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ABSTRACT
The aim of this article is to provide several ways to assess the observability and
the reconstructibility of bounded cellular automata. First, generic definitions for
the considered cellular automata and their associated sensors are given, as well as
the definitions for observability and reconstructibility of these measured dynami-
cal systems. Criteria of observability and reconstructibility are proposed for linear
and affine cellular automata through an extension of the Kalman criterion and for
non-linear cellular automata from an extension of the results on observability and re-
constructibility of boolean networks. A method for decentralized observability calcu-
lation is presented for non-linear cellular automata in order to reduce the algorithmic
complexity. These criteria are analyzed and illustrated through several examples, ei-
ther with fixed or mobile sensors. Numerical methods and related complexity issues
are discussed.

KEYWORDS
cellular automata; observability; reconstructibility; mobile sensors; decentralized
observability

1. Introduction

An increasing number of fundamental problems in natural and engineering applica-
tions involves complex systems consisting of a population of similar units that inter-
act directly with their nearest neighbours. Although the microscopic rules are well
defined, these systems exhibit emergent macroscopic behaviours that may be diffi-
cult to predict from the knowledge of their individual elements and their interactions
(D’Andrea & Dullerud, 2003). An important aspect of many of these systems is that
measurement and control is often available at the unit level. These units can then be
considered as agents with limited sensing, data processing and communication capabil-
ities (Bamieh, Paganini, & Dahleh, 2002). Recent technological advances in the fields
of microelectronics and network communication have greatly facilitated the practical
implementations of this kind of spatially distributed systems (Chu, 1974).

In the analysis, design, and synthesis of systems, a fundamental issue is to determine
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their controllability and observability : Is it feasible to drive the internal variables of
the system from an initial state to a desired target state? And is it possible to estimate
the values of these internal variables from external measurements?

For spatially distributed systems the classical theoretical concepts of controllability
and observability are, in general, difficult to apply (Curtain & Zwart, 2012; D’Andrea,
1998; D’Andrea, Beck, & Dullerud, 1999). In addition, the complexity of the systems
under consideration, which involve a large number of units or sub-systems, is such
that it is very difficult to verify the controllability and observability criteria. The main
difficulty coming from the prohibitive computational cost of existing methods even
though efforts to reduce this costs are underway (Kang & Xu, 2009).

Another issue is related to the system’s spatial heterogeneity (i.e. state variables
and parameters are varying with the spatial coordinates) and partial state measure-
ment, through fixed or mobile regional sensors. In this case, only part of the state may
be measured, only on a part of the domain (zone sensors) and possibly only part-time
(mobile sensors). This prevents a complete characterisation of the system behaviour,
directly from measurements (Gauthier & Kupka, 1994; Liu, Slotine, & Barabási, 2013;
Zuazua, 2007). The measurements are then processed (usually) through state estima-
tors (dynamical observers, smart/software sensors) which usually make use of system
properties (e.g. through a dynamical model) to reconstruct the state.

In this paper, we will consider dynamical systems described by cellular automata
(CA) models that have been developed to describe life-like and physical phenomena.
CA exhibit complex behaviours and provide powerful models usually viewed as a coun-
terpart of partial differential equations (PDEs) for modelling distributed parameters
systems (Bagnoli, Rechtman, & El Yacoubi, 2012; El Yacoubi, 2008; El Yacoubi &
Mingarelli, 2011). CA consists of a regular grid in which each cell is in a finite state
at each time step. The state of each cell evolves over time based on a set of rules that
take into account the state of the considered cell and its neighbouring cells. These local
interactions between neighbouring cells yield global results, i.e. state change, over the
entire grid that can be observed over time (Chaudhuri, Chowdhury, Nandi, & Chat-
topadhyay, 1997; Chopard & Droz, 1998; El Yacoubi & Jacewicz, 2007; Garzon, 2012).
In the scope of our study, we will limit ourselves to the study of the observability and
reconstructibility of bounded cellular automata.

The aim of this work is to introduce and characterize the observability and recon-
structibility properties for bounded cellular automata with output operators, describ-
ing spatially distributed systems with zone sensors, either fixed or mobile. Roughly
speaking, the question adressed by observability (resp. reconstructibility) is the pos-
sibility to estimate the system’s initial state (resp. the current state) value from a
sequence of measurements. Observability is a fundamental property of dynamical sys-
tems with an extensive literature. Some interesting work investigating distributed pa-
rameters systems that are usually described by (PDEs), in the linear, nonlinear, or
stochastic cases and other related work can be found in (Cohn & Dee, 1988; El Jai,
1991; Liu et al., 2013; Sarachik & Kreindler, 1965; Zhou, 2015).

The observability and reconstructibility problem of cellular automata is only very
little studied (El Yacoubi, 2008; El Yacoubi et al., 2021). However, bounded cellular
automata can be seen as a special case of boolean networks which, on the other hand,
are widely studied. Several approaches exist to study the observability of Boolean net-
works, including algebraic (Cheng, Qi, & Li, 2010; Yu, Meng, & Feng, 2020) and graph-
theoretic (Laschov, Margaliot, & Even, 2013) approaches. The problem of observability
and reconstructibility is also widely studied for Boolean control networks (Fornasini
& Valcher, 2012) as well as for probabilistic Boolean networks (Fornasini & Valcher,
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2019).
This paper focuses first on the linear and affine CA where an extension of the well

known Kalman criterion is given to prove theoretically their observability and recon-
structibility properties. A first study was carried out (Plénet, El Yacoubi, Räıevsky,
& Lefèvre, 2020) where the observability for cellular automata was defined and char-
acterised using an extension of the Kalman criterion for affine cellular automata. We
go further in this paper by considering more general case and exploring other method
to prove observability compared with reconstructibility issue. The second part focuses
on non-linear cellular automata by applying the results of observability of Boolean
networks (Cheng et al., 2010) to cellular automata. The criteria are then adjusted
according to the constraints of bounded cellular automata in order to reduce the com-
putational complexity of observability and reconstructibility. Finally, a decomposition
of the observability and reconstructibility problem is presented in order to allow the
study of large cellular automata despite the computational complexity.

This paper is structured as follows: In Section 2, preliminary on CA, sensors, and
observability are discussed. In Section 3, some theoretical results using an extension of
the Kalman condition are obtained in order to prove observability and reconstructibil-
ity properties for affine and linear CA. In Section 4, nonlinear CA are considered where
the representation of the transition rule is given through a binary relation in order to
focus on the global relation between CA configurations instead of working with local
interactions. A numerical method to compute logical matrices representing the binary
relations is given. Two examples are given in Section 5 in order to show the appli-
cability of the observability and reconstructibility criteria in the case of traffic flow
monitoring and the observation of a forest fire spread. Finally, Section 6 concludes the
paper and gives some perspectives for future work.

2. Definition of Observability and Reconstructibility for Cellular
Automata

2.1. Cellular Automata Model

Cellular automata (CA) are useful to model discrete-time distributed parameter sys-
tems (DPS). There is no universal formal description of CA and we therefore present
here a general definition of a bounded cellular automata and sensors within the scope
of observation and reconstruction. For the purpose of this article, we will simply refer
to bounded cellular automata as cellular automata or CA. Such a definition have been
given in (El Yacoubi, 2008), but was designed to investigate controllability (and more
particularly regional controllability) issues. We will extend it with sensor models and
output operators in order to cope with observability and reconstructibility analysis.

Definition 2.1. A bounded cellular automata is defined by a quadruple A =
(L,S,N , f) where:

• L is a d-dimensional finite lattice of cells (a generic cell will be denoted c, in
the sequel) which are spatially arranged according their shape. We denote by
N = |L| ∈ N the cardinal of L.
• S denotes a discrete set of state S = {0, 1, . . . , k− 1}. In the section 3, it will be
necessary that S is a field, i.e. that S is a finite commutative ring with a prime
number of states. This set may also be called Z/kZ.
• N is a mapping which defines the cell’s neighbourhood. This neighbourhood is
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usually the same for all cells but it can vary through space and time. It is given
by:

N : L → Ln

c 7→ N (c) = {c′ ∈ L|
∥∥c′ − c

∥∥
i
≤ r}

(1)

where ∥c∥i , i ∈ {1,∞} represents the taxicab norm (i = 1) or the infinity norm
(i =∞). These norms correspond respectively to the Von Neumann and Moore
neighbourhoods of radius r. We denote by n = |N (c)| the cardinal of N (c).
• f is a transition function which determine the cell’s state at time t+1 given the
state of the neighbouring cells at time t. It is defined by:

f : Sn → S
st(N (c)) 7→ st+1(c) = f(st(N (c)))

(2)

where st(c) represents the state of the cell c at time t and st(N (c)) = {st(c′)|c′ ∈
N (c)} is the neighbourhood state at time t.

Remark 1. As we consider only finite lattices of cells, we need to define boundaries,
that is to say the state of the cells that are directly ”outside” the lattice, which
will be used to compute states of the cells at the border of L. We will consider the
three types of boundaries which are the most commonly used: periodic, reflective, and
fixed (El Yacoubi & El Jai, 2002; LuValle, 2019).

This definition describes a CA from a local point of view, but in our case, we need
a global definition to apply the results from system theory. This global definition will
be given in term of the global CA configuration st and a global transition function F
which are defined as:

st : L → S
c 7→ st(c)

(3)

F : SL → SL

st 7→ F (st) = st+1
(4)

The global evolution of the CA starting from an initial configuration s0 is defined
by the following state equation:

{
st+1 = F (st)

s0 ∈ SL
(5)

which can also be written:

st = F t(s0), s0 ∈ SL (6)

where F t represents the t-th composition of F .
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2.2. Sensor Model and Output Operator

To represent the measure of a physical system modelled by a CA, we extend the
previous local and global CA dynamical models with sensors and and output operator.

Definition 2.2. We denote qi, i ∈ {1, 2, . . . , Q}, the sensor measuring the states of a
set of cell Lqi and q, the set of Q sensors that observes the set of cells Lq ⊂ L with:

Lq =
Q⋃
i=1

Lqi (7)

Figure 1. Two sensors measuring a one-dimensional CA. Grey cells are measured by a sensor, either q1 or

q2.

Remark 2. The sensor set q can contain mobile sensors, for which observed cell set
can change over time. In this case, we will denote Lqi,t the set of cells observed by the
sensor i at time t and Lqt the set of all observed cells at time t.

Given this formalisation of sensors’ position and motion, we are able to build an
operator which associates the state of the system with the measurements obtained by
whole set of sensors.

Definition 2.3. The output operator Ht maps, at each time t, the state st of the
cellular automata A to the output vector θt ∈ O = SLqt :

Ht : SL → O
st 7→ θt := st|Lqt

(8)

where st|Lqt
denotes the restriction of the state st to the set Lqt of cells effectively

measured at time t

Remark 3. The vector composed of the successive output vectors (measurements)
generated by the output operator Ht is called an output sequence. The sequence of
measurements spanning from t0 to tT is noted Θ0,T = (θ0, θ1, ..., θT−1). An output
sequence can be computed from the initial state s0 using the operator:

ΘT : s0 7→ Θ0,T = (H0(s0), H1 ◦ F (s0), H2 ◦ F 2(s0), ...,HT−1 ◦ F T−1(s0)) (9)

2.3. Observability and Reconstructiblity

Observability, as defined by Kalman (Kalman, 1960, 1963), determines if it is possible
to reconstruct the state of a system based on the measurements obtained from one or
more sensors. Observability focuses on reconstructing the initial state of the system
whereas reconstructibility focuses on reconstructing the current state of the system. In
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the case of discrete time systems, both of these are not equivalent. With a deterministic
system, observability is a more general concept as knowing the initial state implies
knowing all the evolution of the system. Reconstructibility, on the other hand, is less
general but can be easier to assess.

Definition 2.4 (State Observability). A state s0 ∈ SL of a cellular automata A
is observable by an output operator H at time T if and only if it is possible to
reconstruct this initial state s0 from the corresponding output sequence Θ0,T .

Definition 2.5 (Global Observability). A cellular automata A is observable by an
output operator H at time T if and only if all states s ∈ SL are observable by this
output operator.

Proposition 2.6. The definition 2.5 of the global observability is equivalent to the
following proposition:

∀s′0, s′′0 ∈ SL,ΘT (s
′
0) = ΘT (s

′′
0) =⇒ s′0 = s′′0 (10)

Definition 2.7 (State Reconstructiblity). A state sT ∈ SL of a cellular automata A
is reconstructible by an output operator H at time T if and only if it is possible to
reconstruct the current state sT from the corresponding output sequence Θ0,T .

Definition 2.8 (Global Reconstructiblity). A cellular automata A is recon-
structible by an output operator H at time T if and only if all states s ∈ SL are
reconstructible by this output operator.

Proposition 2.9. The definition 2.8 of the global reconstructibility is the equivalent
to the following proposition:

∀s′0, s′′0 ∈ SL,ΘT (s
′
0) = ΘT (s

′′
0) =⇒ F T (s′0) = F T (s′′0) (11)

3. Observability and Reconstructibility for Affine Cellular Automata

This section presents the extension of the Kalman criterion, usually used to determine
the observability of continuous time or discrete time linear systems, to linear cellular
automata and more generally to affine CA.

3.1. Affine and Linear Automata

Before presenting the extension of the Kalman criterion to CA, we need first to express
the state of a CA in the form of a state vector and to define the properties of a CA
that make it linear or affine.

To express a CA configuration as a state vector, the CA must have a finite lattice
and its cells must be arranged in an arbitrary order. Under this assumption, an iso-
morphism ξ between the CA configuration st and a state vector representation xt can
be defined. This isomorphism can be applied to the global transition function F to
obtain another function F̃ which computes xt+1 from xt such that:

F̃ = ξ ◦ F ◦ ξ−1 (12)
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Definition 3.1 (Affine Cellular Automata). A cellular automata is affine if and only
if its transition function F̃ is an affine map. Moreover, this affine map can be written
in the form of a linear map A plus a constant η = F̃ (0), which can therefore be written
as:

{
xt+1 = F̃ (xt) = Axt + η
x0 = ξ (s0) , s0 ∈ SL

(13)

Remark 4. The trajectory of the CA state may be explicitely written in terms of the
initial state x0, as: {

xt+1 = At+1x0 + Jtη
x0 = ξ (s0) , s0 ∈ SL

(14)

with Jt =
∑t

k=0A
k

Remark 5. An affine CA that has a null constant is said linear. In the theory of
elementary CA (Wolfram, 1983), linear CA are called additive CA. Also, affine CA
are the complement of additive CA. For example, rules 90 and 150 are linear rules and
their complementary rules (respectively 165 and 105) are affine rules.

Remark 6. It is possible to apply the same approach to output sequences: if the
observation space is finite (i.e. |Lq| = Q ∈ N) then there is an isomorphism χ which
makes it possible to write the output sequence θt as a vector yt. Moreover, the output
operator is affine if and only if the H̃ function (i.e. the H function composed with the
χ isomorphism) is affine. The system can then be written as yt = Cxt + γt where Ct

is the matrix of the linear map and γt is the affine constant.

Definition 3.2. The output sequence ΘT can also be represented in affine form using
the affine forms of the transition function and the output operator. We note YT the
output sequence for T outputs where OT is the linear map and ΓT the constant vector.

YT =


y0
y1
. . .
yT−1

 =


C0

C1A
. . .

CT−1A
T−1


︸ ︷︷ ︸

OT

x0 +


γ0

C1J0η + γ1
. . .

CT−1JT−2η + γT−1


︸ ︷︷ ︸

ΓT

= OTx0 + ΓT (15)

We call OT the observability matrix as this linear map carries the injectivity prop-
erty of the output sequence and therefore the observability property.

3.2. Extension of the Kalman Criterion

The Kalman condition (Kalman, 1960, 1963) was initially derived to assess the control-
lability (resp. observability) of continuous-time linear dynamical systems when they are
controlled (resp. observed). It has been generalised to discrete-time systems (Sarachik
& Kreindler, 1965) and this paper proposes a generalisation to cellular automata.
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Theorem 3.3 (Kalman Condition). Let A and H be an affine cellular automata and
affine output operator, with associated matrices respectively denoted A and C.

The pair (A, H) (i.e. the automata A with the output operator H) is observable if
and only if there exists a time T ∈ N such that:

rank OT =


C0

C1A
. . .

CT−1A
T−1

 = N (16)

In linear algebra, the Cayley-Hamilton theorem states that any square matrix over a
commutative ring (in our case S) satisfies its characteristic equation. It can be coupled
with the Kalman theorem here above to give an upper bound on the time horizon T .

Proposition 3.4. Suppose a CA observed by a time invariant output operator C ( i.e.
by a static sensor), the observability matrix OT is of size N ×Q.T . For the matrix OT

to be of full column rank, the time horizon T has to be bounded by:

N

Q
≤ T ≤ N (17)

Proof. The two inequalities are proven by the following:

• T ≤ N : The Cayley-Hamilton theorem guarantees that AN is a linear combi-
nation of lower powers, the rank of OT will not increase beyond T = N.
• T ≥ N/Q : For OT to have a rank of N , it needs at least N rows and columns,
thus Q.T ≥ N .

Remark 7. In the case of a mobile sensor (i.e. a time variant output operator Ct),
only the lower bound of the inequation (17) stands true. The Cayley-Hamilton theorem
does not apply because CTA

T is a linear combination of CT + CTA + · · · + CTA
T−1

and not of C0 + C1A+ · · ·+ CT−1A
T−1

Proof. Let A an affine CA and A and η its associated matrix and constant. Let Ht

be a time dependant affine output operator associated with the matrix Ct and the
constant γt. Then, let x0 ∈ SN the initial state and YT =

[
y0 y1 . . . yT−1

]
the

output sequence generated by the output operator such that YT = OTx0 + ΓT .
Considering the definition 2.5 of global observability, then:

(A, Ht) is observable ⇐⇒ ∀s′0, s′′0 ∈ SL,ΘT (s
′
0) = ΘT (s

′′
0) =⇒ s′0 = s′′0

⇐⇒ ∀x′0, x′′0 ∈ SN , OTx
′
0 + ΓT = OTx

′′
0 + ΓT =⇒ x′0 = x′′0

⇐⇒ ∀x′0, x′′0 ∈ SN , OT (x
′
0 − x′′0) = 0 =⇒ (x′0 − x′′0) = 0

⇐⇒ ker OT = {0}
⇐⇒ rank OT = dim OT − dim(ker OT ) = N
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Corollary 3.5. If the Kalman criterion is verified, then it is possible to reconstruct
the initial state by inverting the observability matrix. Indeed, based on the formulation
(15) we obtain:

x0 = O†
T (YT − ΓT ) (18)

Proof. Consider an affine CA A observable by an affine output operator Ht such that
∀x0 ∈ SN , YT = OTx0 + ΓT and rank OT = N . To simplify the notations, we shall
simply note O and Γ to respectively represent OT and ΓT .

As rank O = N , it means that it exists P such that PO = I (but not necessarily
OP ̸= I because O is full column rank not full row rank). We can find P = O† by
computing the pseudo-inverse of O. Using the equation (15) we find that:

YT = Ox0 + Γ ⇐⇒ O†(YT − Γ) = O†Ox0 ⇐⇒ O†(YT − Γ) = x0 (19)

As O is full column rank, O† = (OtO)−1Ot. If O is square then O† = O−1.

Remark 8. In definition 2.1, one of the conditions for S to be a field is that the
state number k is prime. If it is not, the inverse of a number does not necessarily
exist however the inverse is required to reconstruct the initial state with corollary 3.5.
Moreover, in modular arithmetic, this inverse is not computed from the usual division
but from multiplication and modulo:

a−1 = b =⇒ b · a = 1 (mod k) (20)

In the case of linear systems, observability and reconstructibility are equivalent
concepts (Van Willigenburg & De Koning, 2008). The Kalman criterion ensure ob-
servability, however there are some systems which are reconstructible but not observ-
able (See example 5.1), for this reason we propose a new theorem which assesses the
reconstructibility of affine CA.

Theorem 3.6 (Reconstructibility Criterion). Let A and H be an affine CA and affine
output operator; A, C their matrix form; and η and γ their constants.

The pair (A, H) (i.e. the automata A with the output operator H) is reconstructible
if and only if there exists T ∈ N such that:

ker OT ⊂ ker AT (21)

Remark 9. If the CA is reversible (Kari, 2005) then AT is full rank thus recon-
structibility is equivalent to observability. Indeed, ker OT ⊂ ker AT = {0} ⇐⇒
rank OT = N .

Proof. Let A an affine CA and A and η its associated matrix and constant. Let Ht be
a time dependant affine output operator associated to the matrix Ct and the constant
γt. Then, let x0 ∈ SN be the initial state and YT =

[
y0 y1 . . . yT−1

]
the output

sequence generated by the output operator such that YT = OTx0 + ΓT .
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Consider the definition 2.8 of the global observability, then:

(A, Ht) is reconstructible

⇐⇒ ∀s′0, s′′0 ∈ SL,ΘT (s
′
0) = ΘT (s

′′
0) =⇒ F T (s′0) = F T (s′′0)

⇐⇒ ∀x′0, x′′0 ∈ SN , OTx
′
0 + ΓT = OTx

′′
0 + ΓT =⇒ ATx′0 + JT−1η = ATx′′0 + JT−1η

⇐⇒ ∀x′0, x′′0 ∈ SN , OT (x
′
0 − x′′0) = 0 =⇒ AT (x′0 − x′′0) = 0

⇐⇒ ker OT ⊂ ker AT

Corollary 3.7. If the reconstructibility criterion is verified, then it is possible to find
a matrix R such that:

xT = R(YT − ΓT ) + JT−1η (22)

Proof. Consider an affine CA A (with a matrix A and a constant η) reconstructible
by an affine output operator Ht such that YT = OTx0 + ΓT and ker OT ⊂ ker AT .

As ker OT ⊂ ker AT , it means there exists a matrix R such that AT = ROT . With
this property, we can find that:

YT = OTx0 + ΓT ⇐⇒ R(YT − ΓT ) = ROTx0

⇐⇒ R(YT − ΓT ) + JT−1η = ATx0 + JT−1η

⇐⇒ xT = R(YT − ΓT ) + JT−1η

3.3. Numerical Method for Assessing Observability

When cellular automata are very large, it becomes necessary to use a computer to
construct the A, C, and O matrices and to evaluate the rank of the observability
matrix. This section presents some heuristics to numerically construct these matrices
and to evaluate observability.

Before constructing the matrices, the operators ξ and χ must be determined ac-
cording to the order in which the CA’s cells are arranged. Any order would do but to
simplify the construction of the matrices it is wise to take the usual order.

Using this method, the matrix A appears as a circulant (or a nearly circulant de-
pending on the boundaries conditions) matrix with several diagonals that depends on
the neighbourhood.

In most cases, the state of a cell is observed directly, i.e. each element of the output
vector y is the state of one of the cells of the automata. If this is the case, then the
matrix C has only one non-zero element in each row at the position corresponding to
the observed cell.

The following matrix is designed to measure the 2nd cell as well as the 5th cell :

C =

[
0 0 1 0 0 0 0
0 0 0 0 0 1 0

]
Once the matrices A and C have been constructed, it is possible to calculate the
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matrix O from its definition. Then, the observability of the CA can be determined by
computing the rank of O.

The rank of a matrix is usually calculated with Gaussian elimination (Bunch &
Hopcroft, 1974) but new and better methods exist (Cheung, Kwok, & Lau, 2013). The
algorithmic complexity of Gaussian elimination of a M×N matrix is O(NMω−1), with
ω ≤ 2.38. When the Gaussian elimination is applied to the rank of the observability
matrix OT of size N ×Q.T , the complexity is O(QTNω−1).

4. Observability and Reconstructibility of Non-Linear Cellular Automata

In the previous part, we have studied the observability and the reconstructibility of
affine CA but this represents a very small part of the existing automata: only 16 rules
out of the 256 Wolfram’s elementary rules are affine.

To study non-linear cellular automata, we chose not to focus on the algebraic ex-
pression of the transition function, as we were able to do with the linear case. Indeed,
this method does not allow us to study all types of automata independently of the
properties of their transition function. The idea is to study the relation between con-
figurations and not between cells.

This method has already been studied many times for the computation of the ob-
servability and reconstructibility of Boolean (Control) Networks (Cheng et al., 2010;
Laschov et al., 2013). In this section, we adapt these formulations to bounded cellular
automata and propose numerical methods to verify their observability and recon-
structibility. Moreover, we present a method for computing observability in a decen-
tralized way that aims at reducing the algorithmic complexity at the expense of the
number of sensors.

4.1. Binary Relation Representation

Bounded cellular automata can be seen as a particular case of Boolean networks (Ger-
shenson, 2002) where the topology of the network depends on the position of the cell
(or variable) and the transition function does not depend on the cell (for homogeneous
CA only). This great similarity between the two representations makes it possible to
apply the observability and reconstructibility results of BN to CA, but their differences
permit to adapt these theorems in order to reduce their algorithmic complexity.

Cheng et al. developed an algebraic state representation for BCN that uses the
semi-tensor product (Cheng et al., 2010), a matrix product derived from the Kronecker
product. This method allows to have a state representation for nonlinear cellular au-
tomata as we have done in the previous section.

Definition 4.1 (Semi-tensor product (Cheng, 2005)). Let A ∈Mp×q and B ∈Mm×n.
The semi-tensor product is define by:

A⋉B = A(B ⊗ Ik), if q = km

A⋉B = (A⊗ Ik)B, if kq = m

where ⊗ is the Kronecker product.

Definition 4.2 (Cheng et al. (2010)). Let A and H be a cellular automata and
output operator, with associated binary matrices respectively denoted MF and MH .
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The evolution of the CA can be written as :{
xt+1 = MF ⋉ xt
yt = MH ⋉ xt

(23)

with xt = x1t ⋉ · · ·⋉ xNt

With this representation, the observability matrix MO can be constructed in a simi-
lar way to the definition (3.2) by replacing the usual matrix product by the semi-tensor
product. Once the observability matrix MO is obtained, we can study its injectivity
property by looking at the different columns rather than the rank of the matrix.

Theorem 4.3 (Laschov et al. (2013)). Let A and H be a cellular automata and output
operator, with associated binary matrices respectively denoted MF and MH .

The pair (A, H) is observable if and only if there exists a time T ∈ N such that no
two columns of the observability matrix MO are identicals.

The binary matrixMF describes the behavior of the CA at the configuration level, in
other words MF plays the role of the adjacency matrix of the state transition diagram
of the CA (Laschov et al., 2013; Martin, Odlyzko, & Wolfram, 1984). Thus the matrix
MF is not of size N × N as for affine CA but SN × SN , where N is the number of
cells and SN the number of configurations. This exponential size of the matrix makes
it difficult to apply to CA with a large number of cells.

We have the possibility to reduce the size of the matrices by using sparse matri-
ces (Buluç, Fineman, Frigo, Gilbert, & Leiserson, 2009), an advantageous formulation
(in terms of memory and algorithmic complexity) for matrices that have few non-zero
elements. Moreover, by using the Yale format (or Compressed Row Format) observ-
ability can be evaluated by checking that a 1D array does not contain duplicates.
Therefore, the algorithmic complexity to evaluate the observability of a CA with SN

configurations is O(SN ). Laschov et al. have shown that in the general case, the com-
putation of the observability of BN is a NP-Hard problem (Laschov et al., 2013), so
without simplification on the CA (as we have done with affine CA) it will be difficult
(or even impossible) to find an algorithm with polynomial complexity.

Even using sparse matrices, the calculation of observability or reconstructibility for
cellular automata becomes difficult when these exceed a hundred cells. The objective
is therefore to benefit from some properties of cellular automata to simplify these
computations of observability and reconstructibility. The first property concerns in
particular cellular automata with constraints on the initial configurations. Thus, many
initial configurations can be excluded from the observability computation because they
are impossible in the concerned application case. If we take the example of section 5.2,
as we know the topology of the forest and that the fire can only start on one cell of
the CA, the number of initial configurations to study goes from 4225 to only 158. The
second property takes advantage of the ease of distribution of the computation of the
CA (Millán, Wolovick, Piccoli, Garino, & Bringa, 2017). Indeed, when the number of
cells is large, it is more efficient to compute several times the local function f than
the global function F once. Thus the computation of the observability matrix is no
longer performed from the matrix product of F and H but from a large number of
simulations.

In order to benefit from those properties, we propose a definition of observability
and reconstructibility based on binary relations. These allow to associate two ele-
ments, here the initial configuration s0 (or current configuration sT if we study the
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reconstructibility) and the associated output sequence ΘT (s0). When we come to build
this binary relation, we add the pair (s0,ΘT (s0)) only if the initial configuration s0 is
part of the initial configurations to study. In this formulation, the calculation of ΘT

can be done by simulation or by calculation using F and H according to what is more
efficient. Therefore, we can define the observability binary relation RΘ and the
reconstructibility binary relation R̃Θ by:

Definition 4.4. The observability and reconstructibility binary relation RΘ and R̃Θ

associated to the output sequence ΘT is defined as follows:

RΘ = {(s0,Θ0,T )|s0 ∈ W and Θ0,T = ΘT (s0)} (24)

R̃Θ = {(sT ,Θ0,T )|s0 ∈ W and Θ0,T = ΘT (s0) and sT = F T (s0)} (25)

where W ⊂ SL represents the set of admissible initial configurations.

Remark 10. If we consider the whole set of initial configurations (i.e. W = SL) then
RΘ, MO, ΘT represent the same relation except that RΘ is in set form and MO in
binary matrix form.

Theorem 4.5. A cellular automata A is observable (resp. reconstructible) by an
output operator H at time T if and only if the binary relation RΘ (resp. R̃Θ) is
injective.

Proof. For the observability condition, the theorem follows directly from proposi-
tion 2.6 which represents the writing of the injectivity of Θ and RΘ is the relational
writing of Θ.

For the reconstructibility condition, the theorem follows directly from proposi-
tion 2.9 which can be written as follows:

(11) ⇐⇒ ∀s′0, s′′0 ∈ W,ΘT (s
′
0) = ΘT (s

′′
0) =⇒ s′T = s′′T

⇐⇒ ∀s′T , s′′T ∈ F T (W), R̃Θ(s
′
T ) = R̃Θ(s

′′
T ) =⇒ s′T = s′′T

⇐⇒ R̃Θ is injective

In order to numerically verify the observability or reconstructibility of the CA,
we must first construct the relations RΘ and R̃Θ and then verify their injectivity.
Therefore we propose the algorithm 1 that allows to construct simulataneously the
relations RΘ and R̃Θ but also to check their injectivity during their construction.

In order to construct the observability relation, the output sequence is computed
for each of the possible initial configurations s0 ∈ W. However, to obtain the output
sequence ΘT (s0) we need the configurations from s0 to sT−1, so we can take advan-
tage of sT−1 to compute sT in order to build the reconstructibility relation. As for
the evaluation of the injectivity, we use a specific data strcuture called Hashmap to
record the relations RΘ and R̃Θ. This type of data structure allows to store a value
with a key and to guarantee the uniqueness of the key. In this manner, by using the
output sequence as a key and the initial configuration (or current configuration) as
a value we are able to verify two things. The first is to make sure that each output
sequence is associated to only one configuration and thus to check the injectivity of
the observability and reconstructibility relations. The second is to be able to easily
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find the configuration related to the output sequence and therefore know the initial
configuration when measurements are performed on the system.

Algorithm 1: Verification of observability and reconstructibility of (A, H)

AssessObsRec (W, F,ΘT )
inputs : A set of admissible initial configuration W;

a global transition function F ;
an output sequence operator ΘT

output: The observability Hashmap Obs;
the reconstructibility Hashmap Rec;
the observability status is Obs;
the reconstructibility status is Rec

Declare Obs and Rec as two empty Hashmap;
Declare is Obs and is Rec as two boolean variables initialized to true;
foreach s0 ∈ W do

(Θ0,T , sT−1)← ΘT (s0);
sT ← F (sT−1);
if Obs[Θ0,T ] already exists then

is Obs← false;
else

Obs[Θ0,T ]← s0;

if Rec[Θ0,T ] already exists then
if Rec[Θ0,T ] ̸= sT then

is Rec← false;

else
Rec[Θ0,T ]← sT ;

return Obs,Rec, is Obs, is Rec

This algorithm is separated into two parts, the first where the output sequence and
the current configuration are computed and the second where these values are stored
in the Hashmap. Thus the first part has a complexity of O(TG) where T is the time
horizon and G is the complexity of the global transition function F , then the second
part has a complexity of O(1). Thus, the total algorithmic complexity is O(WTG)
where W is the number of admissible configurations.

If we consider that all initial configurations are studied (i.e.W = SL) and that F has
linear complexity with respect to the number of cells N , because the local function
f is applied separately to each cell, (so logarithmic with respect to the number of
configurations SN ) then the complexity of the alogrithm is O(SNTNlog(S)).

Compared to the algorithm that verifies observability for affine CAs presented in
section 3.3, this algorithm has a greater complexity. The algorithmic complexity for
verifying observability is polynomial for affine CA O(TQNω−1) and exponential for
non-linear CA O(SNTNlog(S)), with N representing the number of cells, Q the num-
ber of sensors, S the number of states and T the time horizon.
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4.2. Decomposition of the Observability and Reconstructibility Problem

In order to be able to use the results of the previous subsection, we need to find a
method that will drastically reduce the algorithmic complexity necessary to compute
the observability. As cellular automata are not very connected (few links between
cells), it is possible to decompose the observability problem into smaller ones which
would drastically reduce the algorithmic complexity. In this way, the observability is
computed only on a part of the CA which allows to move the complexity factor from
the size of the CA to the size of this part. To do this, sensors and subdivisions must
be judiciously placed to ensure observability or reconstructibility at any point in the
cellular automata.

The subdivisions do not represent a whole CA and are no longer isolated, so the
boundaries are cells of the CA and do not respect the rules on boundaries that we
defined at the beginning of the paper. We can consider that these boundaries take
random states at each time step, in this way, we have to define a new notion of ob-
servability and reconstructibility for automata with randomly valued boundaries.
On the observation horizon T, the boundaries will have a sequence of values called
boundary trajectory and it will be necessary to check the observability for each tra-
jectory therefore if the output sequence and the boundary trajectory are known then
the initial state of the subdivision can be reconstructed.

Theorem 4.6. A cellular automata A with randomly valued boundaries is ob-
servable (reconstructible) by an output operator H at time T if and only if the cellular
automata is observable (reconstructible) for every boundary trajectories.

To ensure the observability of a part of CA, it is necessary to know the value of
boundary trajectory, so we must place sensors directly outside the CA but also inside
it. If we ensure the observability only for a part of the CA we speak then of regional
observability (Fekih & Jai, 2006). But in our case, we will study the observability of
the whole CA through multiple parts of it.

Remark 11. This method works very well for one-dimensional automata because the
size of the boundary is independent of the number of cells in the CA, there are always
2 boundaries. However, in two dimensions (or more) the number of boundary cells
increases greatly. Indeed, to obtain the observability of a 3 × 3 CA it is necessary to
know the state of the 16 boundary cells (i.e. more than the CA itself).

For one-dimensional CA, the sensors can be placed directly on the edges of the CA
of the sub-observer and thus act as a sensor for the sub-observer and as a boundary
cell sensor for the neighbouring sub-observers (see figure 2). In this way, each sensor
has the dual purpose of measuring the boundary cells and estimating the cells of
the CA. Of course, if this sensor topology is not sufficient to ensure observability or
reconstructibility, other sensors can be added inside the sub-observer but their only
purpose will be to estimate the state of the sub-observer.

Figure 2. A one-dimensional CA subdivided into 3 parts. Grey cells are measured by a sensor.

This method significantly reduces the complexity of the observability of one-
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dimensional CA because the subdivision reduces the number of cells whose observ-
ability we seek to verify. If we split a CA of size N in k equal parts then the number of

initial configuration is not SN but S
N

k but we also have to evaluate for the 2S
T
limit

trajectories so there are S
N

k × 2S
T
. However, if the sub-observers are not of the same

size, then observability must be checked independently for each sub-observer size.

5. Example on Several Application

In this section, we will apply the criteria of observability and reconstructibility to
two separate examples. For the first example, we will use a Wolfram’s non-linear rule
which is used to model a traffic flow: the rule 184. This rule also makes it possible to
show, on certain systems, that observability is difficult to ensure in contrast to recon-
structibility which may be simpler. In the second example we study the observability
problem for a two-dimensional forest fire spread model. This example will also show
that observability may sometimes be easier to ensure with mobile sensors.

5.1. Traffic Flow Example

Elementary Rule 184 is one of the most used of Wolfram’s elementary rules. It is
mainly used to model in a simple way the traffic flows (Maerivoet & De Moor, 2005)
and the particle deposition (Krug & Spohn, 1988). The model is deterministic, boolean
and one-dimensional.

Figure 3. Rule 184 interpreted as a simulation of traffic flow. Each 1 cell corresponds to a vehicle, and each
vehicle moves forward only if it has open space in front of it. Image from David Epstein at English Wikipedia

For this example, we will study the elementary rule 184 which is a one-dimensional
Boolean cellular automata. Because of the algorithmic complexity of the relational
method we will only consider a few cells. We will consider 10 cells for a total of 1024
configurations and we will use periodic boundaries, so the CA can be defined as:

• L = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• S = {0, 1}
• N : c 7→ {c − 1, c, c + 1} with respect to the periodic boundaries, thus N (0) =
{0, 1, 9} and N (9) = {0, 8, 9}.
• f : {st(c− 1), st(c), st(c+1)} 7→ st(c− 1)+ st(c− 1) · st(c) + st(c) · st(c+1) with

respect to the modular arithmetic of S.

Since the transition function of this CA is non-linear, its observability cannot be
assessed with the Kalman criterion.

This CA poses another problem regarding observability: it cannot be evaluated
with few sensors. Indeed, to differentiate the two initial configurations presented in
figure 4, it would be necessary to observe 2 of the 3 cells that are non-zero among the
two initial configurations. This problem can be shifted over the whole CA and it would
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(a) Configuration 0010100000 (b) Configuration 0001100000

Figure 4. Evolution of the rule 184 for two similar initial configurations. Time is going down on the vertical
axis.

thus be necessary to place a sensor every two cells to resolve this issue. Conversely,
this convergence of two initial configurations does not pose any difficulty with respect
to the reconstructibility of the cellular automata. Because of this, we won’t study the
observability but focus on finding a sensor to ensure the reconstructibility.

We have the intuition that reconstructibility can be provided by a single sensor,
wherever it is. Indeed, because the system propagates in one direction only, a sensor
could see all the non-zero states pass and deduce their future positions. To carry on
with the traffic flow analogy, this sensor could be a tollbooth which, at a certain
moment, measures all the cars. In this case, if the cell 0 is observed by the sensor then
the output operator is defined as:

• Lq = {0}
• H : st 7→ st(0)

To verify the reconstructibility of the cellular automaton, we will use algorithm 1 in
order to construct the reconstructibility relation RT as well as to verify its injectivity.
For this application case, there is no constraint on the configurations since each location
can be occupied by a car or not, therefore W = SL. We cannot apply the Cayley-
Hamilton theorem, thus we start assessing the reconstructibility with a minimum time
horizon T = 1 and will increase it gradually until the reconstructibility is verified. In
addition, we modify the algorithm 1 so that it counts the number of unobservable
and unreconstructible configurations and plot this number as a function of the time
horizon T in figure 5. Finally, the system is reconstructable from T = 14.
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Figure 5. Number of unobservable/unreconstructible configurations as a function of the time horizon T .
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The number of unreconstructible configurations converges to 0 while the number of
unobservable configurations is not zero. Reconstructibility is well ensured at time 14
but not observability. The reduction in the number of configurations between time 9
and 10 is specific to the system, it is the minimum time necessary for the sensor to
measure the impact of all the cells through the measured cell. Indeed, with 10 cells
and periodic boundaries, it takes 10 time steps for the cell on the far right to have an
impact on the cell on the far left (the measured cell).

Finally, we aim to extend our model to observe a larger road network. For this, we
intend to observe a CA of 1, 000 cells but the algorithmic complexity of algorithm 1 is
far too important. Therefore, we study a CA of size 1000 but using 100 sub-observers
of size 10. We use the sensor topology shown in Figure 2, one sensor at each end
of the lattice. In the same way as for the study of reconstructibility, we have no
constraint on the time horizon T from which the CA is reconstructible for randomly
valued boundaries. To do this, we start with a low time horizon T and increase it
gradually until reconstructibility is ensured. By doing simulations, we verify that the
reconstructibility is assessed for T = 7.

This method with the sub-observers allowed to ensure the reconstructibility for the
whole CA which would have been impossible without it. Indeed, with 1000 cells the
number of operations to evaluate the reconstructibility is 21000 with the usual method
against 210 · 22∗7 = 224 for the reconstructibility with the sub-observers.

5.2. Forest Fire Example

In this example, we will study the observability and reconstructibility property for a
two-dimensional cellular automata. To observe the state of this system, we will use a
single sensor that can move. This type of sensor can be similar to a drone that flies
over an environment and perceives only part of it. For this second example we will
study the observability and reconstructibility of a two-dimensional CA of size 15× 15
whose goal is to model the spread of a fire in a non homogeneous forest.

The state of the cells represents the state of the forest, which can correspond to four
different states: an empty cell, a forest cell, a burning forest cell and a burned forest
cell. The behavior of the cells is quite simple: an empty cell does not change state; a
forest cell becomes a burning forest cell if at least one of its neighbors is a burning
forest cell; a burning forest cell becomes a burned forest cell; and a burned forest cell
does not change state. This behavior can be represented by the figure 6. The cellular
automata is defined as follows:

• L = {0, 1, 2, . . . , 13, 14}
• S = {0, 1, 2, 3}
• N is the Von Neumann neighbourhood of radius 1 and we consider fixed to 0

boundaries, thus:

N : c 7→ N (c) = {c′ ∈ L|
∥∥c′ − c

∥∥
1
≤ 1}

The presented CA is non-linear, so we will use the results of part 4 to prove observ-
ability. However, due to the number of configurations, it is not possible to check the
observability, so we will drastically reduce the number of possible initial configurations
while respecting the coherence with the model.

In the case of the forest fire spread, we can consider that the initial configuration
represents a forest (i.e. neither burning nor burned forest) and only one burning forest
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Figure 6. State Transition Diagram for the Cell.

Figure 7. Topology of the forest without fire outbreak.

cell to represent the ignition point of the fire. Moreover, the topology of the forest is
known, i.e. only one initial configuration of forest will be studied. For our example, we
will use the forest presented on figure 7 with 157 forest cells and 68 empty cells. By
making these simplifications, the number of possible initial configurations increases
from 4225 to 158.

Some parts of the forest are not connected to the rest and therefore cannot be
ignited. In order to determine the state of these parts, these cells must be directly
measured by the sensors. For the chosen topology, there are 4 cells isolated from the
rest of the forest which would require 4 sensors but a single measurement would be
enough to detect the fire in these areas. The mobile sensors could measure the state of
these cells and directly go and measure other cells. For this kind of property, mobile
sensors seem to be more efficient. Indeed, if we consider a random distribution of
15 sensors then the average number of unobservable configurations is 18.2 for mobile
sensors (the position is determined randomly at each time step) against 47.4 for fixed
sensors. Although we have not been able to find a trajectory for mobile sensors that
ensures observability, they seem to be more efficient than fixed sensors.

Finding positions or trajectories for the sensor network to observe the system is
a complex problem as there is no ”simple” method to produce an observer from the
system and the constraints. Moreover, for given constraints there is not necessarily a
position or trajectory that ensures observability or reconstructibility.

The calculation of a trajectory is more complex than the calculation of a position
because it is a question of finding a position per sensor and per time step. Moreover,
new constraints are added such as obstacle avoidance or physical constraints of speed or
acceleration. Some researchers are directly studying the problem of observability with
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mobile sensors. Noticeably Demetriou et al (Demetriou, 2010; Demetriou & Hussein,
2009) or Hussein et al (Hussein & Stipanovic, 2007) are considering networks of mobile
sensors. Related problems occurred when mobile sensors (or actuators) are considered
such as obstacle avoidance or formation coordination to get maximum coverage.

6. Conclusion

At the beginning of this article, the notions of observability and reconstructibility
were defined for cellular automata. They have been presented theoretically for finite-
state and finite-lattice cellular automata. They also allow the observation of cellular
automata with a network of static and mobile sensors.

Two criteria were then presented to assess observability and reconstructibility of CA.
The first one applies only to affine CA and derives from an extension of the Kalman
criterion. The second one derives from results on Boolean networks and applies more
generally to CA, at the cost of a greater complexity. Despite its greater complexity,
this second criterion has been utilized in conjonction with CA-specific constraints to,
first, design an algorithm that verifies observability and reconstructibility, and, second,
to decompose the observability and reconstructiblity problems and solve them for CA
with many more cells.

Finally, the observability and reconstructibility criteria have been applied to two
very different examples. The first one is the elementary rule 184 use to model traffic
flow. We have shown the benefit of recontructibility compare to observability for this
particular example as well as the decomposition of the reconstructibility problem for
a thousand cells. The second example is a two dimensional forest fire spread model in
which we have address the observability problem by largely reducing the number of
inital configurations and by using a network of mobile sensors.

This work on observability and reconstructibility will make it possible in the future
to develop a systemic method for constructing an observer. For the moment, observers
are found by trial and error, which, along with the complexity of relational methods,
poses problems of computation time. The observability and reconstructibility criteria
can also be used to coordinate a sensor network by using the classical method such pre-
dictive controller at the cost of a higher computation time or by using a decentralized
method such as the multi agent paradigm at the cost of optimality loss.
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