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ABSTRACT

Efficient frequency-domain Full Waveform Inversion (FWI) of long-offset node data can be de-
signed with a few discrete frequencies hence allowing for compact volume of data to be managed.
Moreover, attenuation effects can be straightforwardly implemented in the forward problem without
computational overhead. However, 3D frequency-domain seismic modeling is challenging since it
requires solving a large and sparse linear indefinite system per frequency with multiple right-hand
sides. This linear system can be solved by direct or iterative methods. The former are very efficient
to process multiple right-hand sides but may suffer from limited scalability for very large problems.
Iterative methods equipped with a domain decomposition preconditioner provide a suitable alterna-
tive to process large computational domains for sparse node acquisition. The domain decomposition
preconditioner relies on an optimized restricted additive Schwarz (ORAS) method, where a Robin
or Perfectly-Matched Layer (PML) condition is implemented at the boundaries between the subdo-
mains. The preconditioned system is solved by a Krylov subspace method, while a block low-rank
Lower-Upper (LU) decomposition of the local matrices is performed at a preprocessing stage. Mul-
tiple sources are processed in group with a pseudo-block method. The accuracy, the computational
cost and the scalability of the ORAS solver are assessed against several realistic benchmarks. For the
considered benchmarks, a compact wavelength-adaptive 27-point finite-difference stencil on regular
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Cartesian grid shows better accuracy and computational efficiency than a P3 finite-element method
on h-adaptive tetrahedral mesh, which remains however beneficial to comply with known bound-
aries such as bathymetry. The scalability of the method, the block processing of multiple RHS, the
straightforward implementation of attenuation, which further improves the convergence of the iter-
ative solver, make the method to be a versatile forward engine for large-scale 3D FWI applications
from sparse node data sets.

1 INTRODUCTION

Frequency-domain full-waveform inversion (FWI) is suitable for long-offset stationary-recording acquisition, since
subsurface models can be reconstructed with a few frequencies and attenuation is easily implemented without com-
putational overhead (Górszczyk et al., 2017; Pratt et al., 1996; Sirgue and Pratt, 2004). Frequency-domain FWI is a
data-fitting problem for subsurface parameter estimation constrained by a Helmholtz-type boundary-value equation.
This elliptic partial-differential equation is commonly discretized with finite differences or through more elaborate
finite elements, which are crafted according to a specific problem (Marfurt, 1984). Its discretization leads to a sparse
linear system per frequency whose unknown is the wavefield, the right-hand side (RHS) the seismic source and the
matrix coefficients embed the subsurface properties. To solve such a system, we can use either a sparse direct solver
(Duff et al., 2017) or an iterative one (Saad, 2003a). While a direct solver is efficient when processing multiple RHSs
for problems involving less than ∼ 100 million unknowns (Amestoy et al., 2016, 2021; Kostin et al., 2019), the mem-
ory overhead generated by the storage of the LU factors and the limited scalability of the LU decomposition make
application on large scale problems difficult. The second approach relies on iterative solvers, whose natural scalability
and moderate memory demand make them suitable for large-scale problems (see Plessix (2017) for a comprehensive
discussion).

However, due to the indefiniteness of the operator, fast convergence of iterative solvers for the discretized Helmholtz
equation remains challenging as shown in Ernst and Gander (2012), hence requiring efficient preconditioners. To
tackle this issue, many techniques have been developed, which can be divided into three broad categories: incomplete
factorizations, e.g., analytic incomplete LU (Gander and Nataf, 2000), multigrid with shifted Laplacian (Erlangga,
2008; Riyanti et al., 2007), and domain decomposition preconditioners including overlapping Schwarz type methods
among them (Dolean et al., 2015). In turn, domain decomposition methods can be of different types. We refer the
reader to the paper of Gander and Zhang (2019) for an overview of these solvers and the link between them.

Domain decomposition offers a very suitable parallel framework to tackle large scale problems repeatedly, as in the
case of inverse problems with multiple RHSs. In this context, an example of the use of a domain decomposition method
as a solver for a medical imaging problem based on time-harmonic Maxwell’s equations can be found in Tournier et al.
(2019) and due to the similarities between Maxwell’s and acoustic wave equation (Carcione and Robinson, 2002), a
similar type of approach can be applied to Helmholtz equations (Ben Hadj Ali et al., 2011).

In this paper, we present a new solver for 3D frequency-domain wave simulation as a forward engine for FWI, which
consists in combining the Krylov subspace generalized minimal residual (GMRES) solver (Saad, 2003a) with an
optimized restricted additive Schwarz (ORAS) domain-decomposition preconditioner (Bonazzoli et al., 2019; Graham
et al., 2017). We will present both one-level and two-level methods and discuss their domain of application. Two-
level methods are obtained from one-level methods by adding a coarse space correction in order to achieve scalability
with respect to the number of subdomains. However, a specificity of wave propagation problems, in particular those
arising in exploration geophysics, is the sensitivity of the method to the physical parameters such as the range of wave
numbers and the level of heterogeneity of the medium (Plessix, 2017). To manage this issue, several coarse space
correction strategies have been investigated for Helmholtz problems including those of interest here in Bootland et al.
(2021a,b) and the coarse space based on a geometrical grid (aka the grid coarse space) was considered to be the best
strategy for solving the applications of interest especially in the case of parsimonious discretization with the lowest
number of points per wavelength possible. This choice was pushed further and assessed in more detail on a few test
cases in Dolean et al. (2020a,b). On the other side, spectral coarse spaces like those based upon Dirichlet-to-Neumann
(DtN) operator (Bootland and Dolean, 2019; Conen et al., 2014) remain potentially promising alternatives for inverse
problems involving multiple RHSs where the parallel precomputation of the coarse space components could bring a
clear advantage and improve considerably the overall computation time. Compared to the well-known preconditioner
based upon shifted Laplacian (Erlangga, 2008), let’s add that the optimized Schwarz preconditioners we introduce
here are less sensitive to the shift (added attenuation) and can be used without it.

In this study, we assess two discretization schemes of the Helmholtz equation. The first relies on continuous Lagrange
finite elements of order 3 (P3) on unstructured tetrahedral meshes to comply with complex geometries and adapt the
size of the elements to the local wavelength (h-adaptivity). Our rationale behind the choice of the polynomial order
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is to choose the coarsest discretization providing the desired accuracy while being able to capture heterogeneities
during FWI whose size is of the order of half the wavelength, namely the theoretical resolution of FWI (Virieux and
Operto, 2009). The second discretization scheme relies on the recently proposed compact wavelength-adaptive 27-
point finite-difference method on uniform Cartesian grid (Aghamiry et al., 2021). The governing idea of this method
compared to the classical 27-point stencil (Operto et al., 2007) is to make its accuracy uniform with respect to the
local wavelength through a local adaptation of the stencil coefficients. Finite difference methods are the most popular
ones in exploration geophysics due to their simplicity and their ability to perform well on structured meshes with the
lowest number of degrees of freedom for a prescribed accuracy. On the other side, finite elements may be favored
when their versatility for dealing with unstructured geometries and non-trivial topographies is needed. The different
paradigms governing these two methods prompt us to provide a re-assessment of their pros and cons in the framework
of Helmholtz problems.

This paper is organized as follows. In the first section, we review the ORAS preconditioner and its two-level variant
with the grid coarse space. We present their formulation and review several key algorithmic aspects. Then, we
briefly review the two discretization schemes and their dispersion properties. The third section presents numerical
results. We first define the optimal tuning of the ORAS solver that achieves the best compromise between accuracy
and computational efficiency. Then, we assess the two discretization schemes against four large-scale benchmarks.
The solutions are validated against analytical solutions for the first two benchmarks and the convergent Born series
(CBS) method (Osnabrugge et al., 2016) for the last two benchmarks, which involve complex media. We conclude the
numerical section with a weak and strong scalability analysis. In the final discussion section, we discuss the pros and
cons of the proposed method against alternative approaches based on sparse direct solver and explicit time marching
methods with a numerical example.

2 Method

We consider the Helmholtz equation, which is the simplest mathematical model of frequency-domain acoustic wave
propagation: (

∆ + k2(x)
)
u(x, ω) = f(x, ω), in a subsurface domain Ω, (2.1)

where u is the monochromatic pressure wavefield, f the monochromatic source, k(x, ω) = ω/c(x) is the wavenumber
with ω denoting the angular frequency, c(x) the wavespeed (which is complex valued in viscous media) and x =
(x, y, z) ∈ Ω. Let us denote its boundary by ∂Ω = ΓD ∪ΓR where Dirichlet (free-surface) conditions are imposed on
ΓD (u = 0) and a Robin condition on ΓR ( ∂u∂n + iku = 0). The Robin condition is a standard first order approximation
to the far field Sommerfeld radiation condition enabling the description of the wave behavior in a bounded domain,
while the physical domain is not bounded. Alternatively, perfectly-matched layer boundary conditions can be applied
on ΓR (Bérenger, 1994; Chew and Weedon, 1994). The resulting linear system, while being complex symmetric, is
not Hermitian and this will condition the choice of iterative method to solve it. The method that is reviewed below can
be extended to more general form of the wave equation including heterogeneous density (e.g., Operto et al., 2007),
anisotropic effects (e.g., Operto et al., 2014), and elastic effects (Gosselin-Cliche and Giroux, 2014; Li et al., 2020,
2015), with however a potential impact of the physics on the convergence behavior of the method (Plessix, 2017). In
the sequel of this study, the discretized form of equation 2.1 is written in matrix form as

Au = f . (2.2)

where u is the vector of degrees of freedom.

2.1 Optimized Schwarz preconditioners

We review the optimized Schwarz preconditioners that we use to solve efficiently the linear system (2.2). A well-
known iterative solver for this type of indefinite linear systems is the Krylov subspace Generalized Minimal RESidual
Method (GMRES) (Saad, 2003a). However, the Helmholtz operator requires efficient preconditioning, which can be
done by domain decomposition (Dolean et al., 2015). Note that we will employ right preconditioning to solve (2.2):
we will solve

AM−1y = f where u = M−1y (2.3)
with preconditioner M−1. Compared to the left-preconditioned variant, right-preconditioned GMRES is usually con-
sidered more stable, and the residual of the preconditioned system is independent of the preconditioner.

Our approach is based on the optimized restricted additive Schwarz (ORAS) method. Let us first introduce the one-
level variant. In order to use the domain decomposition method, we first partition Ω into overlapping subdomains
{Ωj}Nj=1. Note that graph partitioners such as Metis (Karypis, 2013) and Scotch (Pellegrini, 2018) provide a non-
overlapping partition from which the overlapping counterpart can be inferred by adding more layers in a recursive
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manner when subdomains with larger overlap are required. Now that we have a domain decomposition, we can define
the restriction to a given subdomain Ωj via a Boolean matrix Rj ∈ Rnj×n where nj is the number of degrees of
freedom in Ωj . Since our subdomains overlap, we also make use of a partition of unity having matrix form Dj ∈
Rnj×nj , which is diagonal and satisfies

∑N
j=1R

T
j DjRj = I . Note that RTj acts as an extension by zero outside of

Ωj . We can now define the one-level optimized restricted additive Schwarz (ORAS) preconditioner as

M−1
ORAS =

N∑
j=1

RTj DjB
−1
j Rj ,

where Bj is the local matrix on Ωj and Robin or impedance boundary conditions are assumed on ∂Ωj \ ∂Ω (as men-
tioned previously, perfectly-matched layer boundary conditions can be used instead in the case of regular partitioning).
Each contribution in the sum of the above equation can be computed locally in parallel. The ORAS method is a one-
level method as it relies on local subdomain solutions and local transmission of data. This is reflected in the scalability
of such a method, as the number of iterations usually grows as we increase the number of subdomains N . Therefore,
in order to achieve robustness with respect to N , a coarse space needs to be included, leading to a two-level method.

In a two-level method, the typical characteristics of the method (like the diameter H of the elements in the coarse grid
or the number of eigenvectors in the coarse space) can be tuned in order to achieve the desired robustness, i.e., the
weak dependence on the wave number k or the heterogeneities at the same time as the scalability. The typical two-level
preconditioner is mainly characterized by the thin and long matrix Z and can be written in a generic algebraic way as
follows

M−1
2,ORAS = M−1

ORASP + ZE−1Z†︸ ︷︷ ︸
Q

. (2.4)

Here M−1
ORAS is the one-level preconditioner, Z is a rectangular matrix with full column rank, E = Z†AZ is the so-

called coarse grid matrix,Q = ZE−1Z† is the so-called coarse grid correction matrix, and P = I−AQ is a projection
matrix. The most natural coarse space is the one based on a coarser mesh or grid, the so-called grid coarse space. In
the case of finite elements for example, let us consider T H , a coarse simplicial mesh of Ω with mesh diameter H , and
V H ⊂ V , the corresponding finite element space. Let Z the interpolation matrix between the coarse and the fine finite
element spaces. Then, in this case, E = Z†AZ is really the stiffness matrix of the problem discretized on the coarse
mesh. Note that the inclusion of the coarse space can be done in several ways, the one indicated in (2.4) is based on
an adapted deflation technique by making use of the projector P outside the coarse space for an increased efficiency.

As mentioned previously, the two discretization schemes considered in this paper are wavelength-adaptive 27-point
finite differences and P3 finite elements. In the case of finite differences, the solution is defined by its values on the
nodes of the Cartesian grid with a resolution of four points per wavelength ; this unfortunately means that a coarser
grid discretization would lead to a poor representation of the solution, invalidating the benefits of a second level of
preconditioning based on a coarse grid. Thus, the one-level ORAS preconditioner will be used for the solution of
linear systems stemming from finite-difference discretization.

However, in the case of P3 finite elements, the much larger set of degrees of freedom allows for a relevant physical
representation of the solution even on a coarser mesh with a resolution of two points per wavelength. Thus, contrary
to the finite difference case, the second-level based on a coarse mesh discretization for finite elements still maintains a
pertinent physical meaning and has a significant positive impact on convergence. Hence, the two-level variant will be
used for finite element discretizations.

In the next section, we give more details on the practical aspects of the parallel implementation of the one- and two-
level ORAS preconditioners.

2.2 Algorithmic aspects and parallel implementation

One-level method The first step is to decompose the computational domain into overlapping subdomains. For
finite-difference discretizations, the regular grid is partitioned into overlapping cuboids. For finite-element discretiza-
tions on unstructured meshes, we rely on automatic graph partitioners such as Metis and Scotch, which produce a
non-overlapping decomposition of the set of mesh elements while minimizing interfaces between subdomains and
conserving good load-balancing. The overlapping decomposition is then obtained by simply adding successive layers
of elements to reach the desired size of overlap. The choice of the width of the overlap region is discussed in more
details below.

The implementation of the domain decomposition method used here relies on Message Passing Interface (MPI) paral-
lelism. Each subdomain of the decomposition is assigned to one MPI process (the number of subdomains N is then
equal to the number of MPI processes).
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The parallel implementation operates only on distributed quantities; for instance, a global vector v is represented as
a distributed vector, i.e., a collection of local vectors (vj)1≤j≤N where the values on the unknowns shared between
multiple subdomains are the same:

vj = Rjv, j = 1, . . . , N.

The MPI process in charge of subdomain j then holds the restriction Rjv to subdomain j. Distributed operators can
be defined in a similar manner; for example, the global operator A can be written as

A =

(
N∑
i=1

RTi DiRi

)
A (2.5)

=

N∑
i=1

RTi DiAiRi, (2.6)

where Ai = RiAR
T
i is the local restriction of A to subdomain i and the last equality holds under the hypothesis that

Di vanishes at the subdomain interface ; we then have DiRiA = DiAiRi.

Thus, the distributed result (uj)1≤j≤N of the parallel matrix-vector product with A applied to vector v distributed as
(vi)1≤i≤N is

uj =RjAv (2.7)

=Rj

N∑
i=1

RTi DiAiRiv (2.8)

=Rj

N∑
i=1

RTi DiAivi (2.9)

=DjAjvj +
∑
i∈O(j)

RjR
T
i DiAivi, (2.10)

where O(j) is the set of neighbors of subdomain j. Exchange operators RjRTi correspond to neighbor-to-neighbor
MPI communications, transferring the values of the local input vector on the shared overlap region of subdomain
i to corresponding neighboring subdomains j. Thus, applying operator A in parallel amounts to performing local
weighted matrix-vector products DiAivi on each MPI process, exchanging the result in the overlapping region with
neighboring subdomains, and summing contributions.

In the same manner, the distributed result (uj)1≤j≤N of the application of the one-level ORAS preconditioner M−1
ORAS

to a distributed vector (vi)1≤i≤N is

uj =RjM
−1
ORASv (2.11)

=Rj

N∑
i=1

RTi DiB
−1
i Riv (2.12)

=Rj

N∑
i=1

RTi DiB
−1
i vi (2.13)

=DjB
−1
j vj +

∑
i∈O(j)

RjR
T
i DiB

−1
i vi, (2.14)

which amounts to performing local weighted solves DiB
−1
i vi on each MPI process, exchanging the result in the

overlapping region with neighboring subdomains, and summing contributions. The idea is then to precompute local
factorizations of matrices Bi in each subdomain using a direct solver such as the MUltifontal Massively Parallel
Solver (MUMPS) (MUMPS team, 2021). This can be viewed as the setup cost of the preconditioner. Then, during
the iterative solution of the linear system, local solves B−1

i vi occurring in the application of the preconditioner can
be performed by forward-backward substitution using the local factorization of Bi in each subdomain.

All operations involved in the iterative solution of the linear system can be distributed the same way, and we have all
the ingredients to solve the problem with parallel distributed preconditioned GMRES.

5



Frequency-domain seismic wave solvers, Tournier et al. A PREPRINT

Note on the size of overlap For wave propagation problems, the idea of the Optimized Schwarz method is to
construct Bi as a restriction of the global operator A on subdomain i with an approximation of transparent bound-
ary conditions at the subdomain interface. In the case of finite-differences discretizations, a good approximation of
transparent boundary conditions can be implemented using PMLs on the interface boundaries of the cuboid-shaped
subdomains. In this case, the idea is to add a PML in each direction in the overlap region, with the width of the overlap
sufficiently large for the PML to be a good enough approximation of transparent boundary conditions. In practice,
we add three grid points in each direction (with a corresponding overlap width of six grid elements) for most of the
experiments in this paper as it is found to be the best compromise (note that increasing the overlap width increases the
computational cost), although we observed that the optimal amount of overlap can increase with frequency.

Note on processing multiple right-hand sides Frequency-domain FWI requires forward simulations with multiple
sources, which means solving linear systems with multiple right-hand sides (RHSs). Instead of opting for the naive
approach which consists in solving the linear systems successively for each RHS, we can use various ways to ac-
celerate computations when processing multiple RHSs, from pseudo-block Krylov methods to block Krylov method
with recycling such as the Block Generalized Conjugate Residual Method with Inner Orthogonalization with inexact
breakdown and deflated restarting (BGCRO-DR) (Giraud et al., 2021). The simplest ones are pseudo-block methods,
where operations for each RHS are simply fused together in order to achieve higher arithmetic intensity and decrease
the number of global synchronizations. In particular, for our one-level ORAS method, this means that we can also
leverage the multi-RHS processing capabilities of the direct solver for local problems when computing the application
of the ORAS preconditioner M−1

ORAS to a block of input vectors, using the factorization of Bi to perform forward elim-
ination and backward substitution simultaneously on each input vector in order to compute the action of B−1

i on the
whole block.

Two-level method As mentioned previously, the coarse space we consider here is based on a coarse grid discretiza-
tion of the PDE. Since a finite-difference grid with less than four points per wavelength cannot carry a meaningful
representation of the solution, we only use the two-level method in the finite element case, where the larger set of
degrees of freedom of the P3 discretization allows for a relevant representation of the solution even on a coarser mesh
resolution of two points per wavelength.

For the two-level method, two meshes of the same domain must be considered simultaneously. Here we will consider
nested meshes, so that the fine mesh is generated as a uniform refinement in which edges of all tetrahedra are divided
uniformly in s. In this work we choose s = 2, which means that the coarse mesh is constructed with a resolution level
of two points per wavelength. The required resolution of four points per wavelength will then be achieved on the fine
mesh obtained by splitting.

The number of unknowns in the coarse problem is then sd = 8 times smaller than the fine problem. However,
for large frequencies the coarse problem still reaches tens of millions of unknowns. Thus, instead of relying on
an exact factorization of the coarse matrix E, we solve it iteratively using a preconditioned GMRES method. The
preconditioner for the coarse problem is again a one-level ORAS preconditioner ; this can be seen as a two-level
recursive DD method. This outer-inner strategy requires the use of flexible methods such as FGMRES (Saad, 1993).
Moreover, we observe that in practice an accurate solution of the coarse problem is not required: the best compromise
is obtained by choosing a loose relative GMRES tolerance of 10−1 for the coarse problem.

Finally, in order to minimize communications between levels, a natural choice is to use the same subdomain partition-
ing for the coarse and fine levels. This means that each MPI process will be in charge of two (the fine and the coarse)
discretizations of the same spatial subdomain, with fine subdomains being merely uniformly refined subdomains of
the coarse grid. Thus, by setting the width of the overlap to 1 for the coarse mesh partitioning, the overlap at the fine
level will then have width s = 2.

2.3 Discretization of the Helmholtz problem

We now review the two discretization methods that we consider in this study. The first relies on finite elements with
Lagrange polynomials while the second one relies on finite differences.

2.3.1 Finite-element frequency-domain (FEFD) discretization

The first discretization scheme relies on the finite element method (Zienkiewicz et al., 2005), with piecewise Lagrange
polynomials on a simplicial mesh T h of Ω, which has a characteristic element diameter h. The weak form of the
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problem is to find u ∈ V such that a(u, v) = F (v), ∀ v ∈ V0 where

a(u, v) =

∫
Ω

(
∇u · ∇v̄ − k2uv̄

)
dx+

∫
ΓR

ikuv̄ ds, F (v) =

∫
Ω

fv̄ dx, (2.15)

and V0 =
{
u ∈ H1(Ω): u = 0 on ΓD

}
. Denoting the associated trial space V h ⊂ H1(Ω) and test space V h0 ⊂ V0,

the discrete problem is to find uh ∈ V h such that a(uh, vh) = F (vh), ∀ vh ∈ V h0 . Let {φj}nj=1 be the nodal basis for
V0. Then we can rewrite the discrete weak formulation as a (complex) linear system

Au = f , (2.16)

where the coefficient matrix A ∈ Cn×n and right-hand side vector f ∈ Cn are given by Ai,j = a(φj , φi) and
fi = F (φi). We then seek the solution u ∈ Cn of the (in general) complex symmetric indefinite system (2.16) to give
uh(x) =

∑n
j=1 ujφj(x).

The oscillatory nature of solutions to the Helmholtz equation requires a sufficiently fine mesh in order to get a good
approximation to the problem. Moreover, when the wave number k is increasing, for the same level of accuracy the
number of grid points must increase faster than k increases, in order to avoid pollution effect (Babuska and Sauter,
1997). This growth depends on the discretization and becomes less important when the precision of the method
increases in the case of finite element methods. For example, for piecewise linear (P1) finite element approximation
on simplicial elements of diameter h, we require that h behaves as O(k−3/2) whereas for piecewise cubic (P3) finite
elements the criteria relaxes and h should decrease as O(k−7/6). To find the best compromise between accuracy and
computational efficiency, a common practice in finite-element simulation is to consider a fixed number of points G per
wavelength λ = 2πk−1 (i.e., G ≈ λ/h), or simply taking h decreasing asO(k−1). In practice, this is implemented by
using h-adaptive unstructured meshing. In this study, we wish to use constant G with G = 4 to be consistent with the
theoretical half-wavelength resolution of FWI (Virieux and Operto, 2009). Indeed, the fill-in of the matrix increases
as the polynomial degree increases. Therefore, a careful accuracy analysis of the FEFD method should be performed
to find the smallest polynomial order providing the desired accuracy for G = 4 as discussed in the Dispersion analysis
section.

2.3.2 Finite-difference frequency-domain (FDFD) discretization

The second discretization scheme relies on the 27-point finite-difference stencil on regular Cartesian grid (constant
grid interval h) in which compact 2nd-order accurate stencils minimize the numerical bandwidth and maximizes the
sparsity of A while reaching a high-order accuracy by mixing consistent mass and stiffness matrices on different (ro-
tated) coordinate systems (Aghamiry et al., 2021; Brossier et al., 2010; Chen et al., 2012; Operto et al., 2014, 2007).
These sparsity and compactness properties are useful to minimize the matrix fill-in induced by a sparse direct solver,
which is used to solve the local problems in each subdomain of the preconditioner. The stiffness and consistent mass
matrices are weighted by coefficients that are computed by least-squares minimization of the numerical dispersion and
anisotropy. Classical implementation minimizes the dispersion jointly for a finite number of G, which means that the
same coefficients are used in each row of the matrix A (Brossier et al., 2010; Chen et al., 2012; Operto et al., 2014,
2007). Alternatively, G can be first tabulated such that it covers the range of values found in the earth and the cor-
responding table of weighting coefficients are estimated once and for all by minimizing the phase-velocity numerical
dispersion for each value of G treated separately (the weights become functions of G). Then, for a simulation at a
given frequency f , each row of the matrix A (which is tied to a given grid point) is built by picking in the table the
weights corresponding to the local G = λ/h hence leading to the λ-adaptive 27-point stencil (Aghamiry et al., 2021).
We will use the latter in this study since Aghamiry et al. (2021) showed that the λ-adaptivity increases the accuracy of
the 27-point stencil quite significantly in heterogeneous media, in particular in presence of sharp contrast. Since the
grid is regular, we will set h such that h = λmin/4 according to the FWI resolution criterion.

In summary, the discretization rules used in FEFD and FDFD methods rely on two different paradigms. The discretiza-
tion of the finite-element method is performed such that G is roughly constant by adapting the size of the elements
to the local wavelengths (h-adaptivity). By doing so, the accuracy of the numerical scheme is supposed to be similar
all over the mesh. The discretization of the finite-difference method relies on a constant h and hence G varies from
one grid point to the next. However, we locally adapt the weights of the stencil such that its accuracy is as uniform as
possible as a function of G.

2.3.3 Dispersion analysis of FEFD and FDFD methods

The results of the numerical dispersion analysis of the finite-element and finite-difference methods as developed by
(Ainsworth and Wajid, 2010) and Aghamiry et al. (2021), respectively, are shown in Fig. 1. The figure shows the
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normalized numerical phase velocity against 1/G for plane waves in homogeneous media. The dispersion curve for
the finite-element method suggests that the accuracy of P2 elements is insufficient for G = 4, while a good accuracy
is expected for P3 elements over a wide range of G (Fig. 1a). The dispersion curves of the λ-adaptive FDFD stencil
suggests that its accuracy in homogeneous media is similar to that of the P3-FE stencil (Fig. 1b).
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Figure 1: Dispersion curves for (a) P2 and P3 spectral and classical finite elements, (b) the 27 FD scheme with adaptive
coefficients. The normalized phase velocity is the ratio between the numerical phase velocity and the wavespeed.

3 Numerical results

3.1 Benchmarks and experimental design

3.1.1 Benchmarks

We validate the FEFD/FDFD ORAS solver against four benchmarks (Table 1). We limit ourselves to isotropic acoustic
media with a constant density equal to 1. However, the conclusions of these tests should apply to visco acoustic media
with heterogeneous density. All of the λ-adaptive FDFD simulations are performed with a discretization rule of four
grid point per minimum wavelength, while the FEFD simulations are performed on h-adaptive tetrahedral mesh with
four grid point per local wavelength, unless stated otherwise. The unstructured tetrahedral meshes are generated with
the Mmg re-meshing software (Dapogny et al., 2014).

Homogeneous and linear velocity models
The first two benchmarks involve an infinite homogeneous medium and an infinite laterally-homogeneous medium
where the velocity linearly increases in the y direction (c(x, y, z) = c0 + α × y), referred to as gradient model. The
size of both models is 10 km × 20 km × 10 km and the frequency is 7.5 Hz. The wavespeed in the homogeneous
medium is 1500 m/s. The grid interval in the Cartesian grid is 50 m, leading to G=4 for both FEFD and FDFD
simulations (Table 1). In the gradient model, the wavespeed increases from 1500 m/s at y=0 km to 8500 m/s at
y=20 km hence covering the wavespeeds encountered in the earth’s crust and upper mantle (the velocity gradient is
0.35 s−1). The grid interval for the FDFD simulation is 50 m. Accordingly, G increases from 4 to ∼23, while an
h-adaptive mesh is used to perform FEFD simulation (Table 1).

The last two benchmarks involve the complex SEG/EAGE overthrust and GO 3D OBS geomodels.

SEG/EAGE overthrust model
The overthrust model of dimensions 20 km × 20 km × 4.65 km is representative of the exploration geophysics
scale, where G typically ranges between 4 and 12 in a regular Cartesian grid. It represents a complex thrusted
sedimentary succession on top of a structurally decoupled extensional and rift basement block (Aminzadeh et al.,
1997) (Figure 2a). A complex weathered zone also characterizes it in the near-surface with sharp lateral velocity
variations and several sand channels. The velocities range between 2179 m/s at the surface and 6000 m/s at the
basement. The frequency is 10 Hz. For the FDFD simulation, we re-mesh the original model with a grid interval of
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Table 1: Main specifications of the four benchmark models. cm, cM : Minimum and maximum wavespeeds. f :
Frequency. λmin, λmax: Minimum and maximum wavelength. Gmin,Gmax: Smallest and highestG. Nλ: Maximum
number of propagated wavelengths.

Models cm(m/s) cM (m/s) f(Hz) λm(m) λM (m) Gm GM Nλ
Homogeneous 1500 1500 7.5 375 375 4 4 40

Linear 1500 8500 7.5 375 1133 4 22.7 29
Overthrust 2179 6000 10 218 600 4.4 12 50

GO 3D OBS 1500 8639.1 3.75 400 2303.8 4 23 255

50 m and 8 grid points in the PMLs along each face of the 3D grid of dimensions 417 × 417 × 109 (Table 1). The
unstructured tetrahedral mesh used for the FEFD simulation is illustrated in Figure 3(b-c).

GO 3D OBS crustal geomodel
The 3D GO 3D OBS crustal geomodel has been designed to assess seismic imaging techniques for deep crustal
exploration (Górszczyk and Operto, 2021). It covers a continental margin at a regional scale, where the wider range
of wavespeeds found in the crust and upper mantle makes G to range between 4 and 25 in a regular Cartesian grid.
It embeds the main structural factors that characterize subduction zones and has been inspired by the FWI case study
performed in the eastern Nankai trough by Górszczyk et al. (2017). We select a target of the model of dimensions
20 km × 102 km × 28.4 km (Figure 2b). The simulations are performed for a frequency of 3.75 Hz except for the
strong scaling analysis presented at the end of the section where a frequency as high as 10 Hz is processed. For the
FDFD simulation, we discretize this target with a grid interval of 100 m with eight grid points in the PMLs, leading
to a finite-difference grid of dimensions 217 × 1037 × 300, hence 67.5 million degrees of freedom. For the FEFD
simulation, we build an unstructured mesh that complies with the bathymetry. Below the bathymetry, the size of the
elements is set according to the local wavelength such that G ≈ 4 (Figure 3).

3.1.2 Experimental setup

For the first two benchmarks, the accuracy of the FEFD and FDFD solutions are assessed against analytical solutions.
The reader is referred to Kuvshinov and Mulder (2006) for the analytical solution of the Helmholtz equation in a
velocity gradient model.
For the last two benchmarks, the FEFD and FDFD solutions are assessed against a reference solution computed with
the highly-accurate Convergent Born Series (CBS) method (Osnabrugge et al., 2016). Compared to finite-difference
or finite-element methods that rely on discretization of differential operators, the CBS method belongs to another class
of methods referred to as volume integral methods based upon the Green’s function theorem. More specifically, the
solution of the Helmholtz equation in heterogeneous media is inferred from Fourier-domain analytic expression of
the Green’s functions in homogeneous media by solving the scattered-field wave equation with material contrasts of
arbitrary scattering strength starting from the zero-order term of the Born series and iteratively recovering the higher-
order scattering terms. Therefore, we expect to achieve an accuracy of the CBS solutions at the level of machine
precision while Osnabrugge et al. (2016) conclude that the CBS method is nine orders more accurate than the pseudo-
spectral time-domain method. For all the extracted wavefields using CBS, the stopping criterion of iteration is set
according to a backward error of 10−12.
In addition to visual comparison, we assess the accuracy of the FEFD and FDFD stencils by computing the `1 norm
of the difference between the CBS and FEFD/FDFD wavefields (field Err in Table 5) according to the formula

Err =
|WR(ucbs − ufe/fd)|

|WR(ucbs)|
+
|WI(ucbs − ufe/fd)|

|WI(ucbs)|
, (3.1)

where ucbs and ufe/fd denotes the CBS and FEFD/FDFD wavefields, respectively, R and I denote the real and
imaginary parts of a complex number, respectively, and W is a diagonal matrix applying a linear gain with distance
from the source to the wavefield for amplitude balancing. We also mute the contribution of the nearest points to the
source to avoid introducing some bias generated by the different implementation of a point source in the FEFD and
FDFD schemes.
The source is a point source located on a grid point where the temporal source signature is a delta function: s(x, ω) =
δ(x−xs), where δ denotes the delta function and xs denotes the source coordinates. We implement PMLs along each
face of the grid.
We perform the simulation on the Occigen supercomputer of CINES (https://www.cines.fr). The computer
nodes contain two Haswell E5-2690V3@2.6 GHz processors with 128 Giga bytes of shared memory and 12 cores per
processor. The high-speed network is Infiniband FDR 56 Gbit/s.
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Figure 2: The two realistic benchmarks used to assess the FEFD/FDFD ORAS-GMRES solver. (a) The 3D SEG/EAGE
overthrust model (Aminzadeh et al., 1997), representative of the exploration-geophysics scale. (b) Target of the re-
gional GO 3D OBS model representing the crust of a subduction zone (Górszczyk and Operto, 2021).

3.2 Tuning of the ORAS solver

Before showing the results of the ORAS solver for the four benchmarks when the subsurface model is discretized with
the FEFD and FDFD methods, we tune key ingredients of the ORAS solver such that the best compromise between
accuracy and computational efficiency is reached. These ingredients include the stopping criterion of iterations, arith-
metic precision (single versus double precision), the solver used to factorize local matrices and the orthogonalization
scheme of the Krylov basis. We perform this tuning with the 3D GO 3D OBS benchmark and the FDFD scheme.
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Figure 3: Tetrahedral meshing of (a) the 3D SEG/EAGE overthrust and (b) GO 3D OBS models. The right panels
show a zoom.

3.2.1 Stopping criterion of GMRES iterations

The simulations are performed in single precision on 660 cores. As stopping criterion of iteration, we use the relative
backward error defined by

εgmres =
‖Au− f‖22
‖f‖22

. (3.2)

We test εgmres = 10−2, 10−3, 10−4 and 10−5 (Table 2 and Figures 4 and 5). The number of iterations required to
satisfy this criterion is 13, 32, 45 and 61, respectively. The errors of the FDFD simulations performed with εgmres =
10−4 and εgmres = 10−5 are similar and hence the former value is used in the remaining of the paper. Using
εgmres = 10−4 instead of εgmres = 10−5 reduces the number of iterations from 61 to 45 and the computational time
by 27%.

Table 2: Cost of a simulation in the GO 3D OBS model as a function of the GMRES backward error criterion. #it:
number of iterations. Ts(s): Time elapsed in GMRES to compute the solution. Err: Error between the CBS and
FDFD wavefields as defined by equation 3.1.

Stopping criterion of GMRES iteration
εgmres #it Ts(s) Err
10−2 13 3.5 0.8663
10−3 32 8.2 0.2567
10−4 45 11.5 0.2096
10−5 61 15.9 0.2093

3.2.2 Arithmetic precision

The results shown in the section FEFD versus FDFD discretization: accuracy and computational cost are performed
in single precision. We check here that a similar accuracy is reached when we perform simulation in single and
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double precisions. Compared to the previous section, the simulations are performed on 1344 cores because the double
precision simulation runs out of memory on 660 cores. Single precision allows for the solution time to be decreased by
a factor two compared to double precision simulations (fourth column of Table 3) while the error between the FDFD
and the CBS simulations is the same, hence validating the single precision option (last column of Table 3).

Table 3: Footprint of arithmetic precision on computational cost and accuracy. #it: Number of iterations. Tf (s):
Elapsed time for local LU factorizations. Ts(s): Elapsed time for GMRES. Err: Error between the CBS and FDFD
wavefields as defined by equation 3.1.

Arithmetic precision
Precision #it Tf (s) Ts(s) Err
Double 53 7.9 14.0 0.2097
Single 53 4.4 7.1 0.2096

3.2.3 Solution of the local problems and multiple right-hand sides

In this section, we assess two direct solvers and orthogonalization schemes of the Krylov basis. We test the Intel MKL
PARDISO solver (Alappat et al., 2020; Böllhofer et al., 2019, 2020) and the MUMPS solver (Amestoy et al., 2018,
2019b; MUMPS team, 2021) to factorize the local matrices tied to each subdomain. When using MUMPS, we test both
the full-rank (FR) and the block low-rank (BLR) version of the solver, referred to as MUMPSFR and MUMPSBLR,
respectively (Amestoy et al., 2016, 2019a). In the latter case, we use as compression threshold εBLR = 10−3. We also
compare the performances when a classical Gram-Schmidt (CGS) and a modified Gram-Schmidt (MGS) algorithms
are used for the orthogonalization of the Krylov basis (Saad, 2003b) and we perform the computations in single
and double precisions. Moreover, we perform the simulation with one RHS and 130 RHSs, the latter mimicking a
sparse seabed node acquisition. For multi-RHS simulation, we test a pseudo-block Krylov method, a block Krylov
method and block Krylov with recycling by processing the 130 RHSs in group of 20 (Jolivet and Tournier, 2016;
Parks et al., 2006). The results are outlined in Table 4. The smaller computational time is reached with MUMPSBLR
although the BLR approximation generates some iteration overheads. The CGS orthogonalization provides substantial
computational saving compared to the MGS counterpart in case of multi-RHS simulation. These simulations further
confirm that single precision arithmetic decreases by a factor almost two the cost of the simulation compared to
double precision counterpart. Concerning multi-RHS simulation, the best performance is obtained with the pseudo-
block Krylov method with a speedup of 7.2× 130/256.8 = 3.64 compared to the case where each RHS is processed
separately (last row of Table 4). This suggests that the most basic pseudo-block Krylov remains the most efficient one
for seismic imaging applications, which involve moderate material contrast and simple wave propagation phenomena.
We check that for groups of RHS larger than 20 no improvement is achieved during multi-RHS simulation.

Table 4: Solver: Intel MKL Pardiso versus MUMPSFR/BLR. arith: single versus double precision. ortho: CGS
versus MGS orthogonalization. #it: Number of iterations. Tf (s): Elapsed time for local LU factorizations. Ts(s):
Elapsed time for all GMRES iterations for one RHS and 130 RHSs processed with a pseudo-block Krylov method.
Ttot(s) = Tf (s) + Ts(s): Total elapsed time for the simulation.

1 RHS 130 RHS
Solver arith. ortho. Tf (s) #it Ts(s) Ttot(s) #it Ts(s) Ttot(s)

PARDISO double MGS 12.1 48 16.5 28.6 50 724.4 736.5
PARDISO double CGS 12.1 48 16.7 28.8 50 575.5 587.6

MUMPSFR double MGS 11.3 48 17.2 28.5 50 654.9 666.2
MUMPSFR double CGS 11.3 48 16.9 28.2 50 482.2 493.5
PARDISO single MGS 6.5 48 9.9 16.4 50 403.6 410.1
PARDISO single MGS 6.5 48 9.6 16.1 50 334.8 341.3

MUMPSFR single MGS 6.2 48 8.9 15.1 50 345.8 352.0
MUMPSFR single CGS 6.2 48 8.9 15.1 50 275.3 281.5

MUMPSBLR single CGS 4.9 53 7.2 12.1 55 256.8 261.7

3.3 FEFD versus FDFD discretization: accuracy and computational cost

According to the results of the previous section, we assess the FDFD and FDFD schemes with εgmres = 10−4. Com-
putations are performed in single precision. The local solver relies on MUMPSBLR with εBLR = 10−3 while a CGS
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Figure 4: Setting the stopping criterion of GMRES iterations. Frequency is 3.75 Hz. In the caption of this figure,
the panels are labeled with matrix notations: ai,j where i and j denote the row and column indexes, respectively.
a1,1: Section of the CBS wavefield (real part). a2:5,1: From top to bottom, FDFD wavefields (real part) for εgmres =
10−2, 10−3, 10−4, 10−5. a2:5,2: Differences between CBS and FDFD wavefields.

orthogonalization is used to build the Krylov basis. For FDFD simulation, we use the one-level ORAS preconditioner,
while the two-level counterpart is used for the FEFD simulations. PML conditions are used between the subdomains
in the FDFD simulation with an overlap of 3, while a Robin condition is used for the FEFD simulation. The results of
the numerical tests for the four benchmarks are outlined in Table 5.

3.3.1 Homogeneous medium

The source is positioned at (5 km, 2 km, 5 km). We perform the FEFD and FDFD simulations with 2400 and 396
cores, respectively. The scalar time (the parallel run time× the number of cores, where the parallel run time is the sum
of the elapsed time required to perform LU factorization in the subdomains and the GMRES iterations) is 91.4 hours
and 1.2 hour for the FEFD and FDFD simulations, respectively (Table 5). The analytical and the numerical FEFD
and FDFD wavefields in the (x,y) plane across the source and the difference between the analytical and the numerical
solutions are shown in Figure 6 as well as the direct comparison between the analytical and numerical wavefields
along the y-profile. The results show a slightly better accuracy of the FDFD solution relative to the FEFD counterpart
(Table 5). However, the two solutions are quite close, hence supporting the conclusions of the dispersion analysis
(Fig 1).
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Figure 5: Stopping criterion of GMRES iterations. From top to bottom, direct comparison along a y-profile at
16 km depth (x=10.5 km) between CBS wavefield (blue) and FDFD wavefields (red) computed with εgmres =
10−2, 10−3, 10−4, 10−5 (Figure 4). The differences are plotted in black. A linear gain with offset is applied for
amplitude balancing.

3.3.2 Velocity gradient model

Our motivation behind this test, beyond accuracy issue, is to gain a first insight whether the h-adaptivity implemented
in the FEFD method can balance the highest number of dofs per element relative to the FDFD method in term of
computational cost when a wide range of wavelengths are involved in the simulation. The results are shown in Figure 7
with the same showing as for the homogeneous case. As for the homogeneous case, the FDFD method remains
marginally more accurate and remains one order of magnitude less expensive than the FEFD counterpart (Check field
Thc in Table 5). Figure 8 shows the results of the FEFD simulation in a regular mesh where the number of grid point
per minimum wavelength is set to four. The accuracy is slightly improved at the expense of the computational cost,
which increases by a factor 4.4 (Table 5).

3.3.3 3D SEG/EAGE overthrust velocity model

We now benchmark the FEFD/FDFD ORAS solver against the heterogeneous overthrust model involving complex
compressive tectonics (Table 1). The source is positioned at (2500 m, 2500 m, 500 m). We perform the FEFD and
FDFD simulations with 2400 and 396 cores, respectively. The CBS, FEFD and FDFD wavefields are shown in Fig-
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Table 5: Results of the four benchmarks obtained with the FEFD and FDFD methods. #d: Number of dofs (including
PMLs). #cores: Number of cores. #it: Number of GMRES iterations (for FEFD, average number of inner iterations
to solve the coarse problem in parentheses). Tf (s): Elapsed time for local LU factorizations. Ts(s): Elapsed time for
all GMRES iterations. Ttot(s) = Tf (s) + Ts(s): Total elapsed time for the simulation. Thc(s) = #c × Ttot: Scalar
time. ERR: Solution error as defined by equation 3.1. The specifications of the four benchmarks in term of size and
frequency are outlined in Table 5.

FEFD method
Benchmark #d(M) #cores #it Tf (s) Ts(s) Ttot(s) Thc(h) Err

Homogeneous 526.2 2400 31(13) 64.1 73.0 137.1 91.4 0.0891
Gradient 147.1 2400 5(14) 12.4 6.1 18.5 12.3 0.0485

Gradient(c) 526.2 2400 8(16) 59.8 22.3 82.1 54.7 0.0119
Overthrust 157.1 2400 6(17) 13.5 6.7 20.2 13.5 0.5215

Overthrust(c) 516.5 2400 6(20) 57.6 19.5 77.1 51.4 0.5156
GO 3D OBS 597.7 2400 10(14) 62.3 26.1 88.4 58.9 0.4212

FDFD method
Benchmark #d(M) #c #it Tf (s) Ts(s) Ttot(s) Thc(h) Err

Homogeneous 19.6 396 41 5.4 5.7 11.1 1.2 0.0317
Gradient 23.5 396 42 5.7 6.4 12.1 1.3 0.0114

Overthrust 19.1 363 33 5.0 4.5 9.5 0.96 0.1188
GO 3D OBS 67.5 660 45 10.8 11.5 22.3 4.1 0.2096

ure 9. Direct comparison between these wavefields along selected profiles are shown in Fig. 10. In Figure 9, we show
two depth slices of the wavefields at 500 m depth across the source and 3500 m depth just above the basement and two
vertical sections at y=2500 m across the source and y=15000 m. In Figure 10, we show a direct comparison between
the CBS and the FEFD/FDFD wavefields along four horizontal profiles at (x,z)=(2000 m, 500 m), (x,z)=(15000 m,
3500 m), (y,z)=(2500 m, 500 m), (y,z)=(15000 m, 3500 m). For this benchmark, the FDFD stencil clearly outperforms
the FEFD counterpart in terms of accuracy. The scalar time of the FDFD simulation is also 14 times smaller than that
of the h-adaptive FEFD simulation (Table 5). A FEFD simulation on a regular mesh using four points per minimum
wavelength confirms that the adaptive meshing doesn’t impact the accuracy of the simulation (Figures 11 and 12 and
Table 5). The computational saving provided by the adaptive mesh is 3.8 for this benchmark (Table 5).

3.3.4 Deep crustal GO 3D OBS model

We now move to the GO 3D OBS model. The source is positioned on the sea bottom at (10500 m, 12300 m, 900 m).
It is reminded that the simulated frequency is 3.75 Hz (Table 1). We perform the FEFD and FDFD simulations using
2400 and 660 cores, respectively. In Figure 14, a direct comparison between the CBS and FEFD/FDFD wavefields is
performed along with three horizontal profiles in the y direction running across the source position and cross-cutting
the accretionary wedge at 6 km depth, the subduction megathrust at 10 km depth and the Moho at 16 km depth. For this
benchmark too, the FDFD solution outperforms the FEFD counterpart in terms of accuracy. However, the accuracy
ratio between FEFD and FDFD (Errfe/Errfd) is smaller in the GO 3D OBS model compared to the overthrust model
(2 against 4.4). This probably result from the fact that the structures have a larger scale relatively to the wavelength in
the GO 3D OBS model relative to the overthrust counterpart. The computational cost of the FDFD scheme remains
one order of magnitude higher than that of the FDFD counterpart.

3.4 Weak and strong scalability analysis

We conclude the numerical section with a weak and strong scaling analysis of the ORAS solver. We perform these ana-
lyzes with the GO 3D OBS model and the FDFD method. The finite-difference grid is discretized with four grid points
per minimum wavelength. According to the conclusions of the previous section, we use single precision arithmetic,
we perform local factorizations with MUMPSBLR using εBLR = 10−3 and CGS is used for the orthogonalization of
the Krylov basis.

3.4.1 Weak scaling

For the weak scaling analysis, we use frequencies ranging between 2.5 Hz and 10 Hz (Table 6). The number of dofs
(#dof) in the Cartesian grid ranges between 21.4 and 1,160.6 million. Each simulation is performed such that the
ratio #dof/#cores is roughly constant where #cores denotes the number of cores. We define the weak-scaling parallel

15



Frequency-domain seismic wave solvers, Tournier et al. A PREPRINT

Offset (km)

0

0
1
2
3
4
5
6
7
8
9

10

X 
(k

m
)

0 2 4 6 8 10 12 14 16 18
Y (km)

0
1
2
3
4
5
6
7
8
9

10

X(
km

)

0
1
2
3
4
5
6
7
8
9

10

X(
km

)

-2 0 2 4 6 8 10 12 14 16
Offset (km)

0

0 2 4 6 8 10 12 14 16 18 20
Y (km)

-2 0 2 4 6 8 10 12 14 16 18

Figure 6: FE and FD monochromatic wavefields in infinite homogeneous medium. a1,1:2: Analytical solution (real
part). a2,1: FEFD wavefield (real part). a2,2: FDFD solution (real part). a3,1 : Difference between Analytical solution
and FEFD wavefield. a3,2: Same as a3,1 for the FDFD wavefield. a4,1: Direct comparison between analytical (blue)
and FEFD solution (red) along a Y profile cross-cutting the source position. Difference is plot in black. a4,2: Same as
a4,1 for the FDFD wavefield.

efficiency as

Ew =

[
T

(ref)
tot ×#cores(ref)/#dof (ref)

]
[Ttot ×#cores/#dof ]

, (3.3)

where the subscript ref refers to the smallest tackled problem.
The results are highlighted in Table 6. The number of iterations scales linearly with frequency, which is consistent
with previous studies based upon multigrid preconditioner with shifted Laplacian (e.g., Plessix, 2017) (Figure 15).

3.4.2 Strong scaling

We perform a strong scaling analysis of the two-level ORAS preconditioner in the finite element case for the 3.75 Hz
frequency. The number of cores goes from 2400 to 7200 (Table 7).
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Figure 7: h-adaptive FE and λ-adaptive FD monochromatic wavefields in linear velocity model. a1,1: h-adaptive
tetrahedral mesh for FDFD simulation. Each subdomain is plotted with a different color. a1,2: Analytical solution
(real part). a2,1: FEFD wavefield (real part). a2,2: FDFD wavefield (real part). a3,1: Difference between analytical
and FEFD solution. a3,2: Same as a3,1 for the FDFD solution. a4,1: Direct comparison between analytical (blue) and
FEFD (red) solution along a Y profile cross-cutting the source position. Difference is plot in black. a4,2: Same as a4,1

for FDFD solution.

The parallel efficiency is defined by

Es =

[
T

(ref)
tot ×#cores(ref)

]
[Ttot ×#cores]

, (3.4)

The results outlined in Table 7 highlight the high scalability of the ORAS solver. Figure 16 also illustrates the scala-
bility of the GMRES solution time for the FDFD and FEFD methods for this test case (results for the FDFD method
are extracted from Table 6 for the 3.75 Hz frequency). We can see that the number of GMRES iterations for the FEFD
method is more stable thanks to the coarse grid component of the preconditioner.
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Figure 8: Same as Figure 7 when FEFD is performed on a regular mesh with a discretization rule of four grid point
per minimum wavelength.

4 Discussion

We propose a forward engine to perform 3D frequency-domain FWI of datasets collected by long-offset seabed ac-
quisitions implemented with sparse layout of ocean bottom nodes. In particular, we design carefully the experimental
setup allowing us to achieve the best compromise between computational efficiency and simulation accuracy, the latter
being quantitatively controlled by the solutions of the CBS method (Osnabrugge et al., 2016). We also compare two
discretization schemes based on the recently-proposed 27-point wavelength-adaptive finite-difference (FDFD) method
on regular Cartesian grid (Aghamiry et al., 2021) and an h-adaptive finite-element method (FEFD) on unstructured
tetrahedral mesh.

4.1 Which solver for FWI of sparse long-offset data?

The pros and cons of the ORAS solver for FWI applications can be discussed relative to sparse direct solvers and
explicit time marching methods. Theoretical complexities of each method for a dense 3D fixed-spread acquisition
are basically identical and hence are useless to rate them in a relative sense (Kostin et al., 2019; Nihei and Li, 2007;
Plessix, 2007, 2017; Sourbier et al., 2011; Virieux et al., 2009). Instead, periodic assessment of the methods carried
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Figure 9: 3D EAGE/SEG overthrust model. Comparison between the wavefields computed with the CBS, FEFD and
FDFD methods. The rows shown from top to bottom two depth slices at 500 m depth (across the source) and 2 km
depth, and two vertical sections at x=2.5 km (across the source) and 15 km. From left to right, the columns show the
CBS wavefield, the FEFD wavefield, the differences between the two, the FDFD wavefield and its differences with the
CBS wavefield.

Table 6: Weak scaling. The GO 3D OBS model and the FDFD method are used to perform this analysis. Same
nomenclature as that of Table 4. f : Frequency in Hz. ovl: Size of the optimal overlap in terms of computational time.

f(Hz) #dof(106) #cores #it ovl Tf (s) Ts(s) Ttot(s) Ew
2.5 21.4 60 26 3 52.5 24.8 77.3 1
2.5 21.4 168 30 3 13.7 8.9 22.6 1.222

3.75 67.5 360 40 3 21.9 18.6 40.5 1.003
3.75 67.5 660 45 3 10.8 11.5 22.3 0.994
3.75 67.5 1344 53 3 4.4 7.1 11.5 0.947
3.75 67.5 2380 59 3 2.5 4.8 7.3 0.842

5 153.5 875 61 3 20.9 26.0 46.9 0.811
5 153.5 1344 63 3 12.4 18.6 31.0 0.798

7.5 500.1 2450 98 4 26.7 60.8 87.5 0.506
7.5 500.1 4752 108 4 12.2 39.7 51.9 0.439
10 1160.6 9856 142 5 15.1 70.8 85.9 0.297

Table 7: Strong scaling. The GO 3D OBS model and the FEFD method are used to perform this analysis. Same
nomenclature as that of Table 6. #it: Number of GMRES iterations, with average number of inner iterations to solve
the coarse problem in parentheses.

f(Hz) #dof(106) #cores #it ovl Tf (s) Ts(s) Ttot(s) Es
3.75 597.7 2400 10(14) 2 62.3 26.1 88.4 1
3.75 597.7 3600 13(15) 2 38.4 22.1 60.5 0.974
3.75 597.7 4800 11(17) 2 28.4 18.2 46.6 0.948
3.75 597.7 6000 12(17) 2 19.4 16.7 36.1 0.980
3.75 597.7 7200 11(17) 2 18.1 13.6 31.7 0.930
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Figure 10: 3D EAGE/SEG overthrust model. Direct comparison between the CBS (blue) and FEFD/FDFD wavefields
(red). The differences are plotted in black. (a1:2,1): Profile at (x,z)=(2000 m, 500 m). (a1:2,2): Profile at (y,z)=(2500 m,
500 m). (a3:4,1): Profiles at (x,z)=(15000 m, 3500 m). (a3:4,2): Profile at (y,z)=(15000 m, 3500 m). (a1,1:2, a3,1:2):
FEFD solution. (a2,1:2, a4,1:2): FDFD solution.
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Figure 11: 3D EAGE/SEG overthrust model. Same as Figure 9 but the FEFD simulation is performed on regular mesh
with a discretization rule of four grid point per minimum wavelength.

out with realistic numerical experiments that incorporate the latest advances in the field of linear algebra may be more
instructive. Such a comparative analysis is presented in Plessix (2017) where a Krylov-subspace iterative solver based
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Figure 12: 3D EAGE/SEG overthrust model. Same as Figure 10 but the FEFD simulation is performed on regular
mesh with a discretization rule of four grid point per minimum wavelength.
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Figure 13: 3D GO 3D OBS model. Comparison between the wavefields computed with the CBS, FEFD and FDFD
methods. The rows show from top to bottom three depth slices at 6 km, 10 km and 16 km depth, and one vertical
section at x=10 km. From left to right, the columns show the real part of the CBS wavefield, the FEFD wavefield, the
differences between the two, the FDFD wavefield and its differences with the CBS wavefield.

upon BI-CGSTAB (Van der Vorst, 1992) and multigrid preconditioner with complex shifted-Laplacian (Riyanti et al.,
2007) is assessed against an explicit time marching method. To gain an up-to-date insight on the relative performances
of the three possible approaches (namely, the two frequency-domain approaches based upon either a preconditioned
iterative solver or a pure direct solver and the time marching method), we compare the results obtained with the
ORAS solver for the (acoustic) GO 3D OBS model with 130 RHSs with those obtained with MUMPSBLR and an
explicit time-stepping finite-difference time-domain solver based on a classical O(∆t2,∆t8) staggered-grid stencil
using a grid interval of 100 m. In all cases, we use the Occigen supercomputer.

For the FDFD simulation with MUMPSBLR, we use εBLR = 10−5, which is required to reach the desired accuracy
(Amestoy et al., 2021). Note that a relaxed value of εBLR = 10−3 was used to solve the local problems with ORAS
since a high accuracy is not required to build the preconditioner. We perform the simulation with MUMPSBLR on
80 nodes using one MPI process per node and 24 threads per process to minimize memory overhead while exploiting
multithreading for computational efficiency. The elapsed time to perform LU factorization and compute 130 solutions
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is 1000 s and 28.3 s, respectively, leading to a total elapsed time of 1028.3s and a scalar time of 548 scalar hours.
The FDTD simulation relies on two-level MPI parallelism with an embarrassing parallelism implemented by distribut-
ing the sources over the processes and a domain decomposition of the computational domain. We use a total of 12,480
computer cores to implement this two-level parallelism. Two sequential paths over the RHSs are performed to pro-
cess 65 RHSs in parallel while the domain is decomposed into 2 × 24 × 4 = 192 subdomains. The parallel runtime
to perform one simulation is 132s. Hence, the parallel run time to perform 130 simulations is 264 s and the scalar
time is 915 hours. These numbers can be compared with those obtained with ORASFDFD with a scalar time of 98
core hours. This number is inferred from the last line of Table 4 by multiplying the parallel run time for 130 RHSs
(Ttot = 261.7 s) by the number of cores (1344).

Before comparing these numbers, it is worth reminding that, during a FWI iteration, a time-domain method generally
requires to recompute the incident wavefields backward in time from the boundaries during the adjoint simulation
unlike frequency-domain methods where the incident and adjoint wavefields associated with a block of RHSs can be
kept in memory. Alternatively, check-pointing strategies can be used to perform this re-computation, in particular in
attenuating media where time-reverse modeling of the incident wavefields are unstable (Anderson et al., 2012; Symes,
2007; Yang et al., 2016). Moreover, attenuation significantly increases the cost of FDTD simulation (by a factor of
around 3 according to Figure 13 of Plessix (2017)), while physical attenuation will improve the convergence rate of the
ORAS solver. As an illustrative example, when a 3.75-Hz simulation is performed in the GO 3D OBS model using
the QP model shown in the Figure 6d of Górszczyk and Operto (2021), the iteration count drops from 45 to 39 and
the solution step for 1 RHS from 11.5 s to 9.8 s, hence leading to a computational saving of around 15%. However, it
is worth reminding that small patches of frequencies (typically, two to four) are generally inverted during frequency-
domain FWI in particular when attenuation reconstruction is targeted (e.g. Operto and Miniussi, 2018). Therefore, the
scalar time of frequency-domain modelling should be multiplied by the number of frequencies involved in the patch
(these frequencies are ideally processed in parallel with an embarassing parallelism) for a fair comparison with time-
domain methods, the forward engine of which provides the full bandwidth of the wavefield in one go. Concerning the
two frequency-domain approaches, we note that the speedup achieved during the block processing of multiple RHSs
is 18 and 3.6 for MUMPS and ORAS, respectively. Indeed, direct solvers are more suitable for dense acquisitions to
really exploit their ability to process a large number of sparse RHSs.

Lumping all these specifications together, we conclude that the ORAS-FDFD solver should be highly competitive rel-
ative to a time-domain solver in particular when attenuation effects should be taken into account. It allows for compact
volume of data to be managed, attenuation speeds up the convergence rate of the solver and the good strong scalability
provides the necessary flexibility to optimally tune the two-level parallelism based on frequency distribution and do-
main decomposition according to the acquisition specifications, target size and available computational resources. The
solver MUMSBLR further contributes to mitigate the memory cost of the method and the computational efficiency of
the local subproblems. Overall, the amount of resources used to perform the simulations (#cores in Table 8) shows
that frequency-domain approaches are more suitable when a more limited amount of resources are available, which is
consistent with the conclusions of Kostin et al. (2019).

Table 8: Cost of the FDTD, MUMPS-FDFD and ORAS-FDFD simulations in the GO 3D OBS model for a frequency
of 3.75 Hz. #cores: Number of computer cores. T

(130)
s (s): Elapsed time to perform 130 simulations in paral-

lel. Thc(hr): scalar hours (elapsed time times the number of cores). Tf (s): Elapsed time to perform parallel LU
factorization with MUMPS-FDFD. T 1

s (s): Elapsed time to process one RHS with MUMPS-FDFD.
FDTD MUMPS-FDFD ORAS-FDFD

#c T
(130)
s (s) Thc(hr) #cores Tf (s) T 1

s (s) T 130
s (s) Thc(hr) #cores T 130

s (s) Thc(hr)
12480 264 915 1920 1000 3.9 28.3 548 1344 256.8 96

4.2 Finite elements versus finite differences

Our results suggest that the FDFD method outperforms the FEFD counterpart in terms of computational efficiency
and accuracy for the four acoustic benchmarks tackled in the previous section. This results because the recently pro-
posed wavelength-adaptive 27-point FDFD stencil (Aghamiry et al., 2021) leads to a quite significant improvement of
accuracy compared to the non-adaptive version (Operto et al., 2007) without introducing computational overhead. In
the frame of FWI, a clear advantage of the FEFD method is however the flexibility to comply the mesh with known
boundary such as bathymetry. Generally, FWI is performed with a frequency continuation strategy to mitigate cycle
skipping. The grid interval can be matched to the frequency to regularize the inversion and mitigates the computational
cost (Operto et al., 2015). However, when FDFD method on regular grid is used, this grid adaptation may lead to inac-
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curate representation of the bathymetry when low frequencies are processed on coarse grids. This can inject shallow
inaccuracies in the velocity model near the seabed, which are propagated deeper in the velocity model and which are
difficult to correct at higher frequencies, hence making the inversion stall at high frequencies. The FEFD method will
clearly give the necessary flexibility to comply the mesh with the bathymetry whatever the size of the elements, hence
facilitating the implementation of multiscale approaches. Moreover, elastic physics will further increase the value
of the h-adaptive meshing used by FEFD methods to account for the low shear wavespeeds in the near surface. A
re-assessment of the two discretization schemes is clearly necessary for elastic physics.

5 Conclusion

We have proposed an efficient, accurate and versatile forward engine for 3D frequency-domain FWI from ultra-long
offset stationary-recording survey. The solver relies on an iterative solver and a domain-decomposition based pre-
conditioner where the local subproblems are tackled with sparse direct solver. Two different discretization schemes
based on wavelength-adaptive finite differences on regular Cartesian grid and h-adaptive finite elements on unstruc-
tured tetrahedral meshes can be interfaced with the solver. We perform a careful parametric analysis that allows us
to define the experimental setup providing the best compromise between computational efficiency and accuracy. The
strong scalability of the solver provides the necessary flexibility to implement two levels of parallelism by frequency
distribution and domain decomposition according to the specifications of the acquisition. The perspective of this work
is to use this solver as a forward engine for FWI to perform 3D visco-acoustic case studies from sparse long-offset
node acquisitions. Extension to visco-elastic physics is another objective.
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Bonazzoli, M., V. Dolean, I. G. Graham, E. A. Spence, and P.-H. Tournier, 2019, A 2-level domain decomposition
preconditioner for the time-harmonic Maxwell’s equations: Math. Comp., 88, 2559–2604.

Bootland, N., and V. Dolean, 2019, On the Dirichlet-to-Neumann coarse space for solving the Helmholtz problem
using domain decomposition: Presented at the Numerical Mathematics and Advanced Applications ENUMATH
2019.

Bootland, N., V. Dolean, P. Jolivet, F. Nataf, S. Operto, and P.-H. Tournier, 2021a, Several ways to achieve robustness
when solving wave propagation problems.

Bootland, N., V. Dolean, P. Jolivet, and P.-H. Tournier, 2021b, A comparison of coarse spaces for Helmholtz problems
in the high frequency regime: Computers and Mathematics with Applications, 98, 239–253.

Brossier, R., V. Etienne, S. Operto, and J. Virieux, 2010, Frequency-domain numerical modelling of visco-acoustic
waves based on finite-difference and finite-element discontinuous galerkin methods, in Acoustic Waves: SCIYO,
125–158.

Carcione, J. M., and E. M. Robinson, 2002, On the acoustic-electromagnetic analogy for the reflection-refraction
problem: Studia Geophysica et Geodaetica, 46, 321–346.

Chen, Z., D. Cheng, and T. Wu, 2012, A dispersion minimizing finite difference scheme and preconditioned solver for
the 3D Helmholtz equation: Journal of Computational Physics, 231, 8152–8175.

Chew, W. C., and W. H. Weedon, 1994, A 3-D perfectly matched medium from modified Maxwell’s equations with
stretched coordinates: Microwave and Optical Technology Letters, 7, 599–604.

Conen, L., V. Dolean, R. Krause, and F. Nataf, 2014, A coarse space for heterogeneous Helmholtz problems based on
the Dirichlet-to-Neumann operator: J. Comput. Appl. Math., 271, 83–99.

Dapogny, C., C. Dobrzynski, and P. Frey, 2014, Three-dimensional adaptive domain remeshing, implicit domain
meshing, and applications to free and moving boundary problems: Journal of computational physics, 262, 358–378.

Dolean, V., P. Jolivet, and F. Nataf, 2015, An introduction to domain decomposition methods: Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA. (Algorithms, theory, and parallel implementation).

Dolean, V., P. Jolivet, P.-H. Tournier, and S. Operto, 2020a, Iterative frequency-domain seismic wave solvers based on
multi-level domain-decomposition preconditioners: Presented at the 82th Annual EAGE Meeting (Amsterdam).

——–, 2020b, Large-scale frequency-domain seismic wave modeling on h-adaptive tetrahedral meshes with iterative
solver and multi-level domain-decomposition preconditioners: Presented at the SEG2020 Annual Meeting. (Hous-
ton).

Duff, I. S., A. M. Erisman, and J. K. Reid, 2017, Direct methods for sparse matrices, second edition: Oxford University
Press, Inc.

Erlangga, Y., 2008, Advances in iterative methods and preconditioners for the Helmholtz equation: Archives of Com-
putational Methods in Engineering, 15, 37–66.

Ernst, O. G., and M. J. Gander, 2012, Why it is difficult to solve Helmholtz problems with classical iterative methods,
in Numerical analysis of multiscale problems: Springer, 325–363.

Gander, M., and F. Nataf, 2000, AILU for Helmholtz problems: a new preconditioner based on an analytic factoriza-
tion: Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, 331, 261–266.

Gander, M. J., and H. Zhang, 2019, A class of iterative solvers for the Helmholtz equation: Factorizations, sweeping
preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods: SIAM
Review, 61, 3–76.

Giraud, L., Y.-F. Jing, and Y. Xiang, 2021, A block minimum residual norm subspace solver for sequences of multiple
left and right-hand side linear systems: Technical report, RR-9393, Inria Bordeaux Sud-Ouest, hal-03146213v2.
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Plessix, R. E., 2007, A Helmholtz iterative solver for 3D seismic-imaging problems: Geophysics, 72, SM185–SM194.
——–, 2017, Some computational aspects of the time and frequency domain formulations of seismic waveform inver-

sion, in Modern solvers for Helmholtz problems, Geosystems Mathematics: Springer, 159–187.
Pratt, R. G., Z. M. Song, P. R. Williamson, and M. Warner, 1996, Two-dimensional velocity models from wide-angle

seismic data by wavefield inversion: Geophysical Journal International, 124, 323–340.
Riyanti, C. D., A. Kononov, Y. A. Erlangga, C. Vuik, C. Oosterlee, R. E. Plessix, and W. A. Mulder, 2007, A parallel

multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation: Journal of Compu-
tational physics, 224, 431–448.

Saad, Y., 1993, A flexible inner-outer preconditioned gmres algorithm: SIAM Journal on Scientific Computing, 14,
461–469.

——–, 2003a, Iterative methods for sparse linear systems, 2nd ed.: Society for Industrial and Applied Mathematics.
——–, 2003b, Iterative Methods for Sparse Linear Systems: SIAM.
Sirgue, L., and R. G. Pratt, 2004, Efficient waveform inversion and imaging : a strategy for selecting temporal fre-

quencies: Geophysics, 69, 231–248.
Sourbier, F., A. Haiddar, L. Giraud, H. Ben-Hadj-Ali, S. Operto, and J. Virieux, 2011, Three-dimensional parallel

frequency-domain visco-acoustic wave modelling based on a hybrid direct/iterative solver: Geophysical Prospect-
ing, 59, 834–856.

Symes, W. W., 2007, Reverse time migration with optimal checkpointing: Geophysics, 72, SM213–SM221.

25

http://mumps-solver.org


Frequency-domain seismic wave solvers, Tournier et al. A PREPRINT

Tournier, P.-H., I. Aliferis, M. Bonazzoli, M. de Buhan, M. Darbas, V. Dolean, F. Hecht, P. Jolivet, I. E. Kanfoud,
C. Migliaccio, F. Nataf, C. Pichot, and S. Semenov, 2019, Microwave tomographic imaging of cerebrovascular
accidents by using high-performance computing: Parallel Computing, 85, 88 – 97.

Van der Vorst, H. A., 1992, BI-CGSTAB: a fast and smoothly converging variant of bi-CG for the solution of nonsym-
metric linear systems: SIAM Journal on Scientific and Statistical Computing, 13, 631–644.

Virieux, J., and S. Operto, 2009, An overview of full waveform inversion in exploration geophysics: Geophysics, 74,
WCC1–WCC26.

Virieux, J., S. Operto, H. Ben Hadj Ali, R. Brossier, V. Etienne, F. Sourbier, L. Giraud, and A. Haidar, 2009, Seismic
wave modeling for seismic imaging: The Leading Edge, 28, 538–544.

Yang, P., R. Brossier, L. Métivier, and J. Virieux, 2016, Wavefield reconstruction in attenuating media: A
checkpointing-assisted reverse-forward simulation method: Geophysics, 81, R349–R362.

Zienkiewicz, O. C., R. L. Taylor, and J. Z. Zhu, 2005, The Finite Element Method: Its basis and fundamentals:
Elsevier. (6th edition).

26



Frequency-domain seismic wave solvers, Tournier et al. A PREPRINT

CBS vs FE

CBS vs FE

CBS vs FD

CBS vs FD

-10 0 10 20 30 40 50 60 70 80
Offset(km)

CBS vs FE

CBS vs FD

a)

b)

c)

Figure 14: 3D GO 3D OBS model. Direct comparison between the wavefields computed with the CBS (blue),
FEFD/FDFD (red) methods. The differences are plotted in black. (a1:2): Profile at (x,z)=(10k m, 6 km). (a3:4):
Profile at (x,z)=(10 km, 10 km). . (a5:6): Profile at (x,z)=(10 km, 16 km). a1, a3, a5: FDFD solution. a2, a4, a6:
FEFD solution.
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Figure 15: GMRES iteration count versus frequency extracted from Table 6. For each frequency, the number of
iterations performed for the smallest number of cores is plot.
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Figure 16: Strong scaling test for the FDFD (left) and FEFD (right) methods on the GO 3D OBS model. Scalability
of the GMRES solution time Ts(s). Number of GMRES iterations is also reported, with average number of inner
iterations to solve the coarse problem in parentheses for the FEFD method.
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