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Abstract. In this paper, we study how synchronization and state esti-
mation are related in the context of elementary cellular automata. We
first characterize the synchronization error between two 1D elementary
cellular automata implementing Wolfram’s 18th rule. Then we propose
a simple approach to statistically model the transient phase of the syn-
chronization error spread. We finally present a way to utilize this model
of the error spread to place mobile sensors in order to reduce the overall
synchronization error when the initial error is small.
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1 Introduction

In control theory, monitoring physical systems which are distributed in space is
based on the construction of an estimate from measurements and the dynamics
of the system. Measurements which come from potentially mobile sensors. The
problem of positioning these sensors is crucial to make it possible to estimate
the state of the system. This state estimation problem is widely studied by
classical control theory [5,7] and it follows from the verification of observability,
a notion that ensures that the sensors are well placed. This notion of observability
can be applied to cellular automata (CA) [4,6,3] (and by extension to Boolean
networks [10] which can be seen as a generalization of CA) but its evaluation
has proven to be extremely complicated when it comes to non-linear CA [6].

The synchronization problem consists in converging a system called replica
to another one called driver by means of a unidirectional coupling between the
two. In the case of CA, the state of some cells of the driver are copied to these
same cells of the replica. The coupling between the two can be realized with
a single cell [2], with fixed cells [8] or with cells chosen randomly at each time
step [1]. In the first case, Dogaru et al showed that a strong condition regarding
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the chaoticity of the system is needed to synchronize the driver and the replica.
In the second case, Urías et al propose a necessary and sufficient condition con-
cerning the cell position to ensure the synchronization of linear elementary cel-
lular automata. Finally, Bagnoli and Rechtman propose a statistical approach
to synchronization with a critical probability pc that ensures synchronization.

The problem of synchronization of two CA can also be seen as a state esti-
mation problem. Indeed, the driver can be seen as the system to be observed,
the replica as the state estimator and the synchronized cells as sensors. For the
purpose of monitoring physical systems, the conditions on the system imposed
by Dogaru et al (choaticity) and by Urías et al (linearity) make it difficult to
apply to this type of system. The approach of Bagnoli and Rechtman, on the
contrary, is not based on a specific type of system. Moreover, it allows to include
the notion of mobile sensor through the random choice of synchronized cells.

The main objective of this paper is to study a synchronized CA as a state esti-
mator for the observation of distributed parameter system with spatio-temporal
dynamics. We focus on synchronization with a small initial error because in some
physical system monitoring, only a small portion of the system is unknown. For
example, when monitoring forest fires spread, the topology of the forest is known
but only the ignition points are unknown. Throughout this article, we focus on
a single elementary rule that exhibits spatio-temporal dynamics so that the ob-
tained results may be transferred to other CA and in particular to physical
systems. Therefore, we chose to study the elementary rule 18 because it is the
smallest chaotic, symmetric, and nonlinear rule [9].

The article starts by studying the differences in synchronization performance
as a function of the initial synchronization error. Then, we model the spreading
of the initial error within the CA using basic geometry. We finish by presenting
an improvement of the synchronization algorithm for systems with a small initial
error.

2 Influence of Initial Error on Synchronization
In order to study the impact of the initial error on the synchronization perfor-
mance, we need to define the synchronization method but also to express it in
terms of the initial error. For this purpose, we chose the definition proposed by
Bagnoli and Rechtman [1] which expresses the synchronization of two 1D CA of
N cells: x and y. The synchronisation of y with x is done by copying some of x
cells’ state in the matching cells in y, at each time step. A diagonal matrix P
indicates which cells are coupled. A value of 1 in this matrix indicates that the
corresponding cells are coupled. The position of the coupled cells are determined
randomly at each time step with a probability p, called control strength. The
expression for synchronization is:

xt+1 = f(xt)
yt+1 = (I − P ) · f(yt) + P · f(xt)
et+1 = xt+1 ⊕ yt+1

εt+1 = 1
N ·

∑
i e

(i)
t+1

(1)
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The synchronization error et is the difference between xt and yt, and εt its
normalized mean error value. Since we are studying the influence of the initial
error, we initialize x0 and e0 randomly and set y0 = x0 · e0. We will note e the
proportion of cells in y0 that are different from cells in x0, in percentage.

In [1], Bagnoli and Rechtman discuss the notion of critical control strength
pc (determined statistically or analytically using maximum Liapunov exponents)
which guarantees that the synchronization is total during a random synchroniza-
tion. This critical parameter insures, for a state estimator, that the estimated
state correctly corresponds to the state of the observed system. In section 4, we
present an improvement of this synchronization algorithm in order to reduce this
critical power control for a total synchronization.

To get relevant results, we conducted a large number of simulations for each
initial conditions. This is required by the fact that some initial conditions lead
very quickly to a convergence that biases the results. More on this later.
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Fig. 1: Mean synchronization error as a function of time for different initial error
ε0.

Figure 1 presents mean synchronization error εt as a function of time for
different initial error ε0 values. These results were obtained by taking the mean
of the synchronization error εt over 500 simulations for the elementary rule 18
with 500 cells and a control strength p = 0.1. The initial configuration x0 was
randomly initialized at each simulation, same for the initial unsynchronized cells,
ε0. Initial error has a clear impact on the performances of synchronization. Its
first influence is on the speed of convergence towards the asymptote. Indeed,
the 10% curve seems to converge faster than the 20% and 100% curves which
converges earlier than the 1% and 0.2% curves. The second effect of the initial
error is on the value of the asymptote when the error is small enough. For
sufficiently large errors, all simulations converge towards the same asymptote
value, around 0.23. But if ε0 is sufficiently small, the reached asymptote is lower
than this ”generic” one.

To understand the difference in value between the two asymptotes, we studied
the evolution of the error as a function of time for the particular case of a
single cell of initial error (e = 0.2%). As we can see on Figure 2, there are two
very different kind of evolution of the synchronization error et. On one hand,
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in Figure 2a, the error spreads until it covers the whole CA and reaches the
asymptotic non-zero value. On the other hand, in the very specific case depicted
on Figure 2b, the synchronization quickly becomes total and the error reaches
zero. Therefore, when we average these two cases, which we did for Figure 1, we
obtain a lower asymptotic value than the generic case will give. For the remaining
of the study, we chose to dissociate the two cases and to not consider the fast
total synchronization cases when we study the asymptotic value.

(a) Asymptotic Synchronization (b) Total Synchronization

Fig. 2: Evolution of the synchronization error for elementary rule 18 with 500
cells from a single cell error (e = 0.2%). The time is represented on the vertical
axis. A black pixel is an erroneous cell in the synchronized CA.

To characterize the influence of the initial error ε0 on the ability of the syn-
chronized CA to be considered as a state estimate, we will only consider the
mean of the asymptotic value of the synchronization error. Figure 3 represents
this mean asymptotic synchronization error as a function of the initial error.
First, if we consider only the asymptotic synchronization (without special cases
of early complete synchronization), the value of the asymptote does not depend
on the initial error. Second, the value from which the average error with and
without total synchronization become different depends on the strength of the
control p: the stronger it is, the more the chances of total synchronization in-
crease.

3 Modeling of the Error Spreading Dynamics

In order to explain the dynamics of the evolution of the synchronization error,
we will study how the error propagates within the CA as a function of the control
strength. To do so, we will start by studying the propagation of the error with
the simple case of a single erroneous cell, and then generalize these results.

Typical error propagation dynamics from one erroneous cell are depicted in
Figure 4. We adopted a triangle as a simple geometric model for these dynamics.
It appears that the top angle of the triangle is inversely proportional to the
control strength p.

To describe how the synchronization error spreads, two parameters will be
used: the first being the aperture angle of the propagation triangle, and the
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Fig. 3: The asymptotic value of the mean synchronization error as a function of
initial error ε0. This was obtained by taking the mean of the synchronization error
εt as a function of time over 200 iterations. The continuous lines consider only
the asymptotic synchronization while the dashed lines include both asymptotic
and total synchronisation.

(a) p = 0.0 (b) p = 0.05 (c) p = 0.10 (d) p = 0.15

Fig. 4: Evolution of the error for elementary rule 18 with 500 cells from a single
erroneous cell (e = 0.2%). The time is represented on the vertical axis.

second being the shift angle between the altitude and the median of the triangle.
Indeed, the median of the triangle seems to vary from one simulation to another.
Figure 5 describes the geometry associated with these angles α and β which
describe respectively the aperture angle and the shift angle.

Fig. 5: Schematic of the theoretical spread of the synchronization error from a
single initial error cell.
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For the purpose of this article, we will not use directly the α and β angles but
their tangents, which represents spread velocities. We will simply call α and β
the velocities associated to the angles and not the angles themselves. Therefore,
the error spreading ratio α represents the mean number of cells by which
the triangle base increases at each time step and error shift ratio β the mean
number of cell shift at each time step.

We can calculate the mean value of the error spreading ratio by measuring
the area of the error at time T and divide by current time to obtain the tangent
of α. Figure 6 describes the evolution of the average spread ratio as a function
of the control strength. This one is a linear function of which we experimentally
obtained the equation α = −8.23.p+ 1.93 using linear regression.
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Fig. 6: The error propagation coefficient α as a function of control strength. The
continuous curve is obtained by taking the mean of α over 1000 simulations. The
dashed curve is the curve obtained by linear regression.

The error spreading ratio α has, for a given control strength, a normal distri-
bution whose average is presented on Figure 6. The standard deviation related
to α can be calculated in order to have a better representation of α. The error
shift ratio β also follows a normal distribution. Based on these two parameters,
we can express the width and the center of the error at time T by c1 = c0+β ·T
and d = α · T .

Corollary 1. The synchronization error εt can be estimated from the parameter
α as well as the value of the asymptote γ associated to the control strength p.
Thus, the synchronization error εt is defined by :

εT =
γ

N
·max(α · T,N)

Indeed, α·T gives the width of the error in number of cells. When dividing by
N , we obtain the normalized error width and then multiplying by the asymptote
γ, the value of εt when the error is present on the whole CA, we obtain the
synchronization error εT .
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Using the Corollary 1, we can make an example for p = 0.1. For this control
strength, the error spreading ratio α follows a normal distribution with mean
1.127 and standard deviation 0.1376. On Figure 7, the synchronization error εT
is displayed as well as the estimated error with an α fixed at the mean and an α
that follows the normal distribution. We quickly notice that the use of the normal
distribution in the calculation of the error allows to explain the rounded curve
when the error approaches the asymptote. However, the two theoretical curves
have a difference with the real curve which is explained by a faster increase of
the error during the first iterations which is caused by a higher α as the error is
not yet detected, and therefore controlled, by the sensor.
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Fig. 7: Evolution of the average synchronization error as a function of time for
the real case as well as the theoretical cases with the error spreading ratio which
is constant and follows a normal distribution.

This method allows us to simply represent the propagation of the error in the
case where a single cell is erroneous in the initial configuration. If we consider
two or more erroneous cells then the modeling becomes more complex. Indeed,
the two errors propagate independently until they collide, in this case we must
consider that the errors merge in a single (larger) source of error. Thus, con-
sidering that the collision takes place at time t1, we can consider that the error
spreading ratio α is expressed as:

α(t) =

{
α0 + α1 , if t ≤ t1
(α0−β0+α1+β1)

2 , if t ≥ t1

The time t1 of the collision depends on the initial distance between the two
initial errors, whose probability distribution depends on the boundary conditions
used. Moreover, since each of these initial errors is subject to the total and fast
synchronization (of probability τ), the model must include, with probability
2τ(1− τ), a propagation with only one initial error using the model of Figure 5.
With more than two erroneous cells, the operation is the same but it is necessary
to take into account several collisions at different times.



8 T. Plénet et al.

4 Optimization of Algorithm for a Single Erroneous Cell

If we consider that the synchronized cellular automaton has only a few errors
at initialization, then it is possible to adapt the synchronization algorithm so as
to concentrate the sensors only on the area that contains errors. To do this, we
must first identify the areas that possibly contain errors and then distribute the
sensors over those.

To identify the error area, a sensor must already detect an error. Then, with a
method similar to the one shown in Figure 5, it is possible to backpropagate the
error measured at time t to obtain the possible error area ê0 at time 0 which could
lead to the initial error. Propagating an error from this initial estimate, we can
obtain the possible current error area êt. Figure 8 represents the backpropagation
of the error with a ratio αmax which corresponds to a ratio α large enough to
include all (or a large part) of the possible spread ratios. The maximum ratio is
2 because it is not possible for the error to spread to more than one cell on each
side (this results from the size of the neighbourhood) but if the strength of the
control p is strong enough αmax can be chosen smaller. As α follows a normal
distribution, a ratio αmax = αmean + 3σ encompasses 99.9% of the possible
spreading ratios.

As new errors are detected, the initial error area can be refined using the
intersection of all the initial error areas of all the errors detected by the sensors.
In this way, it is possible to reduce the size of the error zone at time t but also
to locate the position of the initial error.

Fig. 8: Schematic of the backpropagation of the synchronization error to find the
initial error area ê0

Now that error area can be estimated, it remains to position the sensors.
The method consists in placing the sensors only in the area where the error
could be present. The number of sensors will remain the same but the control
strength (the sensor density) of the error area will increase proportionally to the
smallness of the error area resulting in a lower critical control strength pc as
shown in Figure 9. The control strength in the error area is described by:

perror = p · N
ε̂t



Synchronisation of Elementary Cellular Automata with a Small Initial Error. 9

0 0.05 0.1 0.15 0.2 0.25 0.3

Control Strength p

0

0.05

0.1

0.15

0.2

0.25

R
e

la
ti
v
e

 S
y
n

c
h

ro
n

is
a

ti
o

n
 E

rr
o

r 
t

Usual Synchronization

Optimized Synchronization

Fig. 9: Evolution of the average synchronization error as a function of control
strength for a single cell error.

As shown in Figure 9, the optimized synchronization performs better than
the usual one with a critical control strength pc at 0.05 instead of 0.21. How-
ever, when the control is too weak, the difference between the two is negligible
because the first error cell is detected too late by the sensors and therefore the
optimized control strength perror is not sufficient to synchronize the two sys-
tems. In Figure 10, we have compared these two synchronization methods on
other elementary rules belonging to different classes [9]. The results obtained
are minimal in that the error spreading ratio used for the backpropagation is
αmax = 2, smaller values according to the distribution of probability could have
been chosen to further increase the performances. The optimized synchroniza-
tion performs better but the difference between the two seems to depend on the
class. Class 2 CA (presented by Wolfram as ”filters”) seem to exhibit lower error
propagation coefficients α than class 3 and 4 CA. Without control, α is 0.048
for rule 37, 0.54 for rule 110 and 1.9 for rule 126. However, a systematic study
on elementary CA would be necessary to confirm this conjecture.
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Fig. 10: Evolution of the average synchronization error as a function of control
strength p for a single cell error for different rules. From left to right: rule 37
class 2; rule 110 class 4; and rule 126 class 3. Continuous line represents the
optimized synchronization and dotted line the usual synchronization.
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5 Conclusion and Perspectives

In this paper we studied how CA synchronization relates to state estimation of
distributed parameter system in the context of Wolfram’s 18th rule. In order to
understand how a synchronized CA can be seen as an estimated state, we studied
the dynamics of the synchronization error spreading. To do so we proposed a sim-
ple geometric model of this propagation. Finally, we present a sensors placement
algorithm utilizing this geometric model in order to reduce the synchronization
error and improve the accuracy of the synchronized CA as an estimate of the
original CA representing the studied system. This optimized synchronization has
been studied in the case of different elementary rules of classes 2, 3 and 4 whose
performance increase in comparison to the usual synchronization is particularly
important in the case of classes 3 and 4.

In the future, we will be able to adapt this algorithm to more than a single
initial error cell. Furthermore, a systematic study on the elementary automata
could be carried out in order to refine the algorithm of synchronization according
to damage (error) spreading.
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