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Abstract
We study the problem of recognizing regular languages in a variant of the streaming model of
computation, called the sliding window model. In this model, we are given a size of the sliding
window n and a stream of symbols. At each time instant, we must decide whether the suffix of
length n of the current stream (“the active window”) belongs to a given regular language.

Recent works [14, 15] showed that the space complexity of an optimal deterministic sliding window
algorithm for this problem is either constant, logarithmic or linear in the window size n and provided
natural language theoretic characterizations of the space complexity classes. Subsequently, [16]
extended this result to randomized algorithms to show that any such algorithm admits either
constant, double logarithmic, logarithmic or linear space complexity.

In this work, we make an important step forward and combine the sliding window model with
the property testing setting, which results in ultra-efficient algorithms for all regular languages.
Informally, a sliding window property tester must accept the active window if it belongs to the
language and reject it if it is far from the language. We show that for every regular language, there
is a deterministic sliding window property tester that uses logarithmic space and a randomized
sliding window property tester with two-sided error that uses constant space.
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1 Introduction

Regular expression search constitutes an important part of many search engines for biological
data or code, such as, for example, Elasticsearch Service1. In this paper, we consider the
following formalization of this problem. We assume to be given an integer n, a regular

1 https://www.elastic.co
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6:2 Sliding Window Property Testing for Regular Languages

language L, and a stream of symbols that we receive one symbol at a time. At each time
instant, we have direct access only to the last arrived symbol, and must decide whether the
suffix of length n of the current stream (“the active window”) belongs to L.

The model described above is a variant of the streaming model and was introduced by
Datar et al. [10], where the authors proved that the number of 1’s in a 0/1-sliding window of
size n can be maintained in space O( 1

ε · log2 n) if one allows a multiplicative error of 1± ε.
The motivation for this model of computation is that in many streaming applications, data
items are outdated after a certain time, and the sliding window setting is a simple way to
model this. In general, we aim to avoid storing the window content explicitly, and, instead,
to work in considerably smaller space, e.g. polylogarithmic space with respect to the window
length. For more details on the sliding window model see [1, Chapter 8].

The study of recognizing regular languages in the sliding window model was commenced
in [14, 15]. In [15], Ganardi et al. showed that for every regular language L the optimal
space bound for a deterministic sliding window algorithm is either constant, logarithmic or
linear in the window size n. In [14], Ganardi et al. gave characterizations for these space
classes. More formally, they showed that a regular language has a deterministic sliding
window algorithm with space O(logn) (resp., O(1)) if and only if it is a Boolean combination
of so-called regular left-ideals and regular length languages (resp., suffix-testable languages
and regular length languages). A subsequent work [16] studied the space complexity of
randomized sliding window algorithms for regular languages. It was shown that for every
regular language L the optimal space bound of randomized sliding window algorithm is O(1),
O(log logn), O(logn), or O(n). Moreover, complete characterizations of these space classes
were provided.

1.1 Our results
Previous study implies that even simple languages require linear space in the sliding window
model, which gives the motivation to seek for novel approaches in order to achieve efficient
algorithms for all regular languages. We take our inspiration from the property testing model
introduced by Goldreich et. al [22]. In this model, the task is to decide whether the input has
a particular property P , or is “far” from any input satisfying it. For a function γ : N→ R≥0,
we say that a word w of length n is γ-far from satisfying P , if the Hamming distance between
w and any word w′ satisfying P is at least γ(n). We will call the function γ(n) the Hamming
gap of the tester. We must make the decision by inspecting as few symbols of the input as
possible, and the time complexity of the algorithm is defined to be equal to the number of
inspected symbols. The motivation is that when working with large-scale data, accessing
a data item is a very time-expensive operation. The membership problem for a regular
language in the property testing model was studied by Alon et al. [2] who showed that for
every regular language L and every constant ε > 0, there is a property tester with Hamming
gap γ(n) = εn for deciding membership in L that can make the decision by inspecting a
random constant-size sample of symbols of the input word.

In this work, we introduce a class of algorithms called sliding window property testers.
Informally, at each time moment, a sliding window property tester must accept if the active
window has the property P and reject if it is far from satisfying P . The space complexity of a
sliding window property tester is defined to be all the space used, including the space we need
to store information about the input. We consider deterministic sliding window property
testers and randomized sliding window property testers with one-sided and two-sided errors
(for a formal definition, see Section 2). A similar but simpler model of streaming property
testers, where the whole stream is considered, was introduced by Feigenbaum et al. [11].
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François et al. [12] continued the study of this model in the context of language membership
problems and came up with a streaming property tester for visibly pushdown languages that
uses polylogarithmic space. Note that deciding membership in a regular languages becomes
trivial in this model (where the active window is the whole stream): one can simply simulate
a deterministic finite automaton on the stream. What makes the sliding window model more
difficult is the fact that the oldest symbol in the active window expires in the next step.

While at first sight the only connection between property testers and sliding window
property testers is that we must accept the input if it satisfies P and reject if it is far from
satisfying P , there is, in fact, a deeper link. In particular, the above mentioned result of Alon
et al. [2] combined with an optimal sampling algorithm for sliding windows [4], immediately
yields a O(logn)-space, two-sided error sliding window property tester with Hamming gap
γ(n) = εn for every regular language. We will improve on this observation. Our main
contribution are tight complexity bounds for each of the following classes of sliding window
property testers for regular languages: deterministic sliding window property testers and
randomized sliding window property testers with one-sided and two-sided error.

Deterministic sliding window property testers. We call a language L trivial, if for some
constant c > 0 the following holds: For every word w ∈ Σ∗ such that L contains a word of
length |w|, the Hamming distance from w to L is at most c. Every trivial regular language has
a constant-space deterministic sliding window property tester with constant Hamming gap
(Theorem 4). For generic regular languages, we show a deterministic sliding window property
tester with constant Hamming gap that uses O(logn) space. This is particularly surprising,
because for Hamming gap zero (i.e., the exact case) [16] showed a space lower bound of Ω(n)
for generic regular languages. In other words, a constant Hamming gap allows an exponential
space improvement. We also show that for non-trivial regular languages, O(logn) space is
the best one can hope to achieve, even for Hamming gap γ(n) = εn (Theorem 6).

Randomized sliding window property testers with two-sided error. Next, we show that for
every regular language, there is a randomized sliding window property tester with Hamming
gap γ(n) = εn and two-sided error that uses constant space (Theorem 7). This is an optimal
bound and a considerable improvement compared to the tester that can be obtained by
combining the property tester of Alon et al. [2] and an optimal sampling algorithm for sliding
windows [4]. Our constant space tester makes use of a probabilistic counter from [16].

Randomized sliding window property testers with one-sided error. While our randomized
sliding window property tester with two-sided error is optimal, we believe that a two-sided
error is a very strong relaxation that has to be avoided in some applications. To this end, we
study the one-sided error randomized setting. The general landscape for this setting is the
most complex: In Theorems 8 and 9, we show that for every regular language L, the space
complexity of an optimal randomized sliding window property tester with one-sided error is
either O(1), O(log logn), or O(logn), and we provide language theoretic characterizations of
these space classes.

In order to show our upper bound results, we demonstrate novel combinatorial properties of
automata and regular languages and develop new streaming techniques, such as probabilistic
counters, which can be of interest on their own. To show the lower bound results, we
introduce a new methodology, which could potentially simplify further establishments of
lower bounds in string processing tasks in the streaming setting: namely, we view the testers
as nondeterministic automata, and study their behaviour.

ISAAC 2019



6:4 Sliding Window Property Testing for Regular Languages

1.2 Related work
The results above assume that the regular language admits a constant-space description
and we will follow the same assumption in this work. Currently, there are few studies
on the dependency of the complexity of sliding window algorithms on the size of the
language description. On the negative side, Ganardi et al. [14] showed that there are
regular languages such that any sliding window algorithm that achieves logarithmic space
(in the window size) depends exponentially on the automata size. On the positive side,
there is an extensive study of the pattern matching problem and its variants that gives
sub-exponential upper bounds for a class of (very simple) regular languages. In this problem,
we are given a pattern and a streaming text T , and at each moment we must decide if the
active window is equal to the pattern. This problem and its generalisations have been studied
in [5, 6, 7, 8, 9, 19, 20, 21, 28, 30].

Similar to regular languages, we can ask whether the current active window belongs to a
given context-free language. This question was studied in [3, 24, 25, 26] for the model where
the active window is the complete stream and in [13, 18] for the sliding-window model.

2 Sliding window property tester

We fix a finite alphabet Σ for the rest of the paper. We denote by Σ∗ the set of all words
over Σ and by Σn the set of words over Σ of length n. The empty word is denoted by λ. Let
w be a word. We say that v is a prefix (suffix) of w if w = xv (w = vx) for some word x. We
say that v is a factor of w if w = xvy for some words x, y. The Hamming distance between
two words u = a1 · · · an and v = b1 · · · bn of equal length is the number of positions where
u and v differ, i.e. dist(u, v) = |{i : ai 6= bi}|. The distance of a word u to a language L is
defined as dist(u, L) = inf{dist(u, v) : v ∈ L} ∈ N ∪ {∞}.

A deterministic finite automaton (DFA) is a tuple A = (Q,Σ, q0, δ, F ) where Q is a finite
set of states, Σ is the input alphabet, q0 is the initial state, δ : Q× Σ→ Q is the transition
mapping and F ⊆ Q is the set of final states. We extend δ to a mapping δ : Q× Σ∗ → Q

inductively in the usual way: δ(q, λ) = q and δ(q, aw) = δ(δ(q, a), w). The language accepted
by A is L(A) = {w ∈ Σ∗ : δ(q0, w) ∈ F}. A language is regular if it is accepted by a DFA.
For more background in automata theory see [23].

A stream is a word a1a2 · · · am over Σ. A sliding window algorithm is a familyA = (An)n≥0
of streaming algorithms. Given a window size n ∈ N and an input stream a1a2 · · · am ∈ Σ∗
the algorithm An reads the stream symbol by symbol from left to right and thereby updates
its memory content. After reading a prefix a1 · · · at (0 ≤ t ≤ m) the algorithm is required to
compute an output value that depends on the active window lastn(a1 · · · at) = at−n+1 · · · at
at time t. For convenience, for i < 0 we define ai = � where � ∈ Σ is an arbitrary fixed
symbol. In other words, we assume an initial window �n that is active at time t = 0. We
consider deterministic sliding window algorithms (where every An can be viewed as a DFA)
and randomized sliding window algorithms (where every An can be viewed as a probabilistic
finite automaton in the sense of Rabin [29]). In the latter case, An updates in each step its
memory content according to a probability distribution that depends on the current memory
content and the current input symbol. Let γ : N→ R≥0 be a function such that γ(n) ≤ n
for all n ∈ N, let α, β be probabilities, and let L ⊆ Σ∗ be a language.

I Definition 1. A deterministic sliding window (property) tester for L with Hamming gap
γ(n) is a deterministic sliding window algorithm A = (An)n≥0 such that for every input
stream w ∈ Σ∗ and every window size n the following properties hold:

if lastn(w) ∈ L, then An accepts;
if dist(lastn(w), L) > γ(n), then An rejects.
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I Definition 2. A randomized sliding window (property) tester for L with Hamming gap
γ(n) and error (α, β) is a randomized sliding window algorithm A = (An)n≥0 such that for
every input stream w ∈ Σ∗ and every window size n the following properties hold:

if lastn(w) ∈ L, then An accepts with probability at least 1− α;
if dist(lastn(w), L) > γ(n), then An rejects with probability at least 1− β.

We say that A has one-sided error if A has error (0, 1/2) and two-sided error if A has error
(1/3, 1/3).

Notice that our definition is non-uniform since we allow an arbitrary algorithm An for each
window size n. If the window size is not specified, then it is implicitly universally quantified.
The space consumption of A is the mapping s(n), where s(n) is the space consumption of
An, i.e., the maximal number of bits stored by An while reading any input stream. We can
assume that s(n) ∈ O(n) since An can store the active window in O(n) bits. The goal is
to devise algorithms which only use o(n) space. Using probability amplification (similar to
[16]) one can replace the error probability 1/3 in the two-sided error setting (resp. 1/2 in
the one-sided error setting) by any probability p < 1/2 (resp. p < 1). This influences the
space complexity only by a constant factor. The case of Hamming gap γ(n) = 0 corresponds
to exact membership testing to L which was studied in [14, 15, 16]. In this paper, we focus
on the two cases γ(n) = c for some constant c > 0 and γ(n) = εn for some ε > 0.

Before we come to the main results of the paper we state two simple facts about the
sliding window testers.

I Lemma 3. Assume that L =
⋃k
i=1 Li and that for every 1 ≤ i ≤ k there exists a randomized

sliding window tester for Li with Hamming gap γ(n) and error (α, β) that uses space si(n).
Then there exists a sliding window tester for L with Hamming gap γ(n) and error (α, β) that
uses space O(

∑k
i=1 si(n)).

The second fact concerns so-called trivial languages. Let γ : N→ R≥0 be a mapping with
γ(n) ≤ n for all n ≥ 0. A language is L ⊆ Σ∗ is γ-trivial if there exists n0 ∈ N such that for
all n ≥ n0 with L ∩ Σn 6= ∅ and all w ∈ Σn we have dist(w,L) ≤ γ(n). If γ(n) ∈ O(1), we
say that L is trivial. Note that Alon et al. [2] call a language L trivial if L is (εn)-trivial for
all ε > 0 according to our definition. In the long version [17] we show that both definitions
coincide for regular languages, but we will not make use of this fact.

I Theorem 4. For every trivial (but not necessarily regular) language there is a deterministic
sliding window tester with constant Hamming gap that uses constant space. The converse is
also true: If for a language L there is a deterministic constant-space sliding window tester
with Hamming gap γ(n), then there exists a constant c such that L is (γ + c)-trivial.

3 Main results

Our first main contribution is a deterministic logspace sliding window tester for every regular
language, together with a matching lower bound for so-called nontrivial regular languages
(defined above).

I Theorem 5. For every regular language L, there exists a deterministic sliding window
tester for L with constant Hamming gap which uses O(logn) space.

I Theorem 6. For every non-trivial regular language L, there exist ε > 0 and infinitely
many window sizes n ∈ N on which every deterministic sliding window tester for L with
Hamming gap εn uses space Ω(logn).

ISAAC 2019



6:6 Sliding Window Property Testing for Regular Languages

Our second main contribution is a constant-space randomized sliding window property tester
with two-sided error for any regular language:

I Theorem 7. For every regular language L and every ε > 0, there exists a randomized
sliding window tester for L with two-sided error and Hamming gap γ(n) = εn that uses space
O(1/ε).

While the randomized setting with two-sided error allows ultra-efficient testers, we find
that allowing a two-sided error is a very strong relaxation. To this end, we study the
randomized setting with one-sided error. In this setting, only a small class of regular
languages admits sliding window testers working in space o(logn). A language L ⊆ Σ∗ is
suffix-free if xy ∈ L and x 6= λ imply y /∈ L.

I Theorem 8. If L is a finite union of trivial regular languages and suffix-free regular
languages, then there exists a randomized sliding window tester for L with one-sided error
and constant Hamming gap which uses O(log logn) space.

I Theorem 9. Let L be a regular language.
If L is not a finite union of trivial regular languages and suffix-free regular languages,
there exist ε > 0 and infinitely many window sizes n on which every randomized sliding
window tester for L with one-sided error and Hamming gap εn uses space Ω(logn).
If L is non-trivial, then there exist ε > 0 and infinitely many window sizes n on which
every sliding window tester for L with one-sided error and Hamming gap εn uses space
Ω(log logn).

We sketch the proofs of Theorem 5, 7, and 8 in Sections 4.1, 4.2, and 4.3, respectively.
The proofs of the lower bounds (Theorems 6 and 9) can be found in the long version [17]. We
would like to emphasize that the lower bounds shown in [17] are stronger than those stated
in Theorems 6 and 9. More precisely, we show space lower bounds for nondeterministic and
co-nondeterministic sliding window testers; see [17] for definitions.

4 Proofs of the upper bounds

In this section we sketch proofs of Theorems 5, 7, and 8 that give upper bounds for determin-
istic and (one-sided and two-sided error) randomized sliding window testers. All algorithms in
this section satisfy the stronger property that words with large prefix distance are rejected by
the algorithm with high probability (probability one in the deterministic setting). The prefix
distance between words u = a1 · · · an and v = b1 · · · bn is pdist(u, v) = min{i ∈ {0, . . . , n} :
ai+1 · · · an = bi+1 · · · bn}. Clearly, we have dist(u, v) ≤ pdist(u, v). We extend the definition
to languages: for a language L, let pdist(u, L) = min{pdist(u, v) : v ∈ L}. The prefix distance
between two runs π = (q0, a1, . . . , qn−1, , an, qn) and ρ = (p0, b1, . . . , pn−1, bn, pn) is defined as
pdist(π, ρ) = min{i ∈ {0, . . . , n} : (qi, ai+1, . . . , qn−1, an, qn) = (pi, bi+1, . . . , pn−1, bn, pn)}.

For our upper bound proofs it is convenient to work with DFAs which read the input
word from right to left. A right-deterministic finite automaton (rDFA) is a tuple B =
(Q,Σ, F, δ, q0), where Q, Σ, q0 and F are as in a DFA, and δ : Σ×Q→ Q is the transition
function. We extend δ to a mapping δ : Q × Σ∗ → Q analogously to DFAs: δ(q, λ) = q

and δ(q, wa) = δ(δ(q, a), w). The regular language recognized by the rDFA B is L(B) =
{w ∈ Σ∗ : δ(w, q0) ∈ F}. A run from p0 ∈ Q to pn ∈ Q on a word x = an · · · a2a1 ∈ Σ∗ is a
sequence π = (pn, an, pn−1, . . . , p2, a2, p1, a1, p0) such that pi = δ(ai, pi−1) for all 1 ≤ i ≤ n.
The length of π is |π| = n. We visualize π in the form

π : pn
an←−− pn−1

an−1←−−− · · · a2←− p1
a1←− p0.
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If pn ∈ F , then π is an accepting run. A run of length 1 is a transition. If π is a run from p

to q on a word v, and ρ is a run from q to r on a word u, then ρπ denotes the unique run
from p to r on uv. We denote by πw,q the unique run on w from q.

Strongly connected graphs. With a DFA A = (Q,Σ, q0, δ, F ) we associate the directed
graph (Q,E) with edge set E = {(p, δ(p, a)) | p ∈ Q, a ∈ Σ}. Similarly, with an rDFA
A = (Q,Σ, F, δ, q0) we associate the directed graph (Q,E) with edge set E = {(p, δ(a, p)) |
p ∈ Q, a ∈ Σ}. Let A be a DFA or an rDFA. Two states p, q in A are strongly connected if
there exists a path in (Q,E) from p to q, and vice versa. The strongly connected components
(SCCs) of A with state set Q are the maximal subsets C ⊆ Q in which all states p, q ∈ C are
strongly connected. A state q ∈ Q is transient if there exists no nonempty path from q to q.
An SCC C is transient if it only contains a single transient state. There is a natural partial
order on the SCCs, called the SCC-ordering, where the SCC C1 is smaller than the SCC C2
if there exists a path in (Q,E) from a state in C1 to a state in C2.

The following combinatorial result from [2] will be used in this paper. Consider a directed
graph G = (V,E). The period of G is the greatest common divisor of all cycle lengths in G.
If G is acyclic we define the period to be ∞.

I Lemma 10 (cf. [2]). Let G = (V,E) be a strongly connected directed graph with E 6= ∅ and
finite period g. Then there exist a partition V =

⋃g−1
i=0 Vi and a constant m(G) ≤ 3|V |2 with

the following properties:
For every 0 ≤ i, j ≤ g − 1 and for every u ∈ Vi, v ∈ Vj the length of every directed path
from u to v in G is congruent to j − i modulo g.
For every 0 ≤ i, j ≤ g − 1, for every u ∈ Vi, v ∈ Vj and every integer r ≥ m(G), if r is
congruent to j− i modulo g, then there exists a directed path from u to v in G of length r.

If G = (V,E) is strongly connected with E 6= ∅ and finite period g, and V0, . . . , Vg−1
satisfy the properties from Lemma 10, then we define the shift from u ∈ Vi to v ∈ Vj by

shift(u, v) = j − i (mod g) ∈ {0, . . . , g − 1}. (1)

Notice that this definition is independent of the partition
⋃g−1
i=0 Vi since any path from u to v

has length ` ≡ shift(u, v) (mod g) by Lemma 10. Also note that shift(u, v) + shift(v, u) ≡ 0
(mod g). In the following let g(C) denote the period of the SCC C.

I Lemma 11. For every regular language L there exists an rDFA A for L and a number g
such that every non-transient SCC C in A has period g(C) = g.

Path summaries. We start by recalling the notion of a path summary from [14], where it
was used in order to prove a logspace upper bound for regular left-ideals (in the exact setting
where the Hamming gap is zero). For the rest of Section 4 we fix a regular language L ⊆ Σ∗
and an rDFA B = (Q,Σ, F, δ, q0) which recognizes L. By Lemma 11, we can assume that
every non-transient SCC C of B has period g(C) = g. Consider a run π = (pn, an, . . . , a1, p0)
on x = an · · · a1. If all states pn, . . . , p0 are contained in a single SCC we call π internal.
We can decompose π = πmτm−1πm−1 · · · τ1π1, where each πi is a possibly empty internal
run and each τi is a single transition connecting two distinct SCCs. We call this unique
factorization the SCC-factorization of π, which is illustrated in Figure 1. The path summary
of π is

ps(π) = (|πm|, qm)(|τm−1πm−1|, qm−1) · · · (|τ2π2|, q2)(|τ1π1|, q1),

where qi is the first state in πi (1 ≤ i ≤ m). Note that m is bounded by the constant number
of states of B. Hence, a path summary can be stored with O(log |π|) bits.

ISAAC 2019



6:8 Sliding Window Property Testing for Regular Languages

q1q2q3qm

π1τ1π2τ2τm−1πm

Figure 1 The SCC-factorization of a run.

Periodic acceptance sets. For a ∈ N and X ⊆ N we use the standard notation X + a =
{a+ x : x ∈ X}. For a state q ∈ Q we define Acc(q) = {n ∈ N : ∃w ∈ Σn : δ(w, q) ∈ F}. A
set X ⊆ N is eventually d-periodic, where d ≥ 1 is an integer, if there exists a threshold t ∈ N
such that for all x ≥ t we have x ∈ X if and only if x+ d ∈ X. If X is eventually d-periodic
for some d ≥ 1, then X is eventually periodic.

I Lemma 12. For every q ∈ Q the set Acc(q) is eventually g-periodic.

Two sets X,Y ⊆ N are equal up to a threshold t ∈ N, in symbol X =t Y , if for all x ≥ t:
x ∈ X iff x ∈ Y . Sets X,Y ⊆ N are almost equal if X =t Y for some threshold t ∈ N.

I Lemma 13. Let C be a non-transient SCC in B, p, q ∈ C and s = shift(p, q). Then Acc(p)
and Acc(q) + s are almost equal.

I Corollary 14. There exists a threshold t ∈ N such that
1. Acc(q) =t Acc(q) + g for all q ∈ Q, and
2. Acc(p) =t Acc(q) + shift(p, q) for all non-transient SCCs C and all p, q ∈ C.

We fix the threshold t from Corollary 14 for the rest of Section 4. The following lemma is
the main tool to prove the correctness of our sliding window testers. It states that if a word
of length n is accepted from p and ρ is any internal run from p of length at most n, then, up
to a bounded length prefix, ρ can be extended to an accepting run of length n. Formally, a
run π k-simulates a run ρ if one can factorize ρ = ρ1ρ2 and π = π′ρ2 where |ρ1| ≤ k.

I Lemma 15. If ρ is an internal run starting from p of length at most n and n ∈ Acc(p),
then there exists an accepting run π from p of length n which t-simulates ρ.

4.1 Deterministic logspace tester
Proof of Theorem 5. Let n ∈ N such that n ≥ |Q| (for n < |Q| we use a trivial streaming
algorithm which stores the window explicitly). The algorithm maintains the set {ps(πw,q) |
q ∈ Q} where w ∈ Σn is the active window. Initially this set is {ps(πw,q) | q ∈ Q} for
w = �n. Now suppose w = av for some a ∈ Σ and the next symbol of the stream is b ∈ Σ,
i.e. the new active window is vb. For each transition q b←− p in B we can compute ps(πvb,p)
from ps(πav,q) as follows. Suppose that ps(πav,q) = (`m, qm) · · · (`1, q1) where q = q1.

If p and q belong to the same SCC, then we increment `1 by one, else we append a new
pair (1, p).
If `m > 0 we decrement `m by one. If `m = 0 we remove the pair (`m, qm) and we
decrement `m−1 by one (in this case we must have m > 1 and `m−1 > 0).

The obtained path summary is ps(πvb,p). This data structure can be stored with O(logn)
bits since it contains |Q| path summaries, each of which can be stored in O(logn) bits.

It remains to define a proper acceptance condition. Consider the run π = πw,q0 , its
SCC-factorization πmτm−1πm−1 · · · τ1π1 and its path summary (`m, qm) · · · (`1, q1). The
algorithm accepts if and only if `m = |πm| ∈ Acc(qm). If w ∈ L, then clearly |πm| ∈ Acc(qm).
If |πm| ∈ Acc(qm), then the internal run πm can be t-simulated by an accepting run π′m of
equal length by Lemma 15. The run π′mτm−1πm−1 · · · τ1π1 is accepting and witnesses that
pdist(w,L) ≤ t. J
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qi−1qiqi+1 q1qm

πi−1τi−1πiτi

ci and ri (mod g)

Figure 2 A compact summary of a run π.

4.2 Randomized constant-space tester with two-sided error
Let us first define a probabilistic counter, similar to the approximate counter by Morris [27],
which uses O(log logn) bits. For our purposes it suffices to distinguish high and low counters
states. Consider a probabilistic data structure Z representing a counter. Its operations are
incrementing the counter (using random coins) and querying whether the state of the counter
is low or high. Initially Z is in a low state. The random state reached after k increments is
denoted by Z(k). Given numbers 0 ≤ ` < h (they will depend on our window size n) we say
that Z is an (h, `)-counter with error probability δ < 1

2 if for all k ∈ N we have:
If k ≤ `, then Prob[Z(k) is high] ≤ δ.
If k ≥ h, then Prob[Z(k) is low] ≤ δ.

I Lemma 16. For all h, `, ξ > 0 with ` ≤ (1− ε)h+O(1) there exists an (h, `)-counter Z
with error probability 1/3|Q| which internally stores O(log(1/ε)) bits.

Fix a parameter 0 < ε < 1 and a window length n ∈ N. Based on the previous concepts,
we are now able to describe a randomized sliding window tester for a regular language L
with Hamming gap εn that uses O(log(1/ε)) bits. Let Z be the (h, `)-counter with error
probability 1/(3|Q|) from Lemma 16 where h = n− t and ` = (1− ε)n+ t+ 1. The counter
is used to define so-called compact summaries of runs.

IDefinition 17. A compact summary cs = (qm, rm, cm) · · · (q2, r2, c2)(q1, r1, c1) is a sequence
of triples, where each triple (qi, ri, ci) consists of a state qi ∈ Q, a remainder 0 ≤ ri ≤ g − 1,
and a state ci of the (h, `)-counter Z. The state c1 must be low and r1 = 0.

A compact summary (qm, rm, cm) · · · (q1, r1, c1) represents a run π if the SCC-factorization
of π has the form πmτm−1πm−1 · · · τ1π1, and the following properties hold:
1. for all 1 ≤ i ≤ m, πi starts in qi;
2. for all 2 ≤ i ≤ m, if |τi−1πi−1 · · · τ1π1| ≤ (1− ε)n+ t+ 1, then ci is the low state; and if
|τi−1πi−1 · · · τ1π1| ≥ n− t, then ci is the high state;

3. for all 2 ≤ i ≤ m, ri = |τi−1πi−1 · · · τ1π1| (mod g).

The idea of a compact summary is visualized in Figure 2. If m > |Q| then the above
compact summary cannot represent a run. Therefore, we can assume that m ≤ |Q|. For
every triple (qi, ri, ci), the entries qi and ri only depend on the rDFA B, and hence can be
stored with O(1) bits. Every state ci of the probabilistic counter needs O(log(1/ε)) bits.
Hence, a compact summary can be stored in O(log(1/ε)) bits. In contrast to Theorem 5, we
maintain a set of compact summaries which represent all runs of B on the complete stream
read so far (not only on the active window) with high probability.

I Lemma 18. For a given input stream w ∈ Σ∗, we can maintain a set of compact summaries
S containing for each q ∈ Q a compact summary csq ∈ S starting in q such that csq represents
the unique run πw,q with probability at least 2/3.

ISAAC 2019
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It remains to define an acceptance condition on compact summaries. For every q ∈ Q
we define Accmod(q) = {` (mod g) : ` ∈ Acc(q) and ` ≥ t}, which is intuitively speaking
the set of accepting remainders. Let cs = (qm, rm, cm) · · · (q1, r1, c1) be a compact summary.
Since c1 is the low initial state of the probabilistic counter, there exists a maximal index
i ∈ {1, . . . ,m} such that ci is low. We say that cs is accepting if n− ri (mod g) ∈ Accmod(qi).

I Proposition 19. Assume that εn ≥ t. Let w ∈ Σ∗ with |w| ≥ n and let cs be a compact
summary which represents πw,q0 .
1. If lastn(w) ∈ L, then cs is accepting.
2. If cs is accepting, then pdist(lastn(w), L) ≤ εn.

Proof of Theorem 7. Assume that εn ≥ t, otherwise we use a trivial streaming algorithm
that stores the window explicitly with O(1/ε) bits. We use the algorithm from Proposition 18
for each incoming symbol from the stream. To initialize, we run the algorithm on �n. The
algorithm accepts if the computed compact summary starting in q0 is accepting. From
Proposition 18 and 19 we get:

If pdist(lastn(w), L) > εn, then the algorithm rejects with probability at least 2/3.
If lastn(w) ∈ L, then the algorithm accepts with probability at least 2/3.

This concludes the proof of the theorem. J

Comparing Theorems 5 and 7 leads to the question whether one can replace the Hamming
gap γ(n) = εn in Theorem 7 by γ(n) = o(n) while retaining constant space at the same time.
We show that this is not the case:

I Lemma 20. Every randomized sliding window tester with two-sided error for a∗ ⊆ {a, b}∗
with Hamming gap γ(n) needs space Ω(logn− log γ(n)) for infinitely many n.

4.3 Randomized loglogspace tester with one-sided error
Let L be a finite union of trivial regular languages and suffix-free regular languages. In
this section, we present a randomized sliding window tester for L with one-sided error and
Hamming gap γ(n) = εn that uses space O(log logn). By Lemma 3 and Theorem 4, it
suffices to consider the case when L is a suffix-free regular language. As in Section 4 we fix an
rDFA B = (Q,Σ, F, δ, q0) for L such that g(C) = g for all SCCs of A. Since L is suffix-free,
B has the property that no final state can be reached from a final state by a non-empty run.
We decompose B into a finite union of partial automata, similar to [14].

I Definition 21. A sequence (qk, ak, pk−1), Ck−1, . . . , (q2, a2, p1), C1, (q1, a1, p0), C0, q0 is a
path description if Ck−1, . . . , C0 is a chain (read from right to left) in the SCC-ordering of
B, pi, qi ∈ Ci, qi+1

ai+1←−−− pi is a transition in B for all 0 ≤ i ≤ k − 1, and qk ∈ F .

Each path description defines a partial rDFA BP = (QP ,Σ, {qk}, δP , q0) by restricting B
to the state set QP =

⋃k−1
i=0 Ci ∪ {qk}, restricting the transitions of B to internal transitions

from the SCCs Ci and the transitions qi+1
ai+1←−−− pi, and declaring qk to be the only final state.

The rDFA is partial since for every state pi and every symbol a ∈ Σ there exists at most one
transition q a←− pi. Since the number of path descriptions P is finite and L(B) =

⋃
P L(BP ),

it suffices to provide a sliding window tester for L(BP ) (we again use Lemma 3 here).
From now on, we fix a path description P from Definition 21 and the partial automaton

BP = (QP ,Σ, {qk}, δP , q0) corresponding to it. The acceptance sets Acc(q) are defined
with respect to BP . If all Ci are transient, then L(BP ) is a singleton and we can use a
trivial sliding window tester with space complexity O(1). Now assume the contrary and let
0 ≤ e ≤ k − 1 be maximal such that Ce is nontransient.
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I Lemma 22. There exist r0, . . . , rk−1, s0, . . . , se ∈ N such that the following holds:
1. For all e+ 1 ≤ i ≤ k, the set Acc(qi) is a singleton.
2. Every run from qi to qi+1 has length ri (mod g).
3. For all 0 ≤ i ≤ e, Acc(qi) =si

∑k−1
j=i rj + gN.

Let s = max{k,
∑k−1
j=0 rj , s0, . . . , se} and for a word w ∈ Σ∗ define the function `w : Q →

N ∪ {∞} where `w(q) = inf{` ∈ N | δP (last`(w), q) = qk} (we set inf ∅ =∞).
Let p be a random prime with Θ(log logn) bits. We now define an acceptance condition

on `w(q). If n /∈ Acc(q0), we always reject. Otherwise, we accept w iff `w(q0) ≡ n modulo
our randomly chosen prime p.

I Lemma 23. Let n ∈ Acc(q0) be a window size with n ≥ s+ |QP | and w ∈ Σ∗ with |w| ≥ n.
There exists a constant c > 0 such that:
1. if lastn(w) ∈ L(BP ), then w is accepted with probability 1;
2. if pdist(lastn(w), L(BP )) > c, then w is rejected with probability at least 2/3.

Proof of Theorem 8. Let n ∈ N be the window size. From the discussion above, it suffices
to show a tester for a fixed partial automaton BP . Assume n ≥ s+ |Q|, otherwise a trivial
tester can be used. If n /∈ Acc(q0), the tester always rejects. Otherwise, the tester picks a
random prime p with Θ(log logn) bits and maintains `w(q) (mod p) for all q ∈ QP , where w
is the stream read so far, which requires O(log logn) bits. When a symbol a ∈ Σ is read,
we can update `wa using `w: If q = qk, then `wa(q) = 0, otherwise `wa(q) = 1 + `w(δP (a, q))
(mod p) where 1 +∞ =∞. The tester accepts if `w(q0) ≡ n (mod p). Lemma 23 guarantees
correctness of the tester in the one-sided error setting. J

5 Further research

We gave a complete characterization of the space complexity of sliding window testers for
regular languages. A natural open research problem is, whether similar results can be shown
for context-free languages:

Does every context-free language L have a deterministic sliding window tester with
Hamming gap εn (or even O(1)) that uses space O(logn) (or at least space o(n))?
Does every context-free language L have a randomized sliding window tester with Ham-
ming gap εn (or even O(1)) that uses space O(1) (or at least space o(n))?

If the answers to these questions turn out be negative, then one might look at deterministic
context-free languages or visibly pushdown languages.

References
1 Charu C. Aggarwal. Data Streams – Models and Algorithms. Springer, 2007.
2 Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Regular Languages are

Testable with a Constant Number of Queries. SIAM Journal on Computing, 30(6):1842–1862,
2000. doi:10.1137/S0097539700366528.

3 Ajesh Babu, Nutan Limaye, Jaikumar Radhakrishnan, and Girish Varma. Streaming algorithms
for language recognition problems. Theoretical Computer Science, 494:13–23, 2013.

4 Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. Optimal sampling from sliding
windows. Journal of Computer and System Sciences, 78(1):260–272, 2012.

5 Dany Breslauer and Zvi Galil. Real-Time Streaming String-Matching. ACM Transactions on
Algorithms, 10(4):22:1–22:12, 2014. doi:10.1145/2635814.

6 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana Starikovskaya.
Dictionary Matching in a Stream. In Proceedings of ESA 2015, volume 9294 of Lecture Notes
in Computer Science, pages 361–372. Springer, 2015. doi:10.1007/978-3-662-48350-3_31.

ISAAC 2019

https://doi.org/10.1137/S0097539700366528
https://doi.org/10.1145/2635814
https://doi.org/10.1007/978-3-662-48350-3_31


6:12 Sliding Window Property Testing for Regular Languages

7 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana Starikovskaya. The
k-mismatch problem revisited. In Proceedings of SODA 2016, pages 2039–2052. SIAM, 2016.
doi:10.1137/1.9781611974331.ch142.

8 Raphaël Clifford, Tomasz Kociumaka, and Ely Porat. The streaming k-mismatch problem. In
Proceedings of SODA 2019, pages 1106–1125. SIAM, 2019. doi:10.1137/1.9781611975482.68.

9 Raphaël Clifford and Tatiana Starikovskaya. Approximate Hamming Distance in a Stream.
In Proceedings of ICALP 2016, volume 55 of LIPIcs, pages 20:1–20:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.20.

10 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining Stream
Statistics over Sliding Windows. SIAM Journal on Computing, 31(6):1794–1813, 2002.

11 Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. Test-
ing and Spot-Checking of Data Streams. Algorithmica, 34(1):67–80, 2002. doi:10.1007/
s00453-002-0959-4.

12 Nathanaël François, Frédéric Magniez, Michel de Rougemont, and Olivier Serre. Streaming
Property Testing of Visibly Pushdown Languages. In Proceedings of ESA 2016, volume 57 of
LIPIcs, pages 43:1–43:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

13 Moses Ganardi. Visibly Pushdown Languages over Sliding Windows. In Proceedings of
STACS 2019, volume 126 of LIPIcs, pages 29:1–29:17. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.STACS.2019.29.

14 Moses Ganardi, Danny Hucke, Daniel König, Markus Lohrey, and Konstantinos Mamouras.
Automata theory on sliding windows. In Proceedings of STACS 2018, volume 96 of LIPIcs,
pages 31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

15 Moses Ganardi, Danny Hucke, and Markus Lohrey. Querying Regular Languages over Sliding
Windows. In Proceedings of FSTTCS 2016, volume 65 of LIPIcs, pages 18:1–18:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

16 Moses Ganardi, Danny Hucke, and Markus Lohrey. Randomized Sliding Window Algorithms for
Regular Languages. In Proceedings of ICALP 2018, volume 107 of LIPIcs, pages 127:1–127:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

17 Moses Ganardi, Danny Hucke, Markus Lohrey, and Tatiana Starikovskaya. Sliding window
property testing for regular languages. Technical report, arXiv.org, 2020. arXiv:1909.10261.

18 Moses Ganardi, Artur Jeż, and Markus Lohrey. Sliding Windows over Context-Free Languages.
In Proceedings of MFCS 2018, volume 117 of LIPIcs, pages 15:1–15:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

19 Shay Golan, Tsvi Kopelowitz, and Ely Porat. Streaming Pattern Matching with d Wildcards.
In Proceedings of ESA 2016, volume 57 of LIPIcs, pages 44:1–44:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.44.

20 Shay Golan, Tsvi Kopelowitz, and Ely Porat. Towards Optimal Approximate Streaming
Pattern Matching by Matching Multiple Patterns in Multiple Streams. In Proceedings of
ICALP 2018, volume 107 of LIPIcs, pages 65:1–65:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.65.

21 Shay Golan and Ely Porat. Real-Time Streaming Multi-Pattern Search for Constant Alphabet.
In Proceedings of ESA 2017, volume 87 of LIPIcs, pages 41:1–41:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.41.

22 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property Testing and its Connection
to Learning and Approximation. Journal of the ACM, 45(4):653–750, 1998. doi:10.1145/
285055.285060.

23 John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison–Wesley, Reading, MA, 1979.

24 Rahul Jain and Ashwin Nayak. The Space Complexity of Recognizing Well-Parenthesized
Expressions in the Streaming Model: The Index Function Revisited. IEEE Transactions on
Information Theory, 60(10):6646–6668, October 2014. doi:10.1109/TIT.2014.2339859.

https://doi.org/10.1137/1.9781611974331.ch142
https://doi.org/10.1137/1.9781611975482.68
https://doi.org/10.4230/LIPIcs.ICALP.2016.20
https://doi.org/10.1007/s00453-002-0959-4
https://doi.org/10.1007/s00453-002-0959-4
https://doi.org/10.4230/LIPIcs.STACS.2019.29
http://arxiv.org/abs/1909.10261
https://doi.org/10.4230/LIPIcs.ESA.2016.44
https://doi.org/10.4230/LIPIcs.ICALP.2018.65
https://doi.org/10.4230/LIPIcs.ESA.2017.41
https://doi.org/10.1145/285055.285060
https://doi.org/10.1145/285055.285060
https://doi.org/10.1109/TIT.2014.2339859


M. Ganardi, D. Hucke, M. Lohrey, and T. Starikovskaya 6:13

25 Andreas Krebs, Nutan Limaye, and Srikanth Srinivasan. Streaming Algorithms for Recognizing
Nearly Well-Parenthesized Expressions. In Proceedings of MFCS 2011, volume 6907 of Lecture
Notes in Computer Science, pages 412–423. Springer, 2011.

26 Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. Recognizing Well-Parenthesized
Expressions in the Streaming Model. SIAM Journal on Computing, 43(6):1880–1905, 2014.

27 Robert H. Morris. Counting Large Numbers of Events in Small Registers. Communications of
the ACM, 21(10):840–842, 1978. doi:10.1145/359619.359627.

28 Benny Porat and Ely Porat. Exact and Approximate Pattern Matching in the Streaming
Model. In Proceedings of FOCS 2009, pages 315–323. IEEE Computer Society, 2009. doi:
10.1109/FOCS.2009.11.

29 Michael O. Rabin. Probabilistic Automata. Information and Control, 6(3):230–245, 1963.
30 Tatiana Starikovskaya. Communication and Streaming Complexity of Approximate Pattern

Matching. In Proceedings of CPM 2017, volume 78 of LIPIcs, pages 13:1–13:11. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.CPM.2017.13.

ISAAC 2019

https://doi.org/10.1145/359619.359627
https://doi.org/10.1109/FOCS.2009.11
https://doi.org/10.1109/FOCS.2009.11
https://doi.org/10.4230/LIPIcs.CPM.2017.13

	Introduction
	Our results
	Related work

	Sliding window property tester
	Main results
	Proofs of the upper bounds
	Deterministic logspace tester
	Randomized constant-space tester with two-sided error
	Randomized loglogspace tester with one-sided error

	Further research

