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ABSTRACT
We investigate acoustic propagation in amorphous solids by constructing a projection formalism based on separating atomic vibrations into
two, “phonon” (P) and “non-phonon” (NP), subspaces corresponding to large and small wavelengths. For a pairwise interaction model,
we show the existence of a “natural” separation lengthscale, determined by structural disorder, for which the isolated P subspace presents
the acoustic properties of a nearly homogenous (Debye-like) elastic continuum, while the NP one encapsulates all small scale non-affinity
effects. The NP eigenstates then play the role of dynamical scatterers for the phonons. However, at variance with a conjecture of defect the-
ories, their spectra present a finite low frequency gap, which turns out to lie around the Boson peak frequency, and only a small fraction
of them are highly localized. We then show that small scale disorder effects can be rigorously reduced to the existence, in the Navier-
like wave equation of the continuum, of a generalized elasticity tensor, which is not only retarded, since scatterers are dynamical, but also
non-local. The full neglect of both retardation and non-locality suffices to account for most of the corrections to Born macroscopic mod-
uli. However, these two features are responsible for sound speed dispersion and have quite a significant effect on the magnitude of sound
attenuation. Although it remains open how they impact the asymptotic, large wavelength scaling of sound damping, our findings rule out
the possibility of representing an amorphous solid by an inhomogeneous elastic continuum with the standard (i.e., local and static) elastic
moduli.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0019964., s

I. INTRODUCTION

Glasses and amorphous solids present generic low-temperature
thermal and acoustic properties, which are recognized to be signa-
tures of their defining feature: topological structural disorder. How-
ever, up to now, no systematic theoretical framework is available
to understand how the disordered structure, the details of which
depend, e.g., on the degree of relaxation of the glass, determines
physical properties such as sound propagation. In the case of systems
with weak structural disorder, such as due to dilute point defects in
periodic lattices, one can straightforwardly identify a zeroth-order
homogeneous state, and hence represent disorder by some scattering

potential. In glasses, no systematic method is available to perform
such a separation.

Two main types of approaches—defect models1 and fluctuating
elasticity2—have been developed3 to describe the linear vibrational
response that controls heat and sound propagation in these systems
(except at very low temperatures where quantum effects become
relevant4–6).

Defect models1 view a glass as a homogeneous elastic contin-
uum embedding low frequency local oscillators that couple to the
continuum via its local strain. This picture is undoubtedly insight-
ful, since glasses are documented to exhibit small soft regions, but
remains heuristic in the absence of any clear connection with the

J. Chem. Phys. 153, 144502 (2020); doi: 10.1063/5.0019964 153, 144502-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0019964
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0019964
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0019964&domain=pdf&date_stamp=2020-October-13
https://doi.org/10.1063/5.0019964
https://orcid.org/0000-0001-5186-590X
https://orcid.org/0000-0002-6865-9245
mailto:anael.lemaitre@enpc.fr
https://doi.org/10.1063/5.0019964


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

microscopic problem, which raises various questions. For instance,
the elastic coupling between oscillators with distributed bare fre-
quencies produces unstable modes, a problem cured by assigning a
central role to anharmonicity. It also remains unspecified how these
coupled oscillators interact with the embedding continuum to pro-
duce, in fine, the modes of the full system and, in particular, the
acoustic ones.

Fluctuating elasticity (FE)2 assumes that the effect of structural
disorder on the vibrational properties can be captured by model-
ing glasses as elastic continua with space-dependent local elastic
moduli. Its formulation by Schirmacher et al., hampered by the
absence of connection between these moduli and the microscopic
problem, considers that the elasticity tensor reduces to fluctuating
Lamé constants, the correlations of which are assumed to decay
exponentially in space. It predicts the damping coefficients ΓL,T to
obey the Rayleigh scaling ∼kd+1 (with d being the space dimension
and k being the wavevector), while numerical7–10 and experimen-
tal11–17 data support the existence of a regime where attenuation
scales as −kd+1 ln k,10 possibly limited toward low frequencies18,19 by
a crossover to a final Rayleigh regime. Recently, we have been able
to derive FE from a small wavevector approximation of the micro-
scopic problem, which yields a complete specification of all the fluc-
tuating elasticity coefficients and captures their long-range corre-
lated nature. Contrary to our hope that it would permit us to capture
the anomalous scaling of damping, we found that this fully tensorial
FE theory predicts, again, the Rayleigh law over the whole wavevec-
tor domain where the non-Rayleigh behavior is observed and that
it grossly underestimates attenuation. Meanwhile, it yields sound
speeds that are only marginally smaller than their (over-)estimates
from the Born approximation, which completely neglects non-affine
effects. Since FE correctly describes the long wavelength part of the
scattering matrix only, these failures demonstrate the crucial role of
small scale non-affinity.

This points out to the need for an approach that, instead of
tackling separately the local and long-range aspects of disorder,
as done by defect theories and FE, respectively, would permit us
to combine their effects. Such an attempt was proposed by Schir-
macher and Maurer3 who built a model in which the FE elastic
continuum is coupled with the local oscillators. They adopt the
assumptions of phenomenological defect theories both concerning
the properties of local oscillators and their coupling, via local strain,
with the continuum. This extended theory, again, predicts the stan-
dard, rather than the observed, anomalous, Rayleigh scaling for
attenuation.

Clearly, to model acoustic propagation, it is necessary to con-
struct a representation of a glass as an elastic continuum cou-
pled with small scale scatterers. The failure of phenomenological
approaches to predict the observed acoustic properties shows that
we do not yet know how to do so while specifying consistently
both the nature of scatterers and the form of their coupling with
the continuum. To overcome this issue, one needs to assess how
such a representation can be derived from the microscopic wave
equations.

Here, we endeavor to do so by constructing a projection formal-
ism that separates vibrational atomic displacements into large and
small scale contributions. For this purpose, we define the “phonon”
(P) sub-space as the space generated by all discrete plane waves with
wavevectors up to an upper cutoff kc. Its orthogonal complement is

called the “non-phonon” (NP) sub-space. Decomposing the Hessian
of the microscopic problem on these two sub-spaces enables us to
identify the zeroth order of the scattering problem as its restriction
to its block-diagonal part, which defines two uncoupled P and NP
problems.

Implementing this formalism numerically for a 2D soft sphere
model, we show that the whole spectrum of the phonon subspace
is quasi-Debye, with sound speeds achieving their Born values, as
long as kc remains smaller than a rather large, finite value kmax

c cor-
responding to a few interatomic distances. This brings evidence that
there exists a natural scale below which the non-affine effects are
concentrated. When choosing kc close to this upper limit, we effec-
tively restrict the NP part to small scales, thus fulfilling our objective
to represent the amorphous solid as an elastic continuum (the P sub-
space) perturbed by the non-affine effects at small scales (captured
by the NP part). It is the existence of such a separation scale that
justifies the relevance of the projection formalism. Moreover, it is
worth mentioning that this separation scale turns out to lie close to
the Boson peak length20–22 that was proposed to be a measure of the
size of elastic heterogeneities.

In this description, the eigenmodes of the NP problem act as
scatterers for the bare P states, which couple via the off-diagonal part
of the Hessian. In qualitative agreement with the defect picture, the
low lying NP states present a high degree of localization; however,
at odds with the assumptions of these models, we find that the NP
spectrum does not extend down to zero frequency but, as required by
the well-posedness of the full (recoupled) problem, presents a finite
low energy gap, which turns out to be of the order of the Boson peak
frequency. This gap value guarantees a large overlap between the P
and NP spectra, hence suggesting an efficient P–NP coupling. Thus,
our approach directly demonstrates that attenuation results from the
coupling of phonons with small-scale scatterers, with energies that
are broadly distributed, yet with a finite lower cutoff.

We then show that the microscopic equations for sound prop-
agation can be rigorously recast into a Navier-like continuum equa-
tion, yet with a generalized elasticity tensor that is both non-local
and retarded, a feature that reflects that the scattering between two
phonon states is mediated by propagation within the NP subspace.

Finally, we analyze in detail the importance of retardation and
non-locality. We find that, quite remarkably, their full neglect suf-
fices to explain about 70% of the departure between actual and Born
sound speed values in the k → 0 limit. However, we show that it is
these two features that are responsible for the downward curvatures
of sound speed cL,T(k) curves; we also bring preliminary evidence
that their neglect, and especially that of non-locality, leads to a signif-
icant underestimate of the magnitude of sound damping and possi-
bly to a scaling different from the observed one. This formalism and
the ensuing set of results challenge the idea that the effect of struc-
tural disorder on sound propagation can be reduced to the existence
of local fluctuating elasticity coefficients; meanwhile, they open the
possibility to construct extended elasticity models involving second
gradient contributions.

II. PROJECTION FORMALISM
To investigate the acoustic response of a glass, our starting

point is the discrete wave equation, linearized about a glassy inherent
state,
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∂2u
∂t2 = −Hu. (1)

Here, we consider an inherent state of a glass composed of N atoms
of mass m = 1, labeled i = 1, . . ., N, occupying a cubic, periodic cell of
volume V = Ld in dimension d. We denote ri = {r

α
i } as the position

of atom i in the inherent state and ui ≡ {u
α
i } as its displacement

away from ri (greek letters label Cartesian coordinates). The discrete
(particle) displacement field, a vector of dimension Nd, is defined as
u ≡ {uαi }. Finally, since the inherent state is by definition stable, the
Hessian H = {Hακ

ij } is positive definite (except for the translation
modes).

We introduce the discrete plane waves φk,a that are the Nd
vectors with components,

(φ
k,a
)

i
= a√

N
eik⋅ri , (2)

where k = 2π n/L, with n ≡ {nα} being a vector with integer compo-
nents, and a ≡ {aα}, a normalized (∣a∣ = 1) polarization vector. The
φk,a’s are normalized

∣φk,a∣
2
≡ φ†

k,aφk,a = 1 (3)

for the scalar product of dimension-Nd vectors,

u†v =∑
i

u∗i ⋅ vi. (4)

Note that the dot is used throughout to denote the contraction on
the Cartesian indices.

In order to separate large and small scale motions, we choose
a cutoff kc such that the number M of wavevectors of the norm
∣k∣ < kc verifies M≪N. We then consider the Md-dimensional space
generated by all discrete plane waves with ∣k∣ < kc, which we call
the phonon subspace P. We decompose any discrete displacement
field u onto P and its orthogonal complement, which we call the
non-phonon subspace NP. Specifically, denoting P as the projection
operator onto P, we write

u = up + unp, (5)

where up ≡ Pu and unp ≡ (1 −P)u.
By definition, the phonon part up is a linear superposition of

Md plane waves,

up = ∑
(k,a)
k<kc

ûk,a φk,a. (6)

To obtain a more compact notation, we combine the Md scalar
coordinates ûk,a into the (column) vector û = {ûk,a} and introduce
the Nd ×Md matrix Φ with the φk,a as columns. It yields

up = Φ û. (7)

Note that, here, up and û are Nd- and Md-dimensional, respectively.
Let us emphasize that, in general, the discrete plane waves are

not mutually orthogonal. Therefore, the component ûk,a ≠ φ†
k,au.

To obtain an explicit expression for P, we first observe that the Md
scalar products φ†

k,au are the components of Φ†u. Accordingly, since
the non-phonon part unp lies by definition in the space orthogonal
to P, it verifies

Φ†unp = 0 (8)

whence

Φ†u = Φ†up = Φ†Φ û. (9)

Since the set of φk,a forms a basis for P, the matrix Φ†Φ is invertible,
and we may write

û = (Φ†Φ)
−1
Φ†u. (10)

Finally,

up = Φ (Φ†Φ)
−1
Φ†u, (11)

which yields, for P, the explicit form

P = Φ (Φ†Φ)
−1
Φ†. (12)

Using this formalism, the wave equation may be decomposed
into the phonon and non-phonon subspaces as follows:

üp = −Hp,pup −Hp,npunp,

ünp = −Hnp,pup −Hnp,npunp,
(13)

where

Hp,p ≡ PHP,

Hp,np ≡ PH(1 −P),
Hnp,p ≡ (1 −P)HP,

Hnp,np ≡ (1 −P)H(1 −P).

(14)

In the rhs of Eq. (13), keeping only the terms associated with the
diagonal “blocks,” Hp,p and Hnp,np, defines a zeroth order prob-
lem in which the phonon and non-phonon subspaces are decou-
pled. Note that both blocks are guaranteed to be positive definite
(excluding the two translation modes), since H is.

This projection scheme is formulated with the objective of sep-
arating large and small scale contributions to sound propagation,
i.e., of representing an amorphous solid as a (fluctuating) elastic
continuum—the phonon subspace—perturbed by small scale non-
affine effects—captured by the non-phonon part. To assess whether
this program can be realized, we first examine the vibrational prop-
erties of the two uncoupled P and NP subspaces, before examining
how the recoupling of these two subspaces leads to a Navier-like
acoustic wave equation.

We implement this in the case of the two-dimensional binary
soft sphere system of Refs. 10 and 23 (particle density ρ = N/L2

= 1.6), using systems comprising N = 11 350, 45 395, and 181 582
atoms, which correspond to linear sizes L ≃ 84, 168, and 337,
respectively. Lennard-Jones units are used throughout (see details in
Appendix A).
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III. THE PHONON SUBSPACE
To characterize the elastic behavior of the isolated phonon sub-

space and assess the influence of the choice of kc, we compute sound
speeds and attenuation coefficients using the protocol of Refs. 10 and
24. It consists in numerically integrating

üp = −Hp,p up (15)

with the initial condition u(t = 0) = 0, u̇(t = 0+) = φk,a
for various k vectors of norm k < kc and for both longitudinal
(L) and transverse (T) polarizations. The velocity autocorrelation
u̇p(t) ⋅ up(0+) = u̇p(t) ⋅ φk,a is very well fitted by a damped oscil-
latory form, which provides frequencies (hence sound speeds) and
damping coefficients.

In Fig. 1, we report the resulting sound speeds cL,T and attenu-
ation coefficients ΓL,T, for two system sizes L = 168 and L = 337, and
three values of kc = 2π nc/L = 0.75, 1.12, and 1.5, which correspond
to wavelengths 8.4, 5.6, and 4.2, respectively. For each L, the inves-
tigated k values range from kc down to kmin = 2π nmin/L, with nmin
= 6.25 Like in the full system, the measured values of cL,T and ΓL,T are
size-independent over the considered k range.

Observe that the measured sound speeds remain in all cases
close to their values (black lines) in the Born approximation, which
fully neglects any non-affinity. Although they are systematically
smaller than the Born estimates and increasingly more so as kc
increases (i.e., as the P problem incorporates shorter and shorter
wavelengths), this effect is quite weak: when kc varies by a factor
of 2 (from 0.75 to 1.5), the reduction in cL,T is at most 1% in the

FIG. 1. For the P problem in L ≈ 168 (circles) and ≈ 337 (squares) systems:
longitudinal (dashed) and transverse (solid) sound speeds cL,T and attenuation
coefficients ΓL,T as a function of k. Black horizontal lines correspond to the Born
sound speeds.

k < 0.5 range (which is much broader than the acoustic domain).
This must be put in regard with the 6% and 40% discrepancies
between the k → 0 values of cL and cT, respectively, when com-
paring the Born (cBorn

L ≃ 8.6, cBorn
T ≃ 4.41) and full problem values

(cfull
L ≃ 8.04, cfull

T ≃ 3.17).
Besides, both attenuation coefficients ΓL,T reach a kc-

independent Rayleigh regime at small k, a scaling behavior that dif-
fers from that (ΓL,T ∝−k3 ln k) of the full problem in the same k
range. Like in the FE approximation,23 these values underestimate
the full problem attenuation coefficients, as computed in Ref. 10, by
at least one order of magnitude.

These observations show that reducing the wave equation to
the uncoupled P subspace is grossly insufficient to describe acoustic
propagation in amorphous solids as it suffers from the same defi-
ciencies as the FE approximation:23 sound speed values very close
to their Born estimates and much too small attenuation coefficients
that, moreover, obey the standard Rayleigh scaling at low k.

The comparison of sound speed and attenuation data in these
two approximations in Fig. 2 show that they are, in fact, in very good
quantitative agreement. This stems from the fact that, as analyzed in
Ref. 23, the FE approximation results from the asymptotic matching
of the Hessian H, at long wavelengths, by the functional form of a
tensorial continuum elasticity kernel. This procedure relies on lin-
earizing factors of the form sin(k ⋅ rij/2), where rij is the vector sep-
arating two interacting atoms i, j, which requires k ⋅ rij/2 ≲ π/6, i.e.,
k ≲ 1. This explains why the FE turns out to be a good approximation
for the uncoupled P problem, as long as kc ≲ 1.

FIG. 2. Longitudinal (dashed) and transverse (solid) sound speeds cL,T and attenu-
ation coefficients ΓL,T for both the P problem (with L ≃ 337, kc = 1.12, red squares)
and the FE approximation (using L ≃ 673, qmax = 1.6, blue lines). Black horizontal
lines: the Born sound speeds.
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The weakness of damping in the P problem suggests that its
eigenmodes are close to plane waves. To test this idea, we compute
its spectrum, which is defined by the eigenvalue equation

Hp,p up = ω2 up. (16)

To efficiently solve this problem, we rewrite the above equation in
terms of the Md-dimensional vector û = {ûk,a} [see Eqs. (6) and
(7)]. Using Eqs. (10) and (12), the eigenvalue problem becomes

Φ†HΦû = ω2 Φ†Φû, (17)

where both matrices Φ†HΦ and Φ†Φ are self-adjoint and positive
definite. This problem is solved numerically using the generalized
eigensolver of the Eigen library.

The density of P states, ρP(ω), is displayed in Fig. 3, as ρP/kc vs
ω/kc, for L = 168 and 337 and various kc’s. It is compared in this fig-
ure with the density of the Debye spectrum of an infinite continuum,
restricted to k < kc plane waves

ρD(ω) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2π (

1
c2

T
+ 1

c2
L
)ω for ω < cT kc

1
2π c2

L
ω for ω ∈ [cT kc, cL kc]

(18)

using for cL,T = cBorn
L,T the Born sound speeds.

The ρP data are, as anticipated, very close to the Debye density
of states (DOS), which confirms that the P subsystem can be viewed
as a nearly homogeneous elastic continuum in which sound speeds
have their Born values.

Note incidentally that, in Fig. 1, the kc-dependent drop in ΓL
occurs at a wavenumber ≃ kc cBorn

T /cBorn
L , which corresponds to the

frequency ≃ kccBorn
T where the Debye DOS presents its first discon-

tinuity, associated with the disappearance of transverse phonons. In
the P problem, the height of the ΓL/k3 plateau at very long wave-
lengths k < kc cBorn

T /cBorn
L thus points out to the existence of couplings

between longitudinal and transverse waves.

FIG. 3. Density of P states (colors) for system size L = 168 (solid lines), for different
kc values, and L = 337 (circles) for kc = 0.75. Black dashed line: the Debye density
of state using the Born approximation for elasticity.

We analyzed L ≃ 84 (not shown), 168, and 337 data and found
no size effect except for the fact that smaller L and/or kc data present
larger fluctuations that are not eliminated with an improved statisti-
cal sampling. This can be seen in Fig. 3, where the kc = 0.75 data for
the two considered system sizes track each other, but the L ≃ 168 one,
even though it averages many more configurations, presents a higher
degree of fluctuations. This size effect is an additional signature of
the weakness of the scattering induced by long wavelength disorder
only. Indeed, single configurations present spectra that closely fol-
low the level structure expected for a homogeneous continuum. The
disorder-induced broadening is too small to smooth out the peaks
of the Debye density of state at the lowest k’s in these finite-sized
systems.

Consistent with the trend shown by the sound propagation
data, ρP progressively departs from the Debye density with increas-
ing kc. This shows up via

(a) a weak and gradual increase in the slopes, which corresponds
to the slight decrease in sound velocities; and

(b) a progressive rounding off close to the two discontinuities of
the Debye DOS where the modes primarily combine phonons
with k lying near the upper edge of the P sub-space.

Note that above cBorn
T , the departure between the kc = 0.75 and

1.12 curves is quite small and of the order of our fluctuations. In
contrast, the kc = 1.5 data are almost twice as far from the Debye pre-
diction than the kc = 1.12 one. Hence, the P spectrum starts to very
sensitively depart from the Debye one for kc values beyond about 1
or 1.12, which is therefore rather sharply defined.

The above analysis clearly documents the following:

(i) The P spectrum is essentially independent of kc so long as
kc ≲ 1—which is the condition needed for the linearization
of the sin(k ⋅ rij/2) factor in the small-k expansion of the
Hessian.

(ii) Under this condition, unlike the full system, the P
sub-problem can be viewed as equivalent to a very
weakly inhomogeneous elastic continuum restricted to long
wavelengths.

(iii) The long wavelength part of disorder is grossly insufficient
to account for acoustic attenuation, which confirms that
the coupling between the P and NP subspaces cannot be
ignored.

Moreover, points (i) and (ii) lead to an important conclusion.
Since, in order to optimally separate the P and NP parts, one should
choose kc as large as possible within the allowed range, they entail
that the value of kc is not an arbitrary parameter but is imposed by
the nature of atomic interactions. It thus emerges that, for a given
disordered system, there exists a “natural” scale of separation between
short and long wavelengths.

IV. THE NON-PHONON SUBSPACE
Solving directly the NP eigenvalue problem

Hnp,np unp = λunp (19)

requires constraining unp to the NP space, which is computationally
inefficient since we cannot identify a basis for the NP space, hence
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cannot explicitly reduce the problem to a (N −M)d-dimensional NP
space. Instead, we solve the same problem as above, but in the full
Nd-dimensional space of discrete displacements,

Hnp,np u = λu, (20)

and then sort out the eigenmodes we look for. For this purpose, we
note the following:

(a) Any element of P is a λ = 0 eigenvector of Hnp,np.
(b) Hnp,np, when restricted to the NP subspace [problem (19)], is

positive definite because it is a diagonal subblock of H, which
is itself positive definite; its (N − M)d eigenvalues are hence
all strictly positive.

(c) Any of the (N − M)d eigenvector–eigenvalue pairs for prob-
lem (19) also verifies problem (20).

It follows that the λ = 0 eigenspace of problem (20) is the phonon
subspace, while all its non-zero eigenmodes, since they are orthogo-
nal to P, generate the NP space.

We solve (20) using the standard LAPACK algorithm for real,
symmetric matrices. It requires storing the upper triangular part of
Hnp,np, as expressed in the full Nd-dimensional space of all atomic
displacements, which limits the calculation to system sizes up to
L ≃ 168.

The ensemble-averaged NP DOS is shown in Fig. 4 for two
system sizes (L ≃ 84 and 168) and three values of kc. For a given
kc, as can be expected when L ≫ 2π/kc, the NP DOS’s are size-
independent. Their most conspicuous feature is the presence of a
finite low frequency gap ωg , which increases with kc. The inset of
Fig. 4 additionally shows that ωg ∝ kc in the kc ∈ [0.75, 1.5] range of
interest, a point we will later come back to.

By construction, the NP subspace contains all small-scale non-
affine contributions to atomic displacements. Its modes act as a set
of oscillators that, in the full problem, couple with phonon modes,
thus giving rise to sound scattering.

FIG. 4. Density of NP states (colors) for system size L ≃ 84 (solid lines) and 168
(circles) for different kc values. (Inset) A zoomed-in view of the low frequency
gap.

FIG. 5. For kc = 1.12, the ratios ρP/ρD (blue, L = 337), ρNP/ρD (green, L = 168),
and their sum ρ(0)/ρD (red, dashed), compared with ρfull/ρD (brown, L = 673).

At zeroth order in the P–NP coupling, the full problem is the
superposition of the uncoupled P and NP subproblems, and its den-
sity of states is ρ(0) = ρP + ρNP. To gain insight into the nature
and importance of P–NP coupling effects in different frequency
domains, we compare in Fig. 5, for a given kc, ρP, ρNP, and ρ(0), with
the full problem DOS ρfull. We use here the value of kc ≃ 1.12, which,
in Sec. III, appeared to be in the optimal range of P–NP separation.
In this plot, all distributions are normalized by the Debye density
of states ρD(ω) computed with the full problem sound speeds. As
expected, ρfull/ρD exhibits a Boson peak, which lies about ωBP ≃ 1.3.

FIG. 6. P, NP, and full problem spectra for kc = 1.12. (Top) DOS for the P (blue,
L = 337), NP (green, L = 168), and full problems (brown, L = 673). (Bottom) Par-
ticipation ratio ω for the P (blue), NP (green), and full (brown) problems in one
L = 168 (N = 45 395) configuration.
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This representation brings out three frequency domains
defined as follows:

I. the ω < ωg domain, below the NP gap, where only P modes
are present;

II. the intermediate frequency range ≃ [ωg , cBorn
L kc], in which

the P and NP spectra overlap, which we subdivide as
II′≡ [ωg , cBorn

T kc], where P phonons of both polarizations are
present, and II′′≡ [cBorn

T kc, cBorn
L kc]where the P spectrum only

contains longitudinal-like phonons; and
III. the upper frequency range ω ≳ cBorn

L kc where only NP modes
exist.

In domain III, the full and NP DOS’s are nearly indistinguish-
able, showing that the hybridization effects are extremely small. In
II′′, these effects remain weak, since ρP + ρNP remains rather close
to ρfull. They become prevalent, however, in domains II′ and I, i.e.,
below the frequency cBorn

T kc where transverse-like modes are present

in the P spectrum. This, we think, manifests the pre-eminent influ-
ence of the coupling between transverse phonons and NP states in
determining the structure of the full spectrum in a broad frequency
range encompassing both the Boson peak and the acoustic domain.
This observation is reminiscent of the previous suggestions by sev-
eral authors26–29 that the Boson peak excess vibrations are mainly of
transverse character.

Beyond these remarks, the most striking observation afforded
by this plot is that, for the selected kc value, which corresponds to
the previously identified optimal separation scale between large and
short wavelengths, the Boson peak position is nearly coincident with
the boundary between domains I and II′, i.e., with the position of
the low energy gap in the NP spectrum. This is unlikely to be for-
tuitous, since this boundary separates resonant and non-resonant
P–NP coupling regimes.

Let us now turn to the question of the spatial structure of the
modes and, in particular, of their degree of localization. For this
purpose, we consider the participation ratio that, for any particle
displacement field u, reads

FIG. 7. A few NP modes for an L = 168
system and kc = 1.12. (a) n = 1,ω ≃ 1.53,
ω ≃ 3 × 10−4; (b) n = 2, ω ≃ 1.63, ω
≃ 3 × 10−4; (c) n = 3, ω ≃ 1.65, ω ≃ 3
× 10−4; (d) n = 25, ω ≃ 2, ω ≃ 6 × 10−4;
(e) n = 132, ω ≃ 2.5, ω ≃ 10−2; (f) n
= 456, ω ≃ 3, ω ≃ 2 × 10−2; (g)
n = 1719, ω ≃ 4, ω ≃ 0.15; (h) n = 8939,
ω ≃ 7, ω ≃ 0.15; and (i) n = 25 067,
ω ≃ 11, ω ≃ 0.2.
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ω = 1
N
(∑N

i=1 u2
i )

2

∑N
i=1(u2

i )
2 . (21)

Since this quantity is equal to 1 for a homogeneous field and 1/N
for a field localized on a single particle, it is often used to have some
indication about the spatial extent of modes.24,30–34 The participa-
tion ratios of the modes of the P, NP, and full problems, for one
configuration of our L = 168 system, are displayed in Fig. 6, below
the corresponding density of states.

This scatter plot clearly shows that the P modes (blue) are sys-
tematically extended, consistent with our previous conclusion that
they are essentially plane waves.

Second, it reveals that the NP spectrum presents, close above
ωg , a non-negligible number of localized (small ω) modes: for
instance, for the considered system, there are about 200 modes with
ω ≤ 10−2. The spatial structure of the modes (labeled n, in the order
of increasing ω), in different frequency domains, is illustrated in

Fig. 7. As shown in Figs. 7(a)–7(c), the first few modes, close to the
gap frequency, generally involve one or a very few centers. Note that
modes 2 and 3 combine contributions from the same two centers,
with different weights, which evidences hybridization effects, i.e.,
residual couplings within the NP problem. As long as ω ≲ 5 × 10−2,
the modes become increasingly multi-localized, i.e., can be viewed
as involving hybridized centers, yet in a number that grows rapidly
with the frequency, as shown in Figs. 7(d)–(f), corresponding to fre-
quencies ω ≃ 2, 2.5, 3. Beyond this [see Figs. 7(g)–7(i)], the contrast
between large and small displacements is too small to discern any
localization center.

We now turn to the modes of the full problem, which is defined
by the recoupling between the P and NP sub-systems. As seen in
the scatter plot (Fig. 5), like the P ones, the lowest frequency modes
have ω values ≃ 1. An example (mode n = 5, ω = 0.16), displayed
in Fig. 8(a), illustrates that these modes are essentially combina-
tions of plane waves, with barely any visible hint for the presence of

FIG. 8. A few modes of the full problem
for the same L = 168 system as in Fig. 7.
(a) n = 5, ω ≃ 0.16, ω ≃ 0.8; (b) n = 30,
ω ≃ 0.35, ω ≃ 0.48; (c) n = 31, ω ≃ 0.35,
ω ≃ 0.38; (d) n = 41, ω ≃ 0.4, ω ≃ 3
× 10−3; (e) n = 53, ω ≃ 0.43, ω ≃ 3.5
× 10−2; (f) n = 58, ω ≃ 0.46, ω ≃ 0.36;
(g) n = 59, ω ≃ 0.46, ω ≃ 0.12; (h) n
= 1271,ω ≃ 2,ω ≃ 0.26; and (i) n = 4842,
ω ≃ 4, ω ≃ 0.16.
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non-affine contributions. Such contributions must, of course, exist
since the plane-wave-like lowest modes of both the full and P prob-
lems with equal k’s have different eigenfrequencies (≃ cT,L k, with
cfull

T,L < cBorn
T,L ).

As the frequency increases across region I, the participation
ratios of the full problem modes rapidly decay, and for ω ≳ 1,
they lie below about 0.3, a level that is clearly smaller than all
ω values for P modes. As shown in Figs. 8(b)–8(g), the modes
in this frequency range show clear signs of mixing between the
P plane-wave-like states, and localized oscillators, which corre-
spond to the centers previously identified in the localized NP
states.

As already emphasized by many authors,24,30–34 in this lower
part of the spectrum, some modes present very small ω values. Here,
the most localized one [Fig. 8(d), ω ≃ 3 × 10−3, ω ≃ 0.4] is clearly
dominated by a single center, which is the dominant one in mode
n = 2 (ω ≃ 3 × 10−4, ω ≃ 1.63), of the NP problem [Fig. 7(b)].
This specific case, where quasi-plane wave P states hybridize pre-
dominantly with a single NP local oscillator, permits us to iden-
tify the downward frequency shift of the oscillator, which turns out
to be huge: dressing by the extended states reduces the oscillator
frequency by a factor of about 4.

For the configuration examined here, there is only one such
single-centered state. At least six centers can be identified in mode
n = 53 [Fig. 8(e), ω ≃ 3.5 × 10−2, ω ≃ 0.43], which is the next most
localized one in region I. More generally, most of the states of the full
problem in region I incorporate contributions from several centers:
see, for example, Figs. 8(b), 8(c), 8(f), and 8(g). Additionally, neither
the number nor the locations of the contributing centers show any
clear correlation, when comparing consecutive states in the order of
increasing frequencies [compare Figs. 8(b) and 8(c) and Figs. 8(f)
and 8(g)].

Toward the upper end of region I and into region II, it
becomes increasingly difficult to identify any localization center [see
Fig. 8(h)]. The modes become increasingly complex and diffuse with
a further increase in frequency [Fig. 8(i)].

The above analysis of modes in region I has brought to light
several clear indications of a quite strong coupling between acoustic
phonons and the NP localized oscillators: the magnitude of the iden-
tified frequency shift, the generic presence of several centers in the
full problem modes, and the very small number of localized states
in the full problem. As a consequence, there is no straightforward
relation between the features of the rare localized states of the full
problem, such as number, morphology (degree of localization, mul-
tiplicity of soft centers), or frequency, and those of the NP modes.
Hence, contrary to an idea put forward by some authors (see Refs.
35 and 36 and references therein), the full problem localized modes
cannot be interpreted as being the soft localized oscillators of defect
theories.1

V. REINTRODUCING THE PHONON–NON-PHONON
COUPLING
A. The scattering equation in the acoustic domain

Sound propagation in the considered material can be fully char-
acterized by studying the response of the system to an imposed initial
plane wave velocity field φk,a.10,24 Since we focus on the acoustic

domain (k ≪ kc), the initial perturbation is restricted to the P sub-
space so that the scattering problem decomposes into the coupled
equations [see Eq. (13)]

üp = −Hp,pup −Hp,npunp + δ(t)φk,a, (22a)

ünp = −Hnp,pup −Hnp,npunp (22b)

with u̇p(t) = up(t) = 0 and u̇np(t) = unp(t) = 0 for all t < 0. In the
frequency representation, the above equation reads

(ω + iη)2 up =Hp,pup + Hp,npunp − φk,a, (23a)

(ω + iη)2 unp =Hnp,pup + Hnp,npunp, (23b)

with η > 0 a small parameter. Eliminating unp, one finds

(ω + iη)2 up =Hp,pup −Q(ω)up − φk,a (24)

with

Q(ω) =Hp,np[−(ω + iη)2 + Hnp,np]−1
Hnp,p. (25)

Equation (24) is the full problem scattering equation, yet
expressed as an equation of motion for the phonon part up of
the full displacement field. We see that the scattering amplitude
is the sum of two contributions: the first, Hp,p, directly couples
phonons and governs scattering within the isolated P subspace [see
Eq. (15)]; and the second, Q(ω), describes the indirect phonon–
phonon coupling mediated by propagation within the isolated NP
subspace. Due to the elimination of the NP degrees of freedom,
Q(ω) is necessarily ω-dependent, i.e., time-retarded, and a priori
non-local.

In order to eventually understand how the continuum limit is
achieved, we need to rewrite Eq. (24) without an explicit reference
to up, which is configuration-dependent, but instead in terms of the
weights of the plane waves generating the P subspace, that is, using
the coefficients û [see Eqs. (6) and (7)]. Left-multiplying Eq. (24) by
(Φ†Φ)−1Φ† and using Eqs. (10) and (11), we obtain the full problem
wave equation in terms of û,

(ω + iη)2 Φ†Φû = Φ†HΦû −Φ†Q(ω)Φû −Φ†Φφ̂k,a. (26)

Here, φ̂k,a is the component vector for the incoming plane wave φk,a:
all its (k′, a′) coefficients are equal to zero, except for the (k′, a′)
= (k, a) one, which is equal to 1.

Let us emphasize that Eq. (26) is the full discrete wave equa-
tion, but written in terms of plane wave coefficients. In this repre-
sentation, the operator Φ†HΦ corresponds to Hp,p, which is the
restriction of the Hessian to the P subspace; meanwhile, Φ†Q(ω)Φ
accounts for the indirect coupling between P waves due to the small
scale non-affinity. The projection formalism has thus enabled us
to subsume all small scale non-affine effects to the presence, in
Eq. (26), of a term involving the indirect effective scattering potential
Φ†Q(ω)Φ.

The solution of Eq. (26) is of the form
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û = Ĝ φ̂k,a, (27)

with the Green function

Ĝ = [−(ω + iη)2 Φ†Φ + Φ†HΦ −Φ†Q(ω)Φ]
−1

Φ†Φ. (28)

Since the coefficient vector φ̂k,a is configuration-independent, the
ensemble-averaged response can now be expressed as

⟨û⟩ = ⟨Ĝ⟩φ̂k,a. (29)

The average Green function ⟨Ĝ⟩ accounts for the acoustic response
of our glass.

Let us recall that the central objective underlying the con-
struction of the projection formalism is to attempt to represent,
in the long wavelength limit, an amorphous solid as an elastic
continuum. A first step toward this goal was achieved when writ-
ing Eq. (26): we have then reduced the full problem to an equa-
tion of motion for a vector (û) restricted to the P subspace. The
ensuing question is whether, when taking the long-wavelength
approximation of this equation, we obtain a Navier-like equation,
i.e., a continuum problem featuring spatially fluctuating elastic
constants.

From this perspective, it is useful to bear in mind that the dis-
crete wave problem is written in terms of displacements from a
mechanically equilibrated reference state and hence is most natu-
rally compared with the Lagrangian form of continuum elasticity.
In this latter representation, the fully tensorial wave equation for a
spatially fluctuating elastic continuum reads

¨̂u(k) = −∫ dk′D(k, k′) ⋅ û(k′), (30)

where the kernel Dακ(k, k′) is of the form

Dακ(k, k′) = 1
ρV

kβk′ χ Ŝαβκχ(k − k′), (31)

with ρ = Nm/V being the mean density, V being the volume, and
Ŝαβκχ being the Fourier transform of the local elasticity tensor.

Explicitly introducing the polarizations of the vector field û
amounts to writing

û(k) = ∑
a∈pol.(k)

ûa(k) a (32)

with the sum running over the polarization vectors ({k/k, k⊥/k} in
our 2D setting). In terms of ûa(k), the wave equation reads

¨̂ua(k) = −∫ dk′ ∑
a′∈pol.(k′)

D
a,a′
(k, k′) ⋅ ûa′(k

′) (33)

with the linear kernel
Da,a′(k, k′) ≡ a ⋅D(k, k′) ⋅ a′

= 1
ρV

aαkβa′ κk′ χŜαβκχ(k − k′).
(34)

In Refs. 10 and 23, we showed that, to the lowest order
in a long wavelength expansion, the coefficients of the Hessian
are precisely of the above form, where the field Ŝαβκχ can be
explicitly written in terms of the interaction potential and particle
positions.

The FE studied in Ref. 23 is the continuum problem (30) based
on these elasticity coefficients. By construction, this approximation
only accounts for the long wavelength form of Φ†HΦ. It, therefore,
constitutes a lowest order approximation for the wave equation in
the uncoupled P space, which is why, as discussed in Sec. III, it cap-
tures reasonably well the sound properties of the P problem, rather
than those of the full one. Meanwhile, it completely overlooks the
indirect coupling Φ†Q(ω)Φ and hence all small scale non-affine
contributions.

B. Explicit form of the scattering equation
for a pairwise pair potential

In order to go beyond the FE approximation, we need to explicit
the form of the various terms in Eq. (26).

1. Mass factor
The coefficients of the “mass factor” Φ†Φ read

φ†
k,aφk′ ,a′ =

a ⋅ a′
N ∑

i
e−i(k−k′)⋅ri . (35)

Note that, for k′ = k, φ†
k,aφk,a′ = a ⋅ a′, while the average of the square

norm ⟨∣φ†
k,aφk′ ,a′ ∣

2⟩ = (a⋅a′)2

N S(k − k′), with S being the structure
factor.

2. Direct elasticity tensor
For a pairwise potential, the total force field −Hφk,a generated

by a plane wave displacement reads

(−Hφk,a)i
= − 1√

N
∑
j≠i

M
ij
⋅ a (eik⋅rj − eik⋅ri), (36)

where, for each pair (i, j),

Mακ
ij = (U′′ij (rij) −

U′ij(rij)
rij
)nαijn

κ
ij +

U′ij(rij)
rij

δακ, (37)

with U(r) being the pair potential, rij = rj − ri, and nij = rij/rij. The
direct coupling term, therefore, is of the form

φ†
k,aHφk′ ,a′ =

1
N ∑i

∑
j>i

a ⋅M
ij
⋅ a′ (e−ik⋅rj − e−ik⋅ri) (eik′ ⋅rj − eik′ ⋅ri),

(38)

which can easily be recast as

φ†
k,aHφk′ ,a′ =

1
ρV

aαkβa′κk′χ Ŝαβκχ(k, k′), (39)
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with

Ŝαβκχ(k, k′) =∑
i
∑
j>i

Mακ
ij rβijr

χ
ij j0(

k ⋅ rij

2
)j0
⎛
⎝

k′ ⋅ rij

2
⎞
⎠

e−i(k−k′)⋅rij , (40)

where j0(x) = sin(x)/x and rij = (ri + rj)/2.

In view of Eq. (39), Ŝαβκχ(k, k′) can be considered as a general-
ized elasticity tensor. Yet, since it depends on both k + k′ and k − k′

and not just on k − k′, its real space form is a priori non-local.

3. Indirect elasticity tensor
We now seek to analyze the indirect effective potential

Q̂(ω) ≡ Φ†Q(ω)Φ = Φ†Hp,npGnp,np(ω)Hnp,pΦ, (41)

where

Gnp,np(ω) ≡ [−(ω + iη)2 + Hnp,np]−1
(42)

is the Green function of the uncoupled NP subspace. We will first
derive an explicit microscopic expression for Q̂(ω) in the case of
pairwise interactions; then, we will calculate its asymptotic form in
the low frequency, acoustic limit.

To proceed, we denote ψn as the nth NP eigenmode and ω2
n as

its eigenvalue. This permits us to write the projector onto the NP
space as

1 −P =∑
n
ψn ψ

†
n, (43)

where the sum runs over the (N − M)d modes. Meanwhile, the NP
Green function reads

Gnp,np(ω) =∑
n

ψn ψ
†
n

ω2
n − (ω + iη)2 . (44)

We now write explicitly the components of the effective scat-
tering potential,

Q̂k,a,k′ ,a′(ω) = φ†
k,a Q(ω)φk′ ,a′

= φ†
k,aH(1 −P)G

np,np(ω)(1 −P)Hφk′ ,a′ , (45)

and noting that (1 −P)ψn = ψn, we find

Q̂k,a,k′ ,a′(ω) =∑
n

(φ†
k,aHψn) (ψ

†
nHφk′ ,a′)

ω2
n − (ω + iη)2 , (46)

which brings forward the scalar products between the NP eigenvec-
tors and the total force fields, such as −Hφk,a, generated by the plane
wave displacements. For pairwise potentials, these latter fields read
explicitly,

(−Hφk,a)i
= − 1√

N
∑
j≠i

M
ij
⋅ a (eik⋅rj − eik⋅ri). (47)

The NP components of these force fields are now calculated as
follows:

−φ†
k,aHψn = −

1√
N
∑

i
∑
j≠i

a ⋅M
ij
⋅ ψ

n i
(e−ik⋅rj − e−ik⋅ri)

= − 1√
N
∑
i<j

a ⋅M
ij
⋅ (ψ

n i
− ψ

n j
)(e−ik⋅rj − e−ik⋅ri)

= − i√
N

aαkβ∑
i<j

Mακ
ij (ψκn i − ψκn j) rβij

e−ik⋅rj − e−ik⋅ri

ik ⋅ rij

≡ i√
N

aαkβζαβn k. (48)

Here, the second order tensor

ζαβn k ≡∑
i<j

Mακ
ij (ψκn i − ψκn j) rβij

e−ik⋅ri − e−ik⋅rj

ik ⋅ rij
(49)

is the stress induced in P by the normalized displacement field ψn.
In terms of these fields, the indirect scattering potential finally

reads

Q̂k,a,k′ ,a′(ω) =
1
ρV

aαkβa′κk′χ Ẑαβκχ(ω, k, k′) (50)

with ρ = N/V and

Ẑαβκχ(ω, k, k′) ≡∑
n

ζαβn k ζ
κχ ∗
n k′

ω2
n − (ω + iη)2 . (51)

The above two equations show that, like Φ†HΦ, the indirect
coupling Φ†Q(ω)Φ that, in Eq. (26), encapsulates all small scale
non-affinity effects has the structure [Eq. (34)] of a fluctuating elas-
ticity kernel. The associated Ẑαβκχ(ω, k, k′) thus appears to be a gen-
eralized elasticity tensor, which, like Ŝαβκχ(k, k′), is non-local, but
also retarted.

C. Non-locality scale of the indirect elasticity tensor
The question then is to try and assess how the non-local and

retardation effects contained in both Ŝαβκχ(k, k′) and Ẑαβκχ(ω, k, k′)
show up in the long wavelength limit.

The FE approximation as derived in Refs. 10 and 23 was
obtained by approximating the j0 factors in Eq. (40) by the lowest
order term of their small k, k′ expansions: j0(x) ≃ 1. Higher orders in
this expansion bring O(k2, k′2) terms, which suggests that non-local
effects may show up as second gradient corrections to elasticity. It
is only as long as these corrections remain negligible that Φ†HΦ
can be well approximated by usual elasticity and the P subspace by
a Debye-like continuum. Therefore, the optimal (upper) kc value
of order 1 we previously identified empirically should be consistent
with the relative amplitude of these non-local corrections remaining
quite small. We will check this in Sec. VI A.

Let us now turn to the indirect elasticity tensor. For this pur-
pose, it is important to recall that the NP spectrum presents a finite
low frequency gap, which entails that the projection introduces a
characteristic frequency scale, ωg ≃ 1.5kc (Sec. IV). Since we are
specifically interested in the acoustic limit, we restrict our attention
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to frequencies ω lying much below the gap frequency ωg . We can
thus drop the infinitesimal parameter iη in Eq. (51). We choose from
now on kc = 1.12, which lies in the optimal range of P–NP separation
(Sec. III) for which ωg ≃ 1.7.

We show in Appendix E that Ẑαβκχ
can be written in terms of

the Green function Γ(ij)
l
(ω) that governs the NP response to a force

dipole ±f applied on pair (i, j),

unp
l (ω) ≡ Γ

(ij)
l
(ω) ⋅ f . (52)

Specifically, we find

Ẑαβκχ(ω, k, k′) =∑
l<m
∑
i<j

Mακ
ijlm(ω) rβlm rχij j0(

k ⋅ rlm

2
)

× j0
⎛
⎝

k′ ⋅ rij

2
⎞
⎠

eik′ ⋅rij−ik⋅rlm (53)

with

M
ijlm
(ω) =M

lm
⋅ (Γ(ij)

l
(ω) − Γ(ij)

m
(ω)) ⋅M

ij
. (54)

Expression (53) shows that non-local corrections to Ẑαβκχ
may arise

from the j0 factors (as for Ŝαβκχ) but also from the frequency-
dependent pair–pair coupling introduced by Mακ

ijlm(ω). The degree
of locality of Zαβκχ , therefore, also depends on that of Γ(ij)

l
.

We display in Fig. 9 the static response Γ(ij)l (ω = 0) ⋅ f to dipoles
located on two different pairs taken from the configuration used in
Fig. 7 and for both longitudinal and transverse (to the pair direction)
orientations of the source dipole. The first pair [Figs. 9(a) and 9(b)]
is chosen in the core of the lowest NP eigenmode, which is highly
localized [see Fig. 7(a)]. The second one [Figs. 9(c) and 9(d)] is taken
at an arbitrary point away from this core. These pictures show that
independently of the location and orientation of the excitation, the
response is highly localized.

In order to quantify this statement, we have systematically com-
puted the normalized response for all pair sources in L = 84 systems.
Figure 10 shows the pair-, configuration-, and angle-averaged square
norm of this field as a function of the distance r from the source

FIG. 10. The square amplitude ũ2 of the normalized displacement field Γ(ij)
l (ω

= 0) ⋅ f [Eq. (52)] vs the distance r to the source pair midpoint, after pair- and
angle-averaging, for both longitudinal (L) and transverse (T) orientations of the
source dipoles relative to the pair orientations. The line is a fit∝exp(−r /ℓ) with ℓ
= 0.8.

pair midpoint. At intermediate distances, i.e., up to 2π/kc, it exhibits
an exponential decay with an extremely short characteristic length ℓ
≃ 0.8. Beyond 2π/kc, where its amplitude is already minute, it crosses
over to a osc./r3 asymptotic decay, which is expected due to the sharp
cutoff at kc.

The rapid decay of Γ(ij)l (ω) with ∥rl − rij∥ entails a comparable
one for M

ijlm
with ∥rij − rlm∥. In Eq. (53), recasting ik′ ⋅ rij − ik ⋅ rlm

= i(k′ − k) ⋅ (rij + rlm)/2 + i(k′ + k) ⋅ (rij − rlm)/2, since ∥rij − rlm∥ ≲ 1
and k, k′ < kc, we see that it is legitimate to expand the exponential
factor up to the second order in powers of i(k′+k) ⋅(rij− rlm)/2. The
pair–pair coupling introduced by Mακ

ijlm(ω) therefore brings O[(k
+ k′)2] non-local contributions in addition to those arising from the
expansion of the j0 factors. It should hence also generate a second
gradient correction, a form we will now see explicitly emerging from
a detailed analysis of the average indirect elasticity tensor.

FIG. 9. In the configuration of Fig. 7: the response, normalized so that the largest arrows are of comparable sizes, to force dipoles. [(a) and (b)] The dipole is applied to a pair
located inside the core of the lowest NP eigenmode [Fig. 7(a)]. [(c) and (d)] The dipole is applied to an arbitrary pair, far away from this core. The forces are colinear with the
pair orientation on (a) and (c); they are tranverse to the pair orientation on (b) and (d).

J. Chem. Phys. 153, 144502 (2020); doi: 10.1063/5.0019964 153, 144502-12

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

VI. AVERAGE ELASTICITY TENSORS AND SOUND
SPEED ESTIMATES

In real space, the direct and indirect elasticity tensors are two-
point functions: Sαβκχ(r, r′) and Zαβκχ(ω, r, r′). Thanks to the trans-
lation invariance, their ensemble averages only depend on r − r′

and therefore provide information on their degree of non-locality.
In Fourier space, these averages are diagonal in k,

⟨Ŝαβκχ(k, k′)⟩ = ⟨Ŝαβκχ(k, k)⟩ δk,k′ ,

⟨Ẑαβκχ(ω, k, k′)⟩ = ⟨Ẑαβκχ(ω, k, k)⟩ δk,k′ .
(55)

To analyze such rank-4 tensor fields, we use the formalism of
Refs. 23 and 37 and decompose rank-2 tensors on the radial basis in
Fourier space,

T k̂
1
= 1√

2
(k̂ k̂ + ϑ̂ ϑ̂),

T k̂
2
= 1√

2
(k̂ k̂ − ϑ̂ ϑ̂),

T k̂
3
= 1√

2
(k̂ ϑ̂ + ϑ̂ k̂),

T k̂
4
= 1√

2
(k̂ ϑ̂ − ϑ̂ k̂).

(56)

In terms of stress, the first element of this basis corresponds
to pressure, the next two to the two orientations of pure shear
stresses, and the last one to the stress asymmetry, i.e., the torque
density.

Using this formalism, a rank-2 tensor σ is represented by a

four-component vector denoted as σ∼
k̂ and a rank-4 tensor field

Âαβκχ(k) by a field of 4 × 4 matrices denoted as ˚̂A≈ (k) = {
˚̂Aab(k), a,

b = 1, . . . , 4}, where the mark ○ signals that the above radial tensor
basis is used at any k.37

In order to obtain ˚̂Sab, as detailed in Appendix B, one must first
compute the matrix representation of Ŝαβκχ in the tensor basis anal-
ogous to that of Eq. (56), yet based on the Cartesian vectors, before
performing a Cartesian-to-radial matrix transform.23,37

The average of the indirect elasticity tensor in the radial matrix
form, ˚̂Zab, is obtained using

⟨ ˚̂Zab(ω, k, k)⟩ = ⟨∑
n

ζ k̂
n k a ζ

k̂∗
n k b

ω2
n − (ω + iη)2 ⟩, (57)

which involves the vector components ∼ζ
k̂
n k = {ζ

k̂
n k a}, where a = 1,

. . ., 4 of the rank-2 tensor ζ
n k

.

To compare the k-space values of these elasticity tensors for dif-
ferent system sizes, it is necessary to normalize them by the system
volume. We thus introduce

s≈ (k) ≡
1
V
⟨ ˚̂S≈ (k, k)⟩,

z≈ (ω, k) ≡ 1
V
⟨ ˚̂Z≈ (ω, k, k)⟩.

(58)

A. Average direct elasticity tensor
Thanks to global inversion symmetry, the s≈ matrix, which is

real-valued, is also symmetric. Moreover, material isotropy entails
that it is independent of the orientation of vector k and is of the
form23

s≈ (k) = s≈ (k) =

⎛
⎜⎜⎜⎜⎜
⎝

s11 s12 0 0

s12 s22 0 0

0 0 s33 s34

0 0 s34 s44

⎞
⎟⎟⎟⎟⎟
⎠

. (59)

Its non-zero components, as computed in L = 84 systems, are dis-
played in Fig. 11 (there is no observable difference with the same data
in L = 168 systems). Note that at k = 0, ⟨ ˚̂S≈ (k, k)⟩ [Eq. (40)] reduces
to the Born elasticity tensor,38 which is diagonal in the following
matrix representation:23

1
V

˚̂S≈
Born
=

⎛
⎜⎜⎜⎜⎜⎜
⎝

2KB − p 0 0 0

0 2μB − p 0 0

0 0 2μB − p 0

0 0 0 −p

⎞
⎟⎟⎟⎟⎟⎟
⎠

δk,0, (60)

with p being the pressure and KB and μB being the bulk and
shear moduli, respectively—which for 2D Born elasticity verifies that
KB = 2μB.38 In the k→ 0 limit, hence, the off-diagonal components of
s≈ (k), s12, and s34 vanish, while the diagonal ones converge to finite
values.

We see that all components of s≈ are only very weakly k-
dependent on the relevant [0, kc] range, with the overall variations
of the diagonal ones being at most of order 4%. Consistently, the
diagonal (respectively, off-diagonal) components are very well fitted
by quadratic (respectively, quartic) expressions with characteristic k
values that share a common order of magnitude k∗ ≃ 5. We show

FIG. 11. Non-zero elements of s≈ (k) [Eq. (59)] vs k, for k < kc = 1.12, as measured
in L = 84 systems. (Inset) A zoomed-in view of the off-diagonal components, s12
and s34.
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in Appendix B that these characteristic k values are structural prop-
erties expressible analytically as pair averages of combinations of rij,
U′ij, and U′ij.

Non-locality corrections to direct elasticity are thus of relative
order (kc/5)2, which justifies directly our choice of a kc value of
order 1.

B. Average indirect elasticity tensor
We have restricted our attention to ω values that lie much

below the gap ωg ≃ 1.7 (for kc = 1.12) of the NP spectrum. This
guarantees that, like s≈ , z≈ is real-valued. It is hence also symmet-
ric and of the same block-diagonal form as in Eq. (59). Moreover,
in the low-frequency acoustic domain, we may expand it in powers
of ω2,

z≈ (ω, k) = z≈
(0)(k) + ω2

z≈
(1)(k) + O(ω4), (61)

and only retain the first two terms.
The non-zero components of z≈

(0)(k) and z≈
(1)(k), as com-

puted in L = 84 systems, are plotted in Figs. 12 and 13, respec-
tively. We have checked that these data are indistinguishable
from those obtained with L = 168. These figures show that both
z≈
(0)(k) and z≈

(1)(k) exhibit similar structures, which are described as
follows.

First, for both i = 0 and 1, z(i)22 and z
(i)
33 are nearly identical,

systematically larger than the other z(i)ab , and have a finite k→ 0 limit.
Second, all four other fields vanish in the k→ 0 limit, which can

be understood as follows.
We show in Appendix C that the fourth stress component ζ k̂

n k 4,
which is present due to the local breaking of rotational invariance,
vanishes when k = 0 due to the condition of mechanical equilibrium
that is the defining property of any reference inherent state. This
reflects the invariance of the average medium under global rotations.

FIG. 12. Non-zero elements of z(0)
≈ (k) [Eq. (61)] vs k, for k < kc = 1.12, as mea-

sured in L = 84 systems. (Inset) A zoomed-in view of the small components, z(0)
34

and z
(0)
44 .

FIG. 13. Non-zero elements of z≈
(1)(k) [Eq. (61)] vs k, for k < kc = 1.12, as

measured in L = 84 systems. (Inset) A zoomed-in view of the small components,
z
(1)
34 and z

(1)
44 .

It entails that, at any frequency, both z34(ω, k) and z44(ω, k) vanish
in the k→ 0 limit.

Besides, for a power-law repulsive pair potential, such as used

here, ζ k̂
n k 1 and ζ k̂

n k 4 are proportional, a relation that is also nearly

verified by Lennard-Jones glasses and Roskilde systems.39 In such a

case, the pressure component ζ k̂
n k 1 and hence z11(ω, k) and z12(ω, k)

also vanish for k = 0.
Third and finally, all the curves of Figs. 12 and 13 are essen-

tially indistinguishable from their fits (not shown) by the analyti-
cal expression C0 − C1 e−k2ℓ2

/2, where C0 = C1, except for z
(i)
22 and

z
(i)
33 . Moreover, the associated lengths (ℓ) range typically between

0.5 and 1.5, comparable with the estimate previously obtained
by inspection of the NP response to pair dipoles, and entails
that the average elasticity tensor ⟨Zαβκχ(ω, r0, r0 + r)⟩ is highly
local.

It follows from the above that the constant and k2 terms suf-
fice to fit z(0)≈ (k) and z(1)≈ (k) up to k ≳ 0.5, i.e., much beyond
the acoustic k-range. The average indirect elasticity tensor then
appears to assume the form of a frequency-dependent second gradient
kernel.40

C. Sound speed estimates
The most naive approximation we may construct for the exact

wave equation (26) consists in replacing the operators Φ†Φ, Φ†HΦ,
and Φ†Q(ω)Φ by their ensemble averages. Since ⟨Φ†Φ⟩ is the iden-
tity matrix, we then obtain a generalized Navier equation for an
effective continuum with the elasticity tensor, ⟨S≈ ⟩ − ⟨Z≈ ⟩.

In view of Eqs. (50), (55), and (58), the average kernel
⟨Φ†Q(ω)Φ⟩ is diagonal in both wavevector and polarization so
that its coefficients can be split into the longitudinal and transverse
ones,
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⟨Q̂LL
k,k(ω)⟩ ≡ ⟨Q̂k,k̂,k,k̂(ω)⟩ =

k2

ρ
zLL(ω, k),

⟨Q̂TT
k,k(ω)⟩ ≡ ⟨Q̂k,ϑ̂,k,ϑ̂(ω)⟩ =

k2

ρ
zTT(ω, k),

(62)

with

zLL ≡
1
2
(z11 + z12 + z21 + z22),

zTT ≡
1
2
(z33 − z34 − z43 + z44).

(63)

The average direct elasticity kernel ⟨Φ†HΦ⟩ is also diagonal and
exhibits exactly the same form with z replaced by s.

Within this approximation, and using the second order expan-
sion [Eq. (61)] for z≈ (ω, k), the acoustic dispersion relations
read

ω2 = k2

ρ
(spp − z(0)pp ) − ω

2 k2

ρ
z
(1)
pp (64)

with p = L,T, and thus, the sound speeds are estimated as

(ceff
p )

2
= 1
ρ

spp − z(0)pp

1 + k2

ρ z
(1)
pp

. (65)

As we saw above, the coefficients of s≈ , z(0)≈ , and z(1)≈ are well approx-
imated, in the whole P domain, by quadratic functions of k. The cur-
vatures are negative for the coefficients of s≈ and negative for those of

z(0)≈ and z(1)≈ . It follows that the above sound speeds are both of the

form ceff
p ≃ ceff (0)

p + ceff (1)
p k2, with ceff (1)

p < 0. The average medium
approximation therefore predicts that, in the large wavelength limit,
sound speeds decrease with increasing k. This k-dependence is a
signature of non-local and retarded effects.

In Table I, we compare the k = 0 sound speed values in this
approximation (third column) with the Born approximation and
the P (Sec. III) and full problem values. For both the longitudi-
nal and transverse sound speeds, the average medium approxi-
mation we constructed above is seen to account for 70% of the
mismatch between the full problem and the Born approxima-
tion. This is to be compared with the 4% correction obtained
when solving propagation in the uncoupled P subspace. There-
fore, this approximation, although quite rough, confirms that non-
affinity effects result overwhelmingly from the coupling with the NP
subspace.

TABLE I. Long-wavelength limit of sound speeds for various approximations and for
the full problem.

Born P problem Average medium Full

cL(k = 0) 8.6 8.58 8.2 8.04
cT(k = 0) 4.41 4.37 3.53 3.17

D. Origin of non-affine corrections to the average
elasticity tensor

The question naturally arises of whether the above indirect
elastic correction originates primarily from the highly localized NP
modes, akin to soft zones that lie close above the gapωg (see Sec. IV).
For this purpose, we consider z≈ (ω, k∣Ω), the contribution to z≈ (ω, k)
arising only from the NP modes of frequencies ωn <Ω,

z≈ (ω, k∣Ω) = 1
V
⟨∑
ωn<Ω

∼ζ
k̂
n k ∼ζ

k̂∗
n k

ω2
n − ω2 ⟩. (66)

We restrict our attention to its value for ω = k = 0, since it is
z(0)≈ (ω = 0) which provides the main correction to the static elas-

tic moduli. Only z(0)22 (0∣Ω) and z
(0)
33 (0∣Ω) are non-zero, and they are

nearly indistinguishable. The former, displayed in Fig. 14, turns out
to increase very regularly over the whole extent of the NP spectrum,
clearly ruling out the idea that it would be controlled selectively by
the few softer, localized modes. On the contrary, its very regular
growth suggest that all modes, hence all scales smaller than k−1

c , and
all regions of space, contribute comparably.

This conclusion is further substantiated by the examination of
z≈ in the time domain, which is computed as detailed in Appendix
D. The two non-zero components of z≈ (t, k = 0) are displayed in
Fig. 15: they exhibit a very sharp peak at an unexpectedly small time
tpeak ≃ 0.1 (in LJ units). This peak is followed by a few, highly damped
oscillations.

The interpretation of these features is straightforward.
Let us recall indeed that z≈ (t) is determined by Q(t) =
Hp,npGnp,np(t)Hnp,p [Eq. (25)], which can be understood as the
force generated, in P, at time t by the displacement Gnp,npHnp,p,
which is the NP response to the force impulse Hnp,p applied at time
t = 0. Following this impulse, each atom is kicked by a force impulse
out of its equilibrium position and starts oscillating in its cage. The
main peak of z≈ (t) corresponds to the time at which atoms reach

FIG. 14. Partial contribution to z22(ω = 0, k = 0) arising from NP modes of
frequencies ωn < Ω as a function of Ω.
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FIG. 15. Time evolution of the non-zero components of z≈ (t, k = 0) as averaged

in L = 84 systems (the L = 168 data are identical).

on average the maximum displacement within their cage. The very
strong damping indicates that the back signal into the P space is
washed out, after a fraction of an oscillation, by destructive inter-
ferences due to the local disorder. This further documents that the
average NP response, hence the correction to macroscopic moduli,
adds up rather democratically contributions from all atoms.

VII. SUMMARY AND DISCUSSION
In this work, we have shown that the projection formalism

permits us to recast the microscopic, discrete equations governing
sound propagation in an amorphous solid as an acoustic scattering
problem in an elastic continuum.

This formalism relies on the introduction of a cutoff kc that
separates long and short wavelengths, which defines two associated
subspaces, P and NP, respectively. The key observation that justi-
fies the relevance of this separation is that the P spectrum remains
quasi-linear (Debye-like) over the whole extent of its k domain (k
< kc), as long as kc remains smaller than a rather large finite value
kmax

c (≃1), corresponding to a lengthscale (≃6) of the order of a few
interatomic distances only. Under this condition, the sound speeds
are kc-independent and equal to their Born values. We thus find that
there exists a natural spatial scale 2π/kmax

c of separation between
long and short wavelengths such that, for kc = kmax

c , (i) the P sub-
space is a very weakly inhomogeneous elastic continuum, while (ii)
the NP subspace concentrates all non-affine atomic motions, and
(iii) P wave scattering is essentially due to the coupling with the
NP subspace, the eigenstates of which play the role of dynamical
scatterers.

The most striking feature of the NP spectrum is the presence of
a low frequency gap, the existence of which can be understood as a
necessary consequence of the P–NP separation. Indeed, reconstruct-
ing the full problem by recoupling the P and NP subspaces inevitably
leads to hybridization-induced downward shifts of the eigenfrequen-
cies of the low lying NP modes. The stability of the full problem

demands the shifted eigenvalues to be positive, hence introduces
constraints on the NP eigenvalues.

To illustrate how the full problem stability requirement con-
strains the gap value, let us consider a schematic problem in which
one low NP eigenmode only, ψNP of frequency ωNP, is recoupled
with the P problem. Approximating the P eigenstates by plane waves
φk,a of eigenfrequencies ωk,a, the Hessian of the recoupled problem
reads

(67)

The upper left block is the P subspace, diagonal Hessian matrix; the
coupling coefficients are bk,a = φ†

k,aHψNP calculated in Eq. (48).
Denoting b = {bk,a} as the associated column vector, the pos-

itive definiteness of the above matrix is equivalent to that of both
the upper block A and its Schur complement (ωNP)2 −b† A−1b. The
first condition holds by definition, and the second, since the Schur
complement is a scalar, reduces to the following inequality:

(ωNP)2 > b† A−1b =∑
k,a

∣bk,a∣2

(ωk,a)
2

≃ ∫
cLkc

0
dω

ω
2πρ
⟨N∣bL(ω)∣2

ω2

RRRRRRRRRRR
ω⟩

+∫
cTkc

0
dω

ω
2πρ
⟨N∣bT(ω)∣2

ω2

RRRRRRRRRRR
ω⟩, (68)

where we have considered that the P spectrum is the Debye one and
with ρ = N/L2 being the mass density. Since [see Eq. (48)] |bL,T(ω)|2

∼ k2/N, it follows that ωNP ≳ C kc, with C being a constant.
This argument shows that the stability of the full problem

constrains ωg to be finite and agrees with our observation (see
the inset of Fig. 4) that ωg scales as kc, which supports that
the NP spectrum extends as much as allowed by the stability
requirement.

Besides we found that, when projection is implemented for the
natural separation scale 2π/kmax

c , the gap turns out to lie close to
the Boson peak frequency. Since we found ωg ≈ 2kc, it follows that
2π/kmax

c ≈ 4π/ωBP. This value is in remarkable agreement with the
Boson peak lengthscale (see Refs. 20 and 21 and references therein),
2πcT/ωBP, with cT (here ≈3.17) being the transverse sound speed,
which was proposed to reflect the size of elastic heterogeneities and
was recently found to match the core size of quasi-localized exci-
tations.22 What our paper achieves in this regard is to establish
explicitly that the Boson peak lengthscale does separate a weakly
dispersive elastic continuum from short range heterogeneities
and thus constitutes a natural coarse-graining lengthscale for
glasses.
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The projection formalism allows us to reconsider the assump-
tions usually made in defect theories. Indeed, it shows that (i) the
scattering dynamical “defects” are the eigenstates of the NP problem;
(ii) their spectrum is bounded below by a finite gap, of the order of
the Boson peak frequency: this directly contradicts the assumption
made in defect theories that the spectrum of scatterers extends down
to zero frequency.1 Besides (iii), as discussed in Sec. IV, only a small
fraction of the eigenstates are highly localized, and except for the
lowest frequency ones, they are multi-centered.

These results lead us to caution against attempts to access the
scatterers on the sole basis of the analysis of the localized eigenstates
of the full problem. Within the projection formalism, the full prob-
lem eigenstates, indeed, emerge from the same recoupling mecha-
nisms that produces scattering in the first place. They are not the
cause of scattering, but just one of its consequences, hence pro-
vide direct information neither about the structure nor about the
frequency of the scatterers.

As already mentioned, acoustic wave scattering is controlled
by the indirect phonon–phonon coupling mediated by propagation
within the NP subspace. This coupling, which acts within the P
subspace, gives rise to an effective scattering potential that can be
written explicitly in terms of the Hessian matrix of the microscopic
problem. We are able to write explicitly the complete scattering
operator [Φ†HΦ −Φ†Q(ω)Φ] as the sum of a direct and an indi-
rect contributions. Note that this decomposition demonstrates that
the effects of structural disorder cannot be expressed via the intro-
duction of an additive, frequency-independent term in the full Hes-
sian of an ordered system, as assumed in some phenomenological
approaches.

The analysis of Eq. (26) then permits us to recast the wave equa-
tion for sound propagation in the full problem into a Navier-like
continuum equation, yet with a generalized elasticity tensor that is
not only retarded, since the scatterers are dynamical objects, but also
non-local.

In order to evaluate the importance of non-locality effects, we
have examined in detail the average generalized elasticity coefficients
in the low frequency, acoustic range, where ω≪ ωg . We found that
the average elasticity coefficients, which define the mean effective
medium, are quasi-local yet incorporate second gradient elasticity
contributions associated with a small, but finite lengthscale, compa-
rable with the interatomic distance. Estimating, on this basis, the first
order corrections to the zeroth order Born sound speeds yields quite
satisfactory results:

(i) In the k → 0 limit, it accounts for ≃70% of the mismatch
between the full problem values and their Born approxima-
tions.

(ii) It correctly predicts, as resulting from both non-locality and
retardation, the numerically observed downward curvatures
of the cL ,T(k) curves.7,10

The above results put us in a position to return to the impor-
tant issue, central to fluctuating elasticity models,2 whether or not,
when dealing with acoustic scattering, it is legitimate to repre-
sent an amorphous solid by an inhomogeneous elastic continuum
with local and (implicitly) static elastic moduli. Previous numeri-
cal efforts to access such local moduli41–44 have proceeded by the
inspection of the linear response of small regions isolated from the

surrounding medium. This does permit us to define local mod-
uli but leaves open the question of how to recouple their val-
ues into an elastic continuum compatible with the microscopic
dynamics.

Here, we have been able to rigorously reduce the micro-
scopic acoustic dynamics of the discrete solid to the wave equa-
tion for an inhomogeneous elastic continuum. However, this con-
tinuum is non-standard, its elasticity tensor being both non-local
and retarded, two features that, as we saw, are responsible for
the k-dependence of sound speeds. The question then naturally
arises of the role played by these features in sound damping and
of whether they can be neglected, as done in fluctuating elasticity
models.

For this purpose, we first note that, in the acoustic domain,
due to the low-frequency gap ωg of the NP spectrum, it is legiti-
mate to expand generalized elasticity coefficients in powers of the
small parameter (ω/ωg)2. The lowest order, adiabatic approxima-
tion of this expansion amounts to assuming that the NP response
is instantaneous, hence to setting the lhs’s of Eqs. (22b) and (23b)
to zero. Integrating Eq. (22) after this change permits us to com-
pletely neglect retardation effects while retaining the non-locality in
full.

This adiabatic approximation amounts to replacing Z(ω; k, k′)
by its ω = 0 expression. Under this assumption, non-local effects
can then be eliminated by assuming Z(0; k, k′) to be independent
of k + k′, i.e., to assume its value for k + k′ = 0. Note that, in con-
trast with the elimination of retardation effects, this latter approx-
imation does not result from a controlled expansion in a small
parameter.

To test these two approximation schemes, we numerically inte-
grate the resulting wave equations. These integrations being quite
resource-intensive,45 we are limited to use system sizes of at most
L = 168. As a consequence, since size effects have been shown to
arise for k about six times 2π/L, the accessible k range is limited
downwards to k ≳ 0.2. We compare in Fig. 16 the resulting damp-
ing coefficients with those of the full problem (black), which scale

FIG. 16. Damping coefficients ΓL,T/k3 vs wavevector for longitudinal (dashed line
with diamonds) and transverse (solid line with circles) waves in the full problem
[black (from Ref. 10], in the uncoupled P problem (green), and in the adiabatic
(blue) and local adiabatic (red) approximations (see the text).
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as ∝−k3 ln k in a low-k range down to k ≃ 0.05.10 We also plot as
a point of comparison the corresponding quantities for the uncou-
pled P problem. These data show that while non-affinity has a con-
trolling influence on damping, the sole neglect of retardation (blue
curves) yields ΓL,T values that are smaller by ≈30% but seem to
track the full problem ones over the (limited) accessible k-range.
In contrast, when both retardation and non-locality are neglected
(red curves), the ΓL,T curves not only lie further away below the
full problem data but are increasingly so as k decreases, suggesting
the possibility of a different scaling, an issue that will, of course,
demand being able to implement the above-defined approxima-
tions in much larger systems, a task out of the scope of the present
work.

This latter observation shows that non-locality has a strong
influence on sound propagation. This might appear paradoxi-
cal in view of the smallness of the associated lengthscale, of the
order of an interatomic distance. However, it gains meaning when
one notes that our formalism provides a controlled way to per-
form the program proposed by Barrat and co-workers41,43,44 to
split an amorphous solid into atomic patches. Recoupling the
P and NP problems, i.e., the large and small scale dynamics,
indeed amounts to patching up together “boxes” of size ≃2π/kc.
In real space, this would necessarily introduce a small length asso-
ciated with the width of atomic boundaries binding these boxes
together. On this basis, we surmise that the non-standard Rayleigh
scaling of sound damping results from the compatibility con-
ditions introduced by the re-embedding of each patch into its
environment.

In conclusion, we have built here a framework that, using
the projection formalism, permits us to rigorously separate an
amorphous medium into an elastic continuum and a set of states
that subsume the effects of small-scale structural disorder and
act as dynamical scatterers for the phonons of the continuum.
After validating in detail the relevance of this approach to a pair-
wise interaction system, we showed that the small scale disorder
effects can be fully reduced to the existence, in the Navier-like
wave equation of the continuum, of an indirect elasticity tensor
that is both retarded and non-local. We have shown that both
retardation and non-locality have non-negligible effects on sound
speed dispersion and on the magnitude of sound attenuation. The
question of the respective impacts of these two features on the
large wavelength scaling of sound damping remains open and will
be the subject of future investigations. Other issues of interest
include (i) assessing how preparation history affects small-scale
non-affinity and thus influences acoustic scattering and (ii) exam-
ining whether this description extends to systems such as covalent
glasses.
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APPENDIX A: NUMERICAL MODEL
Simulations are performed using the 2D binary soft sphere

model of Ref. 10, which comprises large (L) and small (S) particles

of equal masses m = 1, radii RL = 0.5 and RS = 0.3, in a number
ratio NL/NS ≃ (1 +

√
5)/4. The simulation cell is square, periodic,

of dimension L × L, and the number density ρ = N/L2 = 1.6. The
potential is pairwise, with the contribution of any pair of atoms i
and j being of the form

Vij(rij) = 4ϵij(
σij

rij
)

12

+ αij(
rij

σij
)

4

+ βij(
rij

σij
)

2

+ γij, (A1)

if the interatomic distance rij < rc
ij ≡ 2σij, and V ij(rij) = 0 otherwise.

Here, σij ≡Ri + Rj, ϵLL = ϵSS = 0.25, and ϵLS = 0.17, and the parameters
αij, βij, and γij are chosen so that V ij vanishes at the second order at
the interaction cutoff rc

ij.

APPENDIX B: COMPUTATION OF THE AVERAGE
DIRECT ELASTICITY TENSOR

From Eq. (40), we write

Ŝαβκχ(k, k) =∑
i
∑
j>i

Mακ
ij rβijr

χ
ij [j0(

k ⋅ rij

2
)]

2

(B1)

and single out the contribution of each pair,

Sαβκχij ≡Mακ
ij rβijr

χ
ij

= r2
ij U′′ij nαij nβij nκij nχij + rij U′ij tαij nβij tκij nχij (B2)

with tij = (−ny
ij, nx

ij). We need to write the above rank-4 tensor as a
4× 4 matrix in the tensor basis of Eq. (56), yet based on the Cartesian
vectors ex, ey. To do so, we first write the components of the tensors
n n and t n in this basis

nαij nβij =
1√
2

RRRRRRRRRRRRRRRRRRRRRR

1

cos 2θij

sin 2θij

0

tαij nβij =
1√
2

RRRRRRRRRRRRRRRRRRRRRR

0

− sin 2θij

cos 2θij

−1

(B3)

from which we deduce the 4 × 4 matrix forms of the rank-4 tensors
A = n n n n and B = t n t n,

A≈ =
1
2

⎛
⎜⎜⎜⎜⎜
⎝

1 cos 2θij sin 2θij 0

cos 2θij
1
2(1 + cos 4θij) 1

2 sin 4θij 0

sin 2θij
1
2 sin 4θij

1
2(1 − cos 4θij) 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

(B4)

and

B≈ =
1
2

⎛
⎜⎜⎜⎜⎜
⎝

0 0 0 0

0 1
2(1 − cos 4θij) − 1

2 sin 4θij sin 2θij

0 − 1
2 sin 4θij

1
2(1 + cos 4θij) − cos 2θij

0 sin 2θij − cos 2θij 1

⎞
⎟⎟⎟⎟⎟
⎠

. (B5)

The calculation of Ŝ≈ (k, k) then proceeds by considering, for
each pair, the matrix S≈ij

= r2
ij U′′ij A≈ + rij U′ij B≈ and then computing

[see Eq. (B1)] each component of

J. Chem. Phys. 153, 144502 (2020); doi: 10.1063/5.0019964 153, 144502-18

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Ŝ≈ (k, k) =∑
i
∑
j>i
(r2

ij U′′ij A≈ + rij U′ij B≈ ) [j0(
k ⋅ rij

2
)]

2

. (B6)

This tensor field is then averaged over configurations and put in
radial form, i.e., in the tensor basis [Eq. (56)], using the matrix
transform23,37

˚̂S≈ (k, k) = R≈
(2)(θ) ⋅ Ŝ≈ (k, k) ⋅ R≈

(2)(−θ) (B7)

with

R≈
(2)(θ) =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 cos 2θ sin 2θ 0

0 − sin 2θ cos 2θ 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

. (B8)

When ensemble-averaging the Cartesian form of Ŝ≈ (k, k), all
contributions involving sines in tensors A≈ and B≈ vanish by sym-
metry. Besides, if we retain only the first two terms in the Taylor
expansion of j2

0(x) = 1 − x2

3 + O(k4), all the contributions∝ cos 4θij

also vanish. It follows that s22 − s33 = O(k4), i.e., vanishes up to the
second order.

Without loss of generality, we can take k = kex to compute
s11(k). At the second order in k, it yields

s
11(k) = 1

2V
⟨∑

i
∑
j>i

r2
ij U′′ij [j0(

k ⋅ rij

2
)]

2

⟩

≃ 1
2V
⟨∑

i
∑
j>i

r2
ij U′′ij ⟩ −

k2

24V
⟨∑

i
∑
j>i

r2
ij U′′ij (rx

ij)2⟩. (B9)

Thanks to isotropy, replacing (rx
ij)2 by (ry

ij)
2 does not change the

value of the last average. Hence, we can equivalently write

s
11(k) ≃ 1

2V
⟨∑

i
∑
j>i

r2
ij U′′ij ⟩ −

k2

48V
⟨∑

i
∑
j>i

r4
ij U′′ij ⟩. (B10)

Finally, s11 ≃ C[1 − (k/k∗)2 +⋯] with the characteristic wavevector
amplitude,

(k∗11)2 = 24
⟨∑i∑j>i r2

ij U′′ij ⟩

⟨∑i∑j>i r4
ij U′′ij ⟩

. (B11)

We can perform the same calculation for s22 and s33 that, at second
order, are identical and find

(k∗22)2 = (k∗33)2 = 24
⟨∑i∑j>i r2

ij U′′ij + rij U′ij⟩

⟨∑i∑j>i r4
ij U′′ij + r3

ij U′ij⟩
, (B12)

while for s44,

(k∗44)2 = 24
⟨∑i∑j>i rij U′ij⟩

⟨∑i∑j>i r3
ij U′ij⟩

. (B13)

In the case of a power-law potential Uij ∝ 1/rn
ij , these

quantities are exactly equal to one another and reduce to
24 ⟨∑i∑j>i r−n

ij ⟩/⟨∑i∑j>i r2−n
ij ⟩. For our system, we find the associ-

ated k∗ ≃ 5.5.

APPENDIX C: VANISHING OF ζ
nk

COMPONENTS
AT k = 0

The field ζ
n k

defined in Eq. (49) can be expressed as the scalar

product

ζαβn k =∑
i
ψκn i (Ξαβκk i )

∗

, (C1)

which is the nth NP component of the discrete rank-3 tensor field,

Ξαβκk i ≡ −∑
j

Mακ
ij rβij

eik⋅ri − eik⋅rj

ik ⋅ rij
. (C2)

Let us split the indices of the above into the pair (α, β) and κ. Thus,
for a given (α, β), Mακ

ij rβij can be viewed as the components of the vec-

tor M
ij
⋅ ϵ(αβ) ⋅ rij, with ϵ(αβ)κχ = δκα δχβ the unit strain of orientation

(α, β). Ξαβκk i then appears to be a force field associated with a strain

of orientation ϵ(αβ), which is modulated by a pair- and k-dependent
amplitude.

For each pair ij, using Eq. (37), we write explicitly

Mακ
ij rβij = rij U′′ij nαij nβij nκij + U′ij tαij nβij tκij. (C3)

We now fix κ so that the above rank-3 tensors can be viewed as
rank-2 tensors for the indices (α, β), which we may then write as
a dimension-4 vector, in the tensor basis, analogous to Eq. (56), but
based on the Cartesian basis vectors ex, ey. We thus obtain for Mακ

ij rβij
the component vector,

Mακ
ij rβij =

1√
2

RRRRRRRRRRRRRRRRRRRRRR

rij U′′ij nκij
rij U′′ij nκij cos 2θij −U′ij tκij sin 2θij

rij U′′ij nκij sin 2θij + U′ij tκij cos 2θij

−U′ij tκij

. (C4)

It now appears that the fourth vector component (associated with
indices αβ, for fixed κ) of Ξαβκk i is

Ξ4κ
k i =

1√
2
∑

j
U′ij tκij

eik⋅ri − eik⋅rj

ik ⋅ rij
. (C5)

For k = 0, this reduces to Ξ4κ
0 i = − 1

√
2 ∑j U′ij tκij = − 1

√
2
(−f y

i , f x
i ) with

f
i
=∑

j
U′ij nij = 0, (C6)

the resulting force on atom i in the reference inherent state. Mechan-
ical balance therefore implies the k = 0 value of Ξ4κ

0 i = 0.

J. Chem. Phys. 153, 144502 (2020); doi: 10.1063/5.0019964 153, 144502-19

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The first vector component of Ξαβκk i is

Ξ1κ
k i = −

1√
2
∑

j
rijU′′ij nκij

eik⋅ri − eik⋅rj

ik ⋅ rij
, (C7)

which reduces to Ξ1κ
0 i = 1

√
2 ∑j rijU′′ij nκij when k = 0. For the power-

law repulsive potential, since U′′ij ∝ U′ij/rij, up to a fixed, pair-
independent factor, we have Ξ1κ

0 i ∝ 1
√

2 ∑j U′ij nκij = f
i
= 0. Since

such a proportionality is closely verified by Roskilde systems, espe-
cially LJ potentials, we expect the above equation to hold for these
glasses as well.

APPENDIX D: COMPUTATION OF THE INDIRECT
ELASTICITY TENSOR

As in Appendix C, we write the rank-3 tensor Ξαβκk i as Ξa κ
k i with

a = 1, . . .4. For any given a, Ξa κ
k i is a discrete vector field and [see

Eq. (C1)]

ζa
n k = Ξa †

k ψn. (D1)

Let us recall that the four-vector representation of rank-2 tensors
used here is based on the Cartesian basis (ex, ey). In this representa-
tion, the indirect elasticity tensor reads

Ẑab(ω, k, k′) =∑
n

ζa
n k ζ

b∗
n k′

ω2
n − (ω + iη)2

= Ξa †
k Gnp,np(ω)Ξb

k′ . (D2)

Using this expression, the average indirect elasticity tensor
may be immediately written in the time domain: ⟨Ẑab(t, k, k)⟩
= ⟨Ξa †

k Gnp,np(t)Ξb
k⟩. Note that since Ξa∗

k = Ξa
−k [Eq. (C2)], and

since Gnp,np(t) is real, ⟨Ẑab(t, k, k)⟩, being symmetric under inver-
sion (k→ −k), is also real-valued. After numerical integration is this
Cartesian representation, the tensor ⟨Ẑab(t, k, k)⟩ is transformed
into its radial form using Eq. (B7).

APPENDIX E: RETARDED INDIRECT COUPLING
AND NP RESPONSE TO A DIPOLE

Let us define an atomic scalar field ρ(ij) with the value

ρ(ij)l = δil − δjl (E1)

on atom l. For any vector f , the field ρ(ij) f is the discrete vector field
corresponding to the force dipole ±f on the pair (i, j). The response
of the NP subspace to such a dipolar field

unp(ω) = Gnp,np(ω)(1 −P)ρ(ij) f (E2)

is linear in the components of f . Hence, it can be written as

unp
l (ω) = Γ

(ij)
l
(ω) ⋅ f , (E3)

where Γ(ij)
l
(ω) is a Green function describing the NP response at

any point l to a source dipole on the pair (i, j). Let us recall that the

dot denotes the contraction over Cartesian indices. Γ(ij)
l
(ω) reads

explicitly

Γ(ij) αβl = [Gnp,np(ω)(1 −P)]αβ
lm
ρ(ij)m . (E4)

The force field induced, in NP, by a P plane wave displace-
ment φk,a is −Hnp,pφk,a = −(1 −P)Hφk,a. It is the NP projection
of −Hφk,a, which can be written as a sum of dipoles,

−Hφk,a =∑
i<j

ρ(ij)f (ij)
k,a

, (E5)

where for each pair (i, j),

f (ij)
k,a
= − 1√

N
M

ij
⋅ a (eik⋅rj − eik⋅ri) (E6)

is the force exerted by j onto i. Note that the force exerted by i on j is
f (ji)

k,a
= −f (ij)

k,a
, as required by Newton’s second law.

With these notations, we may now write

Gnp,np(ω)Hnp,pφk,a = G
np,np(ω)(1 −P)Hφk,a

= −∑
i<j

Gnp,np(ω)(1 −P)ρ(ij)f (ij)
k,a

, (E7)

and then using Eqs. (E2) and (E3),

(Gnp,np(ω)Hnp,pφk,a)l
= −∑

i<j
Γ(ij)

l
(ω) ⋅ f (ij)

k,a
(E8)

Observe now that when computing the retarded coupling,

Q̂k,a,k′ ,a′(ω) = φ†
k,a Q(ω)φk′ ,a′

= φ†
k,aH(1 −P)G

np,np(ω)Hnp,pφk′ ,a′ , (E9)

we can remove the (1 −P) appearing in the last expression because,
by construction, Gnp,np(ω)Hnp,pφk′ ,a′ lies in the NP subspace. Using
Eqs. (E5) and (E8), we then find

Q̂k,a,k′ ,a′(ω) = (Hφk,a)
†
Gnp,np(ω)Hnp,pφk′ ,a′

=∑
l
∑
m≠l
∑
i<j
(f (lm)

k,a
)
∗

⋅ Γ(ij)
l
(ω) ⋅ f (ij)

k′ ,a′
. (E10)

Finally, after reorganizing indices, and using the relation f (lm)
k,a

= −f (ml)
k,a

, we obtain

Q̂k,a,k′ ,a′(ω) =∑
l<m
∑
i<j
(f (lm)

k,a
)
∗

⋅ (Γ(ij)
l
(ω) − Γ(ij)

m
(ω)) ⋅ f (ij)

k′ ,a′
, (E11)

which, after using the explicit expression (E6) for the force dipoles,
becomes
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Q̂k,a,k′ ,a′(ω) =
1
N ∑l<m

∑
i<j

a ⋅M
ijlm
(ω) ⋅ a′ (e−ik⋅rm − e−ik⋅rl)

× (eik′ ⋅rj − eik′ ⋅ri) (E12)

with

M
ijlm
(ω) =M

lm
⋅ (Γ(ij)

l
(ω) − Γ(ij)

m
(ω)) ⋅M

ij
. (E13)

It is important to note that, in the above expression for Q̂k,a,k′ ,a′(ω),
each of the last two factors vanishes linearly with k or k′ in the long
wavelength limit. This enables us to rewrite Q̂k,a,k′ ,a′(ω) as follows:

Q̂k,a,k′ ,a′(ω) =
1
N ∑l<m

∑
i<j

a ⋅M
ijlm
(ω) ⋅ a′ (k ⋅ rlm) (k

′ ⋅ rij)

× e−ik⋅rm − e−ik⋅rl

ik ⋅ rlm

⎛
⎝

e−ik′ ⋅rj − e−ik′ ⋅ri

ik′ ⋅ rij

⎞
⎠

∗

(E14)

since each of the last two fractions is well-behaved at all k and k′.
Using N = ρV, this expression can finally be recast as Eq.(50), i.e.,

Q̂k,a,k′ ,a′(ω) =
1
ρV

aαkβa′κk′χ Ẑαβκχ(ω, k, k′), (E15)

with

Ẑαβκχ(ω, k, k′) =∑
l<m
∑
i<j

Mακ
ijlm(ω) rβlm rχij

e−ik⋅rm − e−ik⋅rl

ik ⋅ rlm

×
⎛
⎝

e−ik′ ⋅rj − e−ik′ ⋅ri

ik′ ⋅ rij

⎞
⎠

∗

. (E16)
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