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—— Abstract

We revisit the fundamental problem of dictionary look-up with mismatches. Given a set (diction-
ary) of d strings of length m and an integer k, we must preprocess it into a data structure to
answer the following queries: Given a query string @ of length m, find all strings in the dictionary
that are at Hamming distance at most & from . Chan and Lewenstein (CPM 2015) showed a
data structure for k = 1 with optimal query time O(m/w + occ), where w is the size of a machine
word and occ is the size of the output. The data structure occupies O(wdlog'™ d) extra bits of
space (beyond the entropy-bounded space required to store the dictionary strings). In this work
we give a solution with similar bounds for a much wider range of values k. Namely, we give a
data structure that has O(m/w + log® d + occ) query time and uses O(wdlog” d) extra bits of
space.
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1 Introduction

The problem of dictionary look-up was introduced by Minsky and Papert in 1968 and is a
fundamental task in many areas such as bioinformatics, information retrieval, and web search.
Informally, the task is to store a set of strings referred to as dictionary in small space to
maintain the following queries efficiently: Given a query string, return all dictionary strings
that are close to it under some measure of distance. In this work we focus on Hamming
distance and exact solutions to the problem. Formally, the problem is stated as follows.

Dictionary look-up with k mismatches. We are given a dictionary that is a set of d strings
of length m and an integer £ > 0. The task is to preprocess the dictionary into a data
structure that maintains the following queries: Given a string P of length m, return all the
strings in the dictionary such that the distance between each of them and P is at most k.
As a natural first step, much effort has been concentrated on the case k =1 [3, 22, 4, 7,
8, 31, 11]. We note that the structure of the problem in this case is very special. Namely, if
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two strings have Hamming distance at most one, then there is an integer ¢ such that their
prefixes of length ¢ are equal and their suffixes of length m — i — 1 are equal. Many existing
solutions rely heavily on this property and cannot be extended to the case of arbitrary k.
The first non-trivial solution for k£ > 1 was given in the seminal paper of Cole, Gottlieb,
and Lewenstein [13], who introduced a data structure called k-errata tree. The k-errata tree
requires w - O(md + dlogk d) bits of space and has query time O(m—i—logk d+ occ), where w is
the size of a machine word and occ is the size of the output. The subsequent work [10, 9, 25]
mainly focused on improving the space complexity of the data structure.

Two works are of particular interest to us. For any ¢ = o(logmd) Belazzougui and
Venturini [4] showed a data structure for £k = 1 with query time O(m + occ) that uses
2mdH, + o(md) + 2dlog d bits of space, where H, is the ¢g-th empirical entropy of the
concatenation of all strings in the dictionary. It was followed by the work of Chan and
Lewenstein [11], who improved the query time to O(m/w + occ), while using approximately
the same amount of bits, 2mdH, + o(md) + O(wdlog' "¢ d). In the model of Chan and
Lewenstein the size o of the alphabet is constant, the query string arrives in a packed form,
meaning that each w/logo letters are stored in one machine word, under the standard
assumption w = O(log md). The interest in this kind of bounds is explained by the fact that
the value mdH, is a lower bound to the output size of any compressor that encodes each
letter of the dictionary strings with a code that only depends on the letter itself and on the
¢ immediately preceding letters [26].

1.1 Our contribution and techniques

We investigate further this line of research and give a new data structure with similar
bounds for a much wider range of values k. We adopt the model of Chan and Lewenstein
and show a data structure for dictionary look-up with k£ mismatches that has query time
O(m/w 4 log" d + occ) and uses 2mdH, + o(md) + O(wdlog® d) bits of space for all d > 2
(Theorem 18). If in addition k < log(m/w)/loglogd, the query time becomes O(m/w + occ),
matching the query time of Chan and Lewenstein.

The basis of our data structure is the k-errata tree of Cole, Gottlieb, and Lewenstein [13].
We first introduce a small but important modification to this data structure that will allow
us to reduce the time requirements for non-constant k. At a high level, the k-errata tree
is a collection of compact tries, where each trie contains suffixes of a subset of strings in
the dictionary. The query algorithm runs (’)(logk d) prefix search queries in the tries. In
Section 4.1 we show that the prefix search queries can be implemented in O(m/w) shared
plus O(logd) time per query using O(md) space beyond the space required by the k-errata
tree. Next, in Section 4.2 we show how to improve the space complexity to entropy-bounded.
Our main contribution at this step is a new reduction from prefix search queries in the tries
of the k-errata trees to prefix search queries on a compact trie containing only a subset
of all suffixes of the dictionary strings. Finally, in Section 5 we improve the O(logd) time
that we spend per each query to O(1) (amortised) time by a clever use of Karp-Rabin
fingerprints, which gives the final result, Theorem 18. We emphasize that we derandomize
the query algorithm and that our data structure is deterministic, regardless the fact that we
use Karp-Rabin fingerprints.

1.2 Related work

Many of the works we cited above consider not only the Hamming distance, but also the edit
distance. This is in particular true for K = 1, when the edit distance and Hamming distance are
equivalent. Another interesting direction is heuristic methods for the Hamming and the edit
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distances which have worse theoretical guarantees but perform well in practice [12, 6, 23, 27].
Finally, we note that the solutions discussed in this work are beneficial for low-distance
regime, i.e. when k = o(logd). If k¥ = w(logd), one should turn to approximate approaches,
such as locality-sensitive hashing (see [2] and references therein).

Several works have studied the question of developing efficient data structures for string
processing when the query arrives in a packed form. In particular, Takuya et al. suggested
a data structure called packed compact tries [29] to maintain efficient exact dictionary
look-ups, and Bille, Ggrtz, and Skjoldjensen used similar technique to develop an efficient
text index [5].

2 Preliminaries

We assume a constant-size integer alphabet {1,2,...,0}. A string is a sequence of letters of
the alphabet. For a string S = s183. .., we denote its length m by |S| and its substring
$iSit1...8j, where 1 < ¢ < j <m, by S[i,j]. If i = 1, the substring S[1, j] is referred to as
prefix of S. If j =m, S[i,m] is called a suffix of S. We say that S is given in a packed form
if each w/ log o letters of S are stored in one machine word, i.e. S occupies O(m/w) machine
words in total. Given a string S in packed form, we can access (a packed representation) of
any O(w)-length substring of S in constant time using the shift operation.
A trie is a basic data structure for storing a set of strings. A trie is a tree which has the
following three properties:
1. Each edge is labelled by a letter of the alphabet;
2. Each two edges outgoing from the same node are labelled with different letters, and the
edges are ordered by the letters;
3. Let the label of a node u be equal to the concatenation of the labels of the edges in the
root-to-u path. For each string S in the set there is a node of the trie such that its label
is equal to S, and the label of each node is equal to a prefix of some string in the set.

At each node we store the set of ids of the strings that are equal to the node’s label. The
number of nodes in a trie can be proportional to the total length of the strings. To improve
the space requirements, we replace each path of nodes with degree one and with no string
ids assigned to them with an edge labelled by the concatenation of the letters on the edges
in the path. The result is called a compact trie. Each node of the trie is represented in the
compact trie as well, some as nodes, and some as positions in the edges. We refer to the set
of all nodes and the positions in the edges of the compact trie as positions.

» Fact 1. A compact trie containing x strings has O(x) nodes.

3 The k-errata tree: Reminder and fix

Our definition of the k-errata tree follows closely that of Cole, Gottlieb, and Lewenstein [13],
but as explained below we introduce an important fix to the original definition. We try to be
as concise as possible, but we feel obliged to provide all the details both because we modify
the original definition and because the details are important for our final result.

Intuition. Let us explain the main idea first. Denote the given dictionary of strings by D.
The k-errata tree for D is built recursively. We start with the compact trie T' containing all
the strings in D and decompose it into heavy paths.
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» Definition 2 ([21]). The heavy path of T is the path that starts at the root of T and
at each node v on the path branches to the child with the largest number of leaves in its
subtree (heavy child), with ties broken arbitrarily. The heavy path decomposition is defined
recursively, namely it is defined to be a union of the heavy path of T' and the heavy path
decompositions of the subtrees of T' that hang off the heavy path. The first node in a heavy
path is referred to as its head.

Recall that our task is to find all strings in D such that the Hamming distance between
them and the query string P is at most k. As a first step, we find the longest path that
starts at the root of T" and is labelled with a prefix of P. Let this path trace heavy paths
Hy, Hs, ..., Hj, leaving the heavy path H; at a position u; of T', 1 <1 < j. We can partition
all the strings in D into three categories:

1. Strings diverging off a heavy path H; at some node u, where u is located above u;;

2. Strings in the subtrees of u;’s children that diverge from the heavy path H;,;, for
1<d<y;

3. Strings in the subtree rooted at u;.

Consider the set of strings in D that diverge from a heavy path H; at a node u. They
necessarily have their first mismatch with P there. The first idea is that we can fix that
mismatch in each of the strings (decreasing the Hamming distance between them and P
by one), and then run a dictionary look-up with (k — 1) mismatches on the resulting set of
strings. The second idea is that running an independent dictionary look-up query for each
node in each heavy path is expensive, so we introduce a grouping on the nodes that reduces
the number of queries to logarithmic.

Data structure. We assign each string in D a credit of k mismatches and start building
the k-errata tree in a recursive manner. First, we build the compact trie 7" for the dictionary
D. For each leaf of T we store the ids of the dictionary strings equal to the leaf’s label
ordered by the mismatch credits. Second, we decompose 1" into heavy paths. For each node
of T' we store a pointer to the heavy path it belongs to, and for each heavy path we store a
pointer to its head. We will now make use of weight-balanced trees, defined in analogy with
weight-balanced search trees.

» Definition 3. A weight-balanced tree with leaves of weights w1, ws, ..., wy (in left-to-right
order) is a ternary tree. We build it recursively top-to-down. Let p be the smallest index
such that wy +---4+w, > (w1 +---+wp)/2. Then the left subtree hanging from the root is a
weight-balanced tree with leaves of weight w, wo, ..., w,—1, the middle contains one leaf of
weight w,,, and the right subtree is a weight-balanced tree with leaves of weight w,,y1,...,wp.

We build two sets of (k — 1)-errata trees for each heavy path H of T. We call the trees in
the first set vertical, and in the second set horizontal, according to the way we construct
them.

We first explain how we build the vertical (k — 1)-errata trees. Suppose that H contains
nodes v1,v9,...,v,, and the weight w; of a node v; is the number of strings that diverge
from H at v;. As a preliminary step, we build a weight-balanced tree W BT (H) on the nodes
in H. Consider a node of WBT (H) containing v;, V41, ..., v; in its subtree. Let § be the
length of the string S written on the path from the head of H to v;, and a be the first letter
on the edge from v; to v;11. We build a new set of strings as follows: For each node vy,
1 < £ < j, we take each string that diverges from the path H at vy, cut off its prefix of length
0 4+ 1, and decrease the credit of the string by the number of mismatches between the cut-off
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prefix and S o a (the string S appended with the letter a). If the credit of a string becomes
negative, we delete it. Finally, we build the (k — 1)-errata tree for each of the newly created
sets of strings.

We now explain how we build the horizontal (k — 1)-errata trees. We repeat the following
for each node v; € H. Let d be the length of the label of v;. Consider the set of all children
of v; except for the node v;11 (the child of v; that belongs to H). For each child v in this
set, we build a new set of strings as follows: We take each string that ends below v, cut off
its prefix of length § + 1, and decrease the credit of the string by 1. Similar to above, if the
credit of a string becomes negative, we delete it. We define the weight of each child as the
number of strings in the corresponding set. Next, we build the weight-balanced tree on the
set of the children, and for each node of the tree consider a set of strings that is a union of
the sets of strings below it. Finally, we build the (k — 1)-errata tree for each of these sets of
strings.

» Remark. Our modification to the original definition is that we truncate the strings and
store the mismatch credits. Because of that, all the strings we work with are suffixes of the
dictionary strings, which allows us to process them efficiently.

Queries. A dictionary look-up with & mismatches for a string P is performed in a recursive
way as well. For the purposes of recursion, we introduce an extra parameter, u, and allow to

run dictionary look-ups with mismatches from any position u of a trie of the k-errata tree.

We will make use of a procedure called PrefixSearch: Given a string and a position u of a
trie, PrefixSearch returns the longest path starting at u that is labelled by a prefix of the
query string.

Suppose we must answer a dictionary look-up with & mismatches for a string P that
starts at a position u. We initialize p = 0. If k = 0, we run a PrefixSearch to find a path in T
labelled by P. If such a path exists, we output all the dictionary strings assigned to the end
of this path such that their mismatch credit > p. Assume now &k > 0. If |P| = 0, the look-up
terminates and we output all the dictionary strings assigned to the current position such
that their mismatch credit > p. Otherwise, we run a PrefixSearch to find the longest path
starting at u that is labelled by a prefix of P. Suppose that 7 passes through heavy paths
Hy, H,,...,Hj, leaving H; at a position u;, 1 <14 < j. Note that for ¢ < j, u; is necessarily
a node of T', and for ¢ = j it can be a position on an edge.

Recall that for each node of T" we store the heavy path it belongs to, and for each heavy
path we store its head. The position u; is the ending node of 7. To find u;_1, consider the
heavy path H; containing u;, by definition, u;_; is the parent of the head of H;. We find all
the nodes u;, 1 <1¢ < j, analogously. Recall that we partitioned the dictionary strings into
three types.

Strings of Type 1. We process each path H; in turn. We select a set of nodes of the
weight-balanced tree W BT (H;) covering the part of H; from the beginning and up to (but
not including) u,;. To do this, we follow the path from the root of WBT(H;) to u; and take
the nodes that hang off to the left of the path. Consider one of the selected nodes v and its
(k — 1)-errata tree. All the strings in this tree have equal lengths 4. To finish the recursive
step, we run a dictionary look-up with (k — 1) mismatches for the suffix of P of length § in
this tree.

Strings of Type 2. We take the weight-balanced tree for u; and select a set of nodes
that covers all its leaves except for the head of H; ;. To select this set, we find the path
from the root of the weight-balanced tree for u; to the head of H;, 1, and take the nodes that
hang off this path. For each of the selected nodes, we run a dictionary look-up with (k — 1)
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mismatches analogously to above. We also run a dictionary look-up with (k — 1) mismatches
with 4 = p + 1 starting from the position in H; that is one letter below u;.

Strings of Type 3. If u; is a position on an edge, we run a dictionary look-up query
with (k — 1) mismatches from the next position on the edge with p = p + 1. If u; is a node,
we run two dictionary look-up queries with (k — 1) mismatches. First query is run in the
horizontal (k — 1)-errata tree corresponding to the set of all children of u; that are not in H;.
The second query is run from a position in H; that is one letter below u; with p = u+ 1.

Correctness of the algorithm follows from the following observation: first, we account
for all dictionary strings. Second, in the case of (k — 1)-errata trees, we account for the
mismatches between the portion of the strings that we truncate and the query string via the
mismatch credits. Finally, when we continue the search in the same tree, there is just one
mismatch and we account for it by increasing u.

Analysis. The bounds on the space and the time complexities are summarised below. The
proofs of the lemmas, which we provide in the full version of the paper for completeness,
follow closely the proofs given by Cole, Gottlieb, and Lewenstein [13].

» Lemma 4. The tries of the k-errata tree contain (’)(dlogk d) strings in total.

» Lemma 5. A dictionary look-up with k mismatches for a query string P requires (’)(logk d)
operations PrefixSearch. Apart from the time required for these operations, the algorithm
spends O(log® d + occ) time.

In the next section we give an efficient implementation of PrefixSearch under an assumption
that P arrives in a packed form. We will use, in particular, the following simple observation.

» Fact 6. FEach trie of the k-errata tree is built on a set of equal-length suffizes of the
dictionary strings. If we run a PrefixSearch for a suffiz S of the query string P from a
position u of a trie T of the k-errata tree, then the strings in the subtree of u have length |S|.

4 Prefix search for packed strings

We first remind several well-known data structure results that we use throughout the section.
A priority queue is a data structure like a regular queue, where each element has an integer
(“priority”) associated with it. In a priority queue, an element with high priority is served
before an element with low priority. A priority queue can be implemented as a heap, that
for a set of = elements occupies O(wz) bits of space and has query time O(log x).

A predecessor data structure on a set of integers supports the following queries: Given an
integer z, return the largest integer in the set that is at most z. For a set of x integer keys,
the predecessor data structure can be implemented as a binary search tree in O(wx) bits of
space to support the predecessor queries in time O(logz). (We do not use solutions such
as [17, 30] to avoid dependency on m, which will be important for our final result.)

A dictionary data structure stores a set of integers. A dictionary look-up receives an
integer z and outputs “yes” if z belongs to the set.

» Lemma 7 ([28]). Let S be any given set of x integers. There is a dictionary over S that
occupies O(wx) bits of space, and has query time O(1).

We will also need lowest common ancestor queries on tries. Given two nodes u, v of a
trie, their lowest common ancestor is a node of maximal depth that contains both u and v in
its subtree.
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» Lemma 8 ([18]). A trie of size x can be preprocessed in O(wx) bits of space to maintain
lowest common ancestor queries in O(1) time.

Finally, we need weighted level ancestor queries on tries. A weighted level ancestor query
receives a node u and an integer £, and must output the deepest ancestor v’ of u such that
the length of the label of u’ is at most £. We will use the weighted level ancestor queries on
tries for fast navigation: Suppose that we know a leaf labelled by a string .S, then to find a
position labelled by a prefix S’ of S we can use one weighted level ancestor query instead of
performing a PrefixSearch for S’. To avoid dependency on m, we use the following simple
folklore solution instead of [20, 1, 14].

» Lemma 9. A irie of size x can be preprocessed in O(wzx) bits of space to maintain weighted
level ancestor queries in O(logx) time.

Proof. We consider the heavy path decomposition of the trie. For each node we store a
pointer to the head of the heavy path containing it, and for each path we build a binary
search tree containing the length of the labels of the nodes in it. Suppose we are to answer a
weighted level ancestor query for a node u and an integer £. The path from the root of the
trie to w (which contains all the ancestors of u) traverses a subset of heavy paths. The size
of this subset is O(log x), because each time we switch paths the weight of the current node
decreases by at least a factor of two. We iterate over this set of paths to find the path that
contains the answer u’, and then use the binary search tree to find the location of «’ in the
path. Both steps take O(logx) time. <

4.1 Linear space

As a warm-up we show a linear-space implementation of PrefixSearch that improves the
runtime of dictionary look-up queries to O(m/w + log"™ d + occ). Formally, we will show
the following result.

» Theorem 10. Assume a constant-size alphabet. For a dictionary D of d > 2 strings of
length m, there is a data structure for dictionary look-up with k mismatches that occupies
O(wmd + wdlog® d) bits of space and has query time O(m/w + log"™ d + occ), where
w = O(logmd) is the size of a machine word.

Let Suf be the set of all suffixes of the strings in D. We build a compact trie T'(Suf) on
Suf. (In the literature, T'(Suf) is referred to as the suffix tree of D.) As the total length of
the strings in D is md, the size of Suf is O(md), and therefore it occupies O(wmd) bits of
space. We can reduce PrefixSearch queries on the tries of the k-errata tree to PrefixSearch
queries on T'(Suf). We distinguish between PrefixSearch queries that start at the root of some
trie of the k-errata tree (rooted queries), and those that start at some inner node or even
a position on an edge of a trie of the k-errata tree (unrooted queries). Note that unrooted
queries are used in the case k > 1 only.

» Lemma 11. After O(wmd + wd loglc d) bits of space preprocessing, we can answer a rooted
PrefixSearch query for a string Q and any trie of the k-errata tree in O(logd) time given the
answer to a rooted PrefixSearch for @ in T (Suf).

» Lemma 12. Assume k > 1. After O(wmd + wdlog® d) bits of space preprocessing, we can
reduce an unrooted PrefixSearch query for @ that starts at a position u of a trie T of the
k-errata tree to a rooted PrefixSearch for some suffix Q' of Q in a trie 7' of a (k — 1)-errata
tree in O(logd) time given the answer to a rooted PrefixSearch query for @ in T(Suf).

66:7

MFCS 2018



66:8

Fast String Dictionary Look-Up with Mismatches

Lemmas 11 and 12 were proved in [13]. For completeness, we give their proofs in the full
version of the paper. Suppose we are to answer a dictionary look-up with & mismatches for
a string P. Our algorithm traverses the k-errata tree and generates rooted and unrooted
PrefixSearch queries. We maintain a priority queue. Each time we need an answer to a
PrefixSearch for a string S in T'(Suf), we add S to the priority queue. At each step of the
algorithm we extract the longest string from the queue and answer the PrefixSearch query for
it. Notice that all strings in the queue are suffixes of P and that the maximal length of strings
in the queue cannot increase. We can therefore assume that we must answer PrefixSearch
queries for the suffixes of P starting at positions 1 =i < iy < --- < 1i,, where z = (’)(logk d).

Bille, Ggrtz, and Skjoldjensen [5] showed that we can preprocess T'(Suf) in linear space
to answer PrefixSearch queries for a single query string of length m in O(m/w + log log md)
time. As an immediate corollary we obtain that we can answer z PrefixSearch queries in
z - O(m/w + loglog md) time, but this is too slow for our purposes. Below we develop their
ideas to give a more efficient approach.

» Lemma 13. T(Suf) can be preprocessed in O(wmd) bits of space to answer PrefixSearch
for the suffizes of P starting at positions 1 =iy < iy < -+ <14, in O(m/w + zlogd) time.

Proof. We assume that the strings in the dictionary are stored in the packed form. By
construction, each edge of a trie of the k-errata is labelled by a substring of a dictionary
string. It means that we can store each label as three integers: the id of the string, and the
starting and the ending positions of the substring. Next, we preprocess T'(Suf) for weighted
level ancestor queries (Lemma 9). A node or a position in the trie is called boundary if the
length of its label is a multiple of w/log o, where w is the size of a machine word and o is
the size of the alphabet. Boundary nodes cut the tree into micro-trees. We only consider the
micro-trees containing more than two nodes. We define the label of a leaf of a micro-tree
as a machine word that contains a packed representation of the string written on the path
from the root of the micro-tree to the leaf. The labels can be treated as integers; for each
micro-tree we create a dictionary (Lemma 7) and a predecessor data structure on the labels
of its leaves. We also preprocess each micro-tree for lowest common ancestors. Note that the
total size of the micro-trees is O(md), as each edge of T'(Suf) contains at most two nodes of
the micro-trees. Therefore, the preprocessing requires O(wmd) bits of space.

We now explain how to answer the PrefixSearch queries for the suffixes of P starting at
the positions 1 =41 < iy < -+ <4,. For 41, we start at the root of T'(Suf). For i;, j > 1, we
use the information obtained at the previous step. Namely, suppose that the PrefixSearch
for P[i;—1,m] terminated at a position labelled by P[i;j_1,¢;_1]. We take any leaf below
this position, let it be labelled by a string S € Suf. Let P[i;,¢;_,] be the longest prefix of
Plij, ;1] such that its length is a multiple of w/log . We then start the PrefixSearch from
a position u labelled by Pli;,£;_,]. To find the position u, we first find the leaf labelled by
Sli; —ij—1 + 1,|S]] € Suf, and then use a weighted level ancestor query to jump to u in
O(logd) time. Notice that u is boundary. If  is not a root of a micro-tree, it has a single
outgoing edge of length at least w/logo. We compare the first w/log o letters of the label
of this edge and P[¢;_; + 1,¢;_; +w/logo] in O(1) time by comparing the corresponding
machine words. If they are equal, we continue from the next boundary node on the edge in
a similar manner. Otherwise, we find the first mismatch between the two strings in O(1)
time as follows: First, compute a bitwise XOR, of the two strings, and then locate the most
significant bit using the technique of [19].

If w is the root of a micro-tree 7, we search for P[¢_; +1,£;_; +w/logo] in the dictionary
of 7. If it is in the dictionary and corresponds to a leaf v, we continue to v. Otherwise,
we find its predecessor pred and successor succ using the predecessor data structure. The
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PrefixSearch must terminate either on the path from u to the leaf of the micro-tree labelled
by pred, or on the path from u to the leaf of the micro-tree labelled by succ. We compute the
longest common prefix of P[¢_; +1,¢;_; +w/logo] with pred and with succ using bitvector
operations in O(1) time as explained above, take the longest of the two, and find the position
labelled by it in O(logd) time using a weighted level ancestor query.

The running time of each prefix search query is proportional to the number of (w/logo)-
length blocks of P that we compare with the labels of the edges of T'(Suf). Notice that
each two different PrefixSearch queries share at most one block of letters. Therefore, as
the size of the alphabet ¢ is constant, the total running time of z PrefixSearch queries is
O(m/w + zlogd). <

Lemmas 4, 5, 11, 12, and 13 give Theorem 10.

4.2 Entropy-bounded space

In this section we improve the space requirements of our implementation of PrefixSearch and
show the following theorem.

» Theorem 14. Assume a constant-size alphabet. For a dictionary of d > 2 strings of lengths
m and any ¢ = o(logmd), let H, be the g-th empirical entropy of the concatenation of all the
dictionary strings. There is a data structure for dictionary look-ups with k mismatches that
uses mdH, + o(md) + O(wdlog" d) bits of space and has query time O(m/w +log"** d+oce),
where w = O(log md) is the size of a machine word.

There are two bottlenecks: First, we need to store the dictionary strings, and second, the
tree structure of T'(Suf) requires 2(md) space. To overcome the first bottleneck, we replace
the packed representation of the dictionary strings by the Ferragina-Venturini representation:

» Lemma 15 ([16]). Under the assumption of an alphabet of constant size o, for any
q = o(log md) there exists a data structure that uses mdHg+o(md) bits of space and supports
constant-time access to any w/logo = O(log md)-length substring of a dictionary string.

If d > 2 is a constant, if suffices to store the Ferragina-Manzini representation of the
dictionary strings to obtain the bounds of Theorem 14. Indeed, when a query string P
arrives, we can decide if the Hamming distance between P and a dictionary string is at
most k in O(m/w + k) = O(m/w + log" d) time, using comparison by machine words and
bitvector operations. As d is constant, we obtain the desired time bound. Below we assume
that d = Q(1).

We now deal with the second bottleneck. We will consider a smaller trie T'(Suf’) on a
subset Suf’ of Suf, and will show that PrefixSearch queries on tries of the k-errata tree can
be reduced to PrefixSearch queries on this trie. Suf’ is defined to be the set of all suffixes of
the dictionary strings that start at positions wlogd/logo, 2wlogd/logo, and so on. We
call such suffixes sampled. Below we show that we can reduce PrefixSearch queries in the
tries of the k-errata tree to PrefixSearch queries in T'(Suf’).

» Lemma 16. After O(md/logd + wdlog® d) bits of space preprocessing, we can answer a
rooted PrefixSearch query for a string Q = P[¢,m] in O(logd) time given the answer to a
rooted PrefixSearch query for a string P[{',m] in T(Suf"), where ¢/ > { is the smallest multiple
of wlogd/logo.

Proof. At the preprocessing step, we traverse T'(Suf’) and remember the leftmost and the
rightmost leaves in each of its subtrees. We also remember the neighbours of each leaf in the
left-to-right order, and finally we preprocess the trie for lowest common ancestor queries. As
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a second step we preprocess each trie of the k-errata tree for lowest common ancestor and
weighted level ancestor queries. We also build the following data structure for each trie of
the k-errata tree. For each string S in the trie, let S = pS’, where S’ is the longest sampled
suffix of S. We call p a head of S, and define the rank of S to be the rank of S’ in Suf’. We
build a compact trie Theqqs containing the heads of all the strings, and preprocess it as in
Lemma 13. If Theqqs contains x strings, we use O(wax) bits of space for the preprocessing,
i.e. O(wdlog" d) bits of space in total. We also associate a predecessor data structure with
each of its leaves. The predecessor data structure of a leaf labelled by p contains the ranks
of all the strings such that their head is equal to p. The predecessor data structures occupy
O(wdlog” d) bits of space in total as well.

Suppose we are to answer a rooted PrefixSearch query for a string @ = P[¢,m] and a trie
7 of the k-errata tree. Let Theqqs be the compact trie containing the heads of the strings
in 7. By Fact 6, the length of the heads is (¢’ — ¢). We first read P[{,¢' — 1] in blocks of
w/ log o letters in O(logd) time, and run a PrefixSearch for it in Theqqs in O(log d) time. If
the PrefixSearch terminates in a position u of Theqqs that is not in a leaf, it remains to find
the position corresponding to u in 7, which we can do with one weighted level ancestor query.

Assume now that the PrefixSearch terminates in a leaf of T}cqqs. By the condition of the
lemma, we know the answer to the rooted PrefixSearch for P[¢',m] in T'(Suf’). We also store
the leftmost and the rightmost leaves in each subtree of T'(Suf’), and therefore can find the
predecessor of P[¢',m] in Suf’ in O(1) time. We use the predecessor data structure associated
with the leaf to find the predecessor pred and successor succ of P[¢',m] in O(logd) time. To
find the position where the PrefixSearch for P terminates, we compute the lengths ¢, ¢, of
the longest common prefix of P[¢, m] and pred and of P[¢',m] and succ. We can compute
the longest common prefix of P[¢/,m] and pred (which is a sampled suffix of a dictionary
string) in O(1) time via a lowest common ancestor query on T(Suf’). We then compute £,
in a similar way. If £, = ¢,, we return the lowest common ancestor of pred and succ as the
answer. If £, > {, then the answer is the ancestor of P[¢,¢' — 1] o pred such that the length
of its label is (¢ — ¢) + ¢, and we can find it by one weighted level ancestor query. The case
£y > ¢, is analogous. <

» Lemma 17. Assume k > 1. After O(md/logd + wdlog® d) bits of space preprocessing,
we can answer an unrooted PrefixSearch query for a string Q = P[¢,m] by reducing it to a
rooted PrefixSearch query in O(logd) time given the answer to a rooted PrefixSearch query
for a string P[{',m] in T(Suf’), where ¢ > ¢ is the smallest multiple of wlogd/logo.

Proof. During the preprocessing step, we preprocess T'(Suf’) for lowest common ancestor
queries and each trie of the k-errata tree for weighted level ancestor queries. Let u be the
position in a trie 7 where we start the PrefixSearch for P[¢, m]. The search path for P[¢,m)]
traverses a number of heavy paths. The first path is the path containing u. Let S be the
label of the part of the path starting from u. We consider two cases. Suppose first that ¢ = £.
In this case, S is a suffix of one of the dictionary strings starting at a position ¢, i.e. it is
sampled. Therefore, we can find the longest common prefix of P[¢',m] and S using one lowest
common ancestor query on T'(Suf’). We can then find the node in the path corresponding to
this longest common prefix using one weighted level ancestor query. From there, we can find
the starting node of the second heavy path traversed by P[¢,m] in O(1) time. It remains to
answer a rooted PrefixSearch query in the subtree rooted at this node, which is a trie of a
(k — 1)-errata tree by construction. When we know the answer for this PrefixSearch, we can
go back to 7 using one weighted level ancestor query. In the second case £/ > £. We start
by comparing P[¢ 4+ 1,m] and S by blocks of w/log o letters until we reach the start of a
sampled suffix, and then proceed as above. <
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Suppose that we are to answer a dictionary look-up with k£ mismatches for a string P.
Our algorithm traverses the k-errata tree and generates rooted PrefixSearch queries for the
suffixes of P in T'(Suf’). We maintain a priority queue. Each time we need an answer to a
rooted PrefixSearch for a suffix Q = P[i,m] in T'(Suf’), we add Q to the priority queue. At
each step we extract the longest string from the queue and answer the PrefixSearch query for
it. Since the maximal length of suffixes in the queue cannot increase, we can assume that we
must answer PrefixSearch queries for the suffixes of P starting at positions i1 < iy < -+ < iy,
where z = O(log® d). Moreover, for each j the position i; is a multiple of wlogd/logo. We
preprocess T'(Suf’) as in Lemma 13, which requires O(md/logd) = o(md) bits of space. We
first run PrefixSearch for P[i;, m] in O(m/w) time. Suppose it follows the path labelled by
Pli1, f1]. Let S € Suf’ be an arbitrary string that ends below the end of this path. We then
find the leaf corresponding to S[iz —i1, |S|]. By construction of T'(Suf’) and because ip —iy is a
multiple of wlogd/log o, such a leaf must exist. We then use a weighted level ancestor query
to find the end of the path labelled by Plia, £;], where Plis, ;] is the longest suffix of Plis, ¢1]
such that its length is a multiple of w/log o, and continue the PrefixSearch for Plis, m] from
there, and so on. The total running time is O(m/w + zlogd) = O(m/w + log"** d).

If d = Q(1) as we assumed earlier, lemmas 15, 16, 17, and the discussion above give
Theorem 14.

5 Removing extra logarithm from the time complexity

In this section we improve the query time to O(m/w + log® d + occ) and show our final result.

» Theorem 18. Assume a constant-size alphabet. For a dictionary of d > 2 strings of lengths
m and for any g = o(logmd), let H, be the q-th empirical entropy of the concatenation
of all strings in the dictionary. There exists a data structure for dictionary look-ups with
k mismatches that uses 2mdH, + o(md) + O(wdlogk d) bits of space and has query time
O(m/w + log® d + occ), where w = ©(logmd) is the size of a machine word.

As explained in Theorem 14, we can assume d = Q(1). Recall that the dictionary look-up
with k mismatches is run recursively. The first (k — 2) levels of recursion require O(log"~? d)
PrefixSearch queries and can be implemented in O(m/w 4 log®~* d) time. Therefore, it
suffices to improve the runtime of the two last levels of the recursion, where we must perform
a batch O(log" ' d) dictionary look-up queries with one mismatch. To achieve the desired
complexity we use the fact that the queries are related, as explained below.

Preprocessing. For a string S = s15s. .. s, we define its reverse ST = s,,, ... s95;. First,
we build a compact trie on the reverses of all the dictionary strings and preprocess it as
described in Lemma 13, which takes O(wd) bits of space. We store the reverses using the
Ferragina-Venturini representation (Lemma 15) in H;md + o(md) bits of space, where H;
is the ¢-th empirical entropy of the reverse of the concatenation of all the strings in the
dictionary. By [15, Theorem A.3], H;md + o(md) = H,md + o(md). For the second step, we
need Karp-Rabin fingerprints. We modify the standard definition as we work with packed
strings.

» Definition 19 (Karp-Rabin fingerprints [24]). Consider a string S and its packed repres-
entation wyws ... w,, where each w; is a machine word. (If | S| is not a multiple of w/logo,
we append an appropriate number of zeros.) The Karp-Rabin fingerprint of S is defined
as p =13 w;-T
integer in [0,p — 1].

z—1

mod p, where p is a fixed prime number and r is a randomly chosen
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From the definition it follows that if the strings are equal, their fingerprints are equal.
Furthermore, it is well-known that for any ¢ > 3 and p > (max{m/w,dlog"d}), the
probability of two distinct strings of length zw < max{m,wd loglC d} having the same
fingerprint (collision probability) is less than 1/(max{m/w,dlog" d})¢~!. Consider a trie 7
of the k-errata tree. By definition, the lengths of the leaf labels in 7 is at most m. From the
bound on the collision probability it follows that we can choose p and r so that the fingerprints
of the reverses of these labels are distinct. For each leaf of 7, we compute the Karp-Rabin
fingerprint of the reverse of its label and add it to a dictionary (Lemma 7) associated with 7.
Also, using the same p and r, we compute Karp-Rabin fingerprints corresponding to inner
nodes of the tries of the k-errata tree. Namely, consider one of such nodes, and let S be its
label and § be the length of the strings in the trie. We take the reverse of .S, prepend it with
(6 — |S|) mod w/ log o zeros, and compute the Karp-Rabin fingerprint of the resulting string.

Queries. We must run (9(logk*1 d) dictionary look-up queries with one mismatch. Consider
one of these queries, let it be a query for a string @ (which must be a suffix of P) in a trie 7
and recall the algorithm of Section 3. First, we run a PrefixSearch to find the longest path
7 that is labelled by a prefix of Q. For this step we can use T'(Suf’), as the total number
of such queries is (9(10gk_1 d) and therefore we can spend O(logd) time per each of them.
Suppose that 7 traverses the heavy paths Hi, Ho,..., H; and leaves the heavy path H; at a
position u;. We can find the positions u; in O(logd) time once we have found the end of .
The rest of the algorithm can be described as follows. First, we must perform dictionary
look-ups with 0 mismatches (i.e., PrefixSearch) in O(logd) vertical and O(logd) horizontal
O-errata trees (that are tries of the k-errata tree by definition). Second, for each 1 <14 < j,
we must perform a dictionary look-up with 0 mismatches (PrefixSearch) from a position
u} that follows u; in the heavy path H;. Importantly, each u; is a node. Finally, we must
perform a a dictionary look-up with 0 mismatches (PrefixSearch) from a position u; that
follows w; in the heavy path H;.

We note that to perform the PrefixSearch from the position u); we can use T(Suf’), as
before, because the total number of such PrefixSearch operations is O(log" ™! d). We now
explain how we perform the PrefixSearch operations in vertical and horizontal O-errata trees,
as well as the PrefixSearch operations from nodes u}, 1 <4 < j. In total, we must perform
(’)(logk d) such operations, and for each of them the query string is a suffix of P. Let
Pliy,m], Plia,m],..., Pliz,m], z = O(log® d) be the suffixes of P for which we are to run
a PrefixSearch. We create a bitvector of length m = o(md) where each i;-h bit is set. We
then compute the Karp-Rabin fingerprints of the reverses of P[iy, m], Pliz,m], ..., Pli,, m]
in O(m/w + z) time using the following fact.

» Fact 20. Given the Karp-Rabin fingerprints of X and Y, where the length of X is a
multiple of w/logo, we can compute the Karp-Rabin fingerprint of their concatenation, XY
in O(1) time.

We iterate over all blocks of the bitvector starting from the last one and maintain the
Karp-Rabin fingerprint of the reverse of the suffix of P that starts at the current position.
When we start a new block, we update the Karp-Rabin fingerprint. If a block contains
set bits (which we can decide in constant time), we extract the positions of all set bits in
O(1) time per bit using the technique of [19], and compute the corresponding Karp-Rabin
fingerprints. Also, as a preliminary step, we run a PrefixSearch for P in the compact trie on
the reverses of the dictionary strings in O(m/w + logd) time. Let u be the position where
this PrefixSearch terminates.
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PrefixSearch in vertical and horizontal O-errata trees. Assume we must answer a Prefix-
Search for P[ij,m] on a tree 7. We search the fingerprint of the reverse of P[i;, m] in the
dictionary associated with 7. The search will return at most one leaf of the tree. We know
that its label is equal to P[i;, m] with high probability, but we need a deterministic answer.
We test the leaf as follows. Let S be one of the dictionary strings such that its id is stored at
the leaf. We find the leaf v of the compact tree on the reverses of the dictionary strings that
corresponds to the reverse ST of S. Now, we can compute the length of the longest common
prefix of P® and S in constant time via a lowest common ancestor query for v and v and
check if it is indeed equal or larger than |P[i;, m]|.

PrefixSearch from u}, 1 < ¢ < j. This step is equivalent to the following: Find all the
strings in the trie that start with a label of «} and end with a given suffix of P. We can
compute the Karp-Rabin fingerprints of the reverses of the strings that we are looking for
as follows. Positions u; are necessarily nodes and we store the Karp-Rabin fingerprints of
the reverses of their labels. Recall that if S; was the label of u;, we prepended the reverse
SE of S; with (6 — |S|) mod w/log o zeros, where § is the length of the strings in the trie
containing u;. It follows that we can compute the fingerprint ; of the reverse of the label
of u; prepended with (6 — |S;| — 1) mod w/logo zeros in O(1) time. Knowing ¢; and the
fingerprint of the reverse of the suffix of P, we can compute the fingerprint of the strings we
are searching for in constant time. We note that prepending with zeros is necessary in order
to align the borders of the blocks in the reverse of the label of u} and the reverse of the label
of the suffix of P. We finish the computation as above, that is we find a leaf such that the
fingerprint of the reverse of its label is equal to the fingerprint of the strings we are looking
for, and test it using the trie on the reverses of the dictionary strings.
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