
HAL Id: hal-03942931
https://hal.science/hal-03942931

Submitted on 17 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Upper and Lower Bounds for Dynamic Data Structures
on Strings

Raphael Clifford, Allan Grønlund, Kasper Green Larsen, Tatiana
Starikovskaya

To cite this version:
Raphael Clifford, Allan Grønlund, Kasper Green Larsen, Tatiana Starikovskaya. Upper and Lower
Bounds for Dynamic Data Structures on Strings. 35th Symposium on Theoretical Aspects of Computer
Science (STACS 2018), 2018, Caen (FR), France. �10.4230/LIPIcs.STACS.2018.22�. �hal-03942931�

https://hal.science/hal-03942931
https://hal.archives-ouvertes.fr


Upper and Lower Bounds for Dynamic Data
Structures on Strings
Raphael Clifford
University of Bristol, Department of Computer Science, Bristol, U.K.
Raphael.Clifford@bristol.ac.uk

Allan Grønlund
Aarhus University, Department of Computer Science, Aarhus, Denmark
jallan@cs.au.dk

Kasper Green Larsen
Aarhus University, Department of Computer Science, Aarhus, Denmark
larsen@cs.au.dk

Tatiana Starikovskaya
École Normale Supérieure, Department of Computer Science, Paris, France
tat.starikovskaya@gmail.com

Abstract
We consider a range of simply stated dynamic data structure problems on strings. An update
changes one symbol in the input and a query asks us to compute some function of the pattern
of length m and a substring of a longer text. We give both conditional and unconditional lower
bounds for variants of exact matching with wildcards, inner product, and Hamming distance
computation via a sequence of reductions. As an example, we show that there does not exist an
O(m1/2−ε) time algorithm for a large range of these problems unless the online Boolean matrix-
vector multiplication conjecture is false. We also provide nearly matching upper bounds for most
of the problems we consider.
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1 Introduction

The search for lower bounds provides one of the greatest challenges in computer science.
Progress in finding better truly unconditional lower bounds continues in slow but steady
steps. There appears however, in the short term at least, to be no realistic prospect of
finding unconditional lower bounds which are polynomial in the size of the input. One of
the most exciting discoveries in recent years has been that such polynomial lower bounds
can be given for a range of problems in P conditional on the hardness of a small set of well
known and conjectured to be hard problems [2, 3, 13, 10, 1, 14]. These include the Strong
Exponential Time Hypothesis (SETH), 3-SUM and online Boolean matrix-vector product
(OMv).
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22:2 Upper and Lower Bounds for Dynamic Data Structures on Strings

In this paper we study the hardness of a number of simply stated dynamic string problems
and show both conditional lower bounds based on the OMv conjecture (see Conjecture 14
for a precise statement) as well as unconditional lower bounds. We will also give new upper
bounds which in many cases will nearly match our new conditional lower bounds. Each
problem will have the following form.

I Problem 1. Consider a text T of length n and a pattern P of length m. An update
to the pattern (or text) is a pair (j, σ) which indicates that the letter at index j in the
pattern (or text) is to be substituted with the letter σ. The task is to develop a dynamic data
structure on P and T that maintains the following queries: Given a position i of T , output
f(P, T [i, . . . , i+m− 1]).

Unless stated otherwise, we allow updates to both the pattern P and the text T . The dif-
ferent functions f we will consider are Hamming distance (DynHD), inner product (DynIP)
and exact matching with wildcards (DynEM). These functions have formed the core of pat-
tern matching with errors and wildcards for many years and have been extensively studied in
both the standard offline pattern matching setting and to a lesser extent online and stream-
ing. To the best of our knowledge, this is the first exploration of the complexity of pattern
matching with errors and wildcards as a fully dynamic data structure problem.

By way of preparation, in Lemmas 4 and 5 we give O(
√
m logm) query and update

times for exact inner product, exact matching with wildcards, and for dynamic Hamming
distance over constant-sized alphabets, as well as O(m3/4 log1/4m)-time algorithm for dy-
namic Hamming distance over polynomial-size alphabets. These algorithms are derived via a
lazy rebuilding scheme. We then show in Theorem 15 that there does not exist an O(m1/2−ε)
time solution to any of these problems unless the online Boolean matrix-vector conjecture is
false. The lower bound for dynamic exact matching with wildcards is particularly interesting
as it is exponentially higher than the known O(logm) time complexity for dynamic exact
matching without wildcards.

Our conditional lower bound also extends to (1+ε)-approximate DynIP, DynIP modulo
2 and remarkably, to DynHD modulo 2 with a ternary input alphabet. This latter result
is in stark contrast to the complexity of DynHD modulo 2 with a binary input alphabet
which we show in Lemma 13 can be solved in O(logm/ log logm) query and update time.

We complement all these lower bounds with a set of unconditional lower bounds derived
via reductions from different 2d-dynamic range counting problems. First we show that
DynIP is at least hard as weighted 2d-range counting. As a result our lower bound of
Ω((logm/ log logm)2) for DynIP matches the highest unconditional lower bound known
for any dynamic data structure problem. We then go on to show Ω((log1/2m/ log logm)3)
unconditional lower bounds for DynHD over binary alphabets, DynIP modulo 2 over binary
alphabets and DynHD modulo 2 over ternary alphabets. These lower bounds are derived
from a recent breakthrough in the complexity of the unweighted version of 2d-range counting.
To finish our unconditional lower bounds we then show Ω(logm/ log logm) unconditional
lower bounds for DynHD modulo 2 over binary alphabets, DynEM and (1+ε)-approximate
DynIP.

As our final set of dynamic problems, we move on to consider (1 + ε)-approximate
DynHD for which we do not have matching conditional lower bounds, despite its superficial
similarity to approximate DynIP. Unlike for approximate DynIP and exact DynHD, in
Section 4 we show markedly different upper bounds for approximate DynHD depending on
whether updates may occur in only the pattern and text or in both. For the former case we
derive O(ε−c polylog m) time algorithms via Johnson-Lindenstrauss sketching. The exact
value of c depends on the size of the input alphabet and in fact for some update operations
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Table 1 Update/query time bounds for DynEM, DynHD, and DynIP for a text T of length
m ≤ n ≤ 2m and a pattern P of length m. For the conditional lower bounds, δ > 0 is an arbitrary
constant. Bounds for (1 + ε)-approximate DynHD are not shown (see Section 4 for details).

Mode Alphabet Upper bounds Cond. lower bounds Uncond. lower bounds

D
yn

E
M

exact polynom. O(
√
m logm) Ω(m1/2−δ) Ω(logm/ log logm)

D
yn

IP

exact polynom. O(
√
m logm) Ω(m1/2−δ) Ω((logm/ log logm)2)

mod 2 {0, 1} O(
√
m logm) Ω(m1/2−δ) Ω((log1/2 m/ log logm)3)

approx. polynom. O(
√
m logm) Ω(m1/2−δ) Ω(logm/ log logm)

D
yn

H
D exact constant O(

√
m logm) Ω(m1/2−δ) Ω((log1/2 m/ log logm)3)

polynom. O(m3/4 log1/2 m) Ω(m1/2−δ) Ω((log1/2 m/ log logm)3)

mod 2 {0, 1} O(logm/ log logm) — Ω(logm/ log logm)
{0, 1, 2} O(

√
m logm) Ω(m1/2−δ) Ω((log1/2 m/ log logm)3)

the running time dependency on logm is completely removed. For the latter case with
updates in both the pattern and text, our upper bound is O(ε−2√m polylog m) time. It is
an interesting and open question whether there exist matching conditional lower bounds for
these versions of approximate DynHD as well. We give a summary of the results in Table 1.

2 Related work

In the dynamic setting we consider with single character updates, the most closely related
previous work considers the problem of dynamic exact matching. In [8] an O(log logm)
time algorithm was shown for dynamic exact matching when updates are only permitted in
the text [8]. In [5] a more general data structure was developed supporting insertion and
deletion of characters and movements of arbitrary large blocks of text. This was improved in
a succession of papers culminating in the work [19] who give a data structure that supports,
amongst other properties, concatenation, splitting and equality testing in O(logm) update
and O(1) query time. The same data structure solves, for example, the dynamic exact
matching problem without wildcards problem in O(logm) time. At the expense of O(log2m)
updates this latter work also supports finding occurrences of a specified pattern P in O(|P |)
time. A separate line of work has considered the static data structure problem of text
indexing for approximate matching [11, 7, 17, 12, 21, 12, 9].

3 Upper bounds for DynHD, DynIP, and DynEM

In this section we show upper bounds for DynIP, DynHD, and DynEM problems. Recall
that a query i asks for f(P, T [i, . . . , i+m−1]). For DynIP we define f(P, T [i, . . . , i+m−1])
to be equal to the inner product of P and T [i, . . . , i + m − 1], for DynHD the Hamming
distance between P and T [i, . . . , i+m− 1]. In the DynEM problem we assume that P and
T are strings over Σ∩{?}, where Σ is an integer alphabet and ? is a special wildcard symbol
that matches any letter in Σ. We define f(P, T [i, . . . , i + m − 1]) to be equal to zero if P
matches T [i, . . . , i+m− 1] and the number of mismatching positions otherwise. We define
n to be the length of the text, and m to be the length of the pattern, n ≥ m.

We will in fact present a general solution for dynamic string problems where f can be
represented in a particular form. DynIP, DynHD and DynEM will seen as special cases.

STACS 2018



22:4 Upper and Lower Bounds for Dynamic Data Structures on Strings

The restriction is simply that f(P, T [i, . . . , i+m− 1]) =
∑j=m
j=1 g(P [j], T [i+ j − 1]), where

the function g can be evaluated in constant time. This functional form is closely related
to the idea of local distance functions that were key to the development of fast streaming
pattern matching algorithms [16]. We first show that our string problems do indeed satisfy
the stated requirements.

I Lemma 2. If f is inner product, Hamming distance, or exact matching with wildcards,
then there exists a function g such that f(P, T [i, . . . , i+m−1]) =

∑j=m
j=1 g(P [j], T [i+j−1]),

where the function g can be evaluated in constant time.

Proof. If f is inner product, we put g(Pj , Ti+j−1) = Pj · Ti+j−1. In the case of Hamming
distance, we define g(Pj , Ti+j−1) = 0 if Pj = Ti+j−1 and gj(Pj , Ti+j−1) = 1 otherwise.

For DynEM we assume that wildcards are represented by the value 0. It is not hard to see
that we can take g(Pj , Ti+j−1) to be the characteristic function of (Pj − Ti+j−1)2PjTi+j−1 > 0
and indeed this observation is the basis for one of the fastest offline exact matching with
wildcards algorithms [15]. The key property we use is that either (a) if one of Pj and
Ti+j−1 is a wildcard or Pj = Ti+j−1 then g(Pj , Ti+j−1) = 0, or (b) Pj 6= Ti+j−1 and then
g(Pj , Ti+j−1) > 0. It follows that f(P, T [i, . . . , i + m − 1]) equals zero if and only if P and
T [i, . . . , i+m− 1] match. J

We now show a solution for all dynamic string problems defined by a function f that
can be represented in the form above. We consider the most general update model, where
we are allowed to update both the text and the pattern.

I Theorem 3. Let T be a text of length n, and P be a pattern of length m. Assume
f can be represented as f(P, T [i, . . . , i + m − 1]) =

∑j=m
j=1 g(Pj , Ti+j−1), where g can be

computed in constant time, and the values f(P, T [1, . . . ,m]), f(P, T [2, . . . ,m + 1]), . . . ,
f(P, T [n−m+ 1, . . . , n]) can be computed in T (n) time and S(n) space. We can then solve
the corresponding dynamic string problem in O(

√
T (n)) worst case update/query time using

O(S(n) + n) space.

Proof. Let us first show a solution with O(
√
T (n)) amortised time. We start by computing

values A[1] = f(P, T [1, . . . ,m]), . . . , A[n −m + 1] = f(P, T [n −m + 1, . . . , n]) in O(T (n))
time and S(n) space. At all times, we maintain a list of updates U that have occurred
since the last moment we recomputed the values A[i]. Suppose that the size of U is at most
d
√
T (n)e and a query i arrives. We can then compute A′[i] = f(P, T [i, . . . , i+m− 1]) from

A[i] and U in the following way. We initialise A′[i] = A[i], and consider each update in
order. Suppose that an update change letters in a position k of P or T [i, . . . , i+m− 1], and
let P ′k and T ′i+k−1 be the updated letters. We remember P ′k and T ′i+k−1, and set

A′[i]← A′[i]− g(Pk, Ti+k−1) + g(P ′k, T ′i+k−1)

Since g can be evaluated in constant time, this step takes constant time as well. Therefore,
the time to perform each query is O(

√
T (n)). When the size of U reaches d

√
T (n)e, we

apply the updates in U to T and P , empty U , and recompute the values A[i] from scratch.
The amortised cost of an update is therefore O(

√
T (n)).

We can de-amortise the solution in a standard way. Namely, we restart the computation
of the values A[i] each d

√
T (n)/2e updates, and run Θ(

√
T (n)) steps of the computation

per each of the d
√
T (n)/2e subsequent updates. While the computation is not over, we

use the previously computed values f(P, T [1, . . . ,m]), . . . , f(P, T [n −m + 1, . . . , n]) to an-
swer queries. As before, we will need to correct the value of the function g in at most
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d
√
T (n)/2e positions. Note that apart from the space we need for computing the values

f(P, T [1, . . . ,m]), f(P, T [2, . . . ,m + 1]), . . . , f(P, T [n −m + 1, . . . , n]), we need only O(n)
space. J

Let us first assume that m ≤ n ≤ 2m, later we will show how to extend the solution to
a general value of n when the updates occur only in the text.

I Lemma 4. For a text T of length m ≤ n ≤ 2m, and a pattern P of length m, problem
DynHD can be solved in O(

√
m logm) query/update time for constant-size alphabets, and in

O(m3/4 log1/4m) query/update time for polynomial-size alphabets. Both solutions use O(m)
space.

Proof. If the alphabet is binary, the values f(P, T [1, . . . ,m]),. . . , f(P, T [n−m+ 1, . . . , n])
can be computed by running the FFT algorithm twice. Recall that the FFT algorithm
computes the inner product for each alignment of two strings. By running the FFT algorithm
on P and T for the first time, we obtain, for each i, the number of positions j such that
P [j] = T [i+ j] = 1. By running it for the second time on the copies P and T where each bit
is flipped, we obtain, for each i, the number of positions j such that P [j] = T [i+ j] = 0. We
can then compute the values f(P, T [1, . . . ,m]), . . . , f(P, T [n−m+ 1, . . . , n]) in linear time.
For this algorithm, T (n) = O(n logn) = O(m logm). For alphabets of constant size |Σ|,
we run the FFT algorithm |Σ| times, once for each letter a ∈ Σ, on the copies of P and T
where a is replaced with 1 and all letters in Σ \ {a} are replaced with 0. T (n) = O(m logm)
as well. For polynomial-size alphabets, T (n) = O(n

√
n logn) = O(m

√
m logm) and S(n) =

O(n) = O(m) bounds were shown independently by Abrahamson [4] and Kosaraju [24] in
1987. The claim immediately follows from Lemma 2 and Theorem 3. J

I Lemma 5. For a text T of length m ≤ n ≤ 2m, and a pattern P of length m, problems
DynIP and DynEM can be solved in O(

√
m logm) query/update time using O(m) space.

Proof. For both problems, T (n) = O(n logn) = O(m logm) and S(n) = O(n) = O(m).
For inner product, this is a direct corollary of the FFT algorithm. The bound for exact
matching with wildcards was demonstrated in [18, 15]. The claim follows from Lemma 2
and Theorem 3. J

We now extend our solution to a general value of n in the case where only updates to
the text are allowed. In this case there is also an additional cost of computing the full set
of solutions before the first query or update is performed which we omit from the following
theorem.

I Theorem 6. For a text T of length n ≥ m, and a pattern P of length m, problem
DynHD can be solved in O(

√
m logm) query/update time for constant-size alphabets, and

in O(m3/4 log1/4m) query/update time for polynomial-size alphabets. Both solutions use
O(n) space. Problems DynIP and DynEM can be solved in O(

√
m logm) query/update

time using O(n) space.

Proof. We first partition T into blocks of length 2m overlapping by m positions (the last
block may be shorter). Note that for each i a string T [i, . . . , i+m− 1] is a substring of one
of such blocks, and each position of T belongs to at most two blocks. It follows that if we
have a solution for an m-length block with update time tu, query time tq, and space S, then
we have a solution for T with update time O(tu), query time tq, and space O( nm · S). The
claim follows from Lemmas 4 and 5. J

STACS 2018



22:6 Upper and Lower Bounds for Dynamic Data Structures on Strings

4 Upper bounds for dynamic approximate Hamming distance

In this section we develop algorithms for an approximate version of DynHD, which we refer
to as DynApproxHD. In this problem a query i must return a (1+ε)-approximation of the
Hamming distance between P and T [i, . . . , i+m− 1], where ε > 0 is a parameter of the al-
gorithm. Unlike the other problems we have considered, the complexity of DynApproxHD
appears to have a strong dependence on whether updates are permitted only in the pattern
or text or in both. At one extreme, when updates are only permitted in the pattern and the
input alphabet is binary, we show in Theorem 9 a data structure that takes O(1/ε) update
and O(1/ε2) query time. However if updates can occur in both the pattern and the text,
then the complexity increases dramatically to be at least that of exact DynIP, DynEM and
DynHD over binary alphabets.

In Section 3 we showed that the DynHD problem can be solved in O(m1/2 log1/2m)
query/update time for constant-size alphabets, and in O(m3/4 log1/4m) query/update time
for polynomial-size alphabets. We start our exploration of the complexity of DynApproxHD
by showing that this dependence on the alphabet size is almost completely removed in this
approximate setting. The solution we give is deterministic and is based on the mapping idea
of Karloff [23].

I Lemma 7 ([23]). Let Σ be the alphabet of P and T . There exists Θ((1/ε2) log2 n) de-
terministic mappings mapj : Σ→ {0, 1} such that a (1 + ε)-approximation of the Hamming
distance between P and T at a particular alignment can be given by a normalised aver-
age of the Hamming distances between mapj(P ) = mapj(P1) . . .mapj(Pn) and mapj(T ) =
mapj(T1) . . .mapj(Tn) at this alignment. Each mapping can be stored as a look-up table that
permits to compute each mapj(Pk) or mapj(Tk) in O(1) time.

I Corollary 8. For a text T of length m ≤ n ≤ 2m, and a pattern P of length m, the Dyn-
ApproxHD problem over polynomial-size alphabets can be solved in O((1/ε2)

√
m·polylog m)

query/update time and O((1/ε2)m log2m) space.

Proof. We consider Karloff’s mappings mapj . For each j, we run our DynHD solution
for constant-size alphabets (Lemma 4) on mapj(P ) and mapj(T ). The claim immediately
follows. J

We now present several randomised solutions for DynApproxHD in two special update
models where we are allowed to update either only the text or only the pattern. We first
assume a binary input alphabet, and then show how to extend our solutions to constant-size
and then later polynomial-size alphabets as well.

I Theorem 9. For a text T of length n ≥ m, and a pattern P of length m, there is a
randomised data structure for the DynApproxHD problem over a constant-sized alphabet
with
(a) O(1/ε) update time, O(1/ε2) query time, and O((1/ε2) · n) space if only updates to the

pattern are allowed;
(b) O((1/ε) · polylog n) update time and O((1/ε2) · polylog n) query time using O((1/ε2) ·

n polylog n) space if only updates to the text are allowed.
Each answer is correct with constant probability.

Proof. Let us first assume the input alphabet is of constant size. We will make use of
the sparse Johnson-Lindenstrauss transform by Kane and Nelson [22] defined by a random
Θ(1/ε2) × n matrix M such that its entries are from {−1, 0, 1}, and each of its columns
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contains Θ(1/ε) non-zero entries. The result of a transform, which we call a sketch, is
defined to be equal to M · x. Kane and Nelson showed how to choose a distribution on
such matrices such that, with constant probability, the appropriately scaled square of the
L2 norm of the difference of the sketches of two strings gives a (1 + ε)-approximation of
Hamming distance.

(a) During the preprocessing step we compute the sketch of P and of eachm-length substring
of T . When an update to P arrives, we update its sketch in a naive way in O(1/ε) time.
When a query i arrives, we can compute a (1 + ε)-approximation of the Hamming
distance between P and T by computing the L2 norm of the difference of the sketches
of P and T [i, . . . , i+m− 1]. Since the sketches are the vectors of length 1/ε2, this can
be done in O(1/ε2) time.

(b) For this model, we will need a sketch that gives (1 + ε)-approximation of Hamming
distance with error probability Θ(1/ logm). This can be achieved by repeating the
scheme Θ(log logm) times. During the preprocessing, we first compute Θ(log logm)
sketches for each 2k-length substring of the pattern P , where k = 1, 2, . . . , logm. We
then compute Θ(log logm) sketches for each substring T [i · 2k + 1, . . . , (i + 1) · 2k].
We call such substrings of T canonical. When an update (i, σ) arrives, we need to
fix the sketches of O(logm) canonical substrings (since Ti belongs to O(logm) such
substrings), which can be done in O((1/ε) logm log logm) time. A query i can be
answered in O((1/ε2) logm log logm) time: First, we partition T [i, . . . , i + m − 1] into
O(logm) canonical substrings S1, . . . , Sk. Secondly, we compute a (1+ε)-approximation
of the Hamming distance between each Si and the corresponding substring of P using
the sketches. Finally, we sum up all approximations to obtain the answer. Since the
probability to error on each pair of substrings is Θ(1/ logm), the total error probability
is constant by the union bound.

Both algorithms can be extended to work for any constant sized alphabet by expanding
the input alphabet in unary. That is we replace the letter i with a binary vector 0 . . . 010 . . . 0,
where the set bit is in the i-th position. J

I Corollary 10. For a text T of length n ≥ m, and a pattern P of length m, and ε > 1/n,
there is a randomised data structure for the DynApproxHD problem over polynomial-size
alphabets with
(a) O((1/ε3) · polylog n) update time, O((1/ε4) · polylog n) query time, and O((1/ε4) ·

n polylog n) space if only updates to the pattern are allowed;
(b) O((1/ε4) · polylog n) update time, O((1/ε4) · polylog n) query time, and O((1/ε4) ·

n polylog n) space if only updates to the text are allowed.
Each answer is correct with constant probability.

Proof. We reduce the alphabet to binary by applying Karloff’s mappings. There are
Θ((1/ε2) log2 n) mappings, and to compute the Hamming distance between P and T [i, . . . , i+
m−1] we need to compute the Hamming distance for each pairmapj(P ) andmapj(T [i, . . . , i+
m − 1]). To achieve constant error probability, we run Θ(log((1/ε) logn)) = polylog n in-
stances of the algorithm for text-only or pattern-only updates (Theorem 9). (We note that
we will achieve (1+ε)2-approximation, which is (1+ε′)-approximation for ε′ = 2ε+ε2.) J

5 Lower bounds

In this section we demonstrate conditional and unconditional lower bounds for different
variants of DynEM, DynIP, and DynHD. The conditional lower bounds are derived from

STACS 2018



22:8 Upper and Lower Bounds for Dynamic Data Structures on Strings

OMv

DynHD modulo 2
(ternary alphabet)

DynHD

DynIP modulo 2
(binary alphabet) (1 + ε)-approx. DynIP

DynIP

DynEM

Figure 1 Reductions between OMv and different variants of DynEM, DynIP, and DynHD.

the hardness of a well-known problem, online Boolean matrix-vector product (OMv). Fig. 1
summarises the reductions we use.

5.1 Reductions between DynIP, DynHD and DynHD modulo 2
Before we get to our main lower bounds results we will first establish the relationship between
some of the dynamic string problems we consider.

I Lemma 11. DynHD is at least as hard as DynIP over binary alphabets.

Proof. We map the input alphabet of the text and the pattern separately. Take an instance
of DynIP where the input alphabet is binary. In order to transform it into an instance of
DynHD each 1 in the pattern or text is mapped to the string 111 in the DynHD instance.
Similarly, a 0 in the pattern is mapped to the string 010 and a 0 in the text is mapped to
the string 100. This transformation ensures that any two symbols that align in the DynIP
instance will give Hamming distance 2 in the DynHD instance except when two 1s align.
In this case the Hamming distance will be 0. We can therefore infer the inner product from
the Hamming distance: The inner product will be equal to the length of the pattern minus
the Hamming distance divided by two. J

We will later show both conditional and unconditional lower bounds not only for DynIP
but also for DynIP modulo 2. The following two lemmas will lead to perhaps our most
surprising result which is that DynHD modulo 2 over ternary alphabets is exponentially
harder to solve than DynHD modulo 2 over a binary alphabet. It is worth emphasising
by way of contrast that in the standard offline pattern matching setting, the asymptotic
complexity of computing the Hamming distance at all alignments of a pattern and text is
identical for any constant sized input alphabet.

I Lemma 12. DynHD modulo 2 over a ternary alphabet is at least as hard as DynIP
modulo 2 over a binary alphabet.

Proof. We again map the input alphabet of the text and pattern separately. Take an
instance of DynIP modulo 2 where the input alphabet is binary. Each 1 in the pattern is
mapped to the string 22 and each 0 in the pattern is mapped to the string 01. Each 1 in
the text is mapped to the string 11 and each 0 in the text is mapped to the string 02. This
transformation ensures that any two symbols that align in the DynIP modulo 2 instance
will give Hamming distance 1 in the DynHD modulo 2 instance except for when two 1s align
in the DynIP modulo 2 instance when the resulting Hamming distance is 2. Therefore, the
inner product modulo 2 is equal to the length of the pattern minus the Hamming distance
modulo 2. J
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However, DynHD modulo 2 over a binary alphabet is much easier than DynHD modulo
2 over a ternary alphabet.

I Lemma 13. For a binary text T of length n ≥ m, and a binary pattern P of length m

the DynHD modulo 2 problem can be solved in O(logm/ log logm) update/query time using
O(n) space. There is a matching unconditional lower bound for update/query time as well.

Proof. As before, we divide the text T into 2m-length blocks overlapping by m positions.
We will show that for each block DynHD modulo 2 can be solved in O(logm/ log logm)
update/query time using O(m) space, hence giving the claim.

Consider a 2m-length block of T . In order to answer a query at alignment i for DynHD
modulo 2 we need only to sum, modulo 2, the number of 1s in the pattern and the corres-
ponding substring of the text T [i, . . . , i + m − 1]. This can be seen via a simple proof by
induction as follows. As the base case consider two strings of length 1 and let all arithmetic
be over Z2. In this case the Hamming distance is the sum of the Hamming weights of the
two strings. For the inductive step, extend each of these two strings by one bit and observe
that the new Hamming distance is the old Hamming distance before extending the strings
plus the sum of the two new bits over Z2.

The Hamming weight of the pattern can be maintained straightforwardly. We argue
that answering queries for the Hamming weight of substrings of the block is equivalent to
the prefix sum problem modulo 2. To reduce from this problem to prefix sum we need only
observe that we can compute the number of 1s in T [i, . . . , i+m−1] by subtracting the prefix
sum up to index i− 1 from the prefix sum up to index i+m− 1. To reduce from prefix sum
to the DynHD modulo 2 problem we construct a text of length 2m with the first half all
zeros and the second half as a copy of the prefix sum array. Setting the pattern to all 1s we
can compute the prefix sum modulo 2 up to index i of its array of length m by performing
a query at index i of the text. It follows from the upper and lower bounds of [28] that the
complexity of DynHD modulo 2 over a binary alphabet is Θ(logm/ log logm). J

5.2 Conditional lower bounds
We will now give lower bounds for our dynamic string problems conditional on the hardness
of a well known problem. The OMv problem was introduced in [20] as a means to prove
conditional lower bounds for a number of dynamic problems. In this problem we are first
given an r × r Boolean matrix M . We then receive r vectors v1, . . . , vr, one by one. After
seeing each vector vi, we have to output the product Mvi (over the Boolean semi-ring)
before we receive the next vector. A naive algorithm can solve this problem using O(r3)
time in total with the current fastest solution taking O(r3/2Ω(

√
log r)) time [27]. The OMv

conjecture is as follows:

I Conjecture 14 (OMv Conjecture [20]). For any constant ε > 0, there is no O(r3−ε)-time
algorithm that solves the OMv problem with error probability of at most 1/3.

I Theorem 15. Assuming the OMv conjecture, there does not exist an algorithm running in
O(m1/2−ε) for the maximum of query and update time for DynEM, DynIP, and DynHD.
The same lower bound holds for DynIP modulo 2, for (1 + ε)-approximate DynIP, and for
DynHD modulo 2 over ternary alphabets. The same lower bound holds even when updates
are permitted only in the pattern or only in the text.

Proof. We first give a reduction from the online Boolean matrix-vector multiplication prob-
lem to DynEM. We create a text T of length 2m = 2r2 from the matrixM by concatenating
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the r rows of M one after another and filling the rest of T with the symbol 1 repeated r2

times. Now consider a single Boolean matrix vector productMvi. The pattern P has length
m = r2. Its first r symbols are a copy of the vector vi but with all 0s replaced by the wild-
card symbol ? and all 1s replaced by the symbol 0. The remaining r2 − r symbols are set
to the wildcard symbol ?. To perform a Boolean matrix vector multiplication we perform
m exact match with wildcard queries at indices 1, r + 1, 2r + 1, . . . , (r − 1)r + 1. If a query
i returns a match then Mvi[j] = 0 and Mvi[j] = 1 otherwise. If follows that any algorithm
for DynEM running in O(m1/2−ε) for the maximum of query and update time implies an
O(r3−ε)-time algorithm that solves the online Boolean matrix-vector multiplication problem,
thereby contradicting the OMv conjecture.

DynIP and DynHD are at least as hard as DynIP modulo 2, so it suffices to show the
lower bound for the latter. We give a similar reduction from OMv but this time with an
extra randomisation step. We create a text T of length 2m = 2r2 from the matrix M by
concatenating the r rows of M one after another and filling the rest of T with the symbol 0
repeated r2 times. Now consider a single Boolean matrix vector product Mvi. We create a
pattern P of length m = r2 with the first r symbols being a copy of vi and the remaining
r2 − r symbols set to 0. We now flip each set bit in P with probability 1/2 and compute
inner product modulo 2 queries at indices 1, r + 1, 2r + 1, . . . , (r − 1)r + 1. If Mvi[j] = 0
then an inner product query j will always return 0. If Mvi[j] = 1 then the inner product
query will return 1 with probability 1/2. This gives a probability of at least 1/2 of giving the
correct answer for each Mvi[j]. We amplify the probabilities by repeating the randomised
procedure O(logm) times using the fact that we have one-sided error at each iteration. It
then follows that there does not exist an algorithm running in O(m1/2−ε) for the maximum
of query and update time for DynIP modulo 2 unless the OMv conjecture is false.

The lower bound for (1 + ε)-approximate DynIP follows from the same reduction with
the arithmetic performed over the reals rather than modulo 2 and without the randomisation
step. This is because a (1 + ε)-approximation must be able to distinguish zero and non-zero
inner products which is sufficient for our reduction from OMv.

The lower bound for DynHD modulo 2 over a ternary alphabet now follows from
Lemma 12.

If updates are only allowed in the text then we derive the same lower bound as before by
modifying our reductions. Let us take the reduction from the online Boolean matrix-vector
multiplication problem to DynIP modulo 2 as an example. The other lower bounds follow
analogously. We create a pattern P of length m = r2 from the matrix M by concatenating
the r rows of M one after another. The text is of length 2m = 2r2 and will be all 0s except
for the substring T [r2 − r + 1, . . . , r2]. In order to perform a single Boolean matrix vector
product Mvi the substring is updated so that T [r2 − r + 1, . . . , r2] = vi and we then flip
each set bit in T with probability 1/2. We then compute inner product queries modulo 2
at indices 1, r+ 1, 2r+ 1, . . . , (r− 1)r+ 1 which give the correct answer for each query with
probability at least 1/2. We can amplify the probability as before giving us the desired lower
bound. J

Our lower bound also holds for DynIP modulo c for any c ≥ 2.

I Corollary 16. Let integer c ≥ 2. Assuming the OMv conjecture, there does not exist
an algorithm running in O(m1/2−ε) for the maximum of query and update time for DynIP
modulo c.

Proof. Let the input alphabet be binary as before and perform the same randomised reduc-
tion from OMv as in the proof of Theorem 15. If the inner product equals 0 then we always
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give the correct answer. If the inner product is greater than 0 then after flipping the set bits,
the inner product modulo c is greater than 0 with probability that tends asymptotically to
c−1
c . We can then amplify the probabilities to ensure that every value in the matrix-vector

product is correct with constant probability as before. J

5.3 Unconditional lower bounds
In this section we will give unconditional lower bounds for all the problems we have con-
sidered except DynApproxHD. Although these bounds are necessarily much lower than
the conditional lower bounds we gave previously, they nonetheless match in many cases the
limits of what is known unconditionally for any dynamic data structure.

We first show lower bounds for the DynIP and the DynHD problems by reduction from
the dynamic weighted range counting problem. In this problem, we are given a r×r grid D.
The points in the grid are assigned integer weights, and at any moment there can be at most
r non-zero weights wi. For our problem r = m1/3. Updates may change the weight of a point
and a query (i, j) asks for

∑
x≤i,y≤j Dx,y. In [25] Larsen gave an Ω((log r/ log log r)2) lower

bound for the maximum of query and update time for dynamic weighted range counting.
This lower bound does not hold however in the unweighted case (where the weights are in
{0, 1}) and giving an ω(log r) lower bound for this situation remained an important open
problem for a number of years. Recently in [26] a new Ω((log1/2 r/ log log r)3) lower bound
was given for this unweighted range counting problem which also holds over F2.

I Theorem 17. The DynIP problem has an unconditional Ω((logm/ log logm)2) lower
bound for the maximum of query and update time for polynomial-size alphabets. DynHD
over binary alphabets, DynIP modulo 2 over binary alphabets and DynHD modulo 2 over
ternary alphabets have an Ω((log1/2m/ log logm)3) lower bound.

Proof. We give a reduction from dynamic range counting to DynIP. We take an instance
of the problem for r = m1/3 and create a text T of length 2m and a pattern P of length m.
The text has all symbols set to 0 except Tm−m1/3+1,. . . , Tm that are set to w1, . . . , wm1/3

respectively. For each of the m2/3 different possible queries to D, a subset of the wi’s will
be included in the query. We create a pattern P so that Pjm1/3+i−1 = 1 if weight wi is
included in the range for query j and Pjm1/3+i−1 = 0 otherwise.

To perform a range counting query, we need to align the relevant substring of the pattern
of length m1/3 with T [m−m1/3 + 1, . . . ,m] and perform an inner product query. Our lower
bounds then follow from the lower bounds for the weighted and F2 versions of dynamic range
counting and Lemmas 11 and 12. J

Finally, we give lower bounds for the DynEM and the (1 + ε)-approximate DynIP
problems by reduction from the dynamic range emptiness problem. In this problem, the
set-up is exactly like in the unweighted dynamic range counting problem above, and a query
(i, j) asks if

∑
x≤i,y≤j Dx,y = 0. In [6], Alstrup et al. showed a Ω(log r/ log log r) lower

bound for this problem.

I Theorem 18. Both the DynEM and the (1 + ε)-approximate DynIP problems have
unconditional Ω(logm/ log logm) lower bounds for the maximum of query and update time.

Proof. Consider an instance of two dimensional range emptiness on D for r = m1/3. We
take an instance of this problem and create a text T of length 2m and a pattern P of
length m. The text has all values set to 0 except Tm−m1/3+1, . . . , Tm set to w1,. . . ,wm1/3

respectively. For each of the m2/3 different possible queries to D in the dynamic range
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emptiness problem, a subset of the wi’s will be included in the query. We create a pattern P
so that Pjn1/3+i−1 = 0 if weight wi is included in the range for query j and Pjn1/3+i−1 = ?
otherwise. If an exact match with wildcards query returns True then we know that all the
weights in the corresponding range are 0. If it returns False then we know the range is not
empty. We therefore have reduced from two dimensional range emptiness to DynEM giving
an Ω(logm/ log logm) lower bound for DynEM.

For the (1 + ε)-approximate dynamic inner product problem we must be able to distin-
guish an inner product of zero from all other values. We therefore use the same reduction
from the proof of Theorem 17 but this time only report whether the approximate inner
product is greater than zero. The result of this query is sufficient to determine the an-
swer to a range emptiness query and we therefore derive the same Ω(logm/ log logm) lower
bound. J
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