
HAL Id: hal-03942782
https://hal.science/hal-03942782

Submitted on 27 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Observability and Reconstructibility of Affine Cellular
Automata: Example on Random Number

Reconstruction
Théo Plénet, Samira El Yacoubi, Clément Raievsky, Laurent Lefevre

To cite this version:
Théo Plénet, Samira El Yacoubi, Clément Raievsky, Laurent Lefevre. Observability and Recon-
structibility of Affine Cellular Automata: Example on Random Number Reconstruction. Journal of
Cellular Automata, 2022, 16 (5-6), pp.401-422. �hal-03942782�

https://hal.science/hal-03942782
https://hal.archives-ouvertes.fr


Observability and Reconstructibility of Affine
Cellular Automata: Example on Random

Number Reconstruction.

Théo Plénet1?, Samira El Yacoubi1, Clément Raïevsky2, Laurent
Lefèvre2

1 IMAGES Espace-Dev, Univ Perpignan Via Domitia, Perpignan, France
ESPACE-DEV, IRD, Univ Montpellier, Montpellier France;

2 LCIS, Univ. Grenoble Alpes, Grenoble INP, Valence, France

In this paper, the notions of observability and reconstructibil-
ity are defined for cellular automata. We extend the Kalman
observability criterion to affine cellular automata with a
time-varying output operator and apply this characterisa-
tion property to the observability and reconstructibility
through mobile sensors. Then, a short and simple exam-
ple is presented in order to detail the method for assessing
the observability and reconstructibility of an affine cellular
automata. Finally, an example where the random number
stream is reconstructed from a cellular automata random
number generators is considered in order to illustrate the
concept of observability in the context of cybersecurity ap-
plications.

Key words: cellular automata, observability, reconstructibility,
mobile sensors, Kalman criterion, RNG Attack

1 INTRODUCTION

Observability is a concept studied in systems theory that consists in
looking for the extent to which the internal states of a system can be
inferred from data and measurements available on the system. However,
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when dealing with complex systems, our limited ability to estimate the
internal state from experimentally accessible outputs severely limits their
complete description. The problem lies in the ability to build sensors
capable of providing measurements allowing to reconstruct the internal
state of the system and thus to make it observable. For Distributed
Parameter Systems (DPS) analysis and control, the sensors structures
play an important role regarding the observability issue. Observability
as well as controllability which are important concepts in control theory
were introduced by Kalman [15] for finite dimensional linear systems
and well developed in the last fifty years for more general systems [19,
24, 20, 1, 12]. Their study through the concepts of sensors and actuators
has also been of great interest in the automatic control community [10,
11]. While controllability focuses on the steering capabilities of the
controlled evolution processes, observability is dealing with the ability
to reconstruct the initial system state, given sufficient knowledge of the
system dynamics through some output measurements.

This paper focuses on the observability problem of a distributed
parameter system that is assumed to be autonomous. Motivated by
some real distributed environmental phenomena (e.g. wildfires, weather,
atmosphere or river pollution) we use a group of mobile robots equipped
with different sensors [6]. Robots share information with each other and
we simply call this group a network of mobile sensors. This network
constitute a natural extension of sensors and offers more flexibility in
collecting distributed information within its environment. A model-
based approach through trajectory optimisation (for the mobile sensors)
with partial differential equation constraints (PDE, for the environment
dynamical model) would lead to very complicated [2] - sometimes
intractable - mathematical issues, particularly in the case of complex
geometries and/or non linear dynamics.

Among other modelling approaches that have been developed to
describe life phenomena which exhibit complex behaviours, cellular
automata (CA) provide powerful models usually viewed as a counterpart
of PDEs for modelling spatio-temporal systems. CA are mathematical
model which is perfectly suited to complex systems containing a large
number of discrete elements with local interactions, for example Ising
model, fluid dynamics, traffic flow, growth of crystal [28, 5, 3]. They
were first introduced by [32], as a modelling tool to investigate self-
organisation and self-reproduction phenomena and become increasingly
attractive thanks to their ability to exhibit a wide variety of amazingly
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complex behaviours while offering an easiness of implementation.
The research activity regarding cellular automata was recently ori-

ented towards systems theory when CA were presented as distributed
parameter system and allowed the study of several concepts of control
theory [13]. New tools have been investigated in this direction in
order to obtain characterisation results that can extend or substitute
the most commonly used Kalman criterion. An interesting study on
controllability of CA has been carried out in [9] that highlighted new
ways to prove the controllability of complex systems. It mainly focused
on regional controllability of Boolean CA that has been proved using
Markov chains or graph theory tools [7, 8]. The boundary regional
controllability has also been investigated for linear (additive) Boolean
CA for which some characterisation results using the Kalman condition
were given.

Our interest in this paper is focused on observability as a dual notion
of controllability. The purpose is to apply the above mentioned tools
in order to prove the observability according to the choice of sensor
structures, locations and types (mobile or fixed). We show for the 1D
case, that observability of linear (affine) CA can be characterised using
the observability matrix.

Although we were initially motivated by the observation of physical
systems by a mobile sensor network, observability and reconstructibility
can be used in other fields. In this paper, we present a rather interesting
example where the observability of affine CA allow the recovery of the
random number sequence generated by a random number generating cel-
lular automaton [29]. Past and future random numbers can be deduced
from some information about certain random numbers. The attacks by
which the random number information is recovered are not described in
this paper because the reconstruction method is independent of those.
Furthermore, the choice of attack often depends on the physical or
digital medium used by the random number generator.

The article is organised as follows: In section 2, the concepts of
observability and reconstructibility for cellular automata are defined.
Section 3 gives the observability criterion for affine CA as an extension
of the rank condition established by Kalman. A complete study of affine
CA by means of mobile sensors is carried out in the following section
and the last section is dedicated to an important application of the
concept in cybersecurity.
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2 OBSERVABILITY AND RECONSTRUCTIBILITY FOR CELLU-
LAR AUTOMATA

2.1 Cellular Automata Model
Definitions for control and observation of cellular automata has already
been given in [13]. Throughout this article we will reuse these definitions
but for the consistency of this article we will redefine some of these.

First, a cellular automaton (CA) is formulated as the quadruple
A = {L,S,N , f} where L is a d-dimensional finite lattice of cells c; S
denotes a discrete set of states S = {0, 1, . . . , k − 1}; N is the mapping
which defines the cell’s neighbourhood; and f is the transition function.
In this paper, the set of states S must be a field, i.e. that S is a finite
commutative ring with a prime number of states. This set may also be
called Z/kZ, with k a prime number of state.

Throughout this article, we will forego the local properties of CA to
focus on their global properties. Therefore, we define the state st of the
whole CA at time t and the global transition function F .

st : L → S
c 7→ st(c)

(1)

F : SL → SL

st 7→ F (st) = st+1

(2)

The evolution of the CA can now be written in a form similar to the
study of linear systems:{

st+1 = F (st)

s0 ∈ SL ⇐⇒ st = F t(s0), t ∈ I (3)

With I = {0, 1, . . . , T} a discrete time horizon.

2.2 Sensor Model and Output Operator
To represent the measurements of a physical system modelled by a CA,
we extend the previous global CA dynamical models with sensors and
and output operator. Their measurements will allow us to reconstruct
the initial state of the physical system using the criteria of observability
and reconstructibility.
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We denote qi, i ∈ J1;QK, the sensor measuring the state of several
cells (we note Lqi ⊂ L the set of these cells). The set of all cells
measured by the sensors is denoted Lq defined by:

Lq =

Q⋃
i=1

Lqi (4)

Among all the sensors some can be considered as mobile sensors, i.e.
the set of cells they measure changes as a function of time. We will
then note Lqi,t the set of cells measured by the sensor qi at time t and
Lqt the set of cells measured by all the sensors.

FIGURE 1
Two sensors measuring a one-dimensional CA. Grey cells are measured by a
sensor, either q1 or q2.

Given this formalisation of sensors’ position and motion, we are able
to build an operator Ht which maps, at time t, the configuration st of
the CA with the measurements θt obtained by whole set of sensors.

Ht : SL → O
st 7→ θt := st|Lqt

(5)

, where st|Lqt
denotes the restriction of the state st to the set Lqt of

cells effectively measured at time t.
By augmenting the state representation (3) with the output θt, the

system turns into : 
st+1 = F (st)

θt = Ht(st)

s0 ∈ SL
(6)

2.3 Observability and Reconstructibility
Observability, as defined by Kalman [16], determines if it is possible to
reconstruct the state of a system based on the measurements obtained
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from one or more sensors. Observability focuses on reconstructing
the initial state of the system whereas reconstructibility focuses on
reconstructing the current state of the system. In the case of discrete
time systems, both of these are not equivalent. With a deterministic
system, observability is a more general concept as knowing the initial
state implies knowing all the evolution of the system. Reconstructibility,
on the other hand, is less general but can be easier to assess [23].

To reconstruct the state of the system, observability and recon-
structibility uses a sequence of several measurements. This vector
composed of the successive output vectors (measurements) generated by
the output operator Ht is called an output sequence. The sequence of
measurements spanning from t0 to tT is noted Θ0,T = (θ0, θ1, ..., θT−1).

An output sequence can be computed from the initial state s0 using
the operator:

ΘT : s0 7→ Θ0,T = (H0(s0),H1 ◦ F (s0), . . . , HT−1 ◦ FT−1(s0)) (7)

Definition 1 (State Observability). A configuration s0 ∈ SL of a cellular
automaton A is observable by an output operator H at time T if
and only if it is possible to reconstruct this initial state s0 from the
corresponding output sequence Θ0,T .

Definition 2 (Global Observability). A cellular automaton A is observ-
able by an output operator H at time T if and only if all states s ∈ SL

are observable by this output operator.

The definition 2 of the global observability is equivalent to the
following proposition:

∀s′0, s′′0 ∈ SL,ΘT (s
′
0) = ΘT (s

′′
0) =⇒ s′0 = s′′0 (8)

Definition 3 (State Reconstructiblity). A state sT ∈ SL of a cellular
automaton A is reconstructible by an output operator H at time T if
and only if it is possible to reconstruct the current state sT from the
corresponding output sequence Θ0,T .

Definition 4 (Global Reconstructiblity). A cellular automaton A is
reconstructible by an output operator H at time T if and only if all
states s ∈ SL are reconstructible by this output operator.

The definition 4 of the global reconstructibility is the equivalent to
the following proposition:

∀s′0, s′′0 ∈ SL,ΘT (s
′
0) = ΘT (s

′′
0) =⇒ FT (s′0) = FT (s′′0) (9)
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3 OBSERVABILITY CRITERION FOR AFFINE CELLULAR AU-
TOMATA

This section presents the extension of the Kalman criterion, usually
used to determine the observability of continuous time or discrete time
linear systems, to linear cellular automata and more generally to affine
CA.

3.1 Affine and Linear Cellular Automata
Before presenting the extension of the Kalman criterion to CA, we need
first to express the state of a CA in the form of a state vector and then
to define the properties of a CA that make it linear or affine.

To express a CA state as a state vector, the CA must have a finite
lattice and its cells must be arranged in an arbitrary order. Under this
assumption, an isomorphism ξ between the CA state st and a state
vector representation xt can be defined.

ξ : SL → SN

st 7→ xt =


x1
t

x2
t

...

xN
t

 (10)

, where N = |L| and xi
t represents the state of the cell ci at time t.

In the similar way, it is possible to represent the outputs θt as a
vector denoted yt thanks to the isomorphism χ defined by :

χ : O → SQ

θt 7→ yt =


y1t
y2t
...

yQt

 (11)

, where Q = |Lq| and yit represents the ith output at time t.
With this change of basis, the operators F and Ht become respectively

F̃ : SN → SN and H̃t : SN → SQ so that :
xt+1 = F̃ (xt)

yt = H̃t(xt)

x0 = ξ(s0), s0 ∈ SL
(12)
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Definition 5 (Affine). A cellular automaton (resp. output operator)
is affine if and only if F̃ (resp. H̃) is an affine map. Moreover, this
affine map can be written in the form of a linear map and a constant,
which can be written as a matrix A (resp. Ct) and a constant η = F̃ (0)

(resp. γt = H̃t(0)). The evolution of the cellular automaton can then
be written as:


xt+1 = F̃ (xt) = Axt + η

yt = H̃t(xt) = Ctxt + γt
x0 = ξ(s0), s0 ∈ SL

(13)

If an affine CA has a null η constant, this CA is said linear. In the
case of elementary CA [33], linear CA are called additive CA. Also,
affine CA will be the complement of additive CA. For example, rule 90
and 150 will be considered linear rules, but their complementary rule
(165 and 105) will be considered affine rules.

The trajectory of the CA state may be explicitely written in terms
of the initial state x0, as:{

xt+1 = At+1x0 + Jtη

x0 = ξ (s0) , s0 ∈ SL (14)

with Jt =
∑t

k=0 A
k

The output sequence ΘT can also be represented in affine form using
the affine forms of the transition function and the output operator. We
note YT the output sequence for T outputs where OT is the linear map
and ΓT the constant vector:

YT =


y0
y1
. . .

yT−1

 =


C0

C1A

. . .

CT−1A
T−1


︸ ︷︷ ︸

OT

x0 +


γ0

C1J0η + γ1
. . .

CT−1JT−2η + γT−1


︸ ︷︷ ︸

ΓT

(15)

with Jt =
∑t

k=0 A
k.

We call OT the observability matrix as this linear map carries the in-
jectivity property of the output sequence and therefore the observability
property.
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3.2 Extension of the Kalman Observability Criterion
The Kalman observability criterion [16, 15] is derived from the control
of linear dynamical systems and proves the controllability (resp. observ-
ability) of a dynamical system when the system is controlled (observed).
It has been generalised to discrete-time systems [26] and in this paper
we generalise it to cellular automata.

Theorem 1 (Kalman Criterion). Let A and Ht be an affine CA and
affine output operator; A, Ct their matrix form; and η and γt their
constants.

The pair (A,Ht) (i.e. the cellular automaton A with the output
operator Ht) is observable if and only if there exists T ∈ N such that:

rank OT = rank


C0

C1A

..

CT−1A
T−1

 = N (16)

Proof. Let A an affine CA and A and η its associated matrix and
constant. Let Ht be a time dependant affine output operator associated
with the matrix Ct and the constant γt. Then, let x0 ∈ SN the initial
state and YT =

[
y0 y1 . . . yT−1

]
the output sequence generated by

the output operator such that YT = OTx0 + ΓT .
Considering the definition 2 of global observability, then:

(A,Ht) is observable
⇐⇒ ∀s′0, s′′0 ∈ SL,ΘT (s

′
0) = ΘT (s

′′
0) =⇒ s′0 = s′′0

⇐⇒ ∀x′
0, x

′′
0 ∈ SN , OTx

′
0 + ΓT = OTx

′′
0 + ΓT =⇒ x′

0 = x′′
0

⇐⇒ ∀x′
0, x

′′
0 ∈ SN , OT (x

′
0 − x′′

0) = 0 =⇒ (x′
0 − x′′

0) = 0

⇐⇒ ker OT = {0}
⇐⇒ rank OT = dim OT − dim(ker OT ) = N

In linear algebra, the Cayley-Hamilton theorem states that any square
matrix over a commutative ring (in our case S) satisfies its characteristic
equation. It can be coupled with the Kalman theorem here above to
give an upper bound on the time horizon T .

Proposition 1. Suppose a CA observed by a time invariant output
operator C (i.e. by a static sensor), the observability matrix OT is of
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size N ×Q.T . For the matrix OT to be of full column rank, the time
horizon T has to be bounded by:

N

Q
≤ T ≤ N (17)

Proof. The two inequalities are proven by the following:

• T ≤ N : The Cayley-Hamilton theorem guarantees that AN is
a linear combination of lower powers, the rank of OT will not
increase beyond T = N.

• T ≥ N/Q : For OT to have a rank of N , it needs at least N rows
and columns, thus Q.T ≥ N .

In the case of a mobile sensor (i.e. a time variant output operator Ct),
only the lower bound of the inequation (17) stands true. The Cayley-
Hamilton theorem does not apply because CTA

T is a linear combination
of CT +CTA+ · · ·+CTA

T−1 and not of C0 +C1A+ · · ·+CT−1A
T−1

Corollary 1. If the Kalman criterion is verified, then it is possible
to reconstruct the initial state by inverting the observability matrix.
Indeed, based on the formulation (15) we obtain:

x0 = O†
T (YT − ΓT ) (18)

Proof. Consider an affine CA A observable by an affine output operator
Ht such that ∀x0 ∈ SN , YT = OTx0 + ΓT and rank OT = N . To
simplify the notations, we shall simply note O and Γ to respectively
represent OT and ΓT .

As rank O = N , it means that it exists P such that PO = I (but
not necessarily OP 6= I because O is full column rank not full row rank).
We can find P = O† by computing the pseudo-inverse of O. Using the
equation (15) we find that:

YT = Ox0 + Γ ⇐⇒ O†(YT − Γ) = O†Ox0 ⇐⇒ O†(YT − Γ) = x0

As O is full column rank, O† = (OtO)−1Ot. If O is square then
O† = O−1.
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In the case of linear systems, observability and reconstructibility are
equivalent concepts [31]. The Kalman criterion ensure observability,
however there are some systems which are reconstructible but not
observable [23], for this reason we propose a new theorem which assesses
the reconstructibility of affine CA.

Theorem 2 (Reconstructibility Criterion). Let A and H be an affine
CA and affine output operator; A, C their matrix form; and η and γ

their constants.
The pair (A,H) (i.e. the cellular automaton A with the output

operator H) is reconstructible if and only if there exists T ∈ N such
that:

ker OT ⊂ ker AT (19)

If the CA is reversible [17] then AT is full rank thus reconstructibility
is equivalent to observability. Indeed, ker OT ⊂ ker AT = {0} ⇐⇒
rank OT = N .

Proof. Let A an affine CA and A and η its associated matrix and
constant. Let Ht be a time dependant affine output operator associated
to the matrix Ct and the constant γt. Then, let x0 ∈ SN be the initial
state and YT =

[
y0 y1 . . . yT−1

]
the output sequence generated by

the output operator such that YT = OTx0 + ΓT .
Consider the definition 4 of the global observability, then:

(A,Ht) is reconstructible
⇐⇒ ∀s′0, s′′0 ∈ SL,ΘT (s

′
0) = ΘT (s

′′
0) =⇒ FT (s′0) = FT (s′′0)

⇐⇒ ∀x′
0, x

′′
0 ∈ SN , OTx

′
0 + ΓT = OTx

′′
0 + ΓT

=⇒ ATx′
0 + JT−1η = ATx′′

0 + JT−1η

⇐⇒ ∀x′
0, x

′′
0 ∈ SN , OT (x

′
0 − x′′

0) = 0 =⇒ AT (x′
0 − x′′

0) = 0

⇐⇒ ker OT ⊂ ker AT

Corollary 2. If the reconstructibility criterion is verified, then it is
possible to find a matrix R such that:

xT = R(YT − ΓT ) + JT−1η (20)
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Proof. Consider an affine CA A (with a matrix A and a constant
η) reconstructible by an affine output operator Ht such that YT =

OTx0 + ΓT and ker OT ⊂ ker AT .
As ker OT ⊂ ker AT , it means there exists a matrix R such that

AT = ROT . With this property, we can find that:

YT = OTx0 + ΓT ⇐⇒ R(YT − ΓT ) = ROTx0

⇐⇒ R(YT − ΓT ) + JT−1η = ATx0 + JT−1η

⇐⇒ xT = R(YT − ΓT ) + JT−1η

4 OBSERVATION OF AFFINE CELLULAR AUTOMATA
THROUGH MOBILE SENSORS

In this section, a simple and didactic example will be presented, it will
allow to detail the operations necessary to assess the observability or the
reconstructibility for cellular automata. For this purpose, the CA studied
will have only one dimension and few cells in order not to overload the
calculations. This CA will not have a physical representation nor a
numerical utility but the next section will present another example with
a numerical utility but without the detail of the calculations.

Let us consider the following one-dimensional cellular automaton
defined by:

• L = {0, 1, 2, 3, 4}

• S = {0, 1, 2}

• N : ci 7→ {ci−1, ci, ci+1} with periodic boundaries so c−1 = c4 and
c5 = c0.

• f : st(N (ci)) 7→ st(ci−1) + 2st(ci) + st(ci+1) + 1

Then let us consider two output operators H and H ′. Both of these
will observe one cell at a time, but H represents a mobile sensor (i.e. Lq

varying over time) while H ′ represents a stationary sensor. The mobile
sensor measure one cell and moves to the right by one cell at each time
step: at t = 0 it measures cell c0, at t = 3 cell c3 and at t = 5 cell c0
(because of the periodic boundary conditions).

• Mobile Sensor: Lqt = {ct mod 5} and H : st 7→ st(ct mod 5) + 2

12



0 1 2 2 0

2 2 2 1 0

1 0 2 2 1

1 1 1 2 0

1 2 0 0 1

0 0 0 2 1

2 1 0 0 2

2 2 2 0 1

FIGURE 2
Evolution of the cellular automaton over 8 time steps from the initial configu-
ration 01220|3.

• Stationary Sensor: L′
q = {c0} and H ′ : st 7→ st(c0) + 2

From the equations (10) and (11) and the usual order of the cells (i.e.
xi
t = st(ci)), the state system (12) can be written with :

F̃ (xt) =


2x0

t + x1
t + x4

t + 1

x0
t + 2x1

t + x2
t + 1

x1
t + 2x2

t + x3
t + 1

x2
t + 2x3

t + x4
t + 1

x0
t + x3

t + 2x4
t + 1


H̃t(xt) = xt

t + 2 and H̃ ′(xt) = x0
t + 2

The transition function F̃ is an affine map, so it can be written in
an affine form with a square matrix A and a constant vector η, which
leads to:

A =


2 1 0 0 1

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

1 0 0 1 2

 and η =


1

1

1

1

1


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The two output operators H̃ and H̃ ′ being affine, thus their matrix
form are:

• Stationary Sensor: C ′ =
[
1 0 0 0 0

]
and γ′ = 2

• Mobile Sensor:

C0 =
[
1 0 0 0 0

]
and γ0 = 2

C1 =
[
0 1 0 0 0

]
and γ1 = 2

. . .

C4 =
[
0 0 0 0 1

]
and γ4 = 2

C5 =
[
1 0 0 0 0

]
and γ5 = 2

From the equation (17) which uses the Cailey-Hamilton theorem, we
are able to compute that the observation horizon T = 5 because Q = 1

and N = 5. We can therefore calculate from (15) the observability
matrix OT and the constant vector ΓT .

• Stationary: O′
T =


C ′

C ′A

C ′A2

C ′A3

C ′A4

 =


1 0 0 0 0

2 1 0 0 1

0 1 1 1 1

2 0 1 1 0

1 0 0 0 0

, ΓT =


2

0

1

2

0



• Mobile: OT =


C0

C1A

C2A
2

C3A
3

C4A
4

 =


1 0 0 0 0

1 2 1 0 0

1 1 0 1 1

1 1 0 2 0

0 0 0 0 1

, ΓT =


2

0

1

2

0


The mobile sensor ensures the observability in a time T because the

matrix OT is full rank. On the contrary, the stationary sensor does not
because the rank of the matrix O′

T is not 5. Since observability is not
verified at time T , the time horizon T should be increased as long as it
respects the inequality (17). In our case, there is only one possibility
for T , the next operation would be to assess the reconstructibility using
(19). However, this would be pointless in this case because the CA
is reversible (rank A = 5) and observability and reconstructibility are
equivalent in this case.
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0 1 0 2 0

2 0 1 2 0

2 1 2 0 2

2 1 0 2 1

1 2 1 0 1

0 1 2 0 1

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

c0 c1 c2 c3 c4

FIGURE 3
Example of CA evolution for x0 =

[
0 1 0 2 0

]t. The time is along the
vertical axis. Cells are numbered from left to right with c0 on the left and c4
on the right. Grey cells are those observed by the mobile sensor.

As the mobile sensor ensures observability, the initial state can be
reconstructed using the corollary (18) from the measurements made by
the sensor. As an example, we will reconstruct the initial state 01020|3 as
presented in figure 3 whose output sequence is YT =

[
2 2 1 1 0

]t.
We start by finding O†

T and then calculate x0. We should find
x0 =

[
0 1 0 2 0

]t.
As OT is a square matrix we can compute the inverse instead of

the pseudo-inverse. To calculate O−1
T , we will use the inverse of the

determinant of OT , det(OT ) and its adjugate matrix adj(OT ).

O−1
T = det(OT )

−1adj(OT ) = 2−1


2 0 0 0 0

1 0 1 1 2

2 2 1 1 2

0 0 1 2 2

0 0 0 0 2

 =


1 0 0 0 0

2 0 2 2 1

1 1 2 2 1

0 0 2 1 1

0 0 0 0 1



In modular arithmetic base k, the inverse is obtained by finding b so
that ab ≡ 1(mod k), yet in the field S that we have, 2−1 = 2 because
2× 2 ≡ 1(mod 3).
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We can now find x0 using YT , ΓT and O−1
T . We get:

x0 = O−1
T (YT − ΓT ) =


1 0 0 0 0

2 0 2 2 1

1 1 2 2 1

0 0 2 1 1

0 0 0 0 1






2

2

1

1

0

−


2

0

1

2

0



 =


0

1

0

2

0


With this example, we have shown the use of observability and re-

constructibility through the Kalman criterion for a very simple example.
The objective was to describe the computations in order to detail the
method to assess the observability and reconstructibility of the system.
In the next section, we will make an application on a real system, larger
and more complex but we will not detail the calculations. For this exam-
ple, we will focus on random number generators (RNG) and especially
how it is possible to reconstruct the random number sequence using
the observability of affine CAs. This example is particularly interesting
because RNGs are increasingly used with the increase in cyber security
in recent years.

5 APPLICATION OF OBSERVABILITY TO CYBERSECURITY

In cybersecurity, random number generator (RNG) are a crucial element
in many applications [22]. They are used to secure https connections with
SSL, to secure connections to wifi networks with WPA2 and many others.
The robustness of RNGs depends on both the probability distribution
and the predictability of the generator. It is also a source of several
vulnerabilities that are grouped under the term ”Random Number
Generator Attack” [18] where the objective is to obtain information
about the next generations of random numbers.

Cellular automata random number generators (CA RNG) have been
widely studied for more than three decades [4]. CA have local, simple
and regular interactions, so they can be easily integrated at large
scales. Initially, cellular automata random number generators are one-
dimensional [4, 14, 30] but CA with two or more dimensions turn out to
generate random numbers of better quality [4, 29] but are more complex
to set up. For that, different algorithms have been developed to build
”automatically” these CA RNG [29].

In this section, we will use the observability of affine cellular automata
to reconstruct past and future random numbers using information
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obtained by a random number generator attack. The nature of the
attack, as well as the method used, does not matter in the context of
applying the Kalman criterion, only the information obtained from the
attack is important. The attack will be seen as a sensor that observes
the state of the random number generator and therefore represented
by the output operator H which will depend solely on the information
obtained by the attack. Of these three examples, the first will use
knowledge of a random number to deduce past and future numbers, the
second will use information about a single bit of the random number
and the last will be based on the binary parity of the generated random
number. But we will start by presenting the CA RNG of Tomassini et
al which will be the subject of our study.

5.1 Tomassini’s et al Cellular Automata Random Number Generator
For this example, we will study a cellular automaton generating high
quality random numbers proposed by Tomassini et al [29]. The quality
of the random numbers generated by this CA RNG was evaluated
according to the Diehard tests defined by Marsaglia in [21] which were
all passed successfully. This CA RNG is a two dimensional Boolean CA
that generates a number consisting of 64 hexadecimal random digits.
The CA generates a random number every 4 iterations but for the
simplicity of the example, we will consider that it generates a 64 bit
random number every iteration rather than a 64 hexadecimal digits
random number every 4 iterations.

The CA RNG of Tomassini et al is defined as follows:

• L = {0, 1, . . . , 7} × {0, 1, . . . , 7}

• S = {0, 1}

• N : ci, j 7→ {ci−1,j , ci,j−1, ci,j , ci+1,j , ci,j+1} with null boundaries
so s(c−1) = 0 and s(c8) = 0.

In their paper, Tomassini et al describe three limits: cyclic, fixed
(full) and fixed (reduce). We can easily model fixed (full) and cyclic
boundary conditions but the reduced version requires to model an CA
of 10× 10 but only the 8× 8 cells of the center represents the random
number. In our example, we will use the fixed (full) version with a zero
value at the boundaries.

As opposed to the definition made at the beginning of the paper, the
CA RNG of Tomassini et al is not uniform, i.e. the local transition
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function f depends on the cell position. Figure 4 describes the transition
function that applies to each cell as a rule whose value is defined by
the 6-bit string XCNWSE which corresponds to the following transition
function:

st+1(ci,j) =X + C.st(ci,j) +N.st(ci−1,j) +W.st(ci,j−1)

+ S.st(ci+1,j) + E.st(ci,j+1)
(21)

FIGURE 4
A 8× 8 non-uniform cellular automaton random number generator proposed
by Tomassini et al [29]. The color of the cells represents the transition function
associated to this cell according to (21).

Therefore, according to the previous generic transition function, the
rules 15, 31, 47 and 63 correspond respectively to the transition functions
:

• st+1(ci,j) = st(ci−1,j) + st(ci,j−1) + st(ci+1,j) + st(ci,j+1)

• st+1(ci,j) = st(ci,j) + st(ci−1,j) + st(ci,j−1) + st(ci+1,j) + st(ci,j+1)

• st+1(ci,j) = 1 + st(ci−1,j) + st(ci,j−1) + st(ci+1,j) + st(ci,j+1)

• st+1(ci,j) = 1+ st(ci,j) + st(ci−1,j) + st(ci,j−1) + st(ci+1,j) + st(ci,j+1)

Although the system is not uniform, it can be represented with the
state representation (13). Therefore, the cells will be sorted by columns,
such that st(ci,j) = xi+j×8

t . Moreover, regardless of the rules used, the
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cellular automaton will be affine so all other CA that respect Tomassini’s
definition can be studied in the same way.

In the following sections, we will present three purely theoretical
attacks which aim to show a use of Kalman criterion. In each of the
examples, we will present the attack and the associated output operator
that allows to reconstruct the state of the system.

5.2 Single Measurement Attack
The principle of this attack is to use one of the generated random
numbers to deduce the sequence of other random numbers. For that
we will not use directly the Kalman criterion because the random
number represents directly the state of the system and thus there is
no reconstruction. However, we will use the reversibility of the cellular
automaton to find random numbers generated previously.

As we consider that the attack provides us with a random number
generated by the cellular automaton, we assume that this number
corresponds to the measure y0 with an identity output operator C = IdN .
The attack by which this random number is obtained is not specified
here (and is not essential for the explanation), but several methods exist
in the literature such as intrusive hardware attack [25] or side-channel
attack [27]. As the measurement of the state is made with the full state,
the initial state is completely reconstructed from the first measurement.
Therefore the state representation of the system is the following:


xt+1 = Axt + η

yt = xt

x0 = ξ(s0), s0 ∈ SL

In an evident way the observability is assured at time 1 because
rank O1 = rank C = rank IdN = N . Therefore, it is possible to deduce
the next generations of random numbers using (14) xt = Aty0 + Jt−1η.
But also, because of the reversibility of the CA RNG, it is possible to
invert the matrix A and deduce the previous generations of random
numbers:

x0 = Atx−t + Jt−1η ⇐⇒ x−t = A−t(x0 − Jt−1η)

In this example, we were able, from a single random number gen-
eration, to deduce future but also past random numbers. This ”vul-
nerability” can allow an intrusive (even destructive) hardware attack
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to retrieve a single random number in order to deduce the previous
random numbers that have been used in critical operations.

5.3 Regular Measurement Attack
To reconstruct the random number stream, we will use partial infor-
mation about the random numbers. In this example, we use only one
of the 64 bits, but more bits could have been used (which could have
reduce on the T measurement horizon, see proposition 1). In the same
way as before, we will not specify how the bit of the random number is
retrieved, only that we have a measurement at each time step.

To reconstruct the state of the system, we need only one bit of the
random number at each time step. The measurement can be done on
a single digit or change with time, the only information needed is the
position of the measured digit at each time step. In this way, it is
possible to create the operator Ct which corresponds to the bit of the
random number (or the cell associated with this bit) measured at time
t. The operator Ct is of the form :

Ct =
[
0 . . . 0 1 0 . . . 0

]
, where the 1 corresponds to the measured bit.
Then, we need to know the operators Ct associated with the mea-

surements yt and from there construct the observability matrix OT over
a time horizon 64. The system is observable (i.e. rank OT = 64) regard-
less of the bit measured in the static case as well as for the different
trajectories we have tried. However, it is not reasonable to test all the
possible trajectories (there are 6464 trajectories) so we will still have to
verify if the system is observable with the given trajectory. Afterwards,
it is possible to find the random number (i.e. the state x0) and to
deduce the random number stream as in the previous subsection.

5.4 Parity Attack
The objective of this attack is to reconstruct the random number se-
quence using only the binary parity of the random numbers. With this
method, it is possible to reconstruct the initial state even if the random
number information is not directly accessible. One method that seems
to be feasible is to correlate the energy consumption of the system with
the memory consumption [27].

Regardless of the method used, we assume to have access to the binary
parity of the random number generated at each iteration. Therefore,
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the equations of state are the following:


xt+1 = Axt + η

yt =

64∑
i=0

xi
t

x0 = ξ(s0), s0 ∈ SL

The sum uses binary modular arithmetic.
The output operator Ct associated with parity is a row vector com-

posed of N 1 which does not depend on time. From there, the observ-
ability matrix can be computed with T = 64 and it is full rank matrix.
The system is observable with the parity measurement, which allows to
reconstruct the initial state as well as the past and future states due to
the reversibility of the CA RNG.

In this section, we have been able to reconstruct the random number
stream from the information, total or partial, about the random numbers.
The information obtained by making attacks on the random number
generators is not described because the reconstruction of the state is
independent of these methods. These attacks vary according to the
hardware or digital support used by the CA RNG. The use of the Kalman
criterion is therefore added after the recovery of the information by
the attacks as a reconstruction of the random number stream. The
purpose of the reconstruction was to show the usefulness of observability
(and alternatively reconstructibility) for the reconstruction of a random
number stream in a random number generator attack context. Although
very efficient to reconstruct the random number stream, this method
still have shortcoming: the CA RNG must be perfectly known; the
random number seed (i.e. the state of the CA) must not be modified
by the user during the measurement; and the CA RNG must not have
non-linearity (which is not the case with the CA RNG presented by
Tomassini).

6 CONCLUSION & PERSPECTIVES

Observability plays a fundamental role in complex systems that may
describe the dynamics of a wide range of natural, technological and
socioeconomic phenomena. The systems variables are completely depen-
dent of each other due to the strong interaction between the system’s
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components. Cellular Automata constitute one of the major computa-
tional techniques engaged for complex systems modelling. They consist
of a large number of interconnected and mutually interacting compo-
nents according to simple rules that give rise to complex emergent
behaviours.

In this paper, we presented a method to prove the observability of
affine cellular automata with linear output operators, either time-varying
or not. We started by presenting a formulation of cellular automata
observed by a mobile sensors network. Then we extended the Kalman
criterion from discrete-time linear systems to affine cellular automata
and we studied the observability of one-dimensional cellular automata
with this method.

A very important application in cybersecurity where random number
generator constitute a crucial element was considered in relation with
observability of CA. Three theoretical attacks that show the usefulness
of observability for the reconstruction of a CA random number were
presented. Although the results obtained are still partial and deserve
further investigations, they have shown a good efficiency to reconstruct
the random number stream.

In a future work, we will generalise our observability analysis to
nonlinear cellular automata and construct an associated state estimator.
This estimator will make it possible to have an estimate of the state of
cellular automata without having to wait for the time necessary for the
inversion of the observability matrix. Such an observer would allow the
use of cellular automata for control, diagnosis or general supervision
purposes, with many potential applications, for instance in wildfire,
pollution, or traffic monitoring or tracking problems.
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