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Abstract: One of the key issue in machine learning is the characterization of the learnability of a problem. The regret is
way to quantify learnability. The quantum tomography is a special case of machine learning where the training set is a set
of quantum measurements and the ground truth the results of these measurements, but nothing is known about the hidden
quantum system. We will show that in some case the quantum tomography is a hard problem to learn.
We consider a problem related to optical fiber communication where information are encoded in photon polarizations. We will
show that the learning regret cannot decay faster than 1/T where T is the size of the training dataset, and that incremental
gradient descents may converge worse.
This is a correction of the paper [13] presented in International Workshop on Bayesian Inference and Maximum Entropy
Methods in Science and Engineering (MAXENT’22), IHP, Paris, July 18-22, 2022.
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I. INTRODUCTION: SUPERVISED LEARNING IN GENERAL

With the invention of deep neural learning the general public thinks there is a glimpse of a universal machine learning
technology capable of solving arbitrary problems without any specific preparation on training data and learning strategy.
Everything “is” be solvable as long as there are enough layers, enough processing power and enough training data. We
arrived to the point that many people (among them late Stephen Hawking) start thinking that machines may supersede human
intelligence thanks to the greater performance of silicon neurons over biological neurons, and maybe capable of cracking the
last enigmas around the physical nature of the universe.

But we should not forget that actual Artificial Intelligence (AI) has many limitations. But due to the youth of the technology
many of the present limits might be of teething nature. To learn a language the present algorithms need to be trained over
millions of texts which is equivalent of a training period of 80 years if it were done at the learning pace of a child! Presently,
deep neural training is very demanding in processing and it is the third major source energy consumption among information
technologies after Bitcoin and data centers. Deep learning is not yet as such a good self organizing learning process as some
researchers would have thought [6]. There is also the obstacle of data sparsity to learning (the machine only recognizes the
data on which it has been trained over and over, as if a reader could only understand the texts on which (s)he has been trained).

To make it short the main limitations of the machine learning technologies are: (i) the data sparsity; (ii) the absence of
computable solution to learn (e.g. the program halting problem); (iii) the presence of hard to learn algorithms in the solution.
My present paper will address the third limitation.

A supervised learning problem can be viewed as a set of training data and ground truths. The machine acts as an automaton
whose aim is to predict the ground truth from a data. The loss measures the difference between the prediction and the ground
truth, and can be established under an arbitrary metric. The general objective of supervised machine learning is to minimize
the average loss, but since the ground truth might contain some inherent stochastic variations (e.g., when predicting the result
of a quantum measurement) it may be impossible to make the loss as small as we would like. Given an automaton architecture,
there exists a setting which gives the optimal average loss. But the optimal setting might be difficult to reach. However, there
is still the question of the size of the training set needed to converge to the optimal settings.

All problems are not equal in front of learnability [10]. Some seem to be a perfect match with AI, some other are more
difficult to adapt. In [2] the author shows that the random parity functions are just unlearnable. In fact in a broader perspective,
the ”learnability” may not be a learnable problem [1].

The first contribution of this paper is a new definition of learning regret with respect to a given single problem submitted
to a given learning strategy. Most regret expression are infimum of regret over large class (if not universal) of problems [7]
and therefore lose the specificity of individual problems.

The second contribution is the application of this new regret definition to a quantum tomography problem. The specificity
of the problem is that the hidden source probability distribution is indeed contained in the learning distribution class. The
suprising result is that the regret is at least in square root of the number of runs, hinting a poor convergence rate of the learned
distribution toward the hidden distribution. We conclude with numerical experiments with gradient descents.



II. EXPRESSING THE CONVERGENCE REGRET

Let T be an integer and let xT = (x1, . . . ,xT ) be a sequence of features which are vectors of a certain dimension which
define the problem (the notation with T is not for ”transpose”, which should be noted Tx, but for a sequence with T atoms).
Each feature x generates a discrete random label y. Let denote PS(y|x) (S for ”source”) the probability to have label y given
the feature x. If yT is the sequence of random labels given the sequence of feature xT : PS(y

T |xT ) =
∏

t PS(yt|xt). The
sequence of features and labels define the problem for supervised learning.

The learning process will give as output an index L(yT ) which will be taken from a set of L, such that each L ∈ L define a
distribution PL(y

T |xT ) (L for ”learning”) over the label sequence given the feature sequence. In absence of side information
the learning process leads to L(yT ) = argmaxL∈L{PL(y

T |xT )}. Our aim is find how close PL(yT )(y
T |xT ) is to PS(y

T |xT )
when yT varies.

The distance between the two distributions can be expressed by the Kullback-Liebler divergence [3]

D∗(PS∥PL) =
∑
yT

PS(y
T |xT ) log

PS(y
T |xT )

PL(yT )(yT |xT )
(1)

However it should be stressed that the quantity PL(yT )(y
T |xT ) does not necessarily define a probability distribution since L(yT )

may vary when yT varies, making
∑

yT PL(yT )(y
T |xT ) equal to 1 unlikely. Thus D∗(PS∥PL) is not a distance, because it can

be non positive (there will be one example in the paper). One way to get through is to introduce P ∗
L(y

T |xT ) =
PL(yT )(y

T |xT )

SL(xT )

with S(xT ) =
∑

yT PL(yT )(y
T |xT ) which makes P ∗

L() a probability distribution. Thus we will use D(PS∥P ∗
L) which satisfies:

D(PS∥P ∗
L) =

∑
yT

PS(y
T |xT ) log

PS(y
T |xT )

P ∗
L(y

T |xT )
= D∗(PS∥PL) + logS(xT ), (2)

and is now a well defined semi distance which we will define as the learning regret R(xT ) = D(PS∥P ∗
L) [7].

We notice the easy lemma:
Lemma 1: If PS ∈ L then we have the easy upper bound: D(PS∥P ∗

L) ≤ logS(xT ).
Proof: We notice that D∗(PS∥PL) ≤ minL∈L D(PS∥PL). Thus if PS ∈ L then minL∈L D(PS∥PL) = 0.

III. THE QUANTUM LEARNING ON POLARIZED PHOTONS

We now include pure physical measurements in the learning process. There are several application which involves physic,
[9] describe a processus of deep learning over the physical layer of a wireless network. The issue with quantum physical effect
is the fact that they are not reproducible and not deterministic. We consider a problem related to optical fiber communication
where information are encoded in photon polarizations. The photon polarization is given by a quantum wave function of
dimension 2. In the binary case the bit 0 is given by polarisation angles θQ and the bit 1 is given by angle θQ + π/2. The
angle θQ belongs to [−π

2 ,
π
2 ] because it only needs to be determined modulo π. It is supposed to be unknown by the receiver

and its estimate θT is obtained after a training sequence via machine learning.
For this purpose, the sender sends a sequence of T equally polarized photons, along angle θQ, the receiver measures these

photons over a collection of T measurement angles x1, x2, . . . , xT , called the featured angles taken in a finite set. They are pure
scalar and are not vector (d = 1), therefore we will not depict them in bold font as in the previous section which is therefore
of dimension 1. The labels, or ground truths, y1, . . . , yT are the sequence of binary measurement obtained, yt ∈ {0, 1}, there
are 2T possible label sequences.

This problem is the most simplified version of tomography on quantum telecommunication, since it relies on a single
parameter. More realistic and more complicated situations will occur when noisy circular polarization is introduced within
more complex combination of polarizations within groups of photons. This will considerably increase the dimension of the
feature vectors and certainly will make our results on training process more critical. However in the situation analyzed in our
paper, we show that this simplistic system is difficult to learn.

If we assume that the experiment results are delivered in batch to the training process, that is the estimate θt = θ does
not vary for 0 < t < T , the learning class of probability distribution is a function of θ with PL(y

T |xT , θ) =
∏

yt=0 cos(θ −
xt)

2
∏

yt=1 sin(θ− xt)
2. The source distribution is indeed PS(y

T |xT ) = PL(y
T |xT , θQ), thus the source distribution belongs

to the class L of learning distribution. For a given pair of sequence (yT , xT ), let θ∗ be the value of θ which maximizes
PL(y

T |xT , θ). Since we will never touch the sequence xT which are the foundation of the experiments, we will sometimes
drop the parameter xT and denote ℓyT (θ) = − logPL(y

T |xT , θ). The quantity θ∗ which maximizes PL(y
T |xT , θ) will satisfy

ℓ′yT (θ
∗) = 0. We have




ℓyT (θ) = −2

∑
t log | cos(θ − xt + ytπ/2)|

ℓ′yT (θ) = 2
∑

t tan(θ − xt + ytπ/2)

ℓ”yT (θ) = 2
∑

t
1

cos(θ−xt+ytπ/2)2

we notice that for all θ ℓ”yT is always strictly positive (but ℓ′′ and ℓ′ are not continuous so ℓ is not convex). We now turn
to display and prove our main results (two theorems), whose proof would need the following two next lemmas.

Lemma 2: We have the expression

ℓyT (θ∗) =
1

2π

∫ π/2

−π/2

ℓyT (w)ℓ”yT (w)dw

∫
R
exp(−iℓ′yT (w)z)dz. (3)

Proof: Let gyT (θ) = ℓ′yT (θ) which is homomorphic and is locally invertible (since ℓ”yT (θ) is never zero). Let a ∈ R
we denote lyT the function a → ℓyT (g−1

yT (a)). We have ℓyT (θ∗) = lyT (0). For z ∈ R, let l̃yT (z) be the Fourier transform of
function lyT (a). Formally we have

l̃yT (z) =

∫
R
lyT (a)e−iazda (4)

=

∫ π/2

−π/2

ℓyT (w)ℓ”yT (w))e
−iℓ′

yT (w)z
dw (5)

and inversely

lyT (a) =
1

2π

∫
R
l̃yT (z)eiazdz (6)

Thus

ℓyT (θ∗) =
1

2π

∫
R
l̃yT (z)dz (7)

=
1

2π

∫ π/2

−π/2

ℓyT (w)ℓ”yT (w))dw (8)

×
∫
R
e
−iℓ′

yT (w)z
dz. (9)

In fact the function ℓyT (θ) may have several local extrema as we will see in the next section, thus ℓ′yT (θ) may have several
roots, thus g−1

yT (a) is polymorphic. In order to avoid the secondary roots which contributes the non optimal extrema, we will
concentrate on the main root in the vicinity of θQ. Without loss of generality we will assume in the sequel that θQ = 0.

Let pT = (p1, . . . , pT ) and qT = (q1, . . . , qT ) be two sequences of complex numbers. We denote p(yT ) =
∏

t p
1−yt

t qyt

t .
Lemma 3: For any 1 ≤ t0 ≤ T we have the identity∑

yT

yt0p(y
T ) = qt0

∏
t ̸=t0

(pt + qt). (10)

For t1 ̸= t2, we have ∑
yT

yt1yt2p(y
T ) = qt1qt2

∏
t ̸=t1,t2

(pt + qt). (11)

Proof: This is just the consequence of the finite sums via algebraic manipulations.
Theorem 1: Under mild conditions, we have the estimate∑

yT

P (yT |xT ) log
PS(y

T |xT )

PL(yT )(yT |xT )
= O(1) (12)



Proof: Let C(xT ) =
∑

yT PS(y
T |xT )ℓyT (θ∗). Applying both lemma with pt = cos(xt)

2e−2i tan(θ−xt)z and qt =

sin(xt)
2e−2i tan(θ−xt+π/2)z , thus p(yT ) = PS(y

T |xT )e−iℓyT (θ) we get

C(xT ) =
∑
yT

1

2π

∫ π/2

−π/2

ℓyT (θ)ℓ”yT (θ)dθ

∫
R
exp(−iℓ′yT (w)z)dz

=
1

2π

∫ π/2

−π/2

dθ

∫
R
(ℓ(θ, z)ℓ”(θ, z) + ∆(θ, z))

∏
t

(pt + qt) dz

with

ℓ(θ, z) = −2
∑
t

pt
pt + qt

log cos(θ − xt) +
qt

pt + qt
log sin(θ − xt)

ℓ”(θ, z) = 2
∑
t

pt
pt + qt

1

cos(θ − xt)2
+

qt
pt + qt

1

sin(θ − xt)2

∆(θ, z) = −2
∑
t

ptqt
(pt + qt)2

(
log cos(θ − xt)

cos(θ − xt)2
+

log sin(θ − xt)

sin(θ − xt)2

)
We notice that ∏

t

(pt + qt) = exp
(
−TQ(z, θ) +O(T (|z|3 + |θ|3)

)
(13)

where Q(z, θ) is the quadratic form defined on R× [−π, π] by

Q(z, θ) = 2z2 + 4izθ = 2[z, θ]

[
1 i
i 0

] [
z
θ

]
. (14)

The asymptotic integral expression of C(xT ) can be obtained via a two dimensional saddle point method [5]. And finally

C(xT ) =
1

2T
√
det(Q)

(ℓ(0, 0)ℓ”(0, 0) + ∆(0, 0))

(
1 +O

(
1

T

))
. (15)

In passing det(Q) = 4.
We have ℓ(0, 0)ℓ”(0, 0) = 8h(0) with h(θ) = −

∑
t cos(θ − xt)

2 log cos(θ − xt)
2 + sin(θ − xt)

2 log sin(θ − xt)
2 is clearly

O(T ) and is the entropy of PS if θQ were equal to θ, that is h(0) = −
∑

yT PS(y
T |xT ) logPS(y

T |xT ).
Thus we have ∑

yT

P (yT |xT ) log
PS(y

T |xT )

PL(yT )(yT |xT )
=

∆(0, 0)

8T
+O

(
h(0)

T

)
= O(1).

with ∆(0, 0) = −
∑

t sin(xt)
2 log(cos(xt)

2) + cos(xt)
2 log(sin(xt)

2).
Remark: the O(1) term should be negative since by Lemma 2 we know that logS(xT ) is already an upper bound of the
regret since PS determined by θQ belongs to the learning class L determined by all θ’s in [−π

2 ,
π
2 ]. It is possible to determine

the exact value of the O(1) term but it is rather complicated as the error term of a 2D saddle approximation.
Theorem 2: We have

logS(xT ) = log

∑
yT

PL(yT )(y
T |xT )

 =
1

2
log T +O(1). (16)

Proof:
It is formally a Shtarkov sum [4], [7]. Using lemma 2 and lemma 3 gives

S(xT ) =
∑
yT

PL(yT )(y
T |xT ) =

∑
yT

1

2π

∫ 2π

0

P (yT |xT , w)ℓyT ”(w)dw

∫
R
exp(−iℓ′yT (w)z)dz. (17)

=
1

2π

∫ π/2

−π/2

dθ

∫
R
ℓ̃”(θ, z)

∏
t

(pt + qt)dz (18)

with the new definition of (pt, qt): pt = cos(θ−xt)
2e−2i tan(θ−xt)z and qt = sin(θ−xt)

2e−2i tan(θ−xt+π/2)z , thus p(yT ) =
P (yT |xT , θ)e−iℓyT (θ); ℓ̃”(θ, z) has same expression as ℓ”(θ, z) but with the new expression of pt and qt:



ℓ̃”(θ, z) = 2
∑
t

pt
pt + qt

1

cos(θ − xt)2
+

qt
pt + qt

1

sin(θ − xt)2

Developing as in theorem 1’s proof:

S(xT ) =
1

2π

∫ π/2

−π/2

dθ

∫
R
ℓ̃(θ, z) exp

(
−2Tz2 +O(T |z3|)

)
, (19)

via the saddle point estimate with the difference that it is restricted to the dimension in z and consists to do a change of
variable z → 1√

T
z′ get

S(xT ) =
1

2π

∫ π/2

−π/2

dθ

∫
R
ℓ̃(θ, 0)

√
π√
2T

(1 +O(1/
√
T )). (20)

We terminate with the evaluation ℓ̃”(θ, 0) = 4T , thus S(xT ) =
√
T√
π/2

(1 +O(1/
√
T )).

IV. INCREMENTAL LEARNING AND GRADIENT DESCENT

We investigate gradient descent methods to reach the value θ∗. There are many gradient strategies. The classic strategy,
which we call, the slow gradient descent, where we define the loss by loss(yt, θt|xt) = (yt− sin(θt−xt)

2)2, since the average
value of yt is sin(θQ)

2, thus the average loss is (sin(θQ − xt)
2 − sin(θt − xt)

2)2 +
sin(2θQ−2xt)

2

4 (minimized at θt = θQ) and
the gradient θt updates is

θt+1 = θt − r
∂

θt
loss(yt, θt|xt). (21)

In figure 2 we display our simulations as a sequence θt starting with a random initial θ1. We assume that for all t the
transmitted bit is always 0 i.e. the polarization angle is always θQ. The learning rate is r = 0.0002. We simulate nine parallel
gradient descents randomly initialized sharing the same random feature sequence xT , with T = 3, 000, 000. On figure 2 we
plot the parallel evolutions of quantity θt. The initial points are green diamond and the final points are the red diamond.
Although we start with nine different positions, the trajectories converge toward θQ ± π. However the convergence is slow. In
fact some initial positions converge even more slowly and even after 3, 000, 000 trials are still very far. The reason is that the
target function logP (yT |xT , θ) has several local maxima as it is shown in figure 1 where the xt belongs to the set of values
2πk/10 for k = 1, . . . , 10. It is very unlikely that a communication operator would tolerate so many runs (3, 000, 000) in order
to have a proper convergence. However it would be possible to run the gradient descents in parallel and act like with particle
systems in order to select the fastest in convergence.

A supposedly faster gradient descent would be defined by the inverse derivative

θt+1 = θt + r
yt − sin(θt − xt)

2

∂
∂θt

sin(θt − xt)2
(22)

We notice that in stationary situation (where we suppose that θt very little varies) we have E(θt+1) = θt+r
sin(θQ−xt)

2−sin(θt−xt)
2

∂
∂θt

sin(θt−xt)2

which is equal to θt when θt = θQ. In figure 3 we display our simulations as a sequence θt starting with a random initial
θ1. The learning rate is r = 0.0002. We simulate nine parallel fast gradient descents randomly initialized sharing the same
random feature sequence xT , with T = 3, 000, 000. The gradient descent converges fast but not on the good value θQ ± π.
Again it is due to the fact that the target function logP (yT |xT , θ) has several local maxima which acts like a trap for the
gradient descent.

V. CONCLUSION

We have presented a simple quantum tomography problem, the photon unknown polarization problem and have analyzed
its learnability via AI over T runs. We have shown that the learning regret cannot decay faster than 1/

√
T (i.e. a cumulative

regret of
√
T ). Furthermore the classic gradient descent are hampered by local extrema which may significantly impact the

theoretical convergence rate.



Fig. 1. Target function
∑

t cos(θQ − xt)2 log cos(θ − xt)2 + sin(θQ − xt)2 log sin(θ − xt)2 as function of θ.

Fig. 2. Angle estimate θt versus time of nine slow gradient descents randomly initialized. Green diamonds are starting points, red diamonds are stopping
points.



Fig. 3. Angle estimate θt versus time of nine fast gradient descents randomly initialized. Green diamonds are starting points, red diamonds are stopping
points.
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