and store it until the next step.

When i = i3, there is no new occurrence in the chain (i.e., t3 = 8), so q8 + 2j − 1 < i4
and k0 = 3 (note that T [q4, i4] still could have period ∆j , if the character x of T was equal
to c; see Fig. 1). At this moment we know that, among ψ(qk) for k = 2, . . . , 6, at most one

P. Gawrychowski, J. Radoszewski, and T. Starikovskaya 22:11

. . .a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b x a c c

|T [q6, i6]| = 34

|T [q5, i5]| = 40

|T [q4, i4]| = 46

|T [q3, i3]| = 52

|T [q2, i2]| = 58

q1 q2 q3 q4 q5 q6 q7 q8 i6 i5 i4 i3 i2

Figure 1 Let j = 5 and assume that Y [1, 32] = (abc)10ab and y ≥ 64. The positions q1, . . . , q8

form a maximal chain of occurrences of Y [1, 32] in T (the occurrences are depicted as blue lines)
and the period Y [1,∆j] is shown by dotted arcs.

value can be relevant, for 8− k + 1 = dj . If k > 4, this value can be computed from ψ(q6)
and ϕ(T [1,∆j]). Otherwise, it is either ψ(q4) that is still stored or one of the values ψ(qk)
for k ≤ 3 that will be computed in this or subsequent steps.

E.g., if Y starts with (abc)14abx, then dj = 5 and we only need to store ψ(q4).

In conclusion, the algorithm for a given j ∈ {0, . . . , blog zc} works as follows:
1. Compute dj , the length of the longest chain of occurrences starting from position 1 in

Sj(2j+1).
2. Starting from position start, look for the first i ≥ start such that q = z − i ∈ OccT (j).

Let q1, . . . , qr be the maximal increasing subsequence of Sj(i) that ends at q = qr. Let q`
be the minimal element in OccT (j) (it can be computed in O(1) time). Compute ψ(qr)
using Fact 8 and store it. If r = `, no more data is stored.

3. For each subsequent position i of the text, if i = ik for some k ∈ {`, . . . , r − 1}, then:
Compute ψ(qk) using Fact 8 and store it until position ik−1.
Assume that k = r−1. If k = `, store this fingerprint. Otherwise, compute ϕ(T [1,∆j]).
If qtk + 2j − 1 ≥ ik+1, continue.
When the first k < r for which qtk + 2j − 1 < ik+1 is encountered, k0 = k, store only
ψ(qp) for p = tk0 − dj + 1. If p > k0, this value can be restored from the previous
steps in O(logn) time. Otherwise, continue the algorithm until ip.
If there was no such k0, store ψ(q`).

When q ∈ OccT (Y) is encountered, start ≤ q+ len(q), and 2j ≤ len(q) + 1 < 2j+1, compute k
such that q = qk and:

If r − ` ≤ 1 or k0 exists, return the stored value of ψ(qk) (for k ∈ {q, r}) in O(1) time;
If k0 does not exist, return the stored value if k = ` or compute ψ(qk) from ψ(qr) and
ϕ(T [1,∆j]) in O(logn) time if k > `.

In total, for a fixed value of j, we use O(1) space and spend O(logn) time per text
character in the worst case. The value q such that q+ len(q) = i is always unique, so at every
position of the text, computations for only one index j take place. Overall, we spend O(logn)
time per text character. This completes the description of the algorithm for Problem 1.

CPM 2019

22:12 Quasi-Periodicity in Streams

6 Hardness of computation of seeds in a stream

While above we showed an O(
√
n logn)-space one-pass streaming algorithm for computing

the shortest cover, there is no sublinear-space one-pass streaming algorithm for computing
the shortest seed. The proof follows the lines of the proof of the space lower bound for
computing the shortest period of a stream by Ergün et al. [20].

Consider the communication game between Alice and Bob who hold two strings T1 and T2
of length n/2 each, where the goal is to compute the shortest seed of T = T1T2. By a
standard reduction, the lower bound on the communication complexity for this problem is a
space lower bound for any streaming algorithm computing the shortest seed of a string T of
length n. We can show the lower bound of Ω(n) bits for the communication complexity of
the problem by a reduction from the augmented indexing problem: Suppose Alice is given a
string X ∈ {0, 1}n/2, and Bob is given an index i ∈ [1, n/2] and a string Y ∈ {0, 1}i−1 such
that Y = X[1, i− 1]. Bob must decide whether X[i] = 1. The randomized communication
complexity of this problem is Ω(n) bits [9,10]. On the other hand, for i < n/2 we can reduce
it to the problem of computing the shortest seed by taking T1 = X and T2 = $n/2−i Y 1,
where $ is a special character different from 0, 1. It is easy to see that the shortest seed of
T = T1T2 is equal to n− i iff X[i] = 1. Therefore, the communication game of computing
the shortest seed requires Ω(n) bits of communication, and any streaming algorithm for
computing the shortest seed of a string of length n requires Ω(n) bits of space as well.

7 Conclusion and open questions

In this work, we give the first sublinear-space streaming algorithms for computing the length
of the shortest cover of a stream. Our two-pass streaming algorithm uses O(log2 n) space
and O(n logn) time, and our one-pass streaming algorithm uses O(

√
n logn) space and

O(n log3 n) time. It is an interesting question if similar algorithms can be developed for
computing the shortest covers of all prefixes of the stream, and if the complexity of the
algorithms can be improved. We also state an open question concerning computation of
seeds: Design a streaming algorithm with any number of passes and O(n1−ε) space, for ε > 0,
for computing the shortest seed of a stream.

References
1 Ali Alatabbi, Abu Sayed Md. Sohidull Islam, Mohammad Sohel Rahman, Jamie Simpson,

and William F. Smyth. Enhanced Covers of Regular and Indeterminate Strings Using
Prefix Tables. Journal of Automata, Languages and Combinatorics, 21(3):131–147, 2016.
doi:10.25596/jalc-2016-131.

2 Ali Alatabbi, M. Sohel Rahman, and William F. Smyth. Computing covers using prefix tables.
Discrete Applied Mathematics, 212:2–9, 2016. doi:10.1016/j.dam.2015.05.019.

3 Amihood Amir, Costas S. Iliopoulos, and Jakub Radoszewski. Two strings at Hamming
distance 1 cannot be both quasiperiodic. Information Processing Letters, 128:54–57, 2017.
doi:10.1016/j.ipl.2017.08.005.

4 Amihood Amir, Avivit Levy, Moshe Lewenstein, Ronit Lubin, and Benny Porat. Can We
Recover the Cover? In Proceedings of the Annual Symposium on Combinatorial Pattern
Matching, CPM 2017, pages 25:1–25:15, 2017. doi:10.4230/LIPIcs.CPM.2017.25.

5 Amihood Amir, Avivit Levy, Ronit Lubin, and Ely Porat. Approximate Cover of Strings.
In Proceedings of the Annual Symposium on Combinatorial Pattern Matching, CPM 2017,
volume 78, pages 26:1–26:14, 2017. doi:10.4230/LIPIcs.CPM.2017.26.

http://dx.doi.org/10.25596/jalc-2016-131
http://dx.doi.org/10.1016/j.dam.2015.05.019
http://dx.doi.org/10.1016/j.ipl.2017.08.005
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.25
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.26

P. Gawrychowski, J. Radoszewski, and T. Starikovskaya 22:13

6 Amihood Amir, Avivit Levy, and Ely Porat. Quasi-Periodicity Under Mismatch Errors. In
Proceedings of the Annual Symposium on Combinatorial Pattern Matching, CPM 2018, pages
4:1–4:15, 2018. doi:10.4230/LIPIcs.CPM.2018.4.

7 Alberto Apostolico and Andrzej Ehrenfeucht. Efficient detection of quasiperiodicities in strings.
Theoretical Computer Science, 119(2):247–265, 1993. doi:10.1016/0304-3975(93)90159-Q.

8 Alberto Apostolico, Martin Farach, and Costas S. Iliopoulos. Optimal superprimitivity testing
for strings. Information Processing Letters, 39(1):17–20, 1991. doi:10.1016/0020-0190(91)
90056-N.

9 Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. The Sketching
Complexity of Pattern Matching. In Proceedings of the International Workshop on Ap-
proximation Algorithms for Combinatorial Optimization Problems and of the International
Workshop on Randomization and Computation, APPROX-RANDOM 2004, pages 261–272,
2004. doi:10.1007/978-3-540-27821-4_24.

10 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. Information theory methods in
communication complexity. In Proceedings of the IEEE Annual Conference on Computational
Complexity, CCC 2002, pages 93–102, 2002. doi:10.1109/CCC.2002.1004344.

11 Dany Breslauer. An on-line string superprimitivity test. Information Processing Letters,
44(6):345–347, 1992. doi:10.1016/0020-0190(92)90111-8.

12 Dany Breslauer and Zvi Galil. Real-Time Streaming String-Matching. ACM Transasctions on
Algorithms, 10(4):22:1–22:12, 2014. doi:10.1145/2635814.

13 Manolis Christodoulakis, Costas S. Iliopoulos, Kunsoo Park, and Jeong Seop Sim. Approximate
seeds of strings. Journal of Automata, Languages and Combinatorics, 10:609–626, 2005.
doi:10.25596/jalc-2005-609.

14 Michalis Christou, Maxime Crochemore, Ondrej Guth, Costas S. Iliopoulos, and Solon P.
Pissis. On left and right seeds of a string. Journal of Discrete Algorithms, 17:31–44, 2012.
doi:10.1016/j.jda.2012.10.004.

15 Michalis Christou, Maxime Crochemore, and Costas S. Iliopoulos. Quasiperiodicities in
Fibonacci strings. Ars Combinatoria, 129:211–225, 2016.

16 Michalis Christou, Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Solon P. Pissis,
Jakub Radoszewski, Wojciech Rytter, Bartosz Szreder, and Tomasz Waleń. Efficient seed
computation revisited. Theoretical Computer Science, 483:171–181, 2013. doi:10.1016/j.
tcs.2011.12.078.

17 Richard Cole, Costas S. Iliopoulos, Manal Mohamed, William F. Smyth, and Lu Yang.
The Complexity of the Minimum k-cover Problem. Journal of Automata, Languages and
Combinatorics, 10(5–6):641–653, 2005. doi:10.25596/jalc-2005-641.

18 Funda Ergün, Elena Grigorescu, Erfan Sadeqi Azer, and Samson Zhou. Streaming Periodicity
with Mismatches. In Proceedings of the International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems and of the International Workshop on Randomization
and Computation, APPROX-RANDOM 2017, pages 42:1–42:21, 2017. doi:10.4230/LIPIcs.
APPROX-RANDOM.2017.42.

19 Funda Ergün, Elena Grigorescu, Erfan Sadeqi Azer, and Samson Zhou. Periodicity in Data
Streams with Wildcards. In Proceedings of the International Computer Science Symposium in
Russia, CSR 2018, pages 90–105, 2018. doi:10.1007/978-3-319-90530-3_9.

20 Funda Ergün, Hossein Jowhari, and Mert Sağlam. Periodicity in Streams. In Proceedings of
the International Workshop on Approximation Algorithms for Combinatorial Optimization
Problems and of the International Workshop on Randomization and Computation, APPROX-
RANDOM 2010, pages 545–559, 2010. doi:10.1007/978-3-642-15369-3_41.

21 Nathan J. Fine and Herbert S. Wilf. Uniqueness Theorems for Periodic Functions. Proceedings
of the American Mathematical Society, 16:109–114, 1965.

22 Tomás̆ Flouri, Costas S. Iliopoulos, Tomasz Kociumaka, Solon P. Pissis, Simon J. Puglisi,
William F. Smyth, and Wojciech Tyczyński. Enhanced string covering. Theoretical Computer
Science, 506:102–114, 2013. doi:10.1016/j.tcs.2013.08.013.

CPM 2019

http://dx.doi.org/10.4230/LIPIcs.CPM.2018.4
http://dx.doi.org/10.1016/0304-3975(93)90159-Q
http://dx.doi.org/10.1016/0020-0190(91)90056-N
http://dx.doi.org/10.1016/0020-0190(91)90056-N
http://dx.doi.org/10.1007/978-3-540-27821-4_24
http://dx.doi.org/10.1109/CCC.2002.1004344
http://dx.doi.org/10.1016/0020-0190(92)90111-8
http://dx.doi.org/10.1145/2635814
http://dx.doi.org/10.25596/jalc-2005-609
http://dx.doi.org/10.1016/j.jda.2012.10.004
http://dx.doi.org/10.1016/j.tcs.2011.12.078
http://dx.doi.org/10.1016/j.tcs.2011.12.078
http://dx.doi.org/10.25596/jalc-2005-641
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.42
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.42
http://dx.doi.org/10.1007/978-3-319-90530-3_9
http://dx.doi.org/10.1007/978-3-642-15369-3_41
http://dx.doi.org/10.1016/j.tcs.2013.08.013

22:14 Quasi-Periodicity in Streams

23 Qing Guo, Hui Zhang, and Costas S. Iliopoulos. Computing the λ-Seeds of a String. In
Proceedings of Algorithmic Aspects in Information and Management, AAIM 2006, pages
303–313, 2006. doi:10.1007/11775096_28.

24 Qing Guo, Hui Zhang, and Costas S. Iliopoulos. Computing the λ-covers of a string. Information
Sciences, 177(19):3957–3967, 2007. doi:10.1016/j.ins.2007.02.020.

25 Ondřej Guth. On approximate enhanced covers under Hamming distance. Discrete Applied
Mathematics, 2019. doi:10.1016/j.dam.2019.01.015.

26 Costas S. Iliopoulos, Manal Mohamed, and William F. Smyth. New complexity results for the
k-covers problem. Information Sciences, 181(12):2571–2575, 2011. doi:10.1016/j.ins.2011.
02.009.

27 Costas S. Iliopoulos, Dennis W. G. Moore, and Kunsoo Park. Covering a string. Algorithmica,
16(3):288–297, September 1996. doi:10.1007/BF01955677.

28 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987.

29 Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast pattern matching in strings.
SIAM Journal of Computing, 6:322–350, 1977. doi:10.1137/0206024.

30 Tomasz Kociumaka, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleń. A Linear Time Algorithm for Seeds Computation. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pages 1095–1112, 2012. URL:
http://dl.acm.org/citation.cfm?id=2095116.2095202.

31 Tomasz Kociumaka, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleń. A Linear Time Algorithm for Seeds Computation. CoRR, abs/1107.2422v2, 2019.
arXiv:1107.2422v2.

32 Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń.
Fast Algorithm for Partial Covers in Words. Algorithmica, 73(1):217–233, September 2015.
doi:10.1007/s00453-014-9915-3.

33 Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń.
Efficient algorithms for shortest partial seeds in words. Theoretical Computer Science, 710:139–
147, 2018. Advances in Algorithms & Combinatorics on Strings (Honoring 60th birthday for
Prof. Costas S. Iliopoulos). doi:10.1016/j.tcs.2016.11.035.

34 Yin Li and William F. Smyth. Computing the Cover Array in Linear Time. Algorithmica,
32(1):95–106, January 2002. doi:10.1007/s00453-001-0062-2.

35 Neerja Mhaskar and William F. Smyth. Frequency Covers for Strings. Fundamenta Informat-
icae, 163(3):275–289, 2018. doi:10.3233/FI-2018-1744.

36 Neerja Mhaskar and William F. Smyth. String covering with optimal covers. Journal of
Discrete Algorithms, 51:26–38, 2018. doi:10.1016/j.jda.2018.09.003.

37 Dennis Moore and William F. Smyth. A Correction to “An Optimal Algorithm to Compute
All the Covers of a String”. Information Processing Letters, 54(2):101–103, April 1995.
doi:10.1016/0020-0190(94)00235-Q.

38 Dennis W. G. Moore and William F. Smyth. An Optimal Algorithm to Compute all the Covers
of a String. Information Processing Letters, 50:239–246, 1994. doi:10.1016/0020-0190(94)
00045-X.

39 Alexandru Popa and Andrei Tanasescu. Hardness and algorithmic results for the approximate
cover problem. CoRR, abs/1806.08135, 2018. arXiv:1806.08135.

40 Benny Porat and Ely Porat. Exact And Approximate Pattern Matching In The Streaming
Model. In Proceedings of the Annual Symposium on Foundations of Computer Science, FOCS
2009, pages 315–323, 2009. doi:10.1109/FOCS.2009.11.

41 Hui Zhang, Qing Guo, and Costas S. Iliopoulos. Algorithms for Computing the λ-regularities
in Strings. Fundamenta Informaticae, 84(1):33–49, 2008. URL: http://content.iospress.
com/articles/fundamenta-informaticae/fi84-1-04.

http://dx.doi.org/10.1007/11775096_28
http://dx.doi.org/10.1016/j.ins.2007.02.020
http://dx.doi.org/10.1016/j.dam.2019.01.015
http://dx.doi.org/10.1016/j.ins.2011.02.009
http://dx.doi.org/10.1016/j.ins.2011.02.009
http://dx.doi.org/10.1007/BF01955677
http://dx.doi.org/10.1137/0206024
http://dl.acm.org/citation.cfm?id=2095116.2095202
http://arxiv.org/abs/1107.2422v2
http://dx.doi.org/10.1007/s00453-014-9915-3
http://dx.doi.org/10.1016/j.tcs.2016.11.035
http://dx.doi.org/10.1007/s00453-001-0062-2
http://dx.doi.org/10.3233/FI-2018-1744
http://dx.doi.org/10.1016/j.jda.2018.09.003
http://dx.doi.org/10.1016/0020-0190(94)00235-Q
http://dx.doi.org/10.1016/0020-0190(94)00045-X
http://dx.doi.org/10.1016/0020-0190(94)00045-X
http://arxiv.org/abs/1806.08135
http://dx.doi.org/10.1109/FOCS.2009.11
http://content.iospress.com/articles/fundamenta-informaticae/fi84-1-04
http://content.iospress.com/articles/fundamenta-informaticae/fi84-1-04

	Introduction
	Preliminaries
	Periods and quasi-periods
	Reminder: Streaming pattern matching

	Two-pass algorithm for shortest cover
	One-pass algorithm for shortest cover
	Covers of small length
	Covers of large length

	Computing the fingerprint of T[1,n-lj] for j = {k-3,k-2,k-1}
	Hardness of computation of seeds in a stream
	Conclusion and open questions

