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Abstract. Nowadays, cyber-physical systems (CPS) are becoming ubiq-
uitous in various application domains. The variety of design and imple-
mentation methodologies utilized for cyber-physical systems, as well as
the dynamic interaction of its components, make the resilience of these
systems a major challenge. We aim to increase the resilience of these sys-
tems in a decentralized way by leveraging knowledge of the social sciences
and humanities (SSH) and especially emotional processes. Both individ-
ual decision-making processes and social coordinating mechanisms are
based on emotional inspiration. Our hypotheses and studies on resilience
approaches, cyber-physical systems and emotional processes allowed us
to choose the multi-agent paradigm. In this paper, we present the re-
sults of our research on resilience, which includes an emotion-inspired
anomaly detection approach for improving CPS resilience. This approach
is integrated into an agent architecture, compared to the literature, and
validated through the development of proof-of-concept scenarios. The ex-
perimental results prove its advantages in terms of resilience properties.

Keywords: Anomaly detection · Resilience · Cyber-physical systems ·
Agent architecture · Multi-agent systems · Artificial emotions.

1 Introduction

Almost all complex systems are controlled by computers that interact with the
real world. These interactions are not done through a touch screen, mouse or
keyboard, but also through direct actions in the physical world. These systems
are made of interconnected subsystems, at least some of which interact directly
with the physical world, which is why we call them “cyber-physical systems”.

The development of interoperability protocols, lower hardware costs, and
the simplicity with which a variety of hardware components can be connected
provide designers with a wide number of configurations and combinations of
components over which they may not have complete control. Furthermore, most
of these systems are designed to be “open”. As a result, the system’s designers
will be unable to anticipate all possible scenarios. This concerns the systems’
resilience, or its ability to detect, manage, and adapt to specific or unusual
situations that the designers may not have anticipated [22].

In previous works [12,13], we draw on knowledge from the human and social
sciences, particularly emotional processes, to design an agent architecture that
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improves the resilience of cyber-physical systems. In this architecture, we have
integrated processes for detecting abnormal situations. The main objective of this
paper is to present our anomaly detection approach used in this architecture.

In this paper, section 2 defines resilience and classify relevant work on anomaly
detection for CPSs resilience, as well as a position within that work; section 3
presents the emotion-inspired anomaly detection approach and the R-ECM ar-
chitecture (R: Resilience, E: Emotional processes, C: CPS and M: MAS); Section
4 demonstrates the viability of the proposed approach; Section 5 presents our
conclusions and relevant future directions.

2 Related work

In this section, we define resilience and provide a classification of anomaly de-
tection approaches that address it.

2.1 Resilience

Resilience is studied by researchers from various fields. In psychology, resilience
is defined as a person’s or a group’s ability to grow and project themselves into
the future overcoming destabilizing events, tough living conditions, and often
severe trauma [19]. Resilience in systems engineering refers to how quickly a
system bounces following an incident that causes its degradation. It is defined
by the computer networking community as a combination of reliability and tol-
erance. Resilience is defined by the IT community as the continuity of service
delivery and the availability of functionality [20]. For our work, we have adopted
the definition of Woods [22], from the resilience engineering field: “Resilience is
the ability to recognise and adapt to handle unanticipated perturbations that
call into question the model of competence, and demand a shift of processes,
strategies and coordination.”

Resilience in artificial systems should be distinguished from robustness, which
is closely related to it. Because of its design, a robust system can “resist” to
abnormal situations by maintaining its performance without affecting its func-
tionality. A resilient system, on the other hand, can detect abnormal situations
and adapt its operations to keep its critical functions [14]. So robustness does
not allow the system to adapt its behavior, but resilience does.

2.2 Anomaly detection for CPS resilience

Anomalies and faulty components must be detected in order to preserve the
system’s resilience and provide correct operation. A study of existing detection
approaches for resilience yielded the following four categories, in the table 1.

In [2], authors use redundancy to merge data from different sensors and
simultaneously calculate trust values for the information sources in VANETs.

Falcone et al. [9] explains how to improve resilience using in-the-field runtime
approaches. Autonomic monitors use sensor data to observe, analyze, and plan
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Table 1. Classification of detection approaches for CPS resilience.

Category Key words Application
areas

Features Examples

Redundancy
based

Additional informa-
tion sources, Triple
Modular Redundancy
(TMR).

Avionics,
automo-
tive ECUs,
VANETs.

Reliability and multi-
plying components.

[2]

Monitoring
based/ depend-
ability based

Machine learning,
Signal Temporal
Logic

CPS. The normal behavior
of the system needs
to be planned in ad-
vance.

[11,9]

Statistical model
based

Gaussian models,
histograms, machine
learning, data min-
ing, deep learning.

CPS, Iot,
time series...

Simplicity, suitable
for time series and
used in CPS.

[15,6]

Signature based Intrusion detection,
functional footprint.

Malware de-
tection, IoT.

Efficient (few false
positives), requires
accurate signature
parameters.

[8,10]

before taking action to detect anomalies. They respond to failures by using
redundancy or variants. In [11], authors build a signal temporal logic (STL)
formula using the data that represents the system’s usual behavior. Abnormal
traces are those that do not conform to the formula.

Statistical models are used to detect anomalies in [6,15]. These approaches,
which use K-means, clustering, machine learning, and deep learning to find
anomalies in time series, are effective. The nature of statistical model used is
determined by the time series’ complexity.

A signature-based approach is used by [10]. This approach efficiently detects
intrusions with a low amount of false positives, but it requires a well parameter-
ized signature. Machine learning can help to reinforce it [8].

According to our classification, many centralised or redundancy-based ap-
proaches require reliable communication and may face the “Single point of fail-
ure” problem. The designer of monitoring-based approaches must anticipate all
the situations that the system will face during its normal operation. Since most
CPSs are designed to be “open”, he will not be able to anticipate all possible
scenarios when a component is added or removed.

To avoid these issues, we use incremental processes which can rely on com-
ponent collaboration to detect anomalies. A component initiates anomaly detec-
tion, following which the same component or other components, depending on
the situation, trigger other processes. In our approach, perceived data is repre-
sented as time series. Due to the benefits of simplicity and speed, we have chosen
to use a basic statistical model in our detection approach to process this type of
data. To improve its efficiency, we combined it with a signature-based detection
approach.
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3 The proposed approach

As mentioned previously, anomaly detection is a series of incremental processes
in our approach.

To begin, we apply a basic statistical model to find anomalies in the sen-
sor’s data (out-of-domain values, strange sequences, or long repetitions of simi-
lar data). This choice depends on the simplicity and quickness with which this
statistical model provides results, as well as the fact that it is not resource ex-
pensive. At first, each sensor elicits this process on its own, then correlates it
with other sensors. A perception grid is used in this process. “A situation has
no significance within itself; each individual has their own perception grid that
determines whether the situation is good or bad [1]”. In other words, sensor’s
perceptions are interpreted differently depending on its environment model. If
the agent has interpreted a perception as anomaly, the result of this process is
“a doubt”. It refers to the occurrence of a situation which triggers the emotional
episode in emotional processes. In case of doubt, the sensor must continue its
perception functions, so it will increase its sampling frequency and remain more
vigilant by ignoring any doubtful perception. This is known as “the arousal” in
emotional processes.

Then, if there’s any doubt, it move on to the next process. The sensor’s inter-
pretations will be based on the perceived data history and its episodic memory,
rather than the environment model. In cognitive psychology, episodic memory
is the mechanism through which a person recalls past experiences along with
their context (date, location, and emotional state) [21]. This memory is used
to store the normal and abnormal situations that the sensor encounters. This
allows the sensor to learn its operating signatures. In emotional processes, this
process refers to “the appraisal” of the situation. In psychology, appraisal is the
process of extracting emotions from evaluations of events that produce specific
reactions in different persons [18].

Finally, if the appraisal does not validate the doubt, the detection will be as-
sisted by the system’s similar sensors. If the situation is confirmed as abnormal
by their appraisal, the other sensors lower their tolerance thresholds and com-
municate the result of the appraisal as a confirmation or rejection to the sensor
which first detected the anomaly. This sensor’s episodic memory is improved by
creating an episode that reflects the negotiation result, and then its tolerance
thresholds and perception grid are updated. The sensor will better preserve the
system’s functions with this upgrade by identifying and isolating the disturbance
faster in the case of a similar situation in the future. In this process, some of
the system’s operating parameters have been changed, resulting in a change in
readiness to act, which refers to the activation of a behavioural script in the
emotional processes (but not its realization) with the goal of changing the in-
dividual’s relationship with his environment and focusing his attention on more
important things.

In order to integrate these processes to the components of a CPS, we chose
the multi-agent paradigm. This choice is justified by the fact that MAS is built
to accommodate for the distributed nature of CPSs. It’s especially well-suited
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to various resilience-related issues, such as the “single point of failure”. The
agent’s autonomy distinguishes our approach from those based on redundancy or
centralization, which are frequently used in resilience approaches [17,7]. Agent-
centered design is also interesting for our approach because of its ability to
integrate knowledge from SSH such as emotions.

After a study of agent architectures, we chose to integrate our decision-
making processes in a layered agent architecture to organize them [16]. This
architecture integrates reactive architectures’ simplicity, low algorithmic com-
plexity, and fault tolerance [5] with more cognitive architectures’ capacity to
exploit non-local information, learning capabilities, and social interactions [3].
However, managing the interactions between the different layers to achieve the
intended behavior is a challenge in this type of architecture.

The decomposition of cognitive processes into layers allows us to implement
simple, perception-related, emotion eliciting mechanisms in a reactive layer while
allowing higher level cognitive processes, potentially based on symbolic informa-
tion and reasoning, to unfold without interrupting processes supporting critical
functions [4].

Figure 1 illustrates the R-ECM architecture, which integrates emotional pro-
cesses (in blue) that allow CPSs to become more resilient [13].

This architecture is divided into two parts: on the left, which is made of
the agent’s processes and behaviors, on the right, which is made of the agent’s
knowledge. It is also important to note that the layers are finite-state machines
with the following functions: The reactive layer (RL): ensures reliable behav-
ior on short time scales by interacting with the environment, perceiving data,
and utilizing a perception grid (PG) to recognize major events and potentially
abnormal situations before transmitting the data to the proactive layer; The
proactive-deliberative layer (PDL): works on a longer time scale and is used to
initiate specific behaviors like evaluating the reactive layer or the other agents’
doubt (the appraisal). It takes decisions according to its data, its knowledge, its
action plans and the episodic memory (M); The social layer (SL): uses social
relations knowledge (SR) to communicate with other system agents, as well as
the diffusion and negotiation of detected situations.

The message exchange protocol is used to communicate between the layers
and the agents. The actions in the R-ECM architecture are not always trig-
gered by a perception. The proactive-deliberative layer can also initiate actions
in response to internal decisions, while the social layer can initiate actions in
response to a message from another agent. The functions and interactions of the
layers are illustrated in figure 3. In our previous work [13], we well explained the
functioning of the architecture and its layers.

4 Experiments

One of the main goals of this paper is to show how our detection approach and the
R-ECM architecture work, as well as the added value provided by decisions made
about the layered agent architecture on the one hand, and processes, knowledge,
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Fig. 1. R-ECM architecture [13]. Fig. 2. Components in a room.

and behaviors on the other. We also want to validate our choice to combine a
simple statistical model, a perception grid, an episodic memory, and a collective
detection for detecting anomalies.

4.1 System description

To demonstrate the functionality of the processes and the agent architecture, we
used a building temperature control system “CPSbtc” (see figure 2). In CPSbtc,
the components (sensors and actuators) are implemented as R-ECM agents,
which can communicate via messages, have some autonomy, and store their
own data. We use Ti as a name of room i temperature sensor, Aci and Hei
for air-conditioner and heater. In our multi-agent system, we’ll have several
groups of agents, each one made of agents from the same room. In our system,
another sort of agent organization is taken into account: the organization of
similar neighboring agents. Layers, agents and the environment are implemented
as Java Threads that work permanently.

4.2 Measures of resilience

We used several quantitative measurements to evaluate our approach. Our as-
sessment measures are mainly based on the resilience features mentioned in [13]
which are: critical functions preservation, reactivity in terms of anomaly detec-
tion, anomaly sensitivity and the impact of the approach on system resources.

According to these features, we chose to log following measures in the sim-
ulations: perceived temperature (for CPSbtc), number of exchanged messages,
CPU usage, memory usage (RAM), and anomaly detection delay.

4.3 Scenario description

Before describing the scenarios, we first define some notions that concern our
simulations:
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Fig. 3. The functioning of the anomaly detection in R-ECM.

– A faulty room: a room with faulty or abnormal behavior.
– Anomaly injection: an action made by a faulty room, it can send an abnormal

value in response to a reactive layer perception.
– Abnormal value: a temperature value that has a significant deviation from

the current temperatures.
– Anomaly injection probability: a value between 0 and 1. This value is used

by the faulty room to decide whether it injects an anomaly or not.
– Time step: in our simulations, one step corresponds to a 30-minute system,

so one-day simulation corresponds to 48 steps. In each step, the environment
is updated and several decision cycles and message exchanges take place.

Scenario 1: To demonstrate that our detection approach allows the R-ECM ar-
chitecture to maintain crucial functionality without impacting system resources,
we used the following scenario: the faulty room injects the agent Ti with ab-
normal temperatures with a probability of 0.01; the agents Aci and Hei must
receive the right temperatures in order to ensure the desired temperature (of the
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agent Thi); after 24 steps (at 12H system time), the faulty room increases the
anomaly injection probability to 0.02.

Scenario 2: To illustrate that our detection approach provides agents with
autonomy and anticipation, as well as how a layered agent architecture allows for
action parallelization at the system and agent levels. We compare our approach
with a combination of redundancy and monitoring [9]. This approach replaces
the emotional processes in the R-ECM architecture. In the proactive-deliberative
layer of actuators, we implement an autonomic monitor for detecting anomalies;
it reacts to failures by switching the temperature sensor, using redundancy. A
redundant temperature sensor (Ti.1 and Ti.2) is deployed in the faulty rooms to
illustrate this scenario: after 10 steps (at 5H system time), the faulty room plants
the Ti.1 agent so it no longer makes perceptions; the agent Ti.2 will provide the
temperatures to the room’s actuators; the actuators of room i will therefore base
their actions on the perceptions of Ti.2 only; at 12H system time, agent Ti.1 will
be restarted and anomalies will be injected to agent Ti.2 between 14H and 18H.

4.4 Results and evaluation

In simulations with 3 rooms (27 agents for scenario 1 and 28 agents for scenario 2)
we obtained the following results: For scenario 1 with our approach, we got three
injected anomalies, the first one injected at 5:00, detected by the reactive layer
at the same step and confirmed by other agents two steps later. The time needed
to get the confirmation from all agents is 850 ms (the anomaly detection delay).
The second one injected at 08:00, detected by reactive layer and confirmed by
the episodic memory in the same step. The time needed to get the confirmation
from episodic memory is 156 ms. The third injection at 22:00, detected by the
reactive layer at the same step and confirmed by other agents two steps later.
The time needed to get the confirmation from from all agents is 950 ms.

For scenario 2 with our approach, an anomaly was injected at 15:00, de-
tected by the reactive layer one step later and confirmed by other agents two
steps later. The time needed to get the confirmation from all agents is 859 ms.
With the autonomic monitoring approach, two anomalies were injected. The first
one injected at 14:00, detected by the monitor one step later. The time needed
to detect this anomaly is 549 ms. The second one injected at 16:00, detected
by the monitor one step later. The time needed to detect this anomaly is 398
ms. We conclude that the collective detection is slower than appraisal and auto-
nomic monitoring. But the appraisal using episodic memory is still faster than
autonomic monitoring in term of the anomaly detection delay.

In figures 4 and 5, we see that injecting anomalies did not impact the oper-
ation of the system using our approach and autonomic monitoring. The agents
using both approaches were able to maintain the desired temperature (20 C°)
when they detect the anomalies.

We can see in scenario 1 (figure 6) that the first anomaly between 04:00 and
05:00 has increased the amount of exchanged messages, which is justified by
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Fig. 4. Perceived temperature in faulty
room using scenario 1.

Fig. 5. Perceived temperature in faulty
room using scenario 2.

the fact that the appraisal requires more message exchange than normal system
operation. Because the reply was so quick due to episodic memory, the second
anomaly at 08:00 did not increase the amount of messages exchanged. The third
anomaly at 22:00 has increased the number of exchanged messages.

When anomalies are injected in both approaches, there are some gaps in sce-
nario 2 (figure 7), but the gaps in our approach are more significant because the
layers and agents exchange messages once they have a doubt about a perception.
We conclude that our approach has very little effect on the amount of exchanged
messages.

Fig. 6. Number of exchanged messages
step by step using scenario 1.

Fig. 7. Number of exchanged messages
step by step using scenario 2.

In figure 8, when the simulation was launched (before 10:00), the execution
time of the steps was longer than in the end. So the anomalies occurrences impact
the running time but not a lot compared to the simulations without processes.
In figure 9, there the running time is close for both approaches. Because of the
incremental processes, there is a big difference (30 cycles) between our approach
and simulations without anomaly detection (see figure 10). Same comment for
figure 11, we just add that there is a big gap when an agent is faulty. In our
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approach, the incremental processes for detecting anomalies are integrated in
sensors but this is not the case for autonomic monitoring.

Fig. 8. Simulation running time step by
step using scenario 1.

Fig. 9. Simulation running time step by
step using scenario 2.

Fig. 10. Decision-making cycles count
step by step using scenario 1.

Fig. 11. Decision-making cycles count
step by step using scenario 2.

In figure 12 and 13, we measured the time spent by the processor in the
simulations. As we can see, our approach had no significant impact on CPU
time. We note that the autonomic monitoring approach is more CPU-intensive.
In figures 14 and 15, we measured the used memory (RAM) in each step of the
simulation. We have drawn the same conclusion as the CPU time. But we note
that the the autonomic monitoring approach saves a little bit of memory.

5 Conclusions and perspectives

In this paper, we presented our anomaly detection approach, which is inspired
by emotional processes, for improving the resilience of cyber-physical systems.
We discussed some resilience definitions as well as our position in relation to
resilience-related approaches.

In order to detect abnormal situations, we integrate individual and collec-
tive emotion-inspired processes into an agent architecture. For detecting abnor-
mal situations, our approach includes a statistical model, a perception grid, an
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Fig. 12. CPU time using scenario 1. Fig. 13. CPU time using scenario 2.

Fig. 14. Used memory (RAM) using sce-
nario 1.

Fig. 15. Used memory (RAM) using sce-
nario 2.

episodic memory, and a collective detection mechanism. Individual detection
processes have an impact on the system’s control group, triggering a collective
detection to affirm or reject a suspicious situation. The agent’s knowledge (per-
ception grid and episodic memory) and behavior are affected by a confirmed
situation (sampling frequency and tolerance thresholds). This architecture also
includes processes for adapting individual and collective behavior in response to
detected situations in order to improve the resilience of CPSs.

The detection approach and the R-ECM architecture were implemented and
validated by simulating two scenarios. The results were interesting, and we hope
to obtain more relevant results in the future. We plan to apply our approach to
other systems with more complex scenarios.
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