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Abstract
We consider the approximate pattern matching problem. Given a text T of length 2n and a
pattern P of length n, the task is to decide for each prefix T [1, j] of T if it ends with a string that
is at the edit distance at most k from P . If this is the case, we must output the edit distance
and the corresponding edit operations. We first look at the communication complexity of the
problem. We show the following:

If Alice and Bob both share the pattern and Alice holds the first half of the text and Bob
the second half, then the deterministic one-way communication complexity of the problem is
Θ(k logn).
If Alice holds the first half of the text, Bob the second half of the text, and Charlie the pattern,
then there is a deterministic one-way communication protocol that uses O(k

√
n logn) bits.

We then develop the first sublinear-space streaming algorithm for the problem.
There exists a streaming algorithm that solves the problem in O(k8√n log6 n) space. The
worst-case time complexity of the algorithmO((k2√n+k13)·log4 n) per arrival. The algorithm
is randomised with error probability at most 1/poly(n).
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1 Introduction

In this work we study the famous approximate pattern matching problem. Recall that the
edit distance between two strings S1, S2 is the minimum number of insertions, deletions,
and substitutions required to transform S1 to S2. Assume we are given a pattern P and a
text T . We say that a substring S of T is a k-mismatch occurrence of P if the edit distance
between S and P is at most k. In the approximate pattern matching problem we must
find all prefixes T [1, j] of T that end with a k-mismatch occurrence of P . The problem has
numerous applications in bioinformatics, signal processing, text retrieval, and has received a
lot of attention in the literature.

1.1 Our results
We first study the communication complexity of the problem, namely, we consider the
following setting. Let T be a text of length 2n and P be a pattern of length n. Let Alice
hold the information about the first half of the text, and let Bob hold the information about
the second half of the text. Alice sends Bob a message, and Bob’s task is to find all prefixes
T [1, j] that end with a k-mismatch occurrence of P and the edit operations that transform
the occurrence into P using only Alice’s message and his half of the text. The minimal size of
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13:2 Communication and Streaming Complexity of Approximate Pattern Matching

Alice’s message that allows Bob to complete the task is called the communication complexity
of the problem.

It is not hard to see that if both Bob and Alice have access to the pattern, the commu-
nication complexity is Θ(k logn). Indeed, from the information theoretic lower bound it
follows that Alice has to send at least k logn bits. On the other hand we can consider the
following (deterministic) protocol. Alice first finds the smallest i such that the edit distance
between T [i, n] and some prefix P [1, j] of the pattern is at most k, and then sends the edit
operations and j to Bob. Bob uses the message from Alice to restore T [i, n]. He then knows
both T [i, 2n] and P and therefore can compute all outputs. (Note that the edit distance
between P and any substring of T that starts in [1, i] and ends in [n+ 1, 2n] is at least k,
and therefore Bob does not need any information about T [1, i]). However, the situation is
different when only the third party, Charlie, knows the pattern, as in this case Alice can no
longer use the pattern to encode her half of the text. We show the following theorem.

I Theorem 1. When both P and T are binary, the one-way deterministic communication
complexity of the approximate pattern matching problem for three parties is O(k

√
n logn).

The main idea of the proof is that if k-mismatch occurrences of the pattern in the text
are rare, Alice can send them all to Bob. If on the other hand there are many k-mismatch
occurrences of the pattern, two of them will be located close to each other and therefore the
underlying text will be weakly periodic, which will allow to encode it in small space.

Our motivation to study the communication complexity of the problem is twofold. First,
it can be viewed as a generalisation of the document exchange problem, where we have
two parties Alice and Bob, Alice holds one string and Bob holds the other string, and
Bob’s task is to decide the edit distance between their strings using the message Alice
sends to him and his half of the text. If the distance is at most k, Bob must output the
edit operations that transform his string into Alice’s string. Otherwise, he may simply say
that the distance is too large. In the paper we will refer to Alice’s message as document
exchange sketch. The problem has been studied both in deterministic and randomised
settings [1, 4, 3, 8, 11, 15]. The protocol shown by Orlitsky in 1991 [15] has optimal
complexity Θ(k logn) and is deterministic. However, Bob needs nO(k) time to compute the
distance. Recently, Belazzougui showed a new deterministic protocol [1]. It has complexity
O(k2 + k log2 n) and much lower computation time of n · poly(logn). The best randomised
protocol is due to [2] and has O(k ·(log2 k+logn)) complexity and n ·poly(logn) computation
time.

The second reason to study the communication complexity of the problem is its relation
to streaming algorithms. Let us first remind the setting. Consider a pattern P of length n
and a text T of length 2n arriving as a stream, one symbol at a time. When a new symbol
arrives we must decide if the current text ends with a k-mismatch occurrence of P and if so
output the edit operations that transform the occurrence into P . We assume the standard
RAM model of computation. The time complexity is defined in the usual way, and the
space complexity is defined as all the space used by the algorithm. In particular, if we
store a copy of the pattern or of the text we must account for it. It is well-known that a
communication complexity lower bound implies a similar space lower bound for a streaming
algorithm. However, upper bounds provide some insight as well. Imagine that the algorithm
processes the stream in non-overlapping blocks, then it needs an efficient way to encode the
edit distances in each of the blocks, and one possible approach is to use the message that
Alice sends to Bob in the communication complexity protocol. We will use this idea to show
the first sublinear-space streaming algorithm for the problem.
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I Theorem 2. Assume that both P and T are binary and that k < n1/c for a sufficiently
large constant c > 0. There is a streaming algorithm that solves the approximate pattern
matching problem in O(k8√n log6 n) space and O((k2√n+ k13) · log4 n) worst-case time per
symbol. The algorithm is correct with probability 1− 1/poly(n).

The main advance has become possible due to the result of Belazzougui and Zhang [2],
who showed a sketch that can be used to compute the exact value of the edit distance
between two strings if it is at most k. Our algorithm maintains such sketches for O(

√
n)

suffixes of the text. To compute the edit distance between the pattern and the text the
algorithm divides the pattern into two parts, a short prefix and a suffix aligned with one of
the sketched suffixes of the text. The edit distance between the short prefix and the text
is computed beforehand using dynamic programming and stored very compactly using the
communication complexity approach. The edit distance between the suffix and the text is
computed with the help of the sketches. We note that the requirement on the text length
is not restrictive. Indeed, if the text’s length is larger than 2n, then one can split it into
blocks of length 2(n+ k) which overlap by n+ k symbols (the last block can be shorter) and
run the algorithm of Theorem 2 independently for each of the blocks. For each k-mismatch
occurrence of P there is a block containing it and therefore the algorithm is correct. The
complexity of the algorithm and the error probability do not change.

As we have already mentioned the problem has been extensively studied in the literature.
For a survey of previous solutions see [14]. The solutions can be roughly classified into
four main types: dynamic programming algorithms, automata-based algorithms, filtering
algorithms, and bit-parallelism. To the best of author’s knowledge, all previously known
solutions require at least Ω(n/ logn) space, and thus our result exhibits a remarkable
improvement in space complexity. On the other hand, the running time of our algorithm
is rather large. This is because the nature of the sketches is very complex and we have to
maintain them independently. We give further details in Sections 3 and 4.

1.2 Related work
Lower bounds. In this work we focus on computing small edit distances between a pattern
and a stream. If however we were interested in computing all edit distances, we would have
to spend at least n1−ε amortised time per output for any constant ε > 0 unless the strong
Exponential Time Hypothesis is false. (The original bound was given for computing the
edit distance between two strings, and our problem is harder.) The best unconditional time
lower bound was shown by Clifford et al. [6] who considered the problem in the cell-probe
model, where the time complexity of algorithm is measured as the number of cells that
must be accessed to compute the output. This model is particularly strong and any lower
bounds that hold in it hold in the RAM model as well. Clifford et al. showed that the
expected amortised time of any randomised algorithm that solves the edit distance problem
is Ω(

√
logn/(log logn)3/2) per output.

Approximate pattern matching in a stream. Another formalisation of approximate pattern
matching is the k-mismatch problem, where one must find all substrings of the text such
that the Hamming distance between them and the pattern is at most k. The first streaming
algorithm for this problem was given in [16]. It used O(k3 log7 n/ log logn) space and
O(k2 log5 n/ log logn) time per arriving symbol. In [5] this result was improved in terms
of the dependency on k to O(k2 log11 n/ log logn) space and O(

√
k log k + log5 n) time per

arriving symbol. Finally, in [7] the authors studied communication and streaming complexities
of computing approximate values of all Hamming distances between the pattern and the text.

CPM 2017



13:4 Communication and Streaming Complexity of Approximate Pattern Matching

2 Communication complexity

In this section we show Theorem 1. Recall that Alice holds the first half of the text, Bob
the second half of the text, and only Charlie holds the pattern. Bob must find all prefixes
T [1, j] of T that end with a k-mismatch occurrence of P and output the edit operations that
convert the occurrence into P .

2.1 Periodicity under edit distance
We start by introducing a notion of approximate period for the edit distance. The idea is
that two close k-mismatch occurrences of the pattern imply weak periodicity of the text. We
will use this property of the text to encode it in small space.

I Definition 3. The α-period of a string S is a minimal integer ` > α such that the edit
distance between some prefix of S and S[`+ 1, n] is at most α.

I Example 4. The 1-period of a string S = bbaabb is 3. This is because S[3, 6] = aabb

cannot be transformed into a prefix of S using just one edit operation, while the edit distance
between S[4, 6] = abb and S[1, 2] is exactly one.

The condition ` > α is essential as any suffix S[`+ 1, n] can be transformed into S by `
insertions. We now show that the α-period can be used to encode the pattern in an efficient
way similar to the way the period of a string can be used to encode it.

I Lemma 5. If the 4k-period of a string S of length n is ρ > 4k, then S can be encoded in
O(ρ+ k logn) bits.

Proof. The encoding will occupy O(ρ+ k logn) bits and contain the prefix and the suffix
of S of length ρ (both taking O(ρ) bits to store), and the at most 4k edit operations that
transform a prefix S′ of S into S[ρ+ 1, n]. The information about the edit operations will
include the type of the operation (insertion, deletion, substitution), the position, and the
symbol itself.

We now show that the encoding is lossless. Consider the first ρ symbols of S′. Let
i1 ≤ 4k be the number of these symbols that must be deleted. It follows that the remaining
ρ− i1 symbols of S′ must be aligned against the symbols of S[ρ+ 1, n]. Therefore, using the
encoding, we can restore (at least) the first ρ− i1 symbols of S[ρ+ 1, n] and consequently
S′[1, 2ρ− i1]. (Recall that insertions and replacements are stored in the encoding explicitly.)
We then consider S′[ρ, 2ρ− i1]. Let i2, i1 + i2 ≤ 4k, be the number of symbols in S′[ρ, 2ρ− i1]
that must be deleted. We can then use the remaining symbols to restore the first 2ρ− i1− i2
symbols of S[ρ+ 1, n] and consequently S′[1, 3ρ− i1− i2]. We continue in a similar way until
we reach the end of S′. At this point, we will restore all symbols of S except for maybe the
last ρ symbols which we already know from the encoding. J

2.2 Communication complexity protocol
We first explain what Charlie sends to Alice, and what Alice sends to Bob. Let B = k

√
n logn

and nB = dn/Be. Charlie sends to Alice document exchange sketches for each prefix
P [1, (nB − i) ·B] and for each suffix P [(nB − i) ·B + 1, n]. We use deterministic document
exchange sketches of size O(k2 + k log2 n) bits [1]. (We note that using O(k logn)-space
sketches [15] would not improve the complexity but would drastically increase the computation
time for Alice and Bob. For this reason, even though time is not the focus of this work, we
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Alice BobB B B B B B B B

` = (nB − j) ·B

Figure 1 Let i be the first block containing two k-mismatch occurrences of P [1, (nB − i) · B] that
start at least 2k positions apart. To compute the edit distances in a block j < i Bob divides the
pattern into two parts, a prefix P [1, `] and the suffix P [` + 1, n], and computes the distance for each
of the two parts separately.

prefer the sketches [1].) Alice starts by dividing her half of the text into non-overlapping
blocks of length B except for the last one which may be shorter, that is in total there are nB

blocks.

I Definition 6. A position p of a block i is k-good if it is the left endpoint of a k-mismatch
occurrence of P [1, (nB − i) ·B].

Alice considers each block i in turn and finds all k-good positions in the block using the
pattern sketches. Suppose first that all k-good positions in the block are at distance < 4k.
In this case all k-mismatch occurrences of P [1, (nB − i) · B] that start in these positions
end in an interval of length at most 6k. For each position in this interval Alice finds the
substring that ends in it and has the smallest edit distance from P [1, (nB − i) · B] (using
the pattern sketches again) and sends the distance and the corresponding edit operations to
Bob. In total this information occupies O(k2 logn) bits per block. Suppose now that block i
contains two k-good positions p1, p2, where p2 − p1 > 4k, and let i be the first such block.
Let ` = (nB − i) ·B and let ED be the edit distance between two strings.

I Lemma 7. The 4k-period of T [p1, p2 + `− 1] is at most B.

Proof. By the definition both p1 and p2 are starting positions of k-mismatch occurrences of
P [1, `]. Therefore, ED(T [p1, p1 + `− 1], P [1, `]) ≤ 2k and ED(T [p2, p2 + `− 1], P [1, `]) ≤ 2k.
From the triangle inequality it follows that ED(T [p1, p1 + `], T [p2, p2 + `− 1]) ≤ 4k and from
the definition of approximate periods it follows that the 4k-period of T [p1, p2 + `− 1] is at
most B. J

By Lemma 5 the substring T [p1, p2 + `− 1] and therefore T [p1, n−B] can be encoded in
O(B + k logn) bits. Alice sends the encoding to Bob (note that she only does it for the first
block containing distant k-good positions). Finally, she sends Bob the last (B + k) symbols
of her half of the text and also forwards the sketches received from Charlie. The total size of
Alice’s message is O((n/B) · k2 log2 n+B) = O(k

√
n logn) bits.

We now explain how Bob computes the distances. Suppose that he wants to compute the
edit distance between the pattern a substring starting to the left of position p1. Using the
encoding of T [p1, n−B], the last B symbols of Alice’s half of the text, and his half of the
text he can restore all symbols of T [p1, 2n]. He can then use the pattern sketch to compute
the edit distance and operations. Consider now the case when the substring starts in a block
j < i (see Fig. 1). Let S be the substring for which Bob wants to compute the edit distance
and ` = (nB − j) ·B. Bob starts by dividing the pattern into two parts, a prefix P [1, `] and
the suffix P [`+ 1, n]. The following observation is a corollary of the definition of the edit
distance.

CPM 2017
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P [1, B + k − r] P [B + k − r + 1, n]

B B B B B

sketch

Figure 2 The algorithm processes the text in blocks of size B. To decide whether the current
stream ends with a k-mismatch occurrence of P , the algorithm divides the pattern into two parts, a
prefix of length at most B + k and the remaining suffix and computes the edit distance for each of
the parts separately.

I Observation 8. Let ∆ = min`′∈[`−k,`+k]{ED(P [1, `], S[1, `′])+ED(P [`+1, n], S[`′+1, n])}.
If ∆ > k, then the edit distance between S and P is larger than k, and otherwise it is equal
to ∆.

Since j < i, Bob knows all positions `′ of S for which there exists a k-mismatch occurrence
of P [1, `] ending at this position (and also the edit operations that convert the occurrence
into P [1, `]). On the other hand, since Bob knows the last B+k symbols of Alice’s half of the
text, he knows S[`′ + 1, n] and can use the sketch of P [`+ 1, n] to compute the edit distance
and the edit operations between the two. He can therefore decide if S is a k-mismatch
occurrence of P and the edit operations that transform S into P .

3 Streaming

We now show a streaming algorithm for approximate pattern matching. As soon as a new
symbol arrives we must decide if the current stream ends with a k-mismatch occurrence of P
and output the edit operations between P and the occurrence. The algorithm processes the
text by blocks of size B =

√
n (see Fig. 2). Suppose that the text ends with a k-mismatch

occurrence of the pattern P . This occurrence can be divided into two parts, a prefix of length
at most B, and a suffix that starts at a block border. From Observation 8 it follows that
there exists a position i ∈ [1, B + k] such that the prefix of the occurrence must be aligned
with P [1, i], and the suffix of the occurrence must be aligned with P [i+ 1, n]. The algorithm
will therefore need to be able to compute the edit distances between each block and prefixes
P [1, i], and the edit distances between suffixes of the text starting at block borders and
suffixes P [i+ 1, n].

3.1 Prefixes
Consider a block of the text T . For each i such that the block ends with a k-mismatch
occurrence of P [1, i] we define Si to be the suffix of the block with the smallest edit distance
from P [1, i]. Below we will show a hybrid dynamic programming algorithm that computes
all suffixes Si, the corresponding edit distances and edit operations in O((B + k) · k) space
and in O(k) time per symbol of the block. But first, let us explain how we apply it. Note
that the suffixes Si, the distances and the operations will be used only n/B blocks later. A
naive approach would be to compute all this information and to store it explicitly until that
time. However, the total space requirement of this approach is too large. Instead, we develop
a different approach which runs the algorithm twice. Upon having received a new text block,
we run the algorithm for the first time and compute suffixes Si for all i ∈ [1, B + k]. Let
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Figure 3 The graph shows a 3-path that encodes the edit operations between P [1, 5] = 01011
and a suffix 00110 of the block. The three red arrows show the edit operations: a replacement, an
insertion, and a deletion.

S? = Sj be the longest of the retrieved suffixes. We encode the block as a tuple consisting
of the position j, and the at most k edit operations that transform P [1, j] into S? (see also
Introduction). After having read n/B−2 more blocks we use the encoding and P [1, B+k] to
restore S? and then run the algorithm on S? to compute the suffixes Si and the corresponding
edit operations.

We now describe our algorithm. The algorithm uses the same approach as the hybrid
dynamic programming algorithms for the approximate pattern matching problem [12, 13]
(see also [10, Chapter 12.2.4]). We assume that P [1, B+k] is stored explicitly. The algorithm
receives as an input a text block of length ≤ B. The algorithm starts by preprocessing the
P [1, B + k] and the block for longest common extension queries. For a pair of positions
(p1, p2), a longest common extension query finds the longest substring starting at position p1
of the block that matches a substring starting at position p2 of P [1, B+k]. The preprocessing
phase takes O(B + k) time and space [9]. The algorithm then considers a table of size
(B + k + 1)× (B + 1) and builds a set of paths from the first row to the last column of the
table. Each such path will correspond to a suffix of the block that is a k-mismatch occurrence
of P [1, i] and encode the edit operations that transform the suffix into P [1, i].

The algorithm runs in k rounds. In round m, 1 ≤ m ≤ k, it processes each of the
diagonals of the table in turn and finds a path that corresponds to at most m edit operations
(m-path) and ends in the lowest cell in the current diagonal. Each of the paths starts in one
of the cells in the first row of the table. From a cell (p1, p2) a path can go either to a cell
(p1 + 1, p2), or to (p1, p2 + 1), or to (p1 + 1, p2 + 1). Let a be the (p1 + 1)-th symbol of the
block and b be the (p2 + 1)-th symbol of the pattern. A move to (p1 + 1, p2) corresponds
to deletion of a, a move to (p1, p2 + 1) to insertion of b, and a move to (p1 + 1, p2 + 1) to a
replacement of a by b if a 6= b. If symbols a, b are not edited, the path makes a diagonal step
as well. Suppose that in round m, m ≤ k, a path reaches a cell (B, i) of the last column of
the table for the first time. From construction it follows that this path corresponds to the
suffix Si.

It remains to explain how the algorithm finds the m-paths. Consider a diagonal i. To
find the m-path that ends in the lowest cell in the diagonal, the algorithm tries to extend
the (m − 1)-paths for diagonals i − 1, i, and i + 1. Consider first the (m − 1)-path for

CPM 2017



13:8 Communication and Streaming Complexity of Approximate Pattern Matching

diagonal i. Suppose that it ends in a cell (j, j+ i). The algorithm makes a step from (j, j+ i)
to (j+1, j+ i+1) that corresponds to a replacement of a symbol and then tries to extend the
path further down along the diagonal until it meets the next pair of mismatching symbols.
Note that this step can be performed in O(1) time using a longest common extension query.
The (m− 1)-paths in diagonals i− 1 and i+ 1 are extended in a similar fashion, except that
from the end of the (m− 1)-path in diagonal i+ 1 the algorithm makes a horizontal step
(corresponds to a deletion of a symbol of the block) and from the end of the (m− 1)-path in
diagonal i+ 1 the algorithms makes a vertical step (corresponds to an insertion of a symbol).
It is not hard to see that in this way the algorithm finds the end of the m-path for a fixed
diagonal in O(1) time, meaning that overall the algorithm uses O((B + k) · k) time and
O((B + k) · k) space per block.

I Remark. Note that the running time of the algorithm can be de-amortised to spend O(k)
time per arrival in the worst case: When we apply the algorithm to a block i for the first time,
we de-amortise its running timer over block i + 1 by running Ω(k) steps of the algorithm
each time a new block symbol arrives, and when we run the algorithm for the second time
we de-amortise its running time over block i+ n/B − 2.

3.2 Suffixes

To compute the distances from suffixes of the pattern to the text the algorithm uses sketches
by Belazzougui and Zhang [2, Theorem 13].

I Theorem 9 ([2]). Assume k < n1/c for some sufficiently large constant c > 0. There is a
sketch of size O(k8 log5 n) that can be used to compute the edit distance between two binary
strings of length at most n in O(k12 log3 n) time correctly with probability 0.9. Given a string
arriving as a stream its sketch can be constructed in O(k2 log4 n) amortised time per symbol.

The space and time bounds are not given in [2, Theorem 13] but can be derived from its
proof. We will show the following corollary.

I Corollary 10. Assume k < n1/c for some sufficiently large constant c > 0. There is a
sketch of size O(k8 log6 n) that can be used to compute the edit distance between two binary
strings of length at most n in O(k12 log4 n) time correctly with probability 1− poly(n). Given
a string arriving as a stream its sketch can be constructed in O(k2 log4 n) worst-case time
per symbol.

We boost the probability of Theorem 13 [2] from 0.9 to 1− poly(n) in a standard way,
by repeating the computation independently O(logn) times and taking the smallest edit
distance as an answer, which yields the extra logn factors in the complexities.

For completeness and to explain how to de-amortise the time bound, we give the definition
of the sketches. The sketches are constructed using a random walk embedding from edit to
Hamming distance [4]. The embedding maps strings of length n onto strings of length 3n.
Consider a string S and set a pointer to S[1]. At each step, the embedding copies the symbol
at which the pointer is currently at to the resulting string E(S) and either moves the pointer
to the right or stays in place. After having reached the end of S it stops, and if the length
of E(S) is ` < 3n, it appends 3n − ` zeros to it. The moves of the pointer are defined by
a random string R ∈ {0, 1}6n. If i is the current position of the pointer in S, and j is the
length of E(S), then the pointer moves to the right if R[S[i] + 2j] = 1 and otherwise it stays
in place.
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I Theorem 11 ([4]). For every constant c > 0 and every pair of binary strings S1, S2 of
length at most n, the Hamming distance between E(S1), E(S2) is at most c ·

(
ED(S1, S2)

)2

with probability at least 1− 12/
√
c.

The intuition behind the proof is that the difference between the pointers’ positions as
they move along two strings S1, S2 behaves as a one-dimensional random walk. In more
details, since R is a random binary string, at each time moment when the difference is not
zero and there is a mismatch between E(S1) and E(S2) the difference does not change with
probability 1/2, increases by one with probability 1/4, and decreases by one with probability
1/4.

The mismatched symbols of E(S1) and E(S2) and their respective positions in S1 and
S2 can be used to construct a set of edit operations that transform S1 to S2. The set
might be not optimal, but it gives some evidence of which positions in S1 and S2 must be
edited. Belazzougui and Zhang first developed sketches of the embeddings E(S1), E(S2)
that allow to retrieve both the mismatched symbols and their positions in S1 and S2. Their
sketches are based on the Hamming distance sketches of Porat and Lipsky [17] and can
be constructed in O(log2 n) worst-case time per symbol of an embedding. They further
suggested to consider O(k2 log2 n) independent random walk embeddings and showed that
they give enough information to derive the optimal set of edit operations.

To de-amortise the time bound of Theorem 13 [2] we notice that in the random walk
embedding a pointer advances by at least one position of the initial string each 3 logn steps
with probability at least 1− 1/n3. Therefore if the sketch construction algorithm gets stuck
at some position for more than 3 logn steps, we can simply abandon it. This incomplete
sketch might result in erroneous outputs, but the probability of this event is small.

3.3 Algorithm
We are now ready to give a full description of the algorithm. We assume that the algorithm
first receives the pattern and preprocesses it in a streaming fashion. Namely, it remembers
the first B + k symbols of the pattern and also computes sketches of each suffix P [i, n],
i ∈ [1, B + k]. The sketches occupy O((B + k) · k8 log6 n) space in total.

After a new block of the text has arrived, the algorithm computes its encoding defined in
Section 3.1. In total all block encodings occupy O((n/B) · k logn) space. Also, while reading
block i, the algorithm decodes block i+ 2− n/B and runs the algorithm of Section 3.1 to
compute the edit distances for the prefixes of P . Recall that this step can be de-amortised to
take O(k) worst-case time per arrival. Finally, the algorithm considers each of the suffixes of
the current text that starts at a block border as a separate stream and computes its sketch
in a streaming manner. That is, when a new symbol T [j] arrives the algorithm updates each
of the O(n/B) suffix streams and each of its sketches in O((n/B) · k2 log4 n) time. The suffix
sketches occupy O((n/B) · k8 log6 n) space in total.

We finally explain how the algorithm computes an output for a new arrival T [j] in a
block i. Recall that the task is to decide if T [1, j] ends with a k-mismatch occurrence of P
and if so to output the edit operations between the pattern and the occurrence. The length
of the occurrence must be in [n− k, n+ k]. It therefore starts either in block i− n/B or in
block i + 1 − n/B. The two cases are analogous and we consider only the case when the
occurrence starts in block i− n/B. Let S be the suffix of T [1, j] starting at the right border
of block i− n/B (in Fig. 2 the suffix is shown in green). S must be aligned with one of the
2k suffixes of the pattern of length in [|S| − k, |S|+ k]. Using the sketches, we compute the
edit distances (and the edit operations) from each of these suffixes to S. Consider a suffix
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P [i+ 1, n]. If it is aligned with S, the prefix P [1, i] must be aligned with some suffix of block
i − n/B and we have computed the minimal edit distance from P [1, i] to the block or we
know that it is larger than k. For each i, we sum the edit distances for the prefix and for
the suffix and take the minimum. If the minimum is smaller than k, then by Observation 8
T [1, j] ends with a k-mismatch occurrence of the pattern P and we can output the edit
distance and the edit operations. In total, this step takes O(k13 log4 n) time.

We choose B =
√
n. The space complexity of the algorithm is then O(k8√n log6 n). The

time for updating the sketches is O(k2√n log4 n) per arrival, and the time for computing the
edit distance isO(k13 log4 n), meaning that the total time complexity isO((k2√n+k13)·log4 n)
per arrival.

4 Conclusion

In this work we studied the approximate pattern matching problem. In particular we showed
the first sublinear-space streaming algorithm for the problem. The space complexity of our
algorithm is O(k8√n log6 n), which is significantly better than that of the previously known
solutions. We note that on the other hand the time complexity of our algorithm is quite
large as we have to update sketches of

√
n text suffixes each time a new symbol arrives.

One possibility to improve the time complexity is to maintain sketches of the blocks of the
text rather than sketches of the suffixes (this way, the algorithm will need to update only
one sketch per arrival). However, it is not clear whether the block sketches can be used
to compute suffix sketches and therefore the edit distance. This is because the moves of a
pointer in a suffix’ blocks are not independent, in other words the image of a block under the
random walk embedding depends on all preceding blocks. We leave this challenging question
for further research.
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