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Abstract: One of the key issue in machine learning is the characterization of the learnability of a1

problem. The regret is way to quantify learnability. The quantum tomography is a special case of2

machine learning where the training set is a set of quantum measurements and the ground truth the3

results of these measurements, but nothing is known about the hidden quantum system. We will4

show that in some case the quantum tomography is a hard problem to learn.5

We consider a problem related to optical fiber communication where information are encoded in6

photon polarizations. We will show that the learning regret cannot decay faster than 1/
√

T where T7

is the size of the training dataset, and that incremental gradient descents may converge worse.8

Keywords: Machine Learning; Artificial Intelligence; Photon Polarization; Quantum Tomography9

1. Introduction: supervised learning in general10

With the invention of deep neural learning the general public thinks there is a glimpse of a11

universal machine learning technology capable of solving arbitrary problems without any specific12

preparation on training data and learning strategy. Everything “is” be solvable as long as there are13

enough layers, enough processing power and enough training data. We arrived to the point that14

many people (among them late Stephen Hawking) start thinking that machines may supersede human15

intelligence thanks to the greater performance of silicon neurons over biological neurons, and maybe16

capable of cracking the last enigmas around the physical nature of the universe.17

But we should not forget that actual Artificial Intelligence (AI) has many limitations. But due to18

the youth of the technology many of the present limits might be of teething nature. To learn a language19

the present algorithms need to be trained over millions of texts which is equivalent of a training period20

of 80 years if it were done at the learning pace of a child! Presently, deep neural training is very21

demanding in processing and it is the third major source energy consumption among information22

technologies after Bitcoin and data centers. Deep learning is not yet as such a good self organizing23

learning process as some researchers would have thought [5]. There is also the obstacle of data sparsity24

to learning (the machine only recognizes the data on which it has been trained over and over, as if a25

reader could only understand the texts on which (s)he has been trained).26

To make it short the main limitations of the machine learning technologies are: (i) the data sparsity;27

(ii) the absence of computable solution to learn (e.g. the program halting problem); (iii) the presence of28

hard to learn algorithms in the solution. My present paper will address the third limitation.29

A supervised learning problem can be viewed as a set of training data and ground truths. The30

machine acts as an automaton whose aim is to predict the ground truth from a data. The loss measures31

the difference between the prediction and the ground truth, and can be established under an arbitrary32

metric. The general objective of supervised machine learning is to minimize the average loss, but since33

the ground truth might contain some inherent stochastic variations (e.g., when predicting the result of34
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a quantum measurement) it may be impossible to make the loss as small as we would like. Given an35

automaton architecture, there exists a setting which gives the optimal average loss. But the optimal36

setting might be difficult to reach. However, there is still the question of the size of the training set37

needed to converge to the optimal settings.38

All problems are not equal in front of learnability [9]. Some seem to be a perfect match with AI,39

some other are more difficult to adapt. In [2] the author shows that the random parity functions are40

just unlearnable. In fact in a broader perspective, the "learnability" may not be a learnable problem [1].41

The first contribution of this paper is a new definition of learning regret with respect to a given42

single problem submitted to a given learning strategy. Most regret expression are infimum of regret43

over large class (if not universal) of problems [6] and therefore lose the specificity of individual44

problems.45

The second contribution is the application of this new regret definition to a quantum tomography46

problem. The specificity of the problem is that the hidden source probability distribution is indeed47

contained in the learning distribution class. The suprising result is that the regret is at least in square48

root of the number of runs, hinting a poor convergence rate of the learned distribution toward the49

hidden distribution. We conclude with numerical experiments with gradient descents.50

2. Expressing the convergence regret51

Let T be an integer and let xT = (x1, . . . , xT) be a sequence of features which are vectors of a52

certain dimension which define the problem (the notation with T is not for "transpose", which should53

be noted Tx, but for a sequence with T atoms). Each feature x generates a discrete random label y. Let54

denote PS(y|x) (S for "source") the probability to have label y given the feature x. If yT is the sequence55

of random labels given the sequence of feature xT : PS(yT |xT) = ∏t PS(yt|xt). The sequence of features56

and labels define the problem for supervised learning.57

The learning process will give as output an index L(yT) which will be taken from a set of L,58

such that each L ∈ L define a distribution PL(yT |xT) (L for "learning") over the label sequence59

given the feature sequence. In absence of side information the learning process leads to L(yT) =60

arg maxL∈L{PL(yT |xT)}. Our aim is find how close PL(yT)(y
T |xT) is to PS(yT |xT) when yT varies.61

The distance between the two distributions can be expressed by the Kullback-Liebler62

divergence [3]63

D(PS∥PL) = ∑
yT

PS(yT |xT) log
PS(yT |xT)

PL(yT)(yT |xT)
(1)

However it should be stressed that the quantity PL(yT)(y
T |xT) does not necessarily define a probability64

distribution since L(yT) may vary when yT varies, making ∑yT PL(yT)(y
T |xT) equal to 1 unlikely. Thus65

D(PS∥PL) is not a distance, because it can be non positive. One way to get through is to introduce66

P∗
L (y

T |xT) =
PL(yT )

(yT |xT)

SL(xT)
with S(xT) = ∑yT PL(yT)(y

T |xT) which makes P∗
L () a probability distribution.67

Thus we will use D(PS∥P∗
L ) which satisfies:68

D(PS∥P∗
L ) = ∑

yT

PS(yT |xT) log
PS(yT |xT)

P∗
L (y

T |xT)
= D(PS∥PL) + log S(xT), (2)

and is now a well defined semi distance which we will define as the learning regret R(xT) =69

D(PS∥P∗
L ) [6].70

3. The quantum learning on polarized photons71

We now include pure physical measurements in the learning process. There are several application72

which involves physic, [8] describe a processus of deep learning over the physical layer of a wireless73

network. The issue with quantum physical effect is the fact that they are not reproducible and not74
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deterministic. We consider a problem related to optical fiber communication where information are75

encoded in photon polarizations. The photon polarization is given by a quantum wave function of76

dimension 2. In the binary case the bit 0 is given by polarisation angles θQ and the bit 1 is given by77

angle θQ + π/2. The quantity θQ is supposed to be unknown by the receiver and its estimate θT is78

obtained after a training sequence via machine learning.79

For this purpose, the sender sends a sequence of T equally polarized photons, along angle θQ, the80

receiver measures these photons over a collection of T measurement angles x1, x2, . . . , xT , called the81

featured angles. They are pure scalar and are not vector (d = 1), therefore we will not depict them in82

bold font as in the previous section which is therefore of dimension 1. The labels, or ground truths,83

y1, . . . , yT are the sequence of binary measurement obtained, yt ∈ {0, 1}, there are 2T possible label84

sequences.85

This problem is the most simplified version of tomography on quantum telecommunication, since86

it relies on a single parameter. More realistic and more complicated situations will occur when noisy87

circular polarization is introduced within more complex combination of polarizations within groups of88

photons. This will considerably increase the dimension of the feature vectors and certainly will make89

our results on training process more critical. However in the situation analyzed in our paper, we show90

that this simplistic system is difficult to learn.91

If we assume that the experiment results are delivered in batch to the training process, that is the92

estimate θt = θ does not vary for 0 < t < T, the learning class of probability distribution is a function93

of θ with PL(yT |xT , θ) = ∏yt=0 cos(θ − xt)2 ∏yt=1 sin(θ − xt)2. The source distribution is indeed94

PS(yT |xT) = PL(yT |xT , θQ), thus the source distribution belongs to the class L of learning distribution.95

For a given pair of sequence (yT , xT), let θ∗ be the value of θ which maximizes PL(yT |xT , θ). Since we96

will never touch the sequence xT which are the foundation of the experiments, we will sometimes97

drop the parameter xT and denote ℓyT (θ) = − log PL(yT |xT , θ). The quantity θ∗ which maximizes98

PL(yT |xT , θ) will satisfy ℓ′yT (θ
∗) = 0. We have99 
ℓyT (θ) = −2 ∑t log | cos(θ − xt + ytπ/2)|
ℓ′yT (θ) = 2 ∑t tan(θ − xt + ytπ/2)

ℓ”yT (θ) = 2 ∑t
1

cos(θ−xt+ytπ/2)2

we notice that for all θ ℓ”yT is always strictly positive (but ℓ′′ and ℓ′ are not continuous so ℓ is not100

convex). We now turn to displaying and prove our main results (two theorems), whose proof would101

need the following two next lemmas.102

Lemma 1. We have the expression

ℓyT (θ∗) =
1

2π

∫ 2π

0
ℓyT (w)ℓ”yT (w)dw

∫
R

exp(−iℓ′yT (w)z)dz. (3)

Proof. Let gyT (θ) = ℓ′yT (θ) which is homomorphic and is locally invertible (since ℓ”yT (θ) is never103

zero). Let a ∈ R we denote lyT the function a → ℓyT (g−1
yT (a)). We have ℓyT (θ∗) = lyT (0). For z ∈ R, let104

l̃yT (z) be the Fourier transform of function lyT (a). Formally we have105

l̃yT (z) =
∫
R

lyT (a)e−iazda (4)

=
∫ 2π

0
ℓyT (w)ℓyT ”(w))e

−iℓ′
yT (w)z

dw (5)

and inversely106

lyT (a) =
1

2π

∫
R

l̃yT (z)eiazdz (6)
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Thus107

ℓyT (θ∗) =
1

2π

∫
R

l̃yT (z)dz (7)

=
1

2π

∫ 2π

0
ℓyT (w)ℓyT ”(w))dw (8)

×
∫
R

e
−iℓ′

yT (w)z
dz. (9)

108

In fact the function ℓyT (θ) may have several extrema as we will see in the next section, thus ℓ′yT (θ)109

may have several roots, thus g−1
yT (a) is polymorphic. In order to avoid the secondary roots which110

contributes the non optimal extrema, we will concentrate on the main root in the vicinity of θQ.111

Let pT = (p1, . . . , pT) and qT = (q1, . . . , qT) be two sequence of real numbers. We denote112

p(yT) = ∏t p1−yt
t qyt

t .113

Lemma 2. For any 1 ≤ t0 ≤ T we have the identity114

∑
yT

yt0 p(yT) = qt0 ∏
t ̸=t0

(pt + qt). (10)

For t1 ̸= t2, we have115

∑
yT

yt1 yt2 p(yT) = qt1 qt2 ∏
t ̸=t1,t2

(pt + qt). (11)

Proof. This is just the consequence of the finite sums via algebraic manipulations.116

Theorem 1. Under mild conditions, we have the estimate117

∑
yT

P(yT |xT) log
PS(yT |xT)

PL(yT)(yT |xT)
= O(

√
T) (12)

Proof. Let C(xT) = ∑yT PS(yT |xT)ℓyT (θ∗). Applying both lemma with pt = cos(θQ −118

xt)2e−2i tan(θ−xt)z and qt = sin(θQ − xt)2e−2i tan(θ−xt+π/2)z, thus p(yT) = PS(yT |xT)e−iℓyT (θ) we get119

C(xT) = ∑
yT

1
2π

∫ 2π

0
ℓyT (θ)ℓ”yT (θ)dθ

∫
R

exp(−iℓ′yT (w)z)dz

=
1

2π

∫ 2π

0
dθ

∫
R
(ℓ(θ, z)ℓ”(θ, z) + ∆(θ, z))∏

t
(pt + qt) dz

with120

ℓ(θ, z) = −2 ∑
t

pt

pt + qt
log cos(θ − xt) +

qt

pt + qt
log sin(θ − xt)

ℓ”(θ, z) = 2 ∑
t

pt

pt + qt

1
cos(θ − xt)2 +

qt

pt + qt

1
sin(θ − xt)2

∆(θ, z) = −2 ∑
t

ptqt

(pt + qt)2

(
log cos(θ − xt)

cos(θ − xt)2 +
log sin(θ − xt)

sin(θ − xt)2

)
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We notice that ∏t(pt + qt) = exp(2im(θ)z + v(θ)z2 + O(z3T)) with121

m(θ) = ∑
t

tan(θ − xt) cos(θQ − xt)
2 + tan(θ − xt + π/2) sin(θ − xt)

2

v(θ) = ∑
t

tan(θ − xt)
2 cos(θQ − xt)

2 + tan(θ − xt + π/2)2 sin(θQ − xt)
2

−∑
t

(
tan(θ − xt) cos(θQ − xt)

2 + tan(θ − xt + π/2) sin(θQ − xt)
2
)2

We notice that m(θ) ∼ 2(θ − θQ)T and v(θ) = T +O(θ − θQ) when θ → θQ. The expression is obtained122

via saddle point method approximation, under the mild conditions being that it can be applied as in123

the maximum likelihood problem [7] (the error term would be the smallest possible)124 ∫
R
(ℓ(θ, z)ℓ”(θ, z) + ∆(θ, z))∏

t
(pt + qt) dz =

∫
R
(ℓ(θ, z)ℓ”(θ, z) + ∆(θ, z))

exp
(
−im(θ)z − v(θ)z2/2 + O(T|z|3)

)
dz (13)

= (ℓ(θ)ℓ”(θ) + ∆(θ))
√

π√
v(θ)

exp(−m(θ)2

v(θ)
)

(1 + O(1/
√

T)) (14)

with ℓ(θ) = ℓ(θ, 0), ℓ”(θ) = ℓ”(θ, 0) and ∆(θ) = ∆(θ, 0) Since m(θ)2

v(θ) = 4(θ − θQ)
2T + O(|θ − θQ|3T),125

the factor ∏t(pt + qt) behaves like a gaussian function centered on θQ with standard deviation of order126

1/
√

T. Thus via saddle point approximation again, it comes:127

C(xT) =
1

2
√

π

∫ 2π

0
(ℓ(θ)ℓ”(θ) + ∆(θ))

√
π√

v(θ)
exp(−m(θ)

v(θ)
)(1 + O(1/

√
T))

=
1

2
√

π

∫ 2π

0

ℓ(θ)ℓ”(θ) + ∆(θ)√
v(θ)

exp
(
−4(θ − θQ)

2T + O(|θ − θQ|3T)
)
(1 + O(1/

√
T))

=
ℓ(θQ)ℓ”(θQ) + ∆(θQ)

2
√

v(0)
(1 + O(1/

√
T))

= h(θQ)(1 + O(1/
√

T))

with h(θQ) = (ℓ(θQ)ℓ”(θQ) − ∆(θQ))/2T with h(θ) − ∑t cos(θ − xt)2 log cos(θ − xt)2 + sin(θ −128

xt)2 log sin(θ − xt)2 is clearly O(T).129

Furthermore h(θQ) = −∑yT PS(yT |xT) log PS(yT |xT), thus we have

∑
yT

P(yT |xT) log
PS(yT |xT)

PL(yT)(yT |xT)
= O

(
h(θQ)√

T

)
= O(

√
T).

130

Theorem 2. We have

log S(xT) = log

∑
yT

PL(yT)(y
T |xT)

 =
1
2

log T + O(1). (15)

Remark: this order of magnitude is much smaller than the previous order of magnitude, confirming131

that the overall regret is indeed
√

T. The regret per measurement is O(1/
√

T) therefore the individual132

regrets nevertheless tend to zero when T → ∞.133
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Proof. It is formally a Shtarkov sum [4], [6]. Using lemma 1 and lemma 2 gives134

S(xT) = ∑
yT

PL(yT)(y
T |xT) = ∑

yT

1
2π

∫ 2π

0
P(yT |xT , w)ℓyT ”(w)dw

∫
R

exp(−iℓ′yT (w)z)dz. (16)

=
1

2π

∫ 2π

0
dθ

∫
R
ℓ̃”(θ, z)∏

t
(pt + qt)dz (17)

with pt = cos(θ − xt)2e−2i tan(θ−xt)z and qt = sin(θ − xt)2e−2i tan(θ−xt+π/2)z, thus p(yT) =135

P(yT |xT , θ)e−iℓyT (θ); ℓ̃”(θ, z) has same expression as ℓ”(θ, z) but with the new expression of pt and qt:136

ℓ̃”(θ, z) = 2 ∑
t

pt

pt + qt

1
cos(θ − xt)2 +

qt

pt + qt

1
sin(θ − xt)2

Developing further:137

S(xT) =
1

2π

∫ 2π

0
dθ

∫
R
ℓ̃(θ, z) exp

(
−2Tz2 + O(T|z3|)

)
, (18)

via the saddle point estimate (which consists to do a change of variable z → 1√
T

z′ under the same138

conditions of theorem 1 we get139

S(xT) =
1

2π

∫ 2π

0
dθ

∫
R
ℓ̃(θ, 0)

√
π√
2T

(1 + O(1/
√

T)). (19)

We terminate with the evaluation ℓ̃”(θ, 0) = 4T, thus S(xT) =
√

T√
π/2

(1 + O(1/
√

T)).140

4. Incremental learning and gradient descent141

We investigate gradient descent methods to reach the value θ∗. There are many gradient142

strategies. The classic strategy, which we call, the slow gradient descent, where we define the loss by143

loss(yt, θt|xt) = (yt − sin(θt − xt)2)2, since the average value of yt is sin(θQ)
2, thus the average loss is144

(sin(θQ − xt)2 − sin(θt − xt)2)2 +
sin(2θQ−2xt)

2

4 (minimized at θt = θQ) and the gradient θt updates is145

θt+1 = θt − r
∂

θt
loss(yt, θt|xt). (20)

In figure 2 we display our simulations as a sequence θt starting with a random initial θ1. We146

assume that for all t the transmitted bit is always 0 i.e. the polarization angle is always θQ. The learning147

rate is r = 0.0002. We simulate nine parallel gradient descents randomly initialized sharing the148

same random feature sequence xT , with T = 3, 000, 000. On figure 2 we plot the parallel evolutions of149

quantity θt. The initial points are green diamond and the final points are the red diamond. Although we150

start with nine different positions, the trajectories converge toward θQ ± π. However the convergence151

is slow, confirming the 1/
√

T and worse rate. In fact some initial positions converge even more slowly152

and even after 3, 000, 000 trials is still very far. The reason is that the target function log P(yT |xT , θ)153

has several local maxima as it is shown in figure 1 where the xt belongs to the set of values 2πk/10154

for k = 1, . . . , 10. It is very unlikely that a communication operator would tolerate so many runs155

(3, 000, 000) in order to have a proper convergence. However it would be possible to run the gradient156

descents in parallel and act like with particle systems in order to select the fastest in convergence.157

A supposedly faster gradient descent would be defined by the inverse derivative158

θt+1 = θt + r
yt − sin(θt − xt)2

∂
∂θt

sin(θt − xt)2
(21)
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We notice that in stationary situation (where we suppose that θt very little varies) we have159

E(θt+1) = θt + r sin(θQ−xt)
2−sin(θt−xt)

2

∂
∂θt

sin(θt−xt)2 which is equal to θt when θt = θQ. In figure 3 we display our160

simulations as a sequence θt starting with a random initial θ1. The learning rate is r = 0.0002. We161

simulate nine parallel fast gradient descents randomly initialized sharing the same random feature162

sequence xT , with T = 3, 000, 000. The gradient descent converges fast but not converge on the good163

value θQ ± π. Again it is due to the fact that the target function log P(yT |xT , θ) has several local164

maxima which acts like a trap for the gradient descent.165

Figure 1. Target function ∑t cos(θQ − xt)
2 log cos(θ − xt)

2 + sin(θQ − xt)
2 log sin(θ − xt)

2 as function
of θ.

Figure 2. Angle estimate θt versus time of nine slow gradient descents randomly initialized. Green
diamonds are starting points, red diamonds are stopping points.

5. Conclusion166

We have presented a simple quantum tomography problem, the photon unknown polarization167

problem and have analyzed its learnability via AI over T runs. We have shown that the learning regret168
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Figure 3. Angle estimate θt versus time of nine fast gradient descents randomly initialized. Green
diamonds are starting points, red diamonds are stopping points.

cannot decay faster than 1/
√

T (i.e. a cumulative regret of
√

T). Furthermore the classic gradient169

descent are hampered by local extrema which may significantly impact the theoretical convergence170

rate.171
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