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We investigate the stability of plane wave solutions of equations describing quantum particles interacting with a complex environment. The models take the form of PDE systems with a non local (in space or in space and time) self-consistent potential; such a coupling lead to challenging issues compared to the usual non linear Schrödinger equations. The analysis relies on the identification of suitable Hamiltonian structures and Lyapounov functionals. We point out analogies and differences between the original model, involving a coupling with a wave equation, and its asymptotic counterpart obtained in the large wave speed regime. In particular, while the analogies provide interesting intuitions, our analysis shows that it is illusory to obtain results on the former based on a perturbative analysis from the latter.

Introduction

This work is concerned with the stability analysis of certain solutions of the following Hartree-type equation

iB t U `1 2 ∆ x U " γ ˆσ1 ‹ x ˆRn σ 2 Ψ dz ˙U, (1a) 
´∆z Ψ " ´γσ 2 pzq `σ1 ‹ x |U | 2 ˘pxq (1b) endowed with the initial condition

U ˇˇt"0 " U Init , (2) 
and of the following Schrödinger-Wave system:

iB t U `1 2 ∆ x U " γΦU, ( 3a 
)
1 c 2 B 2 tt Ψ ´∆z Ψ " ´γσ 2 pzqσ 1 ‹ |U | 2 pt, xq, (3b) 
Φpt, xq " ¨Td ˆRn σ 1 px ´yqσ 2 pzqΨpt, y, zq dz dy,

where γ, c ą 0 are given positive parameters, completed with

U ˇˇt"0 " U Init , Ψ ˇˇt"0 " Ψ Init , B t Ψ ˇˇt"0 " Π Init . ( 4 
)
The variable x lies in the torus T d , meaning that the equations are understood with p2πq´periodicity in all directions. In (3b), the additional variable z lies in R n and, as explained below, it is crucial to assume n ě 3. For reader's convenience, the scaling of the equation is fully detailed in Appendix A; for our purposes the God-given form functions σ 1 , σ 2 are fixed once for all and the features of the coupling are embodied in the parameters γ, c. The system (1a)-(1b) can be obtained, at least formally, from (3a)-(3c) by letting the parameter c run to `8, while γ is kept fixed. By the way, system (1a)-(1b) can be cast in the more usual form

iB t U `1 2 ∆ x U " ´γ2 κ `Σ ‹ x |U | 2 ˘U, t P R, x P R d . ( 5 
)
where 1κ " ˆRn σ 2 pzqp´∆ z q ´1σ 2 pzq dz " ˆRn |p σ 2 pξq| 2 |ξ| 2 dξ p2πq n ą 0 and Σ " σ 1 ‹ σ 1 .

(

) 6 
Letting now Σ resemble the delta-Dirac mass, the asymptotic leads to the standard cubic non linear Schrödinger equation

iB t U `1 2 ∆ x U " ´γ2 κ|U | 2 U. ( 7 
)
in the focusing case. These asymptotic connections can be expected to shed some light on the dynamics of (3a)-(3c) and to be helpful to guide the intuition about the behavior of the solutions, see [START_REF] Goudon | Numerical investigation of stability issues for quantum dissipative systems[END_REF][START_REF] Goudon | On quantum dissipative systems: ground states and orbital stability[END_REF].

The motivation for investigating these systems takes its roots in the general landscape of the analysis of "open systems", describing the dynamics of particles driven by momentum and energy exchanges with a complex environment. Such problems are modeled as Hamiltonian systems, and it is expected that the interaction mechanisms ultimately produce the dissipation of the particles' energy, an idea which dates back to A. O. Caldeira and A. J. Leggett [START_REF] Caldeira | Quantum tunnelling in a dissipative system[END_REF]. These issues have been investigated for various classical and quantum couplings, and with many different mathematical viewpoints, see e. g. [START_REF] Bach | Return to equilibrium[END_REF][START_REF] De Bièvre | Spectral analysis of a model for quantum friction[END_REF][START_REF] Jaksic | On a model for quantum friction. I. Fermi's golden rule and dynamics at zero temperature[END_REF][START_REF] Jaksic | Ergodic properties of classical dissipative systems[END_REF][START_REF] Komech | Long time asymptotics for a classical particle interacting with a scalar field[END_REF][START_REF] Komech | Effective dynamics for a mechanical particle coupled to a wave field[END_REF][START_REF] Lafitte | Normal transport properties in a metastable stationary state for a classical particle coupled to a non-ohmic bath[END_REF]. The case in which the environment is described as a vibrational field, like in the definition of the potential by (3b)-(3c), is particularly appealing. In fact, (3a)-(3c) is a quantum version of a model introduced by S. De Bièvre and L. Bruneau, dealing with a single classical particle [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF]. Intuitively, the model of [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF] can be thought of as if in each space position x P R d there is a membrane oscillating in a direction z P R n , transverse to the motion of the particles. When a particle hits a membrane, its kinetic energy activates vibrations and the energy is evacuated at infinity in the z´direction. These energy transfer mechanisms eventually act as a sort of friction force on the particle, an intuition rigorously justified in [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF]Theorem 2 and Theorem 4]. We refer the reader to [START_REF] Aguer | Classical motion in force fields with short range correlations[END_REF][START_REF] De Bièvre | Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases[END_REF][START_REF] De Bièvre | Chaotic dynamics of a free particle interacting linearly with a harmonic oscillator[END_REF][START_REF] Lafitte | Normal transport properties in a metastable stationary state for a classical particle coupled to a non-ohmic bath[END_REF][START_REF] Soret | Stochastic acceleration in a random time-dependent potential[END_REF] for further theoretical and numerical insight about this model. The model of [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF] has been revisited by considering many interacting particles, which leads to Vlasov-type equations, still coupled to a wave equation for defining the potential [START_REF] Goudon | Mean field limit for particles interacting with a vibrating medium[END_REF]. Unexpectedly, asymptotic arguments indicate a connection with the attractive Vlasov-Poisson dynamic [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF]. In turn, the particles-environment interaction can be interpreted in terms of Landau damping [START_REF] Goudon | Numerical investigation of Landau damping in dynamical Lorentz gases[END_REF][START_REF] Goudon | Landau damping in dynamical Lorentz gases[END_REF]. The quantum version (3a)-(3c) of the De Bièvre-Bruneau model has been discussed in [START_REF] Goudon | Numerical investigation of stability issues for quantum dissipative systems[END_REF][START_REF] Goudon | On quantum dissipative systems: ground states and orbital stability[END_REF], with a connection to the kinetic model by means of a semi-classical analysis inspired from [START_REF] Lions | Sur les mesures de Wigner[END_REF]. Note that in (3a)-(3c), the vibrational field remains of classical nature; a fully quantum framework is dealt with in [START_REF] De Bièvre | Spectral analysis of a model for quantum friction[END_REF][START_REF] Duerinckx | Cherenkov radiation with massive bosons and quantum friction[END_REF] for instance.

A remarkable feature of these systems is the presence of conserved quantities, here inherited from the framework designed in [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF] for a classical particle, and the study of these models brings out the critical role of the wave speed c ą 0 and the dimension n of the space for the wave equation (we can already notice that n ě 3 is necessary for [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF] to be meaningful), see [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF][START_REF] Goudon | Numerical investigation of Landau damping in dynamical Lorentz gases[END_REF][START_REF] Goudon | Landau damping in dynamical Lorentz gases[END_REF][START_REF] Goudon | On quantum dissipative systems: ground states and orbital stability[END_REF]. For the Schrödinger-Wave system (3a)-(3c) the energy

H SW pU, Ψ, Πq " 1 4 ˆTd |∇U | 2 dx `¨T d ˆRn ˆc2 Π 2 `1 4 |∇ z Ψ| 2 ˙dx dz `γ 2 ˆTd Φ|U | 2 dx, (8) 
is conserved since we can readily check that d dt H SW pU, Ψ, ´1 2c 2 B t Ψq " 0.

Similarly, for the Hartree system (1a)-(1b), we get d dt H Ha pU q " 0 where we have set

H Ha pU q " 1 4 ˆTd |∇U | 2 dx ´γ2 κ 4 ˆTd Σpx ´yq|U pt, xq| 2 |U pt, yq| 2 dy dx.
Furthermore, for both model, the L 2 norm is conserved. Of course, these conservation properties play a central role for the analysis of the equations. However, (1a)-(1b) has further fundamental properties which occur only for the asymptotic model: firstly, (1a)-(1b) is Galilean invariant, which means that, given a solution pt, xq Þ Ñ upt, xq and for any p 0 P T d , the function pt, xq Þ Ñ upt, x tp 0 qe ipx´tp 0 {2q is a solution too; secondly, the momentum pptq " Im ´ūpt, xq∇ x upt, xq dx is conserved and, accordingly, the center of mass follows a straight line at constant speed. That these properties are not satisfied by the more complex system (3a)-(3c) makes its analysis more challenging. Finally, we point out that, in contrast to the usual nonlinear Schrödinger equation or Hartree-Newton system, where Σ is the Newtonian potential, the equations (1a)-(1b) or (3a)-(3c) do not fulfil a scale invariance property. This also leads to specific mathematical difficulties: despite the possible regularity of Σ, many results and approaches of the Newton case do not extend to a general kernel, due to the lack of scale invariance.

When the problem is set on the whole space R d , one is interested in the stability of solitary waves, which are solutions of the equation with the specific form upt, xq " e iωt Qpxq, and, for (3a)-(3c), ψpt, x, zq " Ψpx, zq. The details of the solitary wave are embodied into the Choquard equation, satisfied by the profile Q, [START_REF] Lieb | Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation[END_REF][START_REF] Lions | The Choquard equation and related questions[END_REF]. It turns out that the Choquard equation have infinitely many solutions; among these solutions, it is relevant to select the solitary wave which minimizes the energy functional under a mass constraint, [START_REF] Lieb | Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation[END_REF][START_REF] Ma | Classification of positive solitary solutions of the nonlinear Choquard equation[END_REF] and to study the orbital stability of this minimal energy state. This program has been investigated for [START_REF] Caldeira | Quantum tunnelling in a dissipative system[END_REF] and (1a)-(1b) in the specific case where Σpxq " 1 |x| in dimension d " 3, by various approaches [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF][START_REF] Lenzmann | Uniqueness of ground states for pseudo-relativistic Hartree equations[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. the locally compact case, part 1[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. the locally compact case, part 2[END_REF][START_REF] Martel | Asymptotic stability of solitons for subcritical generalized KdV equations[END_REF][START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF][START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF]. Quite surprisingly, the specific form of the potential plays a critical role in the analysis (either through explicit formula or through scale invariance properties), and dealing with a general convolution kernel, as smooth as it is, leads to new difficulties, that can be treated by a perturbative argument, see [START_REF] Kikuchi | Stability of standing waves for the Klein-Gordon-Schrödinger system[END_REF][START_REF] Zhang | Travelling solitary waves for boson stars[END_REF] for the case of the Yukawa potential, and [START_REF] Goudon | On quantum dissipative systems: ground states and orbital stability[END_REF] for (1a)-( 1b) and (3a)-(3c).

Here, we adopt a different viewpoint. We consider the case where the problem holds on the torus T d , and we are specifically interested in the stability of plane wave solutions of (3a)-(3c) and (1a)-(1b). We refer the reader to [START_REF] De Bièvre | Orbital stability: analysis meets geometry[END_REF][START_REF] De Bièvre | Orbital stability via the energy-momentum method: the case of higher dimensional symmetry groups[END_REF][START_REF] Faou | Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus[END_REF][START_REF] Newton | Stability of periodic plane waves[END_REF] for results on the nonlinear Schrödinger equation [START_REF] Caldeira | Quantum tunnelling in a dissipative system[END_REF] in this framework. The discussion on the stability of these plane wave solutions will make the following smallness condition 4γ

2 κ}σ 1 } 2 L 1 ă 1 (9) 
(assuming the plane wave has an amplitude unity) appear. Despite its restriction to the periodic framework, the interest of this study is two-fold: on the one hand, it points out some difficulties specific to the coupling and provides useful hints for future works; on the other hand, it clarify the role of the parameters, by making stability conditions explicit.

The paper is organized as follows. In Section 2, we clarify the positioning of the paper. To this end, we further discuss some mathematical features of the model. We also introduce the main assumptions on the parameters that will be used throughout the paper and we provide an overview of the results. Section 3 is concerned with the stability analysis of the Hartree equation (1a)-(1b). Section 4 deals with the Schrödinger-Wave system at the price of restricting to the case where the wave vector of the plane wave solution vanishes: k " 0. For reasons explained in details below, the general case is much more difficult. Section 5 justifies that in general the mode k 0 is linearly and orbitally unstable. The proof splits into two steps. The former is concerned by the spectral instability; it relies on a suitable reformulation of the linearized operator, which allows us to count indirectly the eigenvalues. The latter step proves instability by using a contradiction argument and estimates established through the Duhamel formula. Finally, in Appendix A, we provide a physical interpretation of the parameters involved, and for the sake of completeness, in Appendices B and C, we discuss the well-posedness of the Schrödinger-Wave system (3a)-(3c) and its link with the Hartree equation (1a)-(1b) in the regime of large c's.

Set up of the framework 2.1 Plane wave solutions and dispersion relation

For any k P Z d , we start by seeking solutions to (3a)-(3c) of the form U pt, xq " U k pt, xq :" exp `ipωt `k ¨xq ˘, Ψpt, x, zq " Ψ ˚pzq, B t Ψpt, x, zq " ´2c 2 Π ˚pzq " 0, [START_REF] Colin | Instability of standing waves for a system of nonlinear Schrödinger equations with three-wave interaction[END_REF] with ω P R. Note that the L 2 norm of U k is p2πq d{2 and Ψ ˚actually does not depend on the time variable, nor on x. Since |U k pt, xq| " 1 is constant, the wave equation simplifies to

1 c 2 B 2 tt Ψ ´∆z Ψ " ´γσ 2 pzq @ σ 1 D T d ,
where @ ¨DT d stands for the average over

T d : @ f D T d " ´Td f pxq dx. As a consequence, z Þ Ñ Ψ ˚pzq is a solution to (3b) if Ψ ˚pzq " ´γΓpzq @ σ 1 D T d , with Γ the solution of ´∆z Γpzq " σ 2 pzq.
This auxiliary function Γ is thus defined by the convolution of σ 2 with the elementary solution of the Laplace operator in dimension n, or equivalently by means of Fourier transform:

Γpzq " ˆRn C n |z ´z1 | n´2 σ 2 pz 1 q dz 1 " F ´1 ξÑz ´p σ 2 pξq |ξ| 2 ¯. (11) 
The corresponding potential (3c) is actually a constant which reads

´γ ¨Td ˆRn σ 1 px ´yqσ 2 pzqΓpzq @ σ 1 D T d dz dy " ´κγ @ σ 1 D 2 T d with κ "
ˆRn σ 2 pzqΓpzq dz " ˆRn |∇ z Γpzq| 2 dz ą 0 (we remind the reader that this formula coincides with [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF] and makes sense only when n ě 3). It remains to identify the condition on the coefficients so that U k satisfies the Schrödinger equation (3a): this leads to the following dispersion relation

ω `k2 2 ´Υ˚" 0, Υ ˚" γ 2 κ @ σ 1 D 2 T d ą 0 ( 12 
)
with k 2 " ř d j"1 k 2 j . We can compute explicitly the associated energy:

H SW pU k , Ψ ˚, Π ˚q " p2πq d 2 ˆk2 2 ´γ2 κ 2 @ σ 1 D 2 T d ˙" p2πq d 4 pk 2 ´Υ˚q .
Of course, among these solutions, the constant mode U 0 pt, xq " e iωt 1pxq has minimal energy.

It turns out that the plane wave U k pt, xq " e iωt e ik¨x equally satisfies (1a)-(1b) provided the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF] holds. Incidentally, we can check that

H Ha pU k q " p2πq d 2 ˆk2 2 ´γ2 κ 2 @ Σ D T d ˙" p2πq d 4 pk 2 ´Υ˚q
is made minimal when k " 0.

Hamiltonian structure and symmetries of the problem

The conservation properties play a central role in the stability analysis, for instance in the reasonings that use concentration-compactness arguments [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF]. Based on the conserved quantities, one can try to construct a Lyapounov functional, intended to evaluate how far a solution is from an equilibrium state. Then the stability analysis relies on the ability to prove a coercivity estimate on the variations of the Lyapounov functional, see [START_REF] Tao | Why are solitons stable ? Bull[END_REF][START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF][START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF]. This viewpoint can be further extended by identifying analogies with finite dimensional Hamiltonian systems with symmetries, which has permitted to set up a quite general framework [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF], revisited recently in [START_REF] De Bièvre | Orbital stability: analysis meets geometry[END_REF]. The strategy relies on the ability in exhibiting a Hamiltonian formulation of the problem

B t X " JB X H pXq,
where the symplectic structure is given by the skew-symmetric operator J. As a consequence of Noether's Theorem, this formulation encodes the conservation properties of the system. In particular, it implies that t Þ Ñ H pXptqq is a conserved quantity. For the problem under consideration, as it will be detailed below, X is a vectorial unknown with components possibly depending on different variables (x P T d and z P R n ). This induces specific difficulties, in particular because the nature of the coupling is non local and delicate spectral issues arise related to the essential spectrum of the wave equation in R n . Next, we can easily observe that the systems (1a)-( 1b) and (3a)-(3c) are invariant under multiplications by a phase factor of U , the "Schödinger unknown", and under translations in the x variable. This leads to the conservation of the L2 norm of U and of the total momentum. However, the systems (1a)-( 1b) and (3a)-(3c) cannot be handled by a direct application of the results in [START_REF] De Bièvre | Orbital stability: analysis meets geometry[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]: the basic assumptions are simply not satisfied. Nevertheless, our approach is strongly inspired from [START_REF] De Bièvre | Orbital stability: analysis meets geometry[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]. As we will see later, for the Hartree system, a decisive advantage comes from the conservation of the total momentum and the Galilean invariance of the problem. For the Schrödinger-Wave problem, since the expression of the total momentum mixes up contribution from the "Schrödinger unknown" U and the "wave unknown" Ψ, the information on its conservation does not seem readily useful. 2 In what follows, we find advantages in changing the unknown by writing U pt, xq " e ik¨x upt, xq; in turn the Schrödinger equation iB t U `1 2 ∆U " ΦU becomes

iB t u `1 2 ∆u ´k2 2 u `ik ¨∇u " Φu.
Accordingly, the parameter k will appear in the definition the energy functional H . This explains a major difference between (1a)-( 1b) and (3a)-(3c): for the former, a coercivity estimate can be obtained for the energy functional H , for the latter, when k 0 there are terms which cannot be controlled easily. This is reminiscent of the momentum conservation in (1a)-(1b) and the lack of Galilean invariance for (3a)-(3c). The detailed analysis of the linearized operators sheds more light on the different behaviors of the systems (1a)-(1b) and (3a)-(3c).

Outline of the main results

Let us collect the assumptions on the form functions σ 1 and σ 2 that govern the coupling:

(H1) σ 1 : T d Ñ r0, 8q is C 8 smooth, radially symmetric; @ σ 1 D T d 0;
(H2) σ 2 : R n Ñ r0, 8q is C 8 smooth, radially symmetric and compactly supported;

(H3) p´∆q ´1{2 σ 2 P L 2 pR n q;

(H4) for any ξ P R n , p σ 2 pξq 0.

Assumptions (H1)-(H2) are natural in the framework introduced in [START_REF] Bruneau | A Hamiltonian model for linear friction in a homogeneous medium[END_REF]. Hypothesis (H3) can equivalently be rephrased as p´∆q ´1σ 2 P .

H 1 pR n q; it appears in many places of the analysis of such coupled systems and, at least, it makes the constant κ in (6) meaningful. This constant is a component of the stability constraint [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF]. Hypothesis (H4) equally appeared in [6, Eq. (W)] when discussing large time asymptotic issues. Assumptions (H1)-(H4) are assumed throughout the paper.

Our results can be summarized as follows. We assume [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF] and consider k P Z d and ω P R satisfying [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF]. For the Hartree equation, the analysis is quite complete:

• the plane wave e ipωt`k¨xq is spectrally stable (Theorem 3.1);

• for any initial perturbation with zero mean, the solutions of the linearized Hartree equation are L 2 -bounded, uniformly over t ě 0 (Theorem 3.3);

• the plane wave e ipωt`k¨xq is orbitally stable (Theorem 3.5).

For the Schrödinger-Wave system, the case k " 0 is fully addressed as follows:

• the plane wave pe iωt 1pxq, ´γΓpzq @ σ 1 D T d , 0q is spectrally stable (Corollary 5.12);

• for any initial perturbation of pe iωt 1pxq, ´γΓpzq @ σ 1 D T d , 0q with zero mean, the solutions of the linearized Schrödinger-Wave system are L 2 -bounded, uniformly over t ě 0 (Theorem 4.2);

• the plane wave pe iωt 1pxq, ´γΓpzq @ σ 1 D T d , 0q is orbitally stable (Theorem 4.4). When k 0, the situation is much more involved; at least we prove that in general the plane wave solution pe ipωt`k¨xq , ´γΓpzq @ σ 1 D T d , 0q is spectrally unstable, see Section 5 and Corollary 5.15, and orbitally unstable, see Theorem 5.16.

Finally, let us mention that the approach presented here has been developed on an even simpler model, where the Schrödinger equation is replaced by a mere finite dimensional differential system [START_REF] Goudon | A simple testbed for stability analysis of quantum dissipative systems[END_REF].

Stability analysis of the Hartree system (1a)-(1b)

To study the stability of the plane wave solutions of the Hartree system, it is useful to write the solutions of (1a)-(1b) in the form U pt, xq " e ik¨x upt, xq with upt, xq solution to

iB t u `1 2 ∆u ´k2 2 u `ik ¨∇u " ´γ2 κpΣ ‹ |u| 2 qu. (13) 
If k P Z d and ω P R satisfy the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF], u ω pt, xq " e iωt 1pxq is a solution to [START_REF] De Bièvre | Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases[END_REF] with initial condition u ω p0, tq " 1pxq. Therefore, studying the stability properties of U k pt, xq " e iωt e ik¨x as a solution to (1a)-(1b) amounts to studying the stability of u ω pt, xq " e iωt 1pxq as a solution to [START_REF] De Bièvre | Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases[END_REF].

The problem [START_REF] De Bièvre | Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases[END_REF] has an Hamiltonian symplectic structure when considered on the real Banach space H 1 pT d ; Rq ˆH1 pT d ; Rq. Indeed, if we write u " q `ip, with p, q real-valued, we obtain

B t ˆq p ˙" J∇ pq,pq H pq, pq with J " ˆ0 1 
´1 0 ȧnd H pq, pq " 1 2 ˆ1 2 ˆTd |∇q| 2 `|∇p| 2 dx `k2 2 ˆTd pp 2 `q2 q dx ´ˆT d pk ¨∇q dx `ˆT d qk ¨∇p dx γ2 κ 4 ˆTd Σ ‹ pp 2 `q2 qpp 2 `q2 q dx.
Coming back to u " q `ip, we can write

H puq " 1 2 ˆ1 2 ˆTd |∇u| 2 dx `k2 2 ˆTd |upxq| 2 dx `ˆT d k ¨p´i∇uqu dx γ2 κ 4 ˆTd pΣ ‹ |u| 2 qpxq|upxq| 2 dx. ( 14 
)
As observed above, H is a constant of the motion. Moreover, it is clear that ( 13) is invariant under multiplications by a phase factor so that F puq " 

p 1 ˙F " ˆTd `pp 1 `qq 1 q dx.
that can be also interpreted as an inner product for complex-valued functions:

xu|u 1 y " Re ˆTd uu 1 dx. ( 15 
)

Linearized problem and spectral stability

Let us expand the solution of (13) around u ω as upt, xq " u ω pt, xqp1 `wpt, xqq. The linearized equation for the fluctuation reads

iB t w `1 2 ∆ x w `ik ¨∇x w " ´2γ 2 κpΣ ‹ Repwqq. ( 16 
)
We split w " q `ip, q " Repwq, p " Impwq so that ( 16) recasts as

B t ˆq p ˙" L k ˆq p ˙(17)
with the linear operator

L k : ˆq p ˙Þ ÝÑ ¨´k ¨∇x q ´1 2 ∆ x p 1 2 ∆ x q `2γ 2 κΣ ‹ q ´k ¨∇x p '. ( 18 
)
From now on, while pq, pq has been introduced as a pair of real-valued functions, we consider L k as acting on the C-vector space of complex-valued functions L 2 pT d ; Cq ˆL2 pT d ; Cq, and we study its spectrum.

Theorem 3.1 (Spectral stability for the Hartree equation) Let k P Z d and ω P R such that the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF] is satisfied. Suppose (9) holds. Then the spectrum of L k , the linearization of (13) around the plane wave u ω pt, xq " e iωt 1pxq, in L 2 pT d ; Cq ˆL2 pT d ; Cq is contained in iR. Consequently, this wave is spectrally stable in L 2 pT d q.

Proof. To prove Theorem 3.1, we expand q, p and σ 1 by means of their Fourier series qpt, xq " ÿ

mPZ d Q m ptqe im¨x , Q m ptq " 1 p2πq d ˆTd qpt, xqe ´im¨x dx, ppt, xq " ÿ mPZ d P m ptqe im¨x , P m ptq " 1 p2πq d ˆTd ppt, xqe ´im¨x dx, σ 1 pxq " ÿ mPZ d σ 1,m e im¨x , σ 1,m ptq " 1 p2πq d ˆTd σ 1 pxqe ´im¨x dx.
Note that σ 1 being real and radially symmetric, we have

σ 1,m " σ 1,m " σ 1,´m (19) 
and, by definition,

@ σ 1 D T d " p2πq d σ 1,0 .
As a consequence, we obtain

L k ˆq p ˙" ¨řmPZ d ˆm2 2 P m ´ik ¨mQ m ˙eim¨x ř mPZ d ˆ´m 2 2 Q m ´ik ¨mP m `2p2πq 2d γ 2 κ|σ 1,m | 2 Q m ˙eim¨x ‹ ‹ ' " L k,0 ˆQ0 P 0 ˙`ÿ mPZ d t0u L k,m ˆQm P m ˙eim¨x (20) 
with

L k,0 " ˆ0 0 2p2πq 2d γ 2 κ|σ 1,0 | 2 0 ˙and L k,m " ˜´ik ¨m m 2 2 ´m2 2 `2p2πq 2d γ 2 κ|σ 1,m | 2 ´ik ¨m¸( 21)
for m P Z d t0u.

Note that, since the Fourier modes are uncoupled, ˆq p ˙is a solution to [START_REF] Gallay | Stability of small periodic waves for the nonlinear Schrödinger equation[END_REF] 

λq m ´m2 2 p m `ik ¨mq m " 0, λp m `m2 2 q m `ik ¨mp m " 2p2πq 2d γ 2 κ|σ 1,m | 2 q m . ( 22 
)
A straightforward computation gives that λ 0 " 0 is the unique eigenvalue of the matrix L k,0 with eigenvector p0, 1q. This means that KerpL k q contains at least the vector subspace spanned by

the constant function x P T d Þ Ñ ˆ0 1 
˙, which corresponds to the constant solution upt, xq " i of ( 16).

Next, if m P Z d t0u, λ m is an eigenvalue of L k,m if it is a solution to pλ `ik ¨mq 2 ´m2 2 ˆ´m 2 2 `2p2πq 2d γ 2 κ|σ 1,m | 2 ˙" 0.
This is a second order polynomial equation for λ and the roots are given by

λ m,˘" ´ik ¨m ˘|m| 2 b ´m2 `4γ 2 κp2πq 2d |σ 1,m | 2 .
If the smallness condition (9) holds, the argument of the square root is negative for any m P Z d t0u, and thus the roots λ are all purely imaginary (and we note that λ ´m,˘" λ m,¯) . More precisely, we have the following statement. 

λ m,˘" ´ik ¨m ˘|m| 2 b ´m2 `4γ 2 κp2πq 2d |σ 1,m | 2 . (a) if 4γ 2 κp2πq 2d |σ 1,m | 2 m 2 ď 1, then λ m,˘P iR; (b) if 4γ 2 κp2πq 2d |σ 1,m | 2 m 2 ą 1, then λ m,˘P C iR. Moreover, Repλ m,`q ą 0. Now, (9) implies 4γ 2 κp2πq 2d |σ 1,m | 2 m 2
ă 1 for all m P Z d t0u, so that σpL k q Ă iR and u ω pt, xq " e iωt 1pxq is spectrally stable. Conversely, if σ 1 , σ 2 and γ are such that there exists m ˚P Z d t0u verifying 4γ 2 κp2πq 2d |σ 1,m ˚|2 m 2 ˚ą 1, then the plane wave u ω is spectrally unstable for any k P Z d and ω P R that satisfy the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF]. This proves Theorem 3.1.

We observe that this result is consistent with the linear stability analysis of [START_REF] Caldeira | Quantum tunnelling in a dissipative system[END_REF], see [44, Theorem 1], when replacing formally Σ by the delta-Dirac. The analogy should be considered with caution, though, since the functional difficulties are substantially different: here

u Þ Ñ ´1 2 ∆ T d u 2γ 2 κΣ ‹ Repuq is a compact perturbation of ´1 2 ∆ T d ,
which has a compact resolvent hence a spectral decomposition.

It is important to remark that the analysis of eigenproblems for L k has consequences on the behavior of solutions to [START_REF] Gallay | Stability of small periodic waves for the nonlinear Schrödinger equation[END_REF] of the particular form Qpt, xq " e λt qpxq, P pt, xq " e λt ppxq.

We warn the reader that spectral stability excludes the exponential growth of the solutions of the linearized problem when the smallness condition (9) holds, but a slower growth is still possible. This can be seen by direct inspection for the mode m " 0: we have B t Q 0 " 0, so that Q 0 ptq " Q 0 p0q and

B t P 0 " 2p2πq 2d κ @ σ 1 D 2 T d Q 0 p0q
which shows that the solution can grow linearly in time

P 0 ptq " P 0 p0q `2p2πq 2d γ 2 κ @ σ 1 D 2 T d Q 0 p0qt.
In fact, excluding the mode m " 0 suffices to guaranty the linearized stability.

Theorem 3.3 (Linearized stability for the Hartree equation) Suppose [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF]. Let w be the solution of [START_REF] Faou | Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus[END_REF] associated to an initial data w Init P H 1 pT d q such that ´Td w Init dx " 0. Then, there exists a constant C ą 0 such that sup tě0 }wpt, ¨q} H 1 ď C.

Proof. Note that if ´Td w Init dx " 0 then the corresponding Fourier coefficients Q 0 p0q and P 0 p0q are equal to 0. As a consequence, Q 0 ptq " P 0 ptq " 0 for all t ě 0, so that ´Td wpt, xq dx " 0 for all t ě 0. The proof follows from energetic consideration. Indeed, we observe that, on the one hand, 

d E 0 1 ´4γ 2 κ}Σ} L 1 .
The stability estimate extends to the situation where k 0. Indeed, from the solution w of ( 16), we set vpt, xq " wpt, x `tkq.

It satisfies iB t v `1 2 ∆ x v " ´2γ 2 κΣ ‹ Repvq. Hence, repeating the previous argument, }vpt, ¨q} H 1 " }wpt, ¨q} H 1 remains uniformly bounded on p0, 8q. This step of the proof relies on the Galilean invariance of (5); it could have been used from the beginning, but it does not apply for the Schrödinger-Wave system.

Remark 3.4

The analysis applies mutadis mutandis to any equation of the form (1a), with the potential defined by a kernel Σ and a strength encoded by the constant γ 2 κ. Then, the stability criterion is set on the quantity 4γ 2 κp2πq d | p Σm| m 2 For instance, the elementary solution of pa 2 ´∆x qΣ " δ x"0 with periodic boundary condition has its Fourier coefficients given by p Σ m " 1 p2πq d pa 2 `m2 q ą 0.

Coming back to the physical variable, in the one-dimension case, the function Σ reads

Σpxq " e ´a|x| 2a `coshpaxq ape 2aπ ´1q .

The linearized stability thus holds provided 4γ 2 κp2πq 2d 1 a 2 `1 ă 1.

Orbital stability

In this subsection, we wish to establish the orbital stability of the plane wave u ω pt, xq " e iωt 1pxq as a solution to [START_REF] De Bièvre | Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases[END_REF] for k P Z d and ω P R that satisfy the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF]. As pointed out before, ( 13) is invariant under multiplications by a phase factor. This leads to define the corresponding orbit through upxq " 1pxq by O 1 " te iθ , θ P Ru.

Intuitively, orbital stability means that the solutions of (13) associated to initial data close enough to the constant function x P T d Þ Ñ 1 " 1pxq remain at a close distance to the set O 1 . Stability analysis then amounts to the construction of a suitable Lyapounov functional satisfying a coercivity property. This functional should be a constant of the motion and be invariant under the action of the group that generates the orbit O 1 . Hence, the construction of such a functional relies on the invariants of the equation. Moreover, the plane wave has to be a critical point on the Lyapounov functional so that the coercivity can be deduced from the properties of its second variation. The difficulty here is that, in general, the bilinear symmetric form defining the second variation of the Lyapounov function is not positive on the whole space: according to the strategy designed in [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF], see also the review [START_REF] Tao | Why are solitons stable ? Bull[END_REF], it will be enough to prove the coercivity on an appropriate subspace. Here and below, we adopt the framework presented in [START_REF] De Bièvre | Orbital stability: analysis meets geometry[END_REF] (see also [START_REF] De Bièvre | Orbital stability via the energy-momentum method: the case of higher dimensional symmetry groups[END_REF]).

Inspired by the strategy designed in [4, Section 8 & 9], we introduce, for any k P Z d and ω P R satisfying the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF], the set

S ω " ! u P H 1 pT d ; Cq, F puq " F p1q " p2πq d 2 " p2πq d k 2 {2 `ω 2γ 2 κ @ σ 1 D 2 T d ) ;
S ω is therefore the level set of the solutions of ( 13), associated to the plane wave pt, xq Þ Ñ u ω pt, xq " e iωt 1pxq. Next, we introduce the functional

L ω puq " H puq `ωF puq ´d ÿ j"1 k j G j puq, (23) 
which is conserved by the solutions of [START_REF] De Bièvre | Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases[END_REF]. We have S : H 2 pT d q Ă L 2 pT d q Ñ L 2 pT d q is an unbounded linear operator and its spectral properties will play an important role for the orbital stability of u ω . Note that the operator S is the linearized operator [START_REF] Georgiev | Nonlinear instability of linearly unstable standing waves for nonlinear schrödinger equations[END_REF], up to the advection term k ¨∇. The main result of this subsection is the following. 

B u L ω puqpvq " Re ˆ1 2 ˆTd p´∆uqv dx `k2 2 
@ε ą 0, Dδ ą 0, @v Init P H 1 pT d ; Cq, }v Init ´1} H 1 ă δ ñ sup tě0 distpvptq, O 1 q ă ε ( 24 
)
where distpv, O 1 q " inf θPr0,2πr }v ´eiθ 1} H 1 and pt, xq Þ Ñ vpt, xq P C 0 pr0, 8q; H 1 pT d qq stands for the solution of [START_REF] De Bièvre | Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases[END_REF] with Cauchy data v Init .

The full proof of Theorem 3.5 will be obtained from a series of intermediate steps, that we detail now. The key ingredient to prove Theorem 3.5 is the following coercivity estimate on the Lyapounov functional. Lemma 3.6 Let k P Z d and ω P R such that the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF] is satisfied. Suppose that there exist η ą 0 and c ą 0 such that

@w P S ω , dpw, O 1 q ă η ñ L ω pwq ´Lω p1q ě c distpw, O 1 q 2 . ( 25 
)
Then the plane wave u ω pt, xq " e iωt 1pxq is orbitally stable.

Proof. Assume that (25) holds and suppose, by contradiction, that u ω is not orbitally stable. Hence, there exists 0 ă ε 0 ă 2 3 η such that

@n P N t0u, Du Init n P H 1 pT d q, }u Init n ´1} H 1 ă 1 n
and Dt n P r0, `8r, distpu n pt n q, O 1 q " ε 0 , pt, xq Þ Ñ u n pt, xq P C 0 pr0, 8q; H 1 pT d qq being the solution of [START_REF] De Bièvre | Equilibration, generalized equipartition, and diffusion in dynamical Lorentz gases[END_REF] with Cauchy data u Init n . To apply the coercivity estimate of Lemma 3.6, we define z n " ´F p1q F punptnqq

¯1{2

u n pt n q. It is clear that z n P S ω since F pz n q " F p1q. Moreover, `un pt n q ˘nPN t0u is a bounded sequence in H 1 pT d q and lim nÑ`8 F pu n pt n qq " F p1q. Indeed, on the one hand, there exists γ P r0, 2πr such that

}u n pt n q} H 1 ď }u n pt n q ´eiθ 1} H 1 `}e iθ 1} H 1 ď 2dpu n pt n q, O 1 q `}e iθ 1} H 1 " 2ε 0 `}1} H 1
and, on the other hand,

|F pu n pt n qq ´F p1q| " 1 2 |}u n pt n q} 2 L 2 ´}1} 2 L 2 | ď }u n pt n q ´1} L 2 pε 0 `}1} H 1 q ă 1 n pε 0 `}1} H 1 q.
As a consequence, lim nÑ`8 }z n ´un pt n q} H 1 " 0. This implies for n P N large enough,

ε 0 2 ď dpz n , O 1 q ď 3ε 0 2 ă η.
Hence, thanks to Lemma 3.6, we obtain L ω pu Init n q ´Lω p1q " L ω pu n pt n qq ´Lω p1q " L ω pu n pt n qq ´Lω pz n q `Lω pz n q ´Lω p1q ě L ω pu n pt n qq ´Lω pz n q `cdpz n , O 1 q 2 ě L ω pu n pt n qq ´Lω pz n q `c 4 ε 2 0 .

Finally, using the fact that B u L ω p1q " 0 and B 2 u L ω p1qpw, wq ď C}w} 2 H 1 , we deduce that lim nÑ`8 pL ω pu Init n q ´Lω p1qq " 0, lim nÑ`8

pL ω pu n pt n qq ´Lω pz n qq " 0.

We are thus led to a contradiction.

Since B u L ω p1q " 0, the coercivity estimate (25) can be obtained from a similar estimate on the bilinear form w P H 1 Þ Ñ B 2 u L ω p1qpw, wq. As pointed out before, the difficulty lies in the fact that, in general, this bilinear form is not positive on the whole space H 1 . The following lemma states that it is enough to have a coercivity estimate on B 2 u L ω p1qpw, wq for any w P T 1 S ω X pT 1 O 1 q K . Recall that the tangent set to S ω is given by

T 1 S ω " tu P H 1 pT d ; Cq, B u F p1qpuq " 0u " " pq, pq P H 1 pT d , Rq ˆH1 pT d , Rq, A ˆq p ˙ˇˇˆ1 0 ˙E " 0 * .
This set is the orthogonal to 1 with respect to the inner product defined in [START_REF] Duerinckx | Cherenkov radiation with massive bosons and quantum friction[END_REF]. The tangent set to O 1 (which is the orbit generated by the phase multiplication) is 

T 1 O 1 " span R ti1u so that pT 1 O 1 q K " tu P H 1 pT d ,
for any u P T 1 S 1 X pT 1 O 1 q K . Then there exist η ą 0 and c ą 0 such that (25) is satisfied.

Proof. Let w P S ω such that distpw, O 1 q ă η with η ą 0 small enough. By means of an implicit function theorem argument (see [4, Section 9, Lemma 8]), we obtain that there exists θ P r0, 2πr and v P pT 1 O 1 q K such that

e iθ w " 1 `v, distpw, O 1 q ď }v} H 1 ď Cdistpw, O 1 q
for some positive constant C. Next, we use the fact that

H 1 pT d q " T 1 S ω ' span R t1u to write v " v 1 `v2 with v 1 P T 1 S ω X pT 1 O 1 q K and v 2 P span R t1u X pT 1 O 1 q K . Since v " e iθ w ´1 and F pwq " F p1q, we obtain 0 " F pe iθ wq ´F p1q " 1 2 ˆTd |v| 2 dx `Re ˆTd pv 1 `v2 q1 dx " 1 2 ˆTd |v| 2 dx `Re ˆTd v 2 1 dx. Since v 2 P span R t1u, it follows that }v 2 } H 1 ď }v} 2 H 1 2}1} L 2 .
This implies

}v 1 } H 1 " }v ´v2 } H 1 ě }v} H 1 ´}v} 2 H 1 2}1} L 2 ě 1 2 }v} H 1 provided }v} H 1 ď }1} L 2 . As a consequence, if }v} H 1 is small enough, using that B 2 u L ω p1qpw, zq ď C}w} H 1 }z} H 1 , we obtain B 2 u L ω p1qpv 1 , v 2 q ď C}v} 3 H 1 , B 2 u L ω p1qpv 2 , v 2 q ď C}v} 4 H 1 . This leads to B 2 u L ω p1qpv, vq " B 2 u L ω p1qpv 1 , v 1 q `op}v} 2 H 1 q.
Finally, let w P S ω be such that dpw, O 1 q ă η. We have

L ω pwq ´Lω p1q " L ω pe iθ wq ´Lω p1q " 1 2 B 2 u L ω p1qpv, vq `op}v} 2 H 1 q " 1 2 B 2 u L ω p1qpv 1 , v 1 q `op}v} 2 H 1 q ě c 2 }v 1 } 2 H 1 `op}v} 2 H 1 q ě c 4 }v} 2 H 1 `op}v} 2 H 1 q ě c 8 distpw, O 1 q 2
where we use B u L ω p1q " 0 and

v 1 P T 1 S ω X pT 1 O 1 q K .
At the end of the day, to prove the orbital stability of the plane wave u ω pt, xq " e iωt 1pxq it is enough to prove [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] for any u P T 1 S 1 X pT 1 O 1 q K . This can be done by studying the spectral properties of the operator S. However, in the simpler case of the Hartree equation, the coercivity of B 2 u L ω p1q on T 1 S 1 X pT 1 O 1 q K can be also obtained directly from the expression

B 2 u L ω p1qpu, uq " Re ˆˆT d ˆ´∆u 2 ´2γ 2 κΣ ‹ Repuq ˙upxq dx ˙" xSu|uy. (27) 
Let u P T 1 S 1 X pT 1 O 1 q K and write u " q `ip. This leads to

B 2 u L ω p1qpu, uq " 1 2 ˆTd |∇q| 2 dx ´2γ 2 κ ˆTd pΣ ‹ qqq dx `1 2 ˆTd |∇p| 2 dx.
Moreover, since u P T 1 S 1 X pT 1 O 1 q K , we have ˆTd q dx " 0 and

ˆTd p dx " 0.
As a consequence, thanks to the Poincaré-Wirtinger inequality, we deduce

B 2 u L ω p1qpu, uq ě 1 2 ˆTd |∇q| 2 dx ´2γ 2 κ ˆTd pΣ ‹ qqq dx `1 4 }p} 2 H 1 . ( 28 
)
Next, we expand q and Σ in Fourier series, i.e.

qpxq " ÿ mPZ d

q m e im¨x and Σpxq " ÿ

mPZ d Σ m e im¨x . Note that, if Σ " σ 1 ‹ σ 1 , then Σ m " p2πq d σ 2
1,m . Moreover, ´Td q dx " 0 implies q 0 " 0. Hence,

1 2 ˆTd |∇q| 2 dx ´2γ 2 κ ˆTd pΣ ‹ qqq dx " p2πq d ÿ mPZ d t0u ˆm2 2 ´2γ 2 κp2πq d Σ m ˙q2 m " p2πq d ÿ mPZ d t0u ˆ1 ´4γ 2 κp2πq d Σ m m 2 ˙m2 2 q 2 m . ( 29 
)
As a consequence, we obtain the following statement.

Proposition 3.8 Let k P Z d and ω P R such that the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF] is satisfied. Suppose that there exists δ P p0, 1q such that

4γ 2 κp2πq 2d σ 2 1,m m 2 ď δ ( 30 
)
for all m P Z d t0u. Then, there exists c ą 0 such that

B 2 u L ω p1qpu, uq ě c}u} 2 H 1 (31) for any u P T 1 S 1 X pT 1 O 1 q K .
Proof. If (30) holds, then ( 28)-( 29) lead to

B 2 u L ω p1qpu, uq ě 1 ´δ 2 p2πq d ÿ mPZ d t0u m 2 q 2 m `1 4 }p} H 1 " 1 ´δ 2 }∇q} 2 L 2 `1 4 }p} 2 H 1 ě 1 ´δ 4 }u} 2 H 1 .
where in the last inequality we used the Poincaré-Wirtinger inequality together with the fact that ´Td q dx " 0.

Remark 3.9 By decomposing the linear operator S into real and imaginary part and by using Fourier series, one can study its spectrum. In particular, S has exactly one negative eigenvalue

λ ´" ´2γ 2 κ @ Σ D T d with eigenspace span R t1u. Moreover, KerpSq " span R ti1u. Finally, if (30) is satisifed, then infpσpSq X p0, 8qq ě 1´δ 2 .

Then, by applying the same arguments as in [5, Section 6], we can recover the coercivity of

B 2 u L ω p1q on T 1 S 1 X pT 1 O 1 q K .
Finally, Proposition 3.8 together with Lemma 3.7 and Lemma 3.6, gives Theorem 3.5 and the orbital stability of the plane wave u ω .

Stability analysis of the Schrödinger-Wave system:

the case k " 0

Like in the case of the Hartree system, to study the stability of the plane wave solutions of the Schrödinger-Wave system (3a)-(3c), it is useful to write its solutions in the form

U pt, xq " e ik¨x upt, xq with pt, x, zq Þ Ñ pupt, xq, Ψpt, x, zqq solution to iB t u `1 2 ∆ x u ´k2 2 u `ik ¨∇x u " ˆγσ 1 ‹ ˆRn σ 2 Ψ dz ˙u, 1 c 2 B 2 tt Ψ ´∆z Ψ " ´γσ 2 σ 1 ‹ |u| 2 . ( 32 
)
If k P Z d and ω P R satisfy the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF],

u ω pt, xq " e iωt 1pxq, Ψ ˚pt, x, zq " ´γΓpzq @ σ 1 D T d , Π ˚pt, x, zq " ´1 2c 2 B t Ψ ˚pt, x, zq " 0
with Γ the solution of ´∆z Γ " σ 2 (see [START_REF] De Bièvre | Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov-Poisson system[END_REF]), is a solution to [START_REF] Komech | Long time asymptotics for a classical particle interacting with a scalar field[END_REF] with initial condition

u ω p0, xq " 1pxq, Ψ ˚p0, x, zq " ´γΓpzq @ σ 1 D T d , Π ˚p0, x, zq " 0.
For the time being, we stick to the framework identified for the study of the asymptotic Hartree equation. Problem [START_REF] Komech | Long time asymptotics for a classical particle interacting with a scalar field[END_REF] has a natural Hamiltonian symplectic structure when considered on the real Banach space H 1 pT d q ˆH1 pT d q ˆL2 pT d ;

.

H 1 pR n qq ˆL2 pT d ˆRn q. Indeed, if we write u " q `ip, with p, q real-valued, we obtain

B t ¨q p Ψ Π ‹ ‹ ' " ˆJ 0 0 ´J˙∇ pq,p,Ψ,Πq H SW pq, p, Ψ, Πq with J " ˆ0 1 ´1 0 ȧnd H SW pq, p, Ψ, Πq " 1 2 ˆ1 2 ˆTd |∇q| 2 `|∇p| 2 dx `k2 2 ˆTd pp 2 `q2 q dx ´ˆT d pk ¨∇q dx `ˆT d qk ¨∇p dx Ṫd ˆRn ˆc2 Π 2 `1 4 |∇ z Ψ| 2 ˙dx dz `γ 2 ˆTd ˆˆT d ˆRn pσ 1 px ´yqσ 2 pzqΨpt, y, zq dy dz ˙pp 2 `q2 qpxq dx.
Coming back to u " q `ip, we can write

H SW pu, Ψ, Πq " 1 2 ˆ1 2 ˆTd |∇u| 2 dx `k2 2 ˆTd |upxq| 2 dx `ˆT d k ¨p´i∇uqu dx Ṫd ˆRn ˆc2 Π 2 `1 4 |∇ z Ψ| 2 ˙dx dz `γ 2 ˆTd ˆˆT d ˆRn pσ 1 px ´yqσ 2 pzqΨpt, y, zq dy dz ˙|upxq| 2 dx. ( 33 
)
As a consequence, H SW is a constant of the motion. Moreover, it is clear that ( 32) is invariant under multiplications by a phase factor of u so that F puq " 1 2 }u} 2 L 2 is conserved by the dynamics. However, now, the quantities

G j puq " 1 2 ˆTd ˆ1 i B x j u ˙u dx (34)
are not constants of the motion:

d dt G j puqptq " γ 2 ˆTd ˆTd B x j σ 1 px ´yq ˆˆR n σ 2 pzqΨpt, y, zq dz ˙|u| 2 pt, xq dy dx.
As a consequence, they cannot be used in the construction of the Lyapounov functional as we did for the Hartree system (see [START_REF] Goudon | Landau damping in dynamical Lorentz gases[END_REF]).

Finally, we consider the Banach space

H 1 pT d qˆH 1 pT d qˆL 2 pT d ;
.

H 1 pR n qqˆL 2 pT d ˆRn q endowed with the inner product

C ¨q p Ψ Π ‹ ‹ ' ˇˇ¨q 1 p 1 Ψ 1 Π 1 ‹ ‹ ' G " ˆTd `pp 1 `qq 1 q dx `ˆT d ˆRn p∇ z Ψ∇ z Ψ 1 `ΠΠ 1 q dx dz
that can be also interpreted as an inner product for complex valued functions:

xpu, Ψ, Πq|pu 1 , Ψ 1 , Π 1 qy " Re ˆTd uu 1 dx `ˆT d ˆRn p∇ z Ψ ¨∇z Ψ 1 `ΠΠ 1 q dx dz. (35) 
We denote by } ¨} the norm on H 1 pT d q ˆL2 pT d ;

.

H 1 pR n qq ˆL2 pT d ˆRn q induced by this inner product.

Preliminary results for the linearized problem: spectral stability when k " 0

As before, we linearize the system (3a)-(3c) around the plane wave solution obtained in Section 2.1. Namely, we expand

U pt, xq " U k pt, xqp1 `upt, xqq, Ψpt, x, zq " ´γ@ σ 1 D T d Γpzq `ψpt, x, zq
and, assuming that u, ψ and their derivatives are small, we are led to the following equations for the fluctuation We obtain

pt, xq Þ Ñ upt, xq P C, pt, x, zq Þ Ñ ψpt, x, zq P R iB t u `1 2 ∆ x u `ik ¨∇x u " γΦ, ´1 c 2 B 2 tt ψ ´∆z ψ ¯pt, x, zq " ´γσ 2 pzqσ 1 ‹ ρpt,
pB t q `1 2 ∆ x p `k ¨∇x qqpt, xq " 0, pB t p ´1 2 ∆ x q `k ¨∇x pqpt, xq " ´γ ˆσ1 ‹ ˆRn σ 2 pzqψpt, ¨, zq dz ˙pxq, ´1 c 2 B 2 tt ψ ´∆z ψ ¯pt, x, zq " ´2γσ 2 pzqσ 1 ‹ qpt, xq. (37) It is convenient to set π " ´1 2c 2 B t ψ,
in order to rewrite the wave equation as a first order system. We obtain

B t ¨q p ψ π ‹ ‹ ' " L k ¨q p ψ π ‹ ‹ ' ( 38 
)
where L k is the operator defined by

L k : ¨q p ψ π ‹ ‹ ' Þ ÝÑ ¨´1 2 ∆ x p ´k ¨∇x q 1 2 ∆ x q ´k ¨∇x p ´γσ 1 ‹ ˆˆR n σ 2 ψ dz 2c 2 π ´1 2 ∆ z ψ `γσ 2 σ 1 ‹ q ‹ ‹ ‹ ‹ ‹ ‹ ' .
For the next step, we proceed via Fourier analysis as before. We expand q, p, ψ, π and σ 1 by means of their Fourier series:

ψpt, x, zq " ÿ mPZ d ψ m pt, zqe im¨x , ψ m pt, zq " 1 p2πq d ˆTd ψpt, x, zqe ´im¨x dx, πpt, x, zq " ÿ mPZ d π m pt, zqe im¨x , π m pt, zq " 1 p2πq d ˆTd πpt, x, zqe ´im¨x dx.
Moreover, recall that σ 1 being real and radially symmetric, [START_REF] Gesztesy | A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations[END_REF] holds and, by definition,

@ σ 1 D T d " p2πq d σ 1,0 .
As a consequence, since the Fourier modes are uncoupled, the Fourier coefficients

pQ m ptq, P m ptq, ψ m pt, zq, π m pt, zqq satisfy B t ¨Qm P m ψ m π m ‹ ‹ ' " L k,m ¨Qm P m ψ m π m ‹ ‹ ' ( 39 
)
where L k,m stands for the operator defined by

L k,m ¨Qm P m ψ m π m ‹ ‹ ' " ¨´ik ¨mQ m `m2 2 P m ´m2 2 Q m ´ik ¨mP m ´γp2πq d σ 1,m ˆRn σ 2 pzqψ m dz ´2c 2 π m γp2πq d σ 2 pzqσ 1,m Q m ´1 2 ∆ z ψ m ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' .
Like for the Hartree equation, the behavior of the mode m " 0 can be analysed explicitly.

Lemma 4.1 (The mode m " 0) For any k P Z d , the kernel of L k,0 is spanned by p0, 1, 0, 0q. Moreover, equation [START_REF] Lions | Sur les mesures de Wigner[END_REF] for m " 0 admits solutions which grow linearly with time.

Proof. Let pQ 0 , P 0 , ψ 0 , π

0 q P KerpL k,0 q. It means that $ ' ' ' & ' ' ' % γp2πq d σ 1,0 ˆRn σ 2 pzqψ 0 pzq dz " 0, π 0 " 0, ∆ z ψ 0 " 2γp2πq d σ 2 pzqσ 1,0 Q 0 , which yields ψ 0 pzq " ´2γ @ σ 1 D T d Q 0 Γpzq with Γpzq " p´∆q ´1σ 2 pzq so that ´2γ 2 @ σ 1 D 2 T d κQ 0 " 0. It implies that Q 0 " 0, ψ 0 " 0 while P 0 is left undetermined.
For m " 0, the first equation in [START_REF] Lions | Sur les mesures de Wigner[END_REF] tells us that Q 0 ptq " Q 0 p0q P C is constant. Next, we get B t ψ 0 " ´2c 2 π 0 which leads to

B 2 tt ψ 0 ´c2 ∆ z ψ 0 " ´σ2 pzq 2γc 2 @ σ 1 D T d Q 0 p0q looooooooomooooooooon :"C 1 (40)
The solution of [START_REF] Lions | The Choquard equation and related questions[END_REF] with initial condition pψ 0 pzq, π 0 pzq " ´1 2c 2 B t ψp0, zqq P .

H 1 pR n qˆL 2 pR n q satisfies p ψ 0 pt, ξq " p ψ 0 p0, ξq cospc|ξ|tq ´2c 2 p π 0 pξq sinpc|ξ|tq c|ξ| ´ˆt 0 sinpc|ξ|sq c|ξ| p σ 2 pξqC 1 ds
where p ψ 0 pt, ξq and p π 0 pt, ξq are the Fourier transforms of z Þ Ñ ψpt, zq and z Þ Ñ πpt, zq respectively. Finally, integrating

B t P 0 " ´γ@ σ 1 D T d loooomoooon :"C 2 ˆRn σ 2 pzqψ 0 pzq dz we obtain P 0 ptq " P 0 p0q `C2 ˆRn p σ 2 pξq p ψ 0 p0, ξq sinpc|ξ|tq c|ξ| dξ p2πq n ´2c 2 C 2 ˆRn p σ 2 pξqp π 0 p0, ξq 1 ´cospc|ξ|tq c 2 |ξ| 2 dξ p2πq n ´C1 C 2
ˆt 0 ˆs 0 p c pτ q dτ ds where

p c pτ q " ˆRd |p σ 2 pξq| 2 sinpc|ξ|τ q c|ξ| dξ p2πq n .
This kernel already appears in the analysis performed in [START_REF] De Bièvre | Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov-Poisson system[END_REF][START_REF] Goudon | Landau damping in dynamical Lorentz gases[END_REF]. The contribution involving the initial data of the vibrational field can be uniformly bounded by

1 p2πq n ˆˆR d |p σ 2 pξq| 2 c 2 |ξ| 2 dξ ˙1{2 # ˆˆR d | p ψ 0 p0, ξq| 2 dξ ˙1{2 `4c 2 ˆˆR d |p π 0 p0, ξq| 2 c 2 |ξ| 2 dξ ˙1{2 + .
Next, as a consequence of (H2), it turns out that p c is compactly supported, with ´8 0 p c pτ q dτ " κ c 2 , see [START_REF] De Bièvre | Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov-Poisson system[END_REF]Lemma 14] and [START_REF] Goudon | Landau damping in dynamical Lorentz gases[END_REF]Section 2.4]. It follows that ˆt 0 ˆs 0 p c pτ q dτ ds " ˆt 0 p c pτ q

ˆˆt τ ds ˙dτ " ˆt 0 pt ´τ qp c pτ q dτ " tÑ8 t κ c 2 ´ˆ8 0 τ p c pτ q dτ,
which concludes the proof.

When k " 0, basic estimates based on the energy conservation allow us to justify the stability of the solutions with zero mean. However, in contrast to what has been established for the Hartree system, this analysis does not extend to any mode k 0, since the system is not Galilean invariant. Theorem 4.2 (Linearized stability for the Schrödinger-Wave system when k " 0) Let k " 0. Suppose (9) and let pu, ψ, πq be the solution of (36) associated to an initial data u Init P H 1 pT d q, ψ Init P L 2 pT d ;

.

H 1 pR n qq, π Init P L 2 pT d ˆRn q such that ´Td u Init dx " 0. Then, there exists a constant C ą 0 such that sup tě0 }upt, ¨q} H 1 ď C.

Proof. Again, we use the energetic properties of the linearized equation [START_REF] Lieb | Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation[END_REF]. We have already remarked that ´Td upt, xq dx " 0 for any t ě 0 when ´Td u Init dx " 0. We start by computing 

}σ 1 ‹ pu `uq} L 2 ˆˆˆT d ˇˇˆR n σ 2 pzqψpt, x, zq dz ˇˇ2 dx ˙1{2 ď }σ 1 } L 1 }u `u} L 2 ˆˆˆT d ˇˇˆR n p σ 2 pξq p ψpt, x, ξq dξ p2πq n ˇˇ2 dx ˙1{2 ď 2}σ 1 } L 1 }u} L 2 ˆˆˆT d ˇˇˆR n p σ 2 pξq |ξ| |ξ|| p ψpt, x, ξq| dξ p2πq n ˇˇ2 dx ˙1{2 ď 2}σ 1 } L 1 }u} L 2 ˆˆˆR n |p σ 2 pξq| 2 |ξ| 2 dξ ˙1{2 ˆˆˆT d ˆRn |ξ| 2 | p ψpt, x, ξq| 2 dξ p2πq n dx ˙1{2 ď 2 ? κ}σ 1 } L 1 }u} L 2 ˆˆˆT d ˆRn |∇ z ψpt, x, ξq| 2 dz dx ˙1{2 " 2 ? κ}σ 1 } L 1 }u} L 2 }∇ z ψ} L 2 ď 1 2γ }∇ z ψ} 2 L 2 `2κγ}σ 1 } 2 L 1 }u} 2 L 2 .
By using the Poincaré-Wirtinger inequality }u} L 2 ď }∇ x u} L 2 , we deduce that

1 2 ˆTd |∇ x upt, xq| 2 dx ď E 0 1 ´4γ 2 κ}σ 1 } 2 L 1
, where E 0 depends on the energy of the initial state.

While it is natural to start with the linearized operator L k in [START_REF] Lions | The concentration-compactness principle in the calculus of variations. the locally compact case, part 2[END_REF], it turns out that this formulation is not well-adapted to study the spectral stability issue. The difficulties relies on the fact that the wave part of the system induces an essential spectrum, reminiscent to the fact that σ ess p´∆ z q " r0, 8q. For instance, this is even an obstacle to set up a perturbation argument from the Hartree equation, in the spirit of [START_REF] Gallay | Stability of small periodic waves for the nonlinear Schrödinger equation[END_REF]. We shall introduce later on a more adapted formulation of the linearized equation, which will allow us to overcome these difficulties (and also to go beyond a mere perturbation analysis).

Orbital stability for the Schrödinger-Wave system when k " 0

In this subsection, we wish to establish the orbital stability of the plane wave solution to [START_REF] Komech | Long time asymptotics for a classical particle interacting with a scalar field[END_REF] obtained in Section 2.1, namely

u ω pt, xq " e iωt 1pxq, Ψ ˚pt, x, zq " ´γΓpzq @ σ 1 D T d , Π ˚pt, x, zq " 0
with k P Z d and ω P R that satisfy the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF] and Γpzq " p´∆q ´1σ 2 pzq. The system (32) being invariant under multiplications of u by a phase factor, we define the corresponding orbit through p1pxq, ´γΓpzq

@ σ 1 D T d , 0q by O 1 " tpe iθ , ´γΓpzq @ σ 1 D T d , 0q, θ P Ru.
As before, orbital stability intuitively means that the solutions of (32) associated to initial data close enough to p1pxq, ´γΓpzq @ σ 1 D T d , 0q remain at a close distance to the set O 1 .

Let us introduce, for any k P Z d and ω P R satisfying the dispersion relation ( 12), the set

S ω " ! pu, Ψ, Πq P H 1 pT d ; Cq ˆL2 pT d ;
.

H 1 pR n qq ˆL2 pT d , L 2 pR n qq, F puq " F p1q " p2πq d 2 ) ,
and the functional L ω,k pu, Ψ, Πq " H SW pu, Ψ, Πq `ωF puq,

intended to serve as a Lyapounov functional, where H SW is the constant of motion defined in [START_REF] Komech | Effective dynamics for a mechanical particle coupled to a wave field[END_REF].

For further purposes, we simply denote L ω " L ω,0 . Note that

L ω,k pu, Ψ, Πq " H SW pu, Ψ, Πq `1 2i ˆTd k ¨∇u ū dx loooooooooomoooooooooon " d ÿ j"1 k j G j puq `´ω `k2 2 ¯F puq
with H SW defined in [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] and G j puq defined in [START_REF] Lafitte | Normal transport properties in a metastable stationary state for a classical particle coupled to a non-ohmic bath[END_REF]. Thanks to the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF], only the second term of this expression depends on k. Unfortunately, as pointed out before, the quantities G j puq are not constants of the motion so that the dependence on k of the Lyapounov functional (41) cannot be disregarded, in contrast to what we did for the Hartree system in [START_REF] Goudon | Landau damping in dynamical Lorentz gases[END_REF].

Next, as in subsection 3.2, we need to evaluate the first and second order variations of L ω,k . We compute Besides, we have

B pu,Ψ,Πq H SW pu, Ψ, Πqpv, φ, τ q " Re ˆ1 2 ˆTd p´∆uqv dx `γ ˆTd ˆ¨T d ˆRn σ 1 px ´yqσ 2 pzqΨpt,
B u F puqpvq " Re ˆˆT d uv dx ˙, B 2 u F puqpv, v 1 q " Re ˆˆT d vv 1 dx ˙, B u G j puqpvq " Im `´T d B x j uv dx ˘, B 2 u Gpuqpv, v 1 q " Im `´T d B x j v 1 v dx ˘.
Accordingly, we are led to

B pu,Ψ,Πq L ω,k p1, ´γ@ σ 1 D T d Γ, 0qpv, φ, τ q " Re ˆ´γ 2 @ σ 1 D 2 T d κ ˆTd v dx `´ω `k2 2 ¯ˆT d v dx `γ 2 @ σ 1 D T d
¨Td ˆRn pσ 2 `∆z Γq φ dz dx " 0 thanks to the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF] and the definition of Γ. Similarly, the second order derivative casts as

B 2 pu,Ψ,Πq L ω,k p1, ´γ@ σ 1 D T d Γ, 0q `pv, φ, τ q, pv, φ, τ q " Re ˆ1 2 ˆTd p´∆vqv dx `1 2 ¨Td ˆRn ´4c 2 τ 2 `p´∆ z φq φ dz ¯dx `2γ ˆTd ˆ¨T d ˆRn σ 1 px ´yqσ 2 pzqφpt, y, zq dz dy ˙vpxq dx ´γ2 @ σ 1 D T d ˆTd ˆ¨T d ˆRn σ 1 px ´yqσ 2 pzqΓpzq dz dy ˙vpxqvpxq dx `´ω `k2 2 ¯ˆT d vpxqvpxq dx İm ˜d ÿ j"1 k j ˆTd B x j vv dx ¸.
The forth and fifth integrals combine as

ˆTd ´ω `k2 2 ´γ2 κ @ σ 1 D 2 T d ¯vpxqvpxq dx " 0
which cancels out by virtue of the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF]. Hence we get .

B 2 pu,Ψ,Πq L ω,k p1, ´γ@ σ 1 D T d Γ, 0q `pv, φ, τ q, pv, φ, τ q " Re ˆ1 2 
H 1 pR n qq ˆL2 pT d ˆRn q, B 2 pu,Ψ,Πq L ω,k p1, ´γ@ σ 1 D T d Γ, 0q `pv, φ, τ q, pv, φ, τ q ˘ď 1 2 }∇v} 2 L 2 `2c 2 }τ } 2 L 2 `1 2 }φ} 2 L 2 x . H 1 z `2γκ 1{2 }σ 1 } L 1 }v} L 2 }φ} L 2 x . H 1 z `|k|}∇v} L 2 }v} L 2 ď 1 2 ´p1 `|k|q}v} 2 H 1 `4c 2 }τ } 2 L 2 `C}φ} 2 L 2 x . H 1 z ď maxp4c 2 , 1 `|k|, Cq 2 }pv, φ, τ q} 2 with C " 1 `4γ 2 κ}σ 1 } 2 L 1 .
The functional L ω,k is conserved by the solutions of [START_REF] Komech | Long time asymptotics for a classical particle interacting with a scalar field[END_REF]; however the difficulty relies on justifying its coercivity. We are only able to answer positively in the specific case k " 0. Hence, the main result of this subsection restricts to this situation. Theorem 4.4 (Orbital stability for the Schrödinger-Wave system) Let k " 0 and ω P R such that the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF] is satisfied. Suppose (9) holds. Then the plane wave solution pe iωt 1pxq, ´γΓpzq @ σ D T d , 0q is orbitally stable, i.e.

@ε ą 0, Dδ ą 0, @pv Init , φ Init , τ Init q P H 1 pT d ; Cq ˆL2 pT d ;

.

H 1 pR n qq ˆL2 pT d ˆRn q, }v Init ´1} H 1 `}φ Init `γΓ @ σ D T d } L 2 x . H 1 z `}τ Init } L 2 ă δ ñ sup tě0 distppvptq, φptq, τ ptqq, O 1 q ă ε (42)
where distppv, φ, τ q, O 1 q " inf θPr0,2πr }v ´eiθ

1} H 1 `}φ `γΓ @ σ D T d } L 2 x . H 1 z `}τ } L 2 and pt, x, zq Þ Ñ
pvpt, xq, φpt, x, zq, τ pt, x, zqq stands for the solution of [START_REF] Komech | Long time asymptotics for a classical particle interacting with a scalar field[END_REF] with Cauchy data pv Init , φ Init , τ Init q.

Using the same argument as in the case of Theorem 3.5, we can reduce the proof of Theorem 4.4 to the following coercivity estimate on the Lyapounov functional (and this is where we use that L ω,k is a conserved quantity). Lemma 4.5 Let k P Z d and ω P R such that the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF] is satisfied. Suppose that there exist η ą 0 and c ą 0 such that @pw, ψ, χq

P S ω , distppw, ψ, χq, O 1 q ă η ñ L ω,k ppw, ψ, χqq ´Lω,k pp1pxq, ´γΓpzq @ σ D T d , 0qq ě cdistppw, ψ, χq, O 1 q 2 . ( 43 
)
Then the the plane wave solution pe iωt 1pxq, ´γΓpzq @ σ D T d , 0q is orbitally stable.

As we have seen before, since B pu,ψ,Πq L ω,k pp1, ´γΓpzq @ σ D T d , 0qq " 0, the coercivity estimate (43) can be obtained from an estimate on the bilinear form

B 2 pu,ψ,Πq L ω,k pp1, ´γ@ σ 1 D T d Γ, 0qqppu, φ, τ q, pu, φ, τ qq
for any pu, φ, τ q P T 1 S ω X pT 1 O 1 q K . Here the tangent set to S ω is given by

T 1 S ω " " u P H 1 pT d ; Cq, Re ˆˆT d upxq1pxq dx ˙" 0 * ˆL2 pT d ;
.

H 1 pR n qq ˆL2 pT d ˆRn q.
This set is the orthogonal to p1, 0, 0q with respect to the inner product defined in [START_REF] Lenzmann | Uniqueness of ground states for pseudo-relativistic Hartree equations[END_REF]. The tangent set to O 1 (which is the orbit generated by the phase multiplications of 1) is

T 1 O 1 " span R tpi1, 0, 0qu so that pT 1 O 1 q K " " u P H 1 pT d ; Cq, Re ˆi ˆTd upxq1pxq dx ˙" 0 * ˆL2 pT d ;
.

H 1 pR n qq ˆL2 pT d ˆRn q.

Lemma 4.6 Let k P Z d and ω P R such that the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF] is satisfied. Suppose that there exists c ą 0

B 2 pu,ψ,Πq L ω,k pp1, ´γΓpzq @ σ D T d , 0qqppu, φ, τ q, pu, φ, τ qq ě cp}u} 2 H 1 `}φ} 2 L 2 x . H 1 z `}τ } 2 L 2 q " c}pu, φ, τ q} 2 (44 
) for any pu, φ, τ q P T 1 S 1 X pT 1 O 1 q K . Then there exist η ą 0 and c ą 0 such that (43) is satisfied.

Proof. Let pw, ψ, χq P S ω such that distppw, ψ, χq, O 1 q ă η with η ą 0 small enough. Hence, inf θPr0,2πq }w ´eiθ 1} ă η and, by means of an implicit function theorem argument (see [4, Section 9, Lemma 8]), we obtain that there exists θ P r0, 2πq and v P u P H 1 pT d ; Cq, Re `i ´Td upxq dx ˘" 0 (

such that e iθ w " 1 `v, inf θPr0,2πq }w ´eiθ 1} ď }v} H 1 ď C inf θPr0,2πq
}w ´eiθ 1}

for some positive constant C. Denote by φpx, zq " ψpx, zq `γΓpzq @ σ 1 D T d . Then pv, φ, χq P pT 1 O 1 q K and }pv, φ, χq} ď Cη.

Next, we use the fact that H 1 pT d q " u P H 1 pT d ; Cq, Re `´T d upxq dx ˘" 0 ( ' span R t1u to write pv, φ, χq " pv 1 , φ, χq `pv 2 , 0, 0q with pv 1 , φ, χq P T 1 S ω X pT 1 O 1 q K and v 2 P span R t1u. Moreover, 4 . This leads to

}v 2 } H 1 ď }v} 2 H 1 2}1} L 2 and }v 1 } H 1 ě 1 2 }v} H 1 provided }v} H 1 ď }1} L 2 . As a consequence, if }v} H 1 is small enough, using that B 2 pu,Ψ,Πq L ω,k p1, ´γ@ σ 1 D T d Γ, 0q `pv, φ, τ q, pv 1 , φ 1 , τ 1 q ˘ď C}pv, φ, τ q}}pv 1 , φ 1 , τ 1 q}, we obtain B 2 pu,Ψ,Πq L ω,k p1, ´γ@ σ 1 D T d Γ, 0q `pv 1 , φ, χq, pv 2 , 0, 0q ˘ď C}pv, φ, χq} }v} 2 H 1 ď C}pv, φ, χq} 3 , B 2 pu,Ψ,Πq L ω,k p1, ´γ@ σ 1 D T d Γ, 0q `pv 2 , 0, 0q, pv 2 , 0, 0q ˘ď C}v} 4 H 1 ď C}pv, φ, χq}
B 2 pu,Ψ,Πq L ω,k p1, ´γ@ σ 1 D T d Γ, 0q `pv, φ, χq, pv, φ, χq " B 2 pu,Ψ,Πq L ω,k p1, ´γ@ σ 1 D T d Γ, 0q
`pv 1 , φ, χq, pv 1 , φ, χq ˘`op}pv, φ, χq} 2 q. Finally, let pw, ψ, χq P S ω such that dppw, ψ, χq, O 1 q ă η, we have

L ω,k ppw, ψ, χqq ´Lω,k pp1pxq, ´γΓpzq @ σ D T d , 0qq " L ω,k ppe iθ w, ψ, χqq ´Lω,k pp1pxq, ´γΓpzq @ σ D T d , 0qq " 1 2 B 2 pu,Ψ,Πq L ω,k p1, ´γ@ σ 1 D T d Γ, 0q `pv, φ, χq, pv, φ, χq ˘`op}pv, φ, χq} 2 q " 1 2 B 2 pu,Ψ,Πq L ω,k p1, ´γ@ σ 1 D T d Γ, 0q `pv 1 , φ, χq, pv 1 , φ, χq ˘`op}pv, φ, χq} 2 q ě c 2 }pv 1 , φ, τ q} 2 `op}pv, φ, χq} 2 q ě c 4 }pv, φ, τ q} 2 `op}pv, φ, χq} 2 q ě c 8 dppw, ψ, χq, O 1 q 2
where we use

B pu,Ψ,Πq L ω,k p1, ´γ@ σ 1 D T d Γ, 0q " 0 and pv 1 , φ, χq P T 1 S ω X pT 1 O 1 q K .
As before, to prove the orbital stability of the plane solution pe iωt 1pxq, ´γΓpzq @ σ D T d , 0q it is enough to prove [START_REF] Newton | Stability of periodic plane waves[END_REF] for any pu, φ, τ q P T 1 S 1 X pT 1 O 1 q K . Let pu, φ, τ q P T 1 S 1 X pT 1 O 1 q K and write u " q `ip with q, p P H 1 pT d ; Rq. Then The crossed term ´Td qk ¨∇p dx is an obstacle for proving a coercivity on Q.

B 2 pu,Ψ,Πq L ω,k p1, ´γ@ σ 1 D T d Γ, 0q `pu, φ, τ q, pu, φ, τ q " Re ˆ1 2 
For this reason, let us focus on the case k " 0. Since pu, φ, τ q P T 1 S 1 X pT 1 O 1 q K , we have ˆTd q dx " 0 and ˆTd p dx " 0.

As a consequence, thanks to the Poincaré-Wirtinger inequality, we deduce, when k " 0 Next, we expand q, σ 1 and φp¨, zq in Fourier series, i.e.

QpW, W q ě 1 4 }p} 2 H 1 `2c

qpxq " ÿ mPZ d

q m e im¨x , φpx, zq " ÿ mPZ d φ m pzqe im¨x and σ 1 pxq " ÿ

mPZ d σ 1,m e im¨x .
Note that σ 1,m " σ 1,m " σ 1,´m since σ 1 is real and radially symmetric. Moreover, ´Td q dx " 0 implies q 0 " 0. Hence, 

ˆTd
" p2πq d ÿ mPZ d t0u Re ˆm2 2 q 2 m `1 2 ˆRn |∇ z φ m | 2 dz `2p2πq d γσ 1,m q m ˆRn σ 2 pzqφ m pzq dz ˙.
Next, we remark that for any m P Z d , ˇˇˇR e ˆ2p2πq d γσ 1,m q m ˆRn σ 2 pzqφ m pzq dz

˙ˇˇˇď 2p2πq d γσ 1,m |q m | ? κ}∇φ m } L 2 ď 1 2 δ p4γ 2 κp2πq 2d σ 2 1,m qq 2 m `δ 2 }∇φ m } 2 L 2
for any δ ą 0. Finally, for any δ P p0, 1q, we get

1 2 ˆTd |∇q| 2 dx `1 2 ¨Td ˆRn p´∆ z φq φ dx dz `2γ ˆTd ˆ¨T d ˆRn σ 1 px ´yqσ 2 pzqφpt, y, zq dz dy ˙qpxq dx ě p2πq d ÿ mPZ d ˆˆm 2 2 ´1 2 δ p4γ 2 κp2πq 2d σ 2 1,m q ˙q2 m `1 ´δ 2 }∇φ m } 2 L 2 ˙( 47 
)
As a consequence, we obtain the following statement.

Proposition 4.7 Let k " 0 and ω P R such that the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF] is satisfied. Suppose that there exists δ P p0, 1q such that

4γ 2 κp2πq 2d σ 2 1,m m 2 ď δ ( 48 
)
for all m P Z d t0u. Then, there exists c ą 0 such that

B 2 pu,Ψ,Πq L ω p1, ´γ@ σ 1 D T d Γ, 0q `pu, φ, τ q, pu, φ, τ q ˘ě c}pu, φ, τ q} 2 ( 49 
)
for any pu, φ, τ

q P T 1 S 1 X pT 1 O 1 q K .
Proof. If (48) holds, then, for any δ P pδ, 1q, ( 45)-( 46)-( 47) lead to

B 2 pu,Ψ,Πq L ω p1, ´γ@ σ 1 D T d Γ, 0q `pu, φ, τ q, pu, φ, τ q ˘ě 1 4 }p} 2 H 1 `2c 2 }τ } 2 L 2 `δ ´δ 2 δ p2πq d ÿ mPZ d t0u m 2 q 2 m `1 ´δ 2 p2πq d ÿ mPZ d }∇φ m } 2 L 2 " 1 4 }p} 2 H 1 `1 2c 2 }τ } 2 L 2 `δ ´δ 2 δ }∇q} 2 L 2 `1 ´δ 2 }φ} 2 L 2 x H 1 z ě c}pu, φ, τ q} 2
where in the last inequality we used the Poincaré-Wirtinger inequality together with the fact that ´Td q dx " 0.

Finally, Proposition 4.7 together with Lemma 4.6 and Lemma 4.5 gives Theorem 4.4 and the orbital stability of the plane wave solution pe iωt 1pxq, ´γΓpzq @ σ D T d , 0q in the case k " 0.

Remark 4.8

The coercivity of B 2 pu,Ψ,Πq L ω p1, ´γ@ σ 1 D T d Γ, 0q `pu, φ, τ q, pu, φ, τ q ˘on T 1 S 1 XpT 1 O 1 q K can be recovered from the spectral properties of a convenient unbounded linear operator S. Indeed, as we have seen before, by decomposing u into real and imaginary part, the quadratic form defined by [START_REF] Ohta | Instability of bound states for abstract nonlinear schrödinger equations[END_REF] (with k " 0) can be written as

QpW, W q " 1 2 ˆTd |∇p| 2 dx `2c 2 ¨Td ˆRn |τ | 2 dz dx `BS ˆq φ ˙ˇˇˆq φ ˙F with S : H 2 pT d q ˆL2 pT d ;
.

H 1 pR n qq Ă L 2 pT d q ˆL2 pT d ;
.

H 1 pR n qq Ñ L 2 pT d q ˆL2 pT d ;
.

H 1 pR n qq the unbounded linear operator given by

S ˆq φ ˙" ¨´1 2 ∆ x q `γσ 1 ‹ ˆRn σ 2 φ dz 1 2 φ `γΓσ 1 ‹ q ‹ '
(where we remind the reader that Γ " p´∆q ´1σ 2 q) and the inner product Bˆq

φ ˙ˇˇˆq 1 φ 1 ˙F " ˆTd qq 1 dx`ˆT d ˆRn ∇ z φ¨∇ z φ 1 dz dx " ˆTd qq 1 dx`ˆT d ˆRn φpx, ξq φ1 px, ξq |ξ| 2 dξ p2πq n dx.
Note that L 2 pT d q ˆL2 pT d ;

. we can check that S is a self-adjoint operator on L 2 pT d q ˆL2 pT d ;

H
.

H 1 pR n qq. In particular, σpSq Ă R and one can easily study the spectrum of S.

More precisely, using Fourier series, we find that if λ is an eigenvalue of S then there exists at least one m P Z d such that for some pq m , φ m q p0, 0q there holds

$ ' ' & ' ' % ˆm2 2 ´λ˙q m `γp2πq d σ 1,m ˆRn σ 2 pzqφ m pzq dz " 0, ˆ1 2 ´λ˙φ m pzq `γp2πq d Γpzqσ 1,m q m " 0.
Let λ 1 2 . Hence, for any m P Z d , q m " 0 implies φ m pzq " 0 for any z P R n . As a consequence, we may assume q m 0. This leads to φ m pzq " ´γp2πq d σ 1,m qm 1{2´λ

Γpzq and ˆm2

2 ´λ˙ˆ1 2 ´λ˙´γ 2 p2πq 2d σ 2 1,m κ " 0.
By solving this equation, we obtain

λ ˘,m " ´m2 `1 2 ¯˘c ´m2 ´1 2 ¯2 `4γ 2 p2πq 2d σ 2 1,m κ 2 so that λ `,m ě 1
4 for any m P Z d . Next, we remark that λ ´,0 "

1 2 ´b 1 4 `4γ 2 p2πq 2d σ 2 1,0 κ 2 ă 0 since 4γ 2 κp2πq 2d σ 2 1,0 ą 0.
This eigenvalue corresponds to an eigenfunction pq, φq with q P span R t1u. In particular, ´Td qpxq dx 0. Finally, if [START_REF] Keel | Endpoint Strichartz estimates[END_REF] holds,

λ ´,m ě ´m2 `1 2 ¯´c ´m2 ´1 2 ¯2 `δm 2 2 ě 1 ´δ 5 
for any m P Z d t0u.

We conclude that

B S ˆq φ ˙ˇˇˆq φ ˙F " C ¨´1 2 ∆ x q `γσ 1 ‹ ˆRn σ 2 φ dz 1 2 φ `γΓσ 1 ‹ q ‹ ' ˇˇˆq φ ˙G ě min ˆ1 2 , 1 ´δ 5 ˙p}q} 2 L 2 `}φ} L 2 x . H 1 z q
for all pq, φq P tq P L 2 pT d q, ´T d q dx " 0u ˆL2 pT d ;

.

H 1 pR n qq. This, together with the Poincaré-Wirtinger inequality, proves the coercivity of B 2 pu,Ψ,Πq L ω p1, ´γ@ σ 1 D T d Γ, 0q `pu, φ, τ q, pu, φ, τ q ˘on T 1 S 1 X pT 1 O 1 q K . 5 Discussion about the case k 0

A new symplectic form of the linearized Schrödinger-Wave system

We go back to the linearized problem. The viewpoint presented in Section 4.1 looks quite natural; however, it misses some structural properties of the problem. In order to work in a unified functional framework, we find convenient to change the wave unknown ψ, which is naturally valued in .

H 1 pR n q, into p´∆q ´1{2 φ, where the new unknown φ now lies in L 2 pR n q. The last component of the unknown vector X becomes π " ´p´∆q ´1{2 Btφ c . (The change of unknowns allows us to work in a convenient unified functional framework, based on L 2 spaces; the constants are chosen in order to make symmetry properties appear, see Lemma 5.1 and the continuity estimate after (70) below.) Hence, the linearized problem is rephrased as

B t X " LX,
where X stands for the 4-uplet pq, p, φ, πq and

LX " ¨´1 2 ∆ x p ´k ¨∇x q 1 2 ∆ x q ´k ¨∇x p ´γσ 1 ‹ ˆˆR n p´∆q ´1{2 σ 2 φ dz ċp´∆q 1{2 π cp´∆q 1{2 φ `2cγσ 2 σ 1 ‹ q ‹ ‹ ‹ ‹ ‹ ' . ( 50 
)
The operator L is seen as an operator on the Hilbert space

V " L 2 pT d q ˆL2 pT d q ˆL2 pT d ; L 2 pR n qq ˆL2 pT d ; L 2 pR n qq, with domain DpLq " H 2 pT d qˆH 2 pT d qˆL 2 pT d ; H 1 pR n qqˆL 2 pT d ; H 1 pR n qq.
The considered functional framework is now made of complex valued functions, which makes the space V a complex Hilbert space when endowed with the norm }¨} V based on the L 2 inner product on each component. We are thus going to study the spectral properties of L on the space V . We can start with the following basic information, which has the consequence that the spectral stability amounts to justify that σpLq Ă iR.

Lemma 5.1 Let pλ, Xq be an eigenpair of L. Let Y : px, zq Þ Ñ pqp´xq, ´pp´xq, φp´x, zq, ´πp´x, zqq.

Then, pλ, Xq, p´λ, Y q and p´λ, Y q are equally eigenpairs of L.

Proof. Since L has real coefficients, LX " λX implies LX " λX. Next, we check that

LY px, zq " ¨1 2 ∆ x p `k ¨∇x q 1 2 ∆ x q ´k ¨∇x p ´γσ 1 ‹ ˆˆR n p´∆q ´1{2 σ 2 φ dz 1 ċp´∆q 1{2 π cp´∆q 1{2 φ `2cγσ 2 σ 1 ‹ q ‹ ‹ ‹ ‹ ‹ ' p´x, zq " λ ¨´qp´x, zq pp´x, zq ´φp´x, zq πp´x, zq ‹ ‹ ' " ´λY px, zq.
Next, we make a new symplectic structure appear. To this end, let us introduce the blockwise operator

J " ˆJ1 0 0 J 2 ˙, J 1 " ˆ0 1 ´1 0 ˙, J 2 " 2c ˆ0 ´p´∆q 1{2 p´∆q 1{2 0 ˙.
We are thus led to L " J L with

L X " ¨´1 2 ∆ x q `k ¨∇x p `γσ 1 ‹ ˆˆR n p´∆q ´1{2 σ 2 φ dz 1 2 ∆ x p ´k ¨∇x q φ 2 `γp´∆q ´1{2 σ 2 σ 1 ‹ q π 2 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' . ( 51 
)
For further purposes, we also set

Ă J " ˆJ 1 0 0 J2 ˙, J1 " ˆ0 ´1 1 0 ˙, J2 " 1 2c ˆ0 p´∆q ´1{2 ´p´∆q ´1{2 0 ˙. (52) 
The operator J has 0 in its essential spectrum; nevertheless Ă J plays the role of its inverse since J Ă J " I " Ă J J .

Lemma 5.2

The operator L is an unbounded self adjoint operator on V with domain DpL q " H 2 pT d q ˆH2 pT d q ˆL2 pT d ; L 2 pR n qq ˆL2 pT d ; L 2 pR n qq, and the operator J is skew-symmetric.

Proof. The space V is endowed with the standard L 2 inner product `X|X 1 q " ˆTd pqq 1 `pp 1 q dx `¨T d ˆRn pφφ 1 `ππ 1 q dx dz.

We get

`L X|X 1 ˘" ˆTd !´´1 2 ∆ x q `k ¨∇x p ¯q1 `´´1 2 ∆ x p ´k ¨∇x q ¯p1 ) dx `γ ˆTd σ 1 ‹ ˆˆR n p´∆q ´1{2 σ 2 φ dz ˙q1 dx `1 2 ¨Td ˆRn ´φφ 1 `ππ 1 ¯dx dz `γ ¨Td ˆRn ´p´∆q ´1{2 σ 2 σ 1 ‹ q ¯φ1 dx dz " ˆTd ! q ´´1 2 ∆ x q 1 `k ¨∇x p 1 ¯`p ´´1 2 ∆ x p 1 ´k ¨∇x q 1 ¯) dx `γ ¨Td ˆRn φp´∆q ´1{2 σ 2 σ 1 ‹ q 1 dz dx `1 2 ¨Td ˆRn ´φφ 1 `ππ 1 ¯dx dz `γ ˆTd qσ 1 ‹ ˆˆR n p´∆q ´1{2 σ 2 φ 1 dz ˙dx " `X|L X 1 ˘, and `J X|X 1 ˘" ¨Td ´pq 1 ´qp 1 ¯dx `2c ¨Td ˆRn ´´p´∆q 1{2 πφ 1 `p´∆q 1{2 φπ 1 ¯dx dz " ´¨T d ´qp 1 ´pq 1 ¯dx ´2c ¨Td ˆRn ´´φp´∆q 1{2 π 1 `πp´∆q 1{2 φ 1 ¯dx dz " ´`X|J X 1 Ȃs
said above, justifying the spectral stability for the Schrödinger-Wave equation reduces to verify that the spectrum σpLq is purely imaginary. However, the coupling with the wave equation induces delicate subtleties and a direct approach is not obvious. Instead, based on the expression L " J L , we can take advantage of stronger structural properties. In particular, the functional framework adopted here allows us to overcome the difficulties related to the essential spectrum induced by the wave equation, which ranges over all the imaginary axis. This approach is strongly inspired by the methods introduced by D. Pelinovsky and M. Chugunova [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF][START_REF] Pelinovsky | Localization in periodic potentials. From Schrödinger operators to the Gross-Pitaevskii equation[END_REF][START_REF] Pelinovsky | Spectral stability of nonlinear waves in KdV-type evolution equations[END_REF]. The workplan can be summarized as follows. It can be shown that the eigenproblem LX " λX for L is equivalent to a generalized eigenvalue problem AW " αKW , with α " ´λ2 , see Proposition 5.4 and 5.5 below, where the auxiliary operators A and K depend on J , L . Then, we need to identify negative eigenvalues and complex but non real eigenvalues of the generalized eigenproblem. To this end, we appeal to a counting statement due to [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF].

Spectral properties of the operator L

The stability analysis relies on the spectral properties of L , collected in the following claim. Proposition 5.3 Let L the linear operator defined by [START_REF] Simon | Compact sets in the space L p p0, T ; Bq[END_REF] on DpL q Ă V . Suppose [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF]. Then, the following assertions hold:

1. σ ess pL q " t1{2u, 2. L has a finite number of negative eigenvalues, with eigenfunctions in DpL q, given by npL q " 1 `#tm P Z d t0u, m 4 ´4pk ¨mq 2 ă 0 and σ 1,m " 0u `#tm P Z d t0u, m 4 ´4pk ¨mq 2 ď 0 and σ 1,m 0u.

In particular, npL q " 1 when k " 0. The eigenspaces associated to the negative eigenvalues are all finite-dimensional.

3. With X 0 " p0, 1, 0, 0q, we have span R tX 0 u Ă KerpL q. Moreover, given k P Z d t0u, let K ˚"

tm P Z d t0u, m 4 ´4pk ¨mq 2 " 0 and σ 1,m " 0u. Then, we get dimpKerpL qq " 1 `#K ˚.

We remind the reader that σ 1 is assumed radially symmetric, see (H1). Consequently σ 1,m " σ 1,´m " σ 1,˘m and both #K ˚and #tm P Z d t0u, m 4 ´4pk ¨mq 2 ď 0 and σ 1,m 0u are necessarily even.

Proof. Since L is self-adjoint, σpL q Ă R. Let us study the eigenproblem for L

: λX " L X means $ ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' % λq " ´1 2 ∆ x q `k ¨∇x p `γσ 1 ‹ ˆˆR n p´∆q ´1{2 σ 2 φ dz ˙, λp " ´1 2 ∆ x p ´k ¨∇x q, λφ " 1 2 φ `γp´∆q ´1{2 σ 2 σ 1 ‹ q, λπ " 1 2 π. ( 53 
)
Clearly λ " 1 2 is an eigenvalue with eigenfunctions of the form p0, 0, 0, πq, π P L 2 pT d ˆRn q. As a consequence, dimpKerpL ´1 2 qq is not finite and 1 2 P σ ess pL q.

We turn to the case λ 1 2 , where the last equation imposes π " 0. Using Fourier series, we obtain

λq m " m 2 2 q m `ik ¨mp m `γp2πq d σ 1,m ˆˆR n p´∆q ´1{2 σ 2 φ m dz ˙, λp m " m 2 2 p m ´ik ¨mq m , λφ m " 1 2 φ m `γp2πq d p´∆q ´1{2 σ 2 σ 1,m q m . ( 54 
)
where q m , p m P C are the Fourier coefficients of q, p P L 2 pT d q while φ m pzq " 1 p2πq d ´Td φpx, zqe ´im¨x dx for all z P R n and φ P L 2 pT d ; L 2 pR n qq.

We split the discussion into several cases.

Case m " 0. For m " 0, the equations (54) degenerate to

λq 0 " γp2πq d σ 1,0 ˆˆR n p´∆q ´1{2 σ 2 φ 0 dz ˙, λp 0 " 0, ´λ ´1 2 ¯φ0 " γp2πq d p´∆q ´1{2 σ 2 σ 1,0 q 0 .
Combining the first and the third equation yields

λ ´λ ´1 2 ¯q0 " γ 2 p2πq 2d σ 2 1,0 κq 0 ,
still with κ " ´p´∆q ´1σ 2 σ 2 dz. It permits us to identify the following eigenvalues:

• λ " 0 is an eigenvalue associated to the eigenfunction p0, 1, 0, 0q,

• since σ 1,0 " 1 p2πq d ´Td σ 1 dx 0, and p´∆q ´1{2 σ 2 0, λ " 1{2 is an eigenvalue associated to eigenfunctions p0, 0, φ, 0q, for any function z Þ Ñ φpzq orthogonal to p´∆q ´1{2 σ 2 . We find another infinite dimensional eigenspace associated to the eigenvalue λ " 1 2 . • the roots of

λ ´λ ´1 2 ¯´γ 2 p2πq 2d σ 2 1,0 κ " λ 2 ´λ 2 ´γ2 p2πq 2d σ 2 1,0 κ " 0, provide two additional eigenvalues λ ˘" 1{2 ˘b1{4 `4γ 2 p2πq 2d σ 2 1,0 κ 2 ,
associated to the eigenfunctions p1, 0,

γp2πq d σ 1,0 p´∆q ´1{2 σ 2 λ ˘´1{2
, 0q, respectively.

To sum up, the Fourier mode m " 0 gives rise to two positive eigenvalues (1/2 and λ `), one negative eigenvalue (λ ´) and the eigenvalue 0, the last two being both one-dimensional. It tells us that dimpKerpL qq ě 1 and npL q ě 1.

Case m 0 with σ 1,m " 0. In this case, the m-mode equations (54) for the particle and the wave are uncoupled pλ ´1{2qφ m " 0, pM m ´λq ˆqm p m ˙" 0 where we have introduced the 2 ˆ2 matrix

M m " ˆm2 {2 ik ¨m ´ik ¨m m 2 {2 ˙. (55) 
We identify the following eigenvalues:

• λ " 1{2 is an eigenvalue associated to the eigenfunction p0, 0, e im¨x φpzq, 0q, for any φ P L 2 pR n q.

Once again, this tells us that 1 2 P σ ess pL q.

• the eigenvalues λ ˘" m 2 ˘2k¨m 2 P R of the 2 ˆ2 matrix M m , associated to the eigenfunctions pe im¨x , ¯ie im¨x , 0, 0q, respectively. Since trpM m q ą 0, at most only one of these eigenvalues can be negative, which occurs when detpM m q " m 4 4 ´pk ¨mq 2 ă 0. Given k P Z d , we conclude this case by asserting npL q ě 1 `#tm P Z d t0u, m 4 ´4pk ¨mq 2 ă 0, σ 1,m " 0u, and dimpKerpL qq ě 1 `#tm P Z d t0u, m 2 " ˘2k ¨m, σ 1,m " 0u.

Case m 0 with σ 1,m 0. Again, we distinguish several subcases.

• if λ " 1 2 , the third equation on [START_REF] Tao | Why are solitons stable ? Bull[END_REF] imposes q m " 0, and we are led to 1 ´m2 2 p m " 0, ik ¨mp m `γp2πq d σ 1,m ˆˆR n p´∆q ´1{2 σ 2 φ m dz ˙" 0.

Thus, λ " 1 2 is an eigenvalue associated to the eigenfunctions: p0, 0, e im¨x φpzq, 0q, for any function z Þ Ñ φpzq orthogonal to p´∆q ´1{2 σ 2 , (we recover the same eigenfunctions as for the case m " 0), p0, e im¨x , 0, 0q if k ¨m " 0, m 2 " 1, and ´0,

´γp2πq d κσ 1,m ik ¨m e im¨x , p´∆q ´1{2 σ 2 pzqe im¨x , 0 ¯if k ¨m 0, m 2 " 1. • if λ " m 2 2 1 2 , ( 54 
) becomes 0 " ik ¨mp m `γp2πq d σ 1,m ˆˆR n p´∆q ´1{2 σ 2 φ m dz ˙, 0 " ´ik ¨mq m , m 2 ´1 2 φ m " γp2πq d p´∆q ´1{2 σ 2 σ 1,m q m .
There is no non-trivial solution when k ¨m 0. Otherwise, we see that λ " m 2 {2 is an eigenvalue associated to the eigenfunctions: p0, e im¨x , 0, 0q

• if λ t 1 2 , m 2 2 u, we set µ " λ ´m2 2 .
We see that a non trivial solution of (54) exists if its component q m does not vanish. We combine the equations in (54) to obtain P pµqq m " 0 where P is the third order polynomial

P pµq " µ 3 `bµ 2 `cµ `d, b " m 2 ´1 2 ě 0, c " ´ppk ¨mq 2 `γ2 κp2πq 2d σ 2 1,m q ă 0, d " ´pk ¨mq 2 m 2 ´1 2 ď 0. .
Observe that d " ´pk ¨mq 2 b and pk ¨mq 2 ă |c| ă pk ¨mq 2 `1 4 . We thus need to examine the roots of this polynomial. To this end, we compute the discriminant

D " 18bcd ´4b 3 d `b2 c 2 ´4c 3 ´27d 2 .
A tedious, but elementary, computation allows us to reorganize terms as follows

D " 4pk ¨mq 2 `pk ¨mq 2 ´b2 ˘2 `b2 σ 2 1,m γp20pk ¨mq 2 `γσ 2 1,m q `4pk ¨mq 2 σ 2 1,m γp2pk ¨mq 2 `γσ 2 1,m q `4σ 2 1,m γ `pk ¨mq 4 `2pk ¨mq 2 σ 2 1,m γ `σ4 1,m γ 2 ˘,
where we have set γ " γ 2 κp2πq 2d . Since σ 1,m 0, we thus have D ą 0 and P has 3 distinct real roots, µ 1 ă µ 2 ă µ 3 . In order to bring further information about the location of the roots, we observe that lim µÑ˘8 P pµq " ˘8 while P p0q " d ď 0 and P 1 p0q " c ă 0. Moreover, studying the zeroes of P 1 pµq " 3µ 2 `2bµ `c, we see that µ max " ´b´?b 2 ´3c 3 ă 0 is a local maximum and µ min " ´b`?b 2 ´3c 3 ą 0 is a local minimum. Moreover, P 2 pµq " 6µ `2b, showing that P is convex on the domain p´pm 2 ´1q{6, `8q, concave on p´8, ´pm 2 ´1q{6q. A typical shape of the polynomial P is depicted in Figure 1. From this discussion, we infer µ 1 ă µ max ă µ 2 ď 0 ă µ min ă µ 3 . Coming back to the issue of counting the negative eigenvalues of L , we are thus wondering whether or not λ j " µ j `m2 {2 is negative. We already know that µ 3 ą µ min ą 0, hence µ 3 ą ´m2 {2 and we have at most 2 negative eigenvalues for each Fourier mode m 0 such that σ 1,m 0. To decide how many negative eigenvalues should be counted, we look at the sign of P p´m 2 {2q (see Fig. 1): i) if P p´m 2 {2q ą 0 then µ 1 ă ´m2 {2 ă µ 2 , ii) if P p´m 2 {2q " 0 then either ´m2 {2 ă µ max , in which case µ 1 " ´m2 {2 ă µ 2 , or ´m2 {2 ą µ max , in which case µ 2 " ´m2 {2 ą µ 1 , iii) if P p´m 2 {2q ă 0 then either ´m2 {2 ă µ max , in which case ´m2 {2 ă µ 1 ă µ 2 , or ´m2 {2 ą µ max , in which case µ 1 ă µ 2 ă ´m2 {2.

However, we remark that

P p´m 2 {2q " ´m6 8 `m4 pm 2 ´1q 8 `m2 2 ppk ¨mq 2 `γσ 2 1,m q ´m2 ´1 2 pk ¨mq 2 " ´m4 8 
´1 ´4 γσ 2 1,m m 2 ¯`pk ¨mq 2 2 " ´1 8 
pm 4 ´4pk ¨mq 2 ´4m 2 γσ 2 1,m q, (56) 
where, by virtue of ( 9), m 0 and σ 1m 0, 1 ą 4

γσ 2 1,m
m 2 ą 0. This can be combined together with

P 1 p´m 2 {2q "3 m 4 4 ´m2 pm 2 ´1q 2 ´pk ¨mq 2 ´γσ 2 1,m " m 4 4 `m2 2 ´pk ¨mq 2 ´γσ 2 1,m " 1 4 `m4 ´4pk ¨mq 2 ´4m 2 γσ 2 1,m ˘`m 2 γσ 2 1,m `m2 2 ´γσ 2 1,m " ´2P p´m 2 {2q `m2 2 
`pm 2 ´1qγσ 2 1,m ą ´2P p´m 2 {2q. Finally, P 2 p´m 2 {2q " ´2m 2 ´1 ă 0.

As a consequence, P p´m 2 {2q ă 0 implies P 1 p´m 2 {2q ą 0, while P 2 p´m 2 {2q ă 0. This shows that ´m2 {2 ă µ 1 . Therefore, in case iii), the only remaining possibility is the situation where P p´m 2 {2q ă 0 with ´m2 {2 ă µ 1 ă µ 2 . As a conclusion, if P p´m 2 {2q ă 0, all eigenvalues λ j are positive.

Next, we claim that case ii) cannot occur. Indeed, P p´m 2 {2q " 0 if and only if pm 2 ´2k ¨mqpm 2 `2k ¨mq " 4m 2 γσ 2 1,m . In particular, the term on the left hand side of this equality has to be positive. This is possible if and only if both factors, which belong to Z, are positive. In this case, according to the sign of k ¨m, one of them is ě m 2 so that m 2 ď 4m 2 γσ 2 1,m . This contradicts the smallness condition [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF]. Note that P p´m 2 {2q 0 implies λ j 0, i.e. m-modes with m 0 and σ 1,m 0 cannot generate elements of KerpL q.

As a conclusion, negative eigenvalues only come from case i) and for each m-mode such that P p´m 2 {2q ą 0 we have exactly one negative eigenvalue. Going back to [START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF], in this case, we have pm 4 ´4pk ¨mq 2 q " pm 2 ´2k ¨mqpm 2 `2k ¨mq ă m 2 4γσ 2 1,m ă m 2 owing to [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF]. This excludes the possibility that m 4 ´4pk¨mq 2 ą 0, since we noticed above that whenever this term is positive, it is ě m 2 . Hence, case i) holds if and only if m 4 ´4pk¨mq 2 ď 0. This ends the counting of the negative eigenvalues of L in Proposition 5.3. Note that the associated eigenspaces are spanned by ´eim¨x , ´ik ¨m λ ´m2 {2 e im¨x , e im¨x σ 1,m γp2πq d p´∆ z q ´1{2 σ 2 λ ´1{2 , 0

¯.

The discussion has permitted us to find the elements of KerpL q. To be specific, the equation L X " 0 yields π " 0 and the following relations for the Fourier coefficients

m 2 2 p m ´ik ¨mq m " 0, φ m 2 `p2πq d γp´∆q ´1{2 σ 2 σ 1,m q m " 0, m 2 2 q m `ik ¨mp m `p2πq d γσ 1,m ˆp´∆q ´1{2 σ 2 φ m dz " 0.
We have seen that the mode m " 0 gives rise the eigenspace spanned by p0, 1, 0, 0q. For m 0, elements of KerpL q can be obtained only in the case σ 1,m " 0. Moreover, the condition m 2 " ˘2k ¨m has to be fulfilled. In such a case, pe im¨x , ¯ie im¨x , 0, 0q P KerpL q.

Finally, it remains to prove that σ ess pL q " 1 2

(

. We have already noticed that 1 2 lies in σ ess pL q. Suppose, by contradiction, that there exists λ P σ ess pL q with λ 1 2 . Hence, by Weyl's criterion [START_REF] Pelinovsky | Localization in periodic potentials. From Schrödinger operators to the Gross-Pitaevskii equation[END_REF]Theorem B.14], there exists a sequence pX ν q νPN with X ν " pq ν , p ν , φ ν , π ν q P DpL q such that, as ν goes to 8, }pL ´λIqX ν } Ñ 0, }X ν } " 1 and

X ν á 0 weakly in V . ( 57 
)
Since λ 1 2 and λ 2c 2 , from ( 53) and ( 57) we have

}π ν } L 2 pT d ;L 2 pR n qq Ñ 0 and φ ν " ´ˆ1 2 ´λ˙´1 γp´∆q ´1{2 σ 2 σ 1 ‹ q ν `εν with ε ν P L 2 pT d ; L 2 pR n qq such that lim νÑ8 }ε ν } L 2 pT d ;L 2 pR n qq " 0. This leads to › › › › ´1 2 ∆ x q ν ´λq ν `k ¨∇x p ν ´γ2 κ 1{2 ´λ Σ ‹ q ν `γσ 1 ‹ ˆˆR n p´∆q ´1{2 σ 2 ε ν dz ˙› › › › L 2 pT d q Ý ÝÝ Ñ νÑ8 0, › › › › ´1 2 ∆ x p ν ´λp ν ´k ¨∇x q ν › › › › L 2 pT d q Ý ÝÝ Ñ νÑ8 0.
Using the fact that the sequence ppq ν , p ν , ε ν qq νPN is bounded in L 2 pT d q ˆL2 pT d q ˆL2 pT d ; L 2 pR n qq, we deduce that pq ν , p ν q νPN is bounded in H 2 pT d q ˆH2 pT d q. Indeed, reasoning on Fourier series, this amounts to estimate ÿ

mPZ d |m| 4 p|q ν,m | 2 `|p ν,m | 2 q ď 2 ÿ mPZ d `|m 2 q ν,m `2ik ¨mp ν,m | 2 `|m 2 p ν,m ´2ik ¨mq ν,m | 2 q `8 ÿ mPZ d p|k ¨mp ν,m | 2 `|k ¨mq ν,m | 2 q ď 2 › › ´∆x q ν `2k ¨∇x p ν › › L 2 pT d q `2› › ´∆x p ν ´2k ¨∇x q ν › › L 2 pT d q `4 δ |k| 4 ÿ mPZ d `|q ν,m | 2 `|p ν,m | 2 ˘`4δ ÿ mPZ d |m| 4 p|q ν,m | 2 `|p ν,m | 2 q.
. Choosing 0 ă δ ă 1{4 and using the already known estimates, we conclude that }∆ x q ν } 2

L 2 }∆ x p ν } 2 L 2 " ř mPZ d |m| 4 `|q ν,m | 2 `|p ν,m | 2
˘is bounded, uniformly with respect to ν. Hence, because of the compact Sobolev embedding of H 2 pT d q into L 2 pT d q, we have that pq ν , p ν q νPN has a (strongly) convergent subsequence in L 2 pT d q ˆL2 pT d q. As a consequence, the sequence pX ν q νPN has a convergent subsequence in V , which contradicts [START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF].

A consequence of Proposition 5.3 is that 0 is an isolated eigenvalue of L . Since the restriction of L to the subspace pKerpL qq K is, by definition, injective, it makes sense to define on it its inverse L ´1, with domain RanpL q Ă pKerpL qq K Ă V . In fact, 0 being an isolated eigenvalue, RanpL q is closed and coincides with pKerpL qq K , [START_REF] Pelinovsky | Localization in periodic potentials. From Schrödinger operators to the Gross-Pitaevskii equation[END_REF]Section B.4]. This can be shown by means of spectral measures. Given X P pKerpL qq K , the support of the associated spectral measure dµ X does not meet the interval p´ǫ, `ǫq for ǫ ą 0 small enough, independent of X. Accordingly, we get

}L X} 2 " ˆ`8 ´8 λ 2 dµ X pλq " ˆ|λ|ěǫ λ 2 dµ X pλq ě ǫ 2 }X} 2 .
In particular, the Fredholm alternative applies: for any Y P pKerpL qq K , there exists a unique X P pKerpL qq K such that L X " Y . We will denote X " L ´1Y .

For further purposes, let us set X 0 " p0, 1, 0, 0q P KerpL q and Y 0 " J X 0 " p1, 0, 0, 0q.

Note that Y 0 P pKerpL qq K , so that it makes sense to consider the equation

L U 0 " Y 0 .
We find

π m " 0, φ m " ´2γp2πq d p´∆q ´1{2 σ 2 σ 1,m q m , m 2 p m " 2ik ¨mq m ,
and

m 2 q m `2ik ¨mp m `2γp2πq d σ 1,m ˆp´∆q ´1{2 σ 2 φ m dz " δ 0,m .
It yields, for m 0, p m 4 4 ´pk ¨mq 2 ´γ|σ 1,m | 2 m 2 ¯qm " 0 and q 0 " ´1 2γ 2 p2πq 2d |σ 1,0 | 2 κ . Therefore, we can set

U 0 " L ´1Y 0 " ´1 2γ 2 p2πq 2d |σ 1,0 | 2 κ `1, 0, ´2γp2πq d p´∆q ´1{2 σ 2 σ 1,0 , 0 ˘, solution of L U 0 " Y 0 such that U 0 P pKerpL qq K . We note that pU 0 , Y 0 q " ´1 2γ 2 p2πq d |σ 1,0 | 2 κ ă 0. ( 58 
)

Reformulation of the eigenvalue problem, and counting theorem

The aim of the section is to introduce several reformulations of the eigenvalue problem. This will allow us to make use of general counting arguments, set up by [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF][START_REF] Pelinovsky | Localization in periodic potentials. From Schrödinger operators to the Gross-Pitaevskii equation[END_REF][START_REF] Pelinovsky | Spectral stability of nonlinear waves in KdV-type evolution equations[END_REF].

Proposition 5. [START_REF] De Bièvre | Orbital stability: analysis meets geometry[END_REF] Let us set M " ´J L J . The coupled system

M Y " ´λX, L X " λY, ( 59 
)
admits a solution with λ 0, X P DpL q t0u, Y P DpJ L J q t0u iff there exists two vectors X ˘P DpLq t0u that satisfy LX ˘" ˘λX ˘.

Let P stand for the orthogonal projection from V to pKerpL qq K Ă V .

Proposition 5.5 Let us set A " PM P and K " PL ´1P . Let us define the following Hilbert space H " DpM q X pKerpL qq K Ă V .

The coupled system (59) has a pair of non trivial solutions p˘λ, X, ˘Y q, with λ 0 iff the generalized eigenproblem AW " αKW, W P H , (60) admits the eigenvalue α " ´λ2 0, with at least two linearly independent eigenfunctions.

Recall that the plane wave solution obtained Section 2.1 is spectrally stable, if the spectrum of L is contained in iR. In view of Propositions 5.4 and 5.5, this happens if and only if all the eigenvalues of the generalized eigenproblem (60) are real and positive. In other words, the presence of spectrally unstable directions corresponds to the existence of negative eigenvalues or complex but non real eigenvalues of the generalized eigenproblem (60).

Our goal is then to count the eigenvalues α of the generalized eigenvalue problem (60). In particular we define the following quantities:

• N ń , the number of negative eigenvalues • N 0 n , the number of eigenvalues zero

• N ǹ , the number of positive eigenvalues of (60), counted with their algebraic multiplicity, the eigenvectors of which are associated to nonpositive values of the the quadratic form W Þ Ñ pKW |W q " pL ´1P W |PW q. Moreover, let N C be the number of eigenvalues α P C with Impαq ą 0. As pointed out above, the eigenvalues counted by N ń and N C `correspond to cases of instabilities for the linearized problem [START_REF] Lions | The concentration-compactness principle in the calculus of variations. the locally compact case, part 2[END_REF]. Note that to prove the spectral stability, it is enough to show that the generalized eigenproblem (60) does not have negative eigenvalues and N C `" 0. Indeed, as a consequence of Propositions 5.4 and 5.5 and Lemma 5.1, if α P C R is an eigenvalue of (60), then ᾱ is an eigenvalue too. Hence, if N C `" 0, then the generalized eigenproblem (60) does not have solutions in C R.

Finally, for using the counting argument introduce by Chugunova and Pelinovsky in [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF], we need the following information on the essential spectrum of A, see [47, Lemma 2-(H1') and Lemma 4]. Lemma 5.6 Let M " ´J L J be defined on V . Then σ ess pM q " r0, `8q. Let A " PM P and K " PL ´1P be defined on H . Then σ ess pAq " r0, `8q and we can find δ ˚, d ˚ą 0 such that for any real number 0 ă δ ă δ ˚, A`δK admits a bounded inverse and we have σ ess pA`δKq Ă rd ˚δ, `8q.

Proof. We check that

J L J X " ¨∆x q 2 ´k ¨∇x p ∆ x p 2 `k ¨∇x q `2cγσ 1 ‹ ˆp´∆ z q ´1{2 σ 2 p´∆ z q 1{2 π dz 2c 2 ∆ z φ 2c 2 ∆ z π 2 `2cγσ 2 σ 1 ‹ p ‹ ‹ ‹ ‹ ‹ ‹ ' .
As a matter of fact, for any φ P H 2 pR n q, the vector X e " p0, 0, φ, 0q lies in pKerpL qq K and satisfies

J L J X e " ¨0 0 2c 2 ∆ z φ 0 ‹ ‹ ' P pKerpL qq K .
Consequently M X e " AX e " ´J L J X e " p0, 0, ´2c 2 ∆ z φ, 0q. It indicates that a Weyl sequence for A ´λI, λ ą 0, can be obtained by adapting a Weyl sequence for p´∆ z ´µIq, µ ą 0. Let us consider a sequence of smooth functions ζ ν P C 8 c pR n q such that supppζ ν q Ă Bp0, ν `1q, ζ ν pzq " 1 for x P Bp0, νq and }∇ z ζ ν } L 8 pR n q ď C 0 ă 8, }D 2 z ζ ν } L 8 pR n q ď C 0 ă 8, uniformly with respect to ν P N. We set φ ν pzq " ζ ν pzqe iξ¨z{p ? 2cq for some ξ P R n . We get

p´|ξ| 2 ´2c 2 ∆ z qφ ν pzq " ´eiξ¨z{p ? 2cq ´2i ? 2c ξ ¨∇z ζ ν `2c 2 ∆ z ζ ν ¯pzq,
which is thus bounded in L 8 pR n q and supported in Bp0, ν `1q Bp0, νq. It follows that }p´|ξ| 2 2c

2 ∆ z qφ ν } 2 L 2 pR n q ν n´1 , while }φ ν } 2 L 2 pR n q ν n . Accordingly, we obtain }φν } 2 L 2 pR n q }p´|ξ| 2 ´2c 2 ∆zqφν } 2 L 2 pR n q
ν Ñ 8 as ν Ñ 8. Therefore, φ ν equally provides a Weyl sequence for M ´|ξ| 2 I and A ´|ξ| 2 I, showing the inclusions r0, 8q Ă σ ess pM q and r0, 8q Ă σ ess pAq.

Next, let λ r0, 8q. We suppose that we can find a Weyl sequence pX ν q νPN for M , such that

M X ν ´λX ν " ¨´λq ν ´∆x q ν 2 `k ¨∇x p ν ´λp ν ´∆x p ν 2 ´k ¨∇x q ν ´2cγσ 1 ‹ ˆp´∆ z q ´1{2 σ 2 p´∆ z q 1{2 π ν dz ´λφ ν ´2c 2 ∆ z φ ν ´λπ ν ´2c 2 ∆ z π ν ´2cγσ 2 σ 1 ‹ p ν ‹ ‹ ‹ ‹ ‹ ' " ¨q1 ν p 1 ν φ 1 ν π 1 ν ‹ ‹ ' Ý ÝÝ Ñ νÑ8 0,
with, moreover, }X ν } " 1 and X ν á 0 weakly in V . In particular, we can set

x φ ν px, ξq " x φ 1 ν px, ξq 2c 2 |ξ| 2 ´λ . ( 61 
)
It defines a sequence which tends to 0 strongly L 2 pT d ˆRn q since, writing λ " a `ib P C r0, 8q, we get |2c 2 |ξ| 2 ´λ| 2 " |2c 2 |ξ| 2 ´a| 2 `b2 which is ě b 2 ą 0 when λ R, and, in case b " 0, ě a 2 ą 0. Similarly, we can write

x π ν px, ξq " x π 1 ν px, ξq 2c 2 |ξ| 2 ´λ looooomooooon "hν px,ξqPL 2 pT d ˆRn q `2cγx σ 2 pξq 2c 2 |ξ| 2 ´λ looooomooooon PL 2 pR n q σ 1 ‹ p ν , ( 62 
)
where h ν tends to 0 strongly L 2 pT d ˆRn q. We are led to the system ¨´´λ `∆x

2 ¯qν `k ¨∇x p ν ´k ¨∇x q ν ´´λ `∆x 2 ¯pν ´4c 2 γ 2 ˆ|x σ 2 | 2 p2πq n p2c 2 |ξ| 2 ´λq dξ ˆΣ ‹ p ν ‹ ' " ¨q1 ν p 1 ν ´2cγσ 1 ‹ ˆx σ 2 pξq |ξ| h ν px, ξq dξ p2πq n 'Ý ÝÝ Ñ νÑ8 0. ( 63 
)
Reasoning as in the proof of Proposition 5.3-1), we conclude that X ν converges strongly to 0 in V , a contradiction. Hence, λ P C r0, 8q cannot belong to σ ess pM q and the identification σ ess pM q " r0, 8q holds.

Proposition 5.3-3) identifies KerpL q. Let us introduce the mapping

Ă P : ˆq p ˙P L 2 pT d qˆL 2 pT d q Þ ÝÑ ¨ÿ mPK˚, k¨mą0 pq m ´ip m qe im¨x `ÿ mPK˚, k¨mă0 pq m `ip m qe im¨x p 0 `i ÿ mPK˚, k¨mą0 pq m ´ip m qe im¨x ´i ÿ mPK˚, k¨mă0 pq m `ip m qe im¨x ‹ ‹ ' .
Then,

X " ¨q p φ π ‹ ‹ ' Þ ÝÑ ¨Ă P ˆq p 0 0 ‹ ‹ '
is the projection of V on KerpL q. Accordingly, we realize that P does not modify the last two components of a vector X " pq, p, φ, πq P V , and for X P pKerpL qq K , we have p 0 " 0, and q m " ˘ip m for any m P K ˚, depending on the sign of k ¨m. Now, let λ P C r0, 8q and suppose that we can exhibit a Weyl sequence pX ν q νPN for A ´λI: X ν P H Ă pKerpL qq K , PX ν " X ν , }X ν } " 1, X ν á 0 in V and lim νÑ8 }pA ´λIqX ν } " 0. We can apply the same reasoning as before for the last two components of pA ´λIqX ν ; it leads to (61) and ( 62), where, using λ r0, 8q, φ ν and h ν converge strongly to 0 in L 2 pT d ˆRn q. We arrive at the following analog to (63)

pI ´Ă Pq ¨´´λ `∆x 2 ¯qν `k ¨∇x p ν ´k ¨∇x q ν ´´λ `∆x 2 ¯pν ´4c 2 γ 2 ˆ|x σ 2 | 2 p2πq n p2c 2 |ξ| 2 ´λq dξ ˆΣ ‹ p ν ‹ ' " ˆq1 ν p 1 ν ˙´pI ´Ă Pq ¨0 2cγσ 1 ‹ ˆx σ 2 pξq |ξ| h ν px, ξq dξ p2πq n 'Ý ÝÝ Ñ νÑ8 0. ( 64 
)
In order to derive from (64) an estimate in a positive Sobolev space as we did in the proof of Proposition 5.3-1), we should consider the Fourier coefficients arising from ´1 2 ∆ x q ν `k ¨∇x p ν and ´1 2 ∆ x p ν ´k ¨∇x q ν , namely Q m " m 2 2 q ν,m `ik ¨mp ν,m and P m " m 2 2 p ν,m ´ik ¨mq ν,m . Only the coefficients belonging to K ˚are affected by the action of Ă P, which leads to Q m ´pQ m ¯iP m q " ˘iP m and P m ¯ipQ m ¯iP m q " ¯iQ m , according to the sign of k ¨m. However, we bear in mind that q m " ˘ip m when m P K ˚with ˘k ¨m ą 0. Hence, for coefficients in K ˚, the contributions of the differential operators reduces to ˘im 2 p m " ˘m2 q m and ¯im 2 q m " ˘m2 p m , respectively. Note also that for these coefficients there is no contributions coming from the convolution with σ 1 in (64) since σ 1,m " 0 for m P K ˚. Therefore, reasoning as in the proof of Proposition 5.3-1) for coefficients m P Z d K ˚, we can obtain a uniform bound on

ř mPZ d |m| 4 p|q ν,m | 2 `|p ν,m | 2 q
, which provides a uniform H 2 bound on q ν and p ν , leading eventually to a contradiction. We conclude that σ ess pAq " r0, 8q.

Let δ ą 0 and consider the shifted operator A `δK. As a consequence of Lemma 5.10, we will see that KerpA `δKq " t0u for any δ ą 0: 0 is not an eigenvalue for A `δK; let us justify it does not belong to the essential spectrum neither. To this end, we need to detail the expression of the operator K. Given X P H , we wish to find

X 1 P H satisfying L X 1 " ¨´1 2 ∆ x q 1 `k ¨∇x p 1 `γσ 1 ‹ ˆˆR n p´∆q ´1{2 σ 2 φ 1 dz 1 2 ∆ x p 1 ´k ¨∇x q 1 1 2 φ 1 `γp´∆q ´1{2 σ 2 σ 1 ‹ q 1 π 1 2 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' " X.
We infer π 1 " 2π and the relation φ 1 " 2φ ´2γp´∆ z q ´1{2 σ 2 σ 1 ‹ q 1 . In turn, the Fourier coefficients of q 1 , p 1 are required to satisfy

ˆm2 {2 ´2γ 2 κp2πq 2d |σ 1,m | 2 ik ¨m ´ik ¨m m 2 {2 ˙ˆq 1 m p 1 m ˙" ¨qm ´2γp2πq d σ 1,m ˆp´∆q ´1{2 σ 2 φ m dz p m '.
When m 0, m K ˚, the matrix of this system has its determinant equal to det "

m 4 4 `1 ´4γ 2 κp2πq 2d |σ 1,m | 2
m 2 ˘´pk ¨mq 2 . Owing to [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF], since pk ¨mq 2 takes values in N, it does not vanish and we obtain q 1 m , p 1 m by solving the system

q 1 m " 1 det ˆm2 2 ´qm ´2γp2πq d σ 1,m ˆp´∆q ´1{2 σ 2 φ m dz ¯´ik ¨mp m ˙, p 1 m " 1 det ˆ`ik ¨m´q m ´2γp2πq d σ 1,m ˆp´∆q ´1{2 σ 2 φ m dz ¯`´m2 2 ´2γ 2 κp2πq 2d |σ 1,m | 2 ¯pm ˙.
If m P K ˚we find a solution in pKerpL qq K by setting p 1 m " pm m 2 , q 1 m " ˘ip 1 m , according to the sign of k ¨m; if m " 0, we set p 1 0 " 0 and q 1 0 "

1 2γ 2 κp2πq 2d |σ 1,0 | 2 `q0 ´2γp2πq d σ 1,0 ´p´∆q ´1{2 σ 2 φ 0 dz ˘. This defines X 1 " KX.
Therefore, the last two components of pA `δK ´λIqX read

p2δ ´λqφ ´2c 2 ∆ z φ ´2δγp´∆q ´1{2 σ 2 σ 1 ‹ q 1 , p2δ ´λqπ ´1 2 ∆ z π ´γσ 2 σ 1 ‹ p 1 .
Hence, when λ does not belong to r2δ, 8q, we can repeat the analysis performed above to establish that λ σ ess pA `δKq. In particular the essential spectrum of A has been shifted away from 0.

We are now able to apply the results of Chugunova and Pelinovsky [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF] (see also [START_REF] Pelinovsky | Spectral stability of nonlinear waves in KdV-type evolution equations[END_REF]), to obtain the following. Theorem 5.7 [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF]Theorem 1] Let L be defined by [START_REF] Simon | Compact sets in the space L p p0, T ; Bq[END_REF]. Suppose [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF]. With the operators M , A, K defined as in Propositions 5.4-5.5, the following identity holds

N ń `N 0 n `N ǹ `NC `" npL q.
Let us now detail the proof of Proposition 5. Proof of Propositions 5.4 and 5.5. The goal is to establish connections between the following three problems:

(Ev) the eigenvalue problem LX " λX, with L " J L , (Co) the coupled problem L X " λY , M Y " ´λX, with M " ´J L J , (GEv) the generalized eigenvalue problem AW " αKW , with A " PM P, K " PL ´1P , the projection P on pKerpL qq K , and W P H " DpM q X pKerpL qq K .

The proof of Propositions 5.4 and 5.5 follows from the following sequence of arguments.

(i) By Lemma 5.1, we already know that if there exists a solution pλ, X `q of (Ev), with λ 0 and X ` 0, then, there exists X ´ 0, such that p´λ, X ´q satisfies (Ev). Being eigenvectors associated to distinct eigenvalues, X `and X ´are linearly independent. Note that only this part of the proof uses the specific structure of the operator L.

(ii) From these eigenpairs for L, we set

X " X ``X 2 , Y " Ă J ˆX`´X2 ˙.
Since X `and X ´are linearly independent, we have X 0, Y 0. Moreover, X " X ``X 2 and J Y " X `´X 2 are linearly independent. We get

L X " Ă J LX " Ă J ˆλ 2 pX `´X ´q˙" λY, M Y " ´J L ˆX`´X2 ˙" ´L ˆX`´X2 ˙" ´λ 2 pX ``X ´q " ´λX,
so that pλ, X, Y q satisfies (Co).

(iii) If pλ, X, Y q is a solution (Co), then p´λ, X, ´Y q satisfies (Co) too.

(iv) Let pλ, X, Y q be a solution (Co). Set

X 1 " J Y, Y 1 " Ă J X.
We observe that

M Y 1 " ´J L J Ă J X " ´J L X " ´J pλY q " ´λX 1 , L X 1 " L J Y " Ă J J L J Y " ´Ă J M Y " λ Ă J X " λY 1 ,
which means that pλ, J Y, Ă J Xq is a solution of (Co). Moreover, if X and J Y are linearly independent, Y and Ă J X are linearly independent too.

(v) Let pλ, X, Y q be a solution (Co), with X 0. We get LpX ˘J Y q " J L X ˘J L J Y " J L X ¯M Y " J pλY q ˘λX " ˘λpX ˘J Y q, so that p˘λ, X ˘J Y q satisfy (Ev). In the situation where X and J Y are linearly independent, we have X ˘J Y 0 and p˘λ, X ˘J Y q are eigenpairs for L. Otherwise, one of the vectors X ˘J Y might vanish. Nevertheless, since only one of these two vectors can be 0, we still obtain an eigenvector X ˘ 0 of L, associated to either ˘λ. Coming back to i), we conclude that ¯λ is an eigenvalue too.

Items i) to v) justify the equivalence stated in Proposition 5.4.

(vi) Let pλ, X, Y q be a solution (Co). From L X " λY , we infer Y P RanpL q Ă pKerpL qq K so that PY " Y . The relation thus recasts as

X " λPL ´1P Y `Ỹ, Ỹ P KerpL q, P Ỹ " 0.
(Here, PL ´1P Y stands for the unique solution of L Z " Y which lies in pKerpL qq K .) We obtain PM Y " Pp ´λXq " ´λPpλPL ´1P Y `Ỹ q " ´λ2 PL ´1P Y " ´λ2 KY " PM PY " AY, so that p´λ 2 , Y q satisfies (GEv). Going back to iv), we know that p´λ 2 , Ă J Xq is equally a solution to (GEv). If X and J Y are linearly independent, we obtain this way two linearly independent vectors, Y and Ă J X, solutions of (GEv) with α " ´λ2 .

(vii) Let pα, W q satisfy (GEv), with α 0, W 0. We set X " ´M W ? ´α . We have

Ă J X " ´1 ? ´α Ă J M W " 1 ? ´α Ă J J L J W " 1 ? ´α L J W
which lies in RanpL q Ă pKerpL qq K . Thus, using P Ă J X " Ă J X, we compute

K Ă J X " PL ´1P Ă J X " PL ´1 Ă J X " 1 ? ´α PL ´1L J W " 1 ? ´α PJ W.
Next, we observe that

A Ă J X " PM P Ă J X " ´PJ L J Ă J X " ´PJ L X " 1 ? ´α PJ L M W.
However, we can use PW " W (since W P H Ă pKerpL qq K ) and the fact that, for any vector Z, L Z " L pI ´PqZ `L PZ " 0 `L PZ, which yields

A Ă J X " 1 ? ´α PJ L PM PW " 1 ? ´α PJ L AW " ´?´αPJ L KW " ´?´αPJ L PL ´1P W " ´?´αPJ L L ´1W " ´?´αPJ W.
We conclude that A Ă J X " αK Ă J X: pα, Ă J Xq (GEv).

(viii) Let pα, W q satisfy (GEv), with α 0, W 0. We have PpM PW ´αL ´1P W q " 0 and thus M PW ´αL ´1P W " Ỹ P KerpL q.

Let us set Y " PW P pKerpL qq K , X " ´M PW ? ´α " ´1 ? ´α p Ỹ `αL ´1P W q, so that L X " ? ´αPW " ? ´αY, M Y " M PW " ´?´αX.

(Incidentally, since W is assumed to belong to H , we have W " PW " Y .) Therefore p ? ´α, X, Y q satisfies (Co). By v), p˘?´α, X ˘J Y q satisfy (Ev), and at least one of the vectors X ˘J Y does not vanish; using i), we thus obtain eigenpairs p˘?´α, X ˘q of L. With ii), we construct solutions of (Co) under the form `?´α, X ``X 2 , Ă J `X`´X2 ˘˘, which, owing to iv) and vi), provide the linearly independent solutions `α, Ă J `X`˘X2 ˘˘of (GEv). The dimension of the linear space of solutions of (GEv) is at least 2.

At least one of these vectors X ˘is given by the formula

X˘"

´M W ? ´α ˘J W.

By the way, we indeed note that AW " αKW , with W P H , can be cast as L J L J W " ´αW since it means pA ´αKqW " PpM ´αL ´1q PW lo omo on "W PH " ´PpJ L J `αL ´1qW " 0 so that pJ L J `αL ´1qW P KerpL q. It follows that

L ´´M W ? ´α ˘J W ¯" 1 ? ´α J pL J L J W q ˘J L J W " ? ´αJ W ¯M W " ˘?´α ´´M W ? ´α ˘J W ¯.
With these manipulations we have checked that p˘?´α, X˘q satisfy (Ev). If both vectors X˘a re non zero, we get X ˘" X˘a nd we recover W " Ă J `X`´X2 ˘. If X˘" 0, then, we get X¯" ¯J W 0, and we directly obtain X ¯" X¯, W " ¯Ă J X ¯. In any cases, W lies in the space spanned by X `and X ´and the dimension of the space of solutions of (GEv) is even. This ends the proof of Proposition 5.4 and 5.5.

Spectral instability

We are going to compute the terms arising in Theorem 5.7. Eventually, it will allow us to identify the possible unstable modes. In what follows, we find convenient to work with the operator M ´αL ´1 instead of PpM ´αL ´1qP " A ´αK, owing to to the following claim. Lemma 5.8 Let α 0 and X P H . The following two problems are equivalent:

1 X P KerpA ´αKq,
2 there exists X P V such that M X " α X and L X " X.

Proof.

Suppose 1 . Since X " PX P H , it means PpM ´αL ´1qX " 0, that is pM άL ´1qX " Z P KerpL q. Since α 0, we can set X " M X α P V . It satisfies L X " 1 α L pZ ὰL ´1X q " X, and 2 holds. Conversely, suppose 2 . We bear in mind that the pseudo-inverse L ´1 is defined as an application from pKerpL qq K to itself, hence we can decompose X " L ´1X `Z, with Z P KerpL q. Therefore, we get M X ´α X " pM ´αL ´1qX ´αZ " 0. In other words, pM ´αL ´1qX " αZ P KerpL q which implies, since X " PX P H , pA ´αKqX " PpM ´αL ´1qX " 0: 1 is satisfied. Therefore, we shall consider auxiliary problem:

M X " α X, L X " X.
Lemma 5.9 Suppose (9). N 0 n " 1.

Proof. We are interested in the solutions of

´1 2 ∆ x q `k ¨∇x p " 0, ´1 2 ∆ x p ´k ¨∇x q ´2cγσ 1 ‹ ˆσ2 π dz " 0, ´2c 2 ∆ z φ " 0, ´2c 2 ∆ z π ´2cγσ 2 σ 1 ‹ p " 0.
We infer φpx, zq " 0 and p πpx, ξq " γ c x σ 2 pξq |ξ| 2 σ 1 ‹ ppxq, and, next,

´1 2 ∆ x q `k ¨∇x p " 0, ´1 2 ∆ x p ´k ¨∇x q ´2γ 2 κΣ ‹ p " 0 with Σ " σ 1 ‹ σ 1 .
In terms of Fourier coefficients, it becomes

m 2 2 q m `ik ¨mp m " 0, m 2 2 p m ´ik ¨mq m ´2p2πq 2d γ 2 κ|σ 1,m | 2 p m " 0.
For m " 0, we get p 0 " 0 and we find the eigenfunction p1, 0, 0, 0q " Y 0 " `J X 0 with X 0 " p0, 1, 0, 0q P KerpL q.

For m 0 with σ 1,m 0, we get

m 4 ´4pk ¨mq 2 " 2p2πq 2d γ 2 κ|σ 1,m | 2 loooooooooomoooooooooon Pp0,1q m 2 .
which cannot hold (see the proof of Proposition 5.3 for more details).

For m 0 with σ 1,m " 0, we get M m ˆqm p m ˙" 0 with M m defined in [START_REF] Vivion | Particules classiques et quantiques en interaction avec leur environnement : analyse de stabilité et problèmes asymptotiques[END_REF]. As far as m 4 ´4pk ¨mq 2 0, M m is invertible and the only solution is p m " 0 " q m . If m 4 ´4pk ¨mq 2 " 0, we find the eigenfunctions pe ik¨m , ˘ie ik¨m , 0, 0q. These functions belong to KerpL q, and thus do not lie in the working space H .

We conclude that KerpM q " span R tY 0 u. Moreover, this vector Y 0 does not belong to RanpM q so that the algebraic multiplicity of the eigenvalue 0 is 1. Finally, bearing in mind [START_REF] Zhang | Travelling solitary waves for boson stars[END_REF], which can be recast as pKY 0 |Y 0 q ă 0, we arrive at N 0 n " 1.

Lemma 5.10 Suppose [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF]. The generalized eigenproblem (60) does not admit negative eigenvalues. In particular, N ń " 0.

Proof. Let α ă 0, X " pq, p, φ, πq and X " pq, p, φ, πq satisfy

´1 2 ∆ x q `k ¨∇x p " αq, ´1 2 ∆ x p ´k ¨∇x q ´2cγσ 1 ‹ ˆσ2 π dz " αp, ´2c 2 ∆ z φ " α φ, ´2c 2 ∆ z π ´2cγσ 2 σ 1 ‹ p " απ, (65) 
where

q " ´1 2 ∆ x q `k ¨∇x p `γσ 1 ‹ ˆp´∆ z q ´1{2 σ 2 φ dz, p " ´1 2 ∆ x p ´k ¨∇x q, φ " 1 2 φ `γp´∆ z q ´1{2 σ 2 σ 1 ‹ q, π " π 2 . ( 66 
)
This leads to solve an elliptic equation for π ´|α|

c 2 ´∆z ¯π " γ c σ 2 σ 1 ‹ p.
In other words, we get, by means of Fourier transform

p πpx, ξq " γ c σ 1 ‹ ppxq ˆx σ 2 pξq |ξ| 2 `|α|{c 2 .
On the same token, we obtain ´|α|

c 2 ´∆z ¯φ " ´2γp´∆ z q 1{2 σ 2 σ 1 ‹ q, which yields p φpx, ξq " ´2γσ 1 ‹ qpxq ˆ|ξ|x σ 2 pξq |ξ| 2 `|α|{c 2 .
For λ ą 0, we introduce the symbol

0 ď κ λ " ˆ|x σ 2 pξq| 2 |ξ| 2 `λ ď κ. It turns out that ´1 2 ∆ x q `k ¨∇x p " αq, ´1 2 ∆ x p ´k ¨∇x q ´2γ 2 κ |α|{c 2 Σ ‹ p " αp, with q " ´1 2 ∆ x q `k ¨∇x p ´2γ 2 κ |α|{c 2 Σ ‹ q, p " ´1 2 ∆ x p ´k ¨∇x q.
For the Fourier coefficients, it casts as

m 2 2 q m `ik ¨mp m " αq m , m 2 2 p m ´ik ¨mq m ´2γ 2 κ |α|{c 2 p2πq 2d |σ 1,m | 2 p m " αp m , with q m " m 2 2 qm `ik ¨mp m ´2γ 2 κ |α|{c 2 p2πq 2d |σ 1,m | 2 qm , p m " m 2 2 pm ´ik ¨mq m .
We are going to see that these equations do not have non trivial solutions with α ă 0:

• If m " 0, we get p 0 " 0, q0 " 0, and, consequently, p0 " 0, q 0 " 0. Hence, for α ă 0, we cannot find an eigenvector with a non trivial 0-mode.

• If m 0 and σ 1,m " 0, we see that pq m , p m q and pq m , pm q are related by

M m ˆqm p m ˙" α ˆq m pm ˙, ˆqm p m ˙" M m ˆq m pm ˙. (67) 
It means that α is an eigenvalue of

M 2 m " ˜m4 4 `pk ¨mq 2 im 2 k ¨m ´im 2 k ¨m m 4 4 `pk ¨mq 2 ¸.
The roots of the characteristic polynomial of M 2 m are p m 2 2 ˘k ¨mq 2 ě 0, which contradicts the assumption α ă 0.

• For the case where m 0 and σ 1,m 0, we introduce the shorthand notation a m " 2γ 2 p2πq 2d |σ 1,m | 2 κ |α|{c 2 , bearing in mind that 0 ă a m ă m 2 2 by virtue of the smallness condition [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF]. We are led to the systems However the eigenvalues of this matrix read `b m 2 2 p m 2 2 ´am q ˘pk ¨mq 2 ˘2 ě 0, contradicting that α is negative. Lemma 5.11 Suppose [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF]. N ǹ " #tm P Z d t0u, σ 1,m " 0, and m 4 ´4pk ¨mq 2 ă 0u.

Proof.

We should consider the system of equations ( 65)-( 66), now with α ą 0. For Fourier coefficients, it casts as

m 2 2 q m `ik ¨mp m " αq m , m 2 2 p m ´ik ¨mq m ´2cγp2πq d σ 1,m ˆσ2 π m dz " αp m , ´2c 2 ∆ z φ m " α φm , ´2c 2 ∆ z π m ´2cγp2πq d σ 1,m σ 2 p m " απ m ,
where

q m " m 2 2 qm `ik ¨mp m `γp2πq d σ 1,m ˆp´∆ z q ´1{2 σ 2 φm dz, p m " m 2 2 pm ´ik ¨mq m , φ m " 1 2 φm `γp2πq d p´∆ z q ´1{2 σ 2 σ 1,m qm , π m " πm 2 .
• For m " 0, we obtain p 0 " 0, q0 " 0. Hence π 0 satisfies p´α{c 2 ´∆z qπ 0 " 0. Here, `α{c 2 lies in the essential spectrum of ´∆z and the only solution in L 2 of this equation is π 0 " 0. In turn, this implies p0 " 0, p´α{c 2 ´∆z qφ 0 " 0, and thus φ 0 " 0, q 0 " 0. Hence, for α ą 0, we cannot find an eigenvector with a non trivial 0-mode.

• When m 0 and σ 1,m " 0, we are led to p´α{c 2 ´∆qφ m " 0, p´α{c 2 ´∆qπ m " 0 that imply φ m " 0, π m " 0. In turn, we get (67) for q m , p m , qm , pm . This holds iff α is an eigenvalue of M 2 m . If m 4 4pk ¨mq 2 , we find two eigenvalues α m,˘" p m 2 2 ˘k ¨mq 2 ą 0, with associated eigenvectors X m,˘" pe im¨x , ¯ie im¨x , 0, 0q, respectively. To decide whether these modes should be counted, we need to evaluate the sign of pL ´1X m,˘| X m,˘q . We start by solving L X 1 m,˘" X m,˘. It yields

φ 1 m,2 " 0, π 1 m,2
" 0 and

M m ˆq1 m,p 1 m,˘˙" ˆ1 ¯i˙.
We obtain

q 1 m,˘" 2 m 2 ˘2k ¨m , π 1 m,˘" ¯2i m 2 ˘2k ¨m , so that pL ´1X m,˘| X m,˘q " 2 m 2 ˘2k ¨m ˆˆT d e im¨x e ´im¨x dx `ˆT d p¯iqe im¨x ˘ie ´im¨x dx " 4p2πq d m 2 ˘2k ¨m ,
the sign of which is determined by the sign of m 2 ˘2k ¨m. We count only the situation where these quantities are negative; reproducing a discussion made in the proof of Proposition 5.3, we conclude that N ǹ ě #tm P Z d t0u, σ 1,m " 0 and m 4 ´4pk ¨mq 2 ă 0u.

When m 4 ´4pk ¨mq 2 " 0, the eigenvalues of M 2 n are 0 and m 4 , and we just have to consider the positive eigenvalue α " m 4 , associated to the eigenvector X m " pe im¨x , ˘ie im¨x , 0, 0q (depending whether m 2 2 " ¯k ¨m). The equation L Y m " X m has infinitely many solutions of the form p2{m 2 e im¨x , 0, 0, 0q `zp˘ie im¨x , e im¨x , 0, 0q, with z P C. We deduce that pL ´1X m |X m q " 2p2πq d m 2 ą 0. Thus these modes do not affect the counting. • When m 0 and σ 1,m 0, we are led to the relations p´α{c 2 ´∆z qπ m " γ c σ 2 p2πq d σ 1,m p m , p´α{c 2 ´∆z q φm " ´2p´∆ z q 1{2 σ 2 γp2πq d σ 1,m qm . The only solutions with square integrability on R n are π m " 0, φm " 0, p m " 0, qm " 0. This can be seen by means of Fourier transform: p´α{c 2 ´∆z qφ " σ amounts to p φpξq " p σpξq |ξ| 2 ´α{c 2 ; due to (H4) this function has a singularity which cannot be square-integrable. In turn, this equally implies φ m " 0 and πm " 0. Hence, we arrive at m 2 2 q m " 0 and ´ik ¨mq m " αp m , together with q m " ik ¨mp m and m 2 2 pm " 0. We conclude that α ą 0 cannot be an eigenvalue associated to a m-mode such that m 0 and σ 1,m 0.

We can now make use of Theorem 5.7, together with Proposition 5.3. This leads to 0 `1 `#tm P Z d t0u, σ 1,m " 0, and m 4 ´4pk ¨mq 2 ă 0u `NC `" N ń `N 0 n `N ǹ `NC " npL q " 1 `#tm P Z d t0u, m 4 ´4pk ¨mq 2 ă 0 and σ 1,m " 0u `#tm P Z d t0u, m 4 ´4pk ¨mq 2 ď 0 and σ 1,m 0u so that N C `" #tm P Z d t0u, m 4 ´4pk ¨mq 2 ď 0 and σ 1,m 0u.

Since the eigenvalue problem (60) does not have negative (real) eigenvalues, this is the only source of instabilities.

As a matter of fact, when k " 0, we obtain N C `" 0, which yields the following statement, (hopefully!) consistent with Lemma 4.1 and Proposition 4.2.

Corollary 5.12 Let k " 0 and ω P R such that the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF] is satisfied. Suppose (9) holds. Then the plane wave solution pe iωt 1pxq, ´γΓpzq @ σ D T d , 0q is spectrally stable.

In contrast to what happens for the Hartree equation, for which the eigenvalues are purely imaginary, see Lemma 3.2, we can find unstable modes, despite the smallness condition [START_REF] Chugunova | Count of eigenvalues in the generalized eigenvalue problem[END_REF] 0 for all m P Z d t0u. Then the plane wave solution pe ipωt`k¨xq , ´γΓpzq @ σ 1 D T d , 0q is spectrally unstable.

Orbital instability

Given Corollary 5.15, it is natural to ask whether or not the plane wave solution with k 0 is orbitally unstable in this case. Theorem 5. [START_REF] Faou | Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus[END_REF] Let k P Z d t0u and ω P R such that the dispersion relation [START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF] is satisfied. Suppose (9) holds and σ 1,m 0 for all m P Z d t0u. Then the plane wave solution pe ipωt`k¨xq , ´γΓpzq @ σ 1 D T d , 0q is orbitally unstable.

Note that, if σ 1,m 0 for all m P Z d t0u, we deduce from Proposition 5.3 that npLq ě 3. As a consequence, the arguments used in [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] to prove the orbital instability (see also [START_REF] Maeda | Instability of bound states of nonlinear schrödinger equations with morse index equal to two[END_REF][START_REF] Ohta | Instability of bound states for abstract nonlinear schrödinger equations[END_REF]) do not apply. It seems then necessary to work directly with the propagator generated by the linearized operator as in [START_REF] Colin | Instability of standing waves for a system of nonlinear Schrödinger equations with three-wave interaction[END_REF][START_REF] Georgiev | Nonlinear instability of linearly unstable standing waves for nonlinear schrödinger equations[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]. These arguments are of different nature: the former relies on specific spectral properties of the self-adjoint operator L , the latter uses the existence of at least an eigenvalue of the linearized operator L with positive real part, a fact which has been just justified by the counting argument.

We go back to the non linear problem [START_REF] Komech | Long time asymptotics for a classical particle interacting with a scalar field[END_REF]. More precisely, we write upt, xq " e iωt p1 `ũpt, xqq and Ψpt, x, zq " ´γ@ σ 1 D T d Γpzq `Ψpt, x, zq, where the perturbation pũ, Ψq now satisfies

iB t ũ `∆x ũ 2 `ik ¨∇x ũ " γσ 1 ‹ ˆRn σ 2 Ψ dz `ˆγσ 1 ‹ ˆRn σ 2 Ψ dz ˙ũ, 1 c 2 B 2 tt Ψ ´∆z Ψ " ´2γσ 2 σ 1 ‹ Repũq ´γσ 2 σ 1 ‹ |ũ| 2 . ( 68 
)
Showing that the plane wave solution is orbitally instable is then equivalent to prove that the solution p0, 0q of ( 68) is orbitally instable. By setting Ψ " p´∆q ´1{2 φ and π " ´p´∆q ´1{2 Btφ c as before, we obtain that (68) can be expressed as a perturbation from the linearized equation

B t X " LX `F pXq. ( 69 
)
The strategy consists in showing that we can exhibit initial data, as small as we wish, such that the solution exits a certain ball in finite time. The exit time is related to the logarithm of the inverse of the size of the initial perturbation (the smaller the initial data, the larger the exit time). In (69), the non linear reminder is given by

F pXq " ¨´γpσ 1 ‹ ˆRn p´∆q ´1{2 σ 2 φ dz γqσ 1 ‹ ˆRn p´∆q ´1{2 σ 2 φ dz 0 γcσ 2 σ 1 ‹ p|q| 2 `|p| 2 q ‹ ‹ ‹ ‹ ‹ '
, and L : DpLq Ă V Ñ V is the linear operator defined in [START_REF] Shatah | Spectral condition for abstract instabilty[END_REF].

Lemma 5. [START_REF] Gallay | Stability of small periodic waves for the nonlinear Schrödinger equation[END_REF] We can find a constant C F such that, for any X, there holds }F pXq} V ď C F }X} 2 V .

Proof 

ď }σ 2 } 2 L 2 pR n q }σ 1 } 2 L 2 pT d q ˆˆT d |u| 2 pyq dy

˙2

Hence the L 2 norm of the last component of F pXq is dominated by

γc}σ 2 } L 2 pR n q }σ 1 } L 2 pT d q p}q} 2 L 2 pT d q `}p} 2 L 2 pT d q q
Next, we are going to use the Duhamel formula

Xptq " e Lt Xp0q `ˆt

0 e Lpt´sq F pXpsqq ds. ( 70 
)
The definition of the operator semi-group te Lt , t ě 0u follows from the application of Lumer-Phillips' theorem [START_REF] Renardy | An Introduction to Partial Differential Equations[END_REF]Th. 12.22] by combining the basic estimate

|xLX|Xy| " ˇˇˇ´γ ˆTd pσ 1 ‹ ´ˆR n p´∆q ´1{2 σ 2 φ dz ¯dx `2cγ ¨Td ˆRn σ 2 πσ 1 ‹ q dz dx ˇˇď γ @ σ 1 D T d ´?κ `2c b }σ 2 } L 8 pR n q }σ 2 } L 1 pR n q ¯}X} 2 V ,
together with the following claim.

Lemma 5.18 There exists λ ˚ą 0 such that for any real λ ě λ ˚, the operator λ ´L is onto.

Proof. We try to solve the system

λq `∆x p 2 `k ¨∇x q " q 1 , λp ´∆x q 2 `k ¨∇x p `γσ 1 ‹ ˆRn p∆ z q ´1{2 σ 2 φ dz " p 1 , λφ `cp´∆q 1{2 π " φ 1 , λπ ´cp´∆q 1{2 φ ´2cγσ 2 σ 1 ‹ q " π 1 ,
with λ P Rzt0u. By using the Fourier transform, the last two equations become

p π " ´λp φ `p φ 1 c|ξ| , λp π ´c|ξ| p φ ´2cγx σ 2 σ 1 ‹ q " p π 1 , which yields p φpx, ξq " λ p φ 1 px, ξq{c 2 ´|ξ|p π 1 pξq{c ´2γ|ξ|x σ 2 pξqσ 1 ‹ qpxq λ 2 {c 2 `|ξ| 2 .
Let us introduce the quantity

µ P R Þ ÝÑ κ µ " ˆRn |p σ 2 pξq| 2 µ 2 `|ξ| 2 dξ p2πq n .
The function µ Þ Ñ κ µ is non increasing on r0, 8q, and the inequality 0 ď κ µ ď κ holds for any µ P R. Reasoning by means of Fourier coefficients we are led to ˆλ `ik ¨m ´m2 {2

m 2 {2 ´2γ 2 p2πq 2d |σ 1,m | 2 κ λ 2 {c 2 λ `ik ¨m˙ˆq m p m ˙" ˆq1 m S m ẇith S m " p 1 m ´γp2πq d σ 1,m ˆRn p σ 2 pξq |ξ| λ p φ 1 m pξq{c 2 ´|ξ|p π 1 m pξq{c λ 2 {c 2 `|ξ| 2 dξ p2πq n
Since λ 2 {c 2 `|ξ| 2 ě λ 2 {c 2 , we observe that the ℓ 2 norm of the right hand side S m is dominated by

}p 1 } L 2 pT d q `γ@ σ 1 D T d ˆ?κ |λ| }φ 1 } L 2 pT d ˆRn q `c |λ| 2 }σ 2 } L 2 pR n q }π 1 } L 2 pT d ˆRn q ˙.
We obtain λq 0 "

q 1 0 , λp 0 " S 0 `2γ 2 @ σ 1 D 2 T d κ λ 2 {c 2 q 0 and, for m 0, ´pλ `ik ¨mq 2 `|m| 4 4 ´1 ´4γ 2 p2πq 2d |σ 1,m | 2 m 2 κ λ 2 {c 2 ¯looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon "Rmpλq q m " pλ `ik ¨mqq 1 m `m2 2 S m , p m " 2 m 2 p `λ `ik ¨mqq m ´q1 m ˘.
By virtue of ( 9), 1

´4γ 2 p2πq 2d |σ 1,m | 2 m 2 κ λ 2 {c 2 ě 1 ´4γ 2 @ σ 1 D 2 
T d κ ą 0, so that the coefficient R m pλq does not vanish: either its imaginary part λk ¨m 0, or when k ¨m " 0, its real part λ 2 `m4 4 p1 4γ 2 p2πq 2d |σ 1,m | 2 m 2 κ λ 2 {c 2 q is bounded from below by a positive quantity. It remains to check that

q m " pλ `ik ¨mqq 1 m `m2 2 S m R m pλq
defines a square-summable sequence, at least when λ is large enough. To this end, for m 0, we evaluate

|R m pλq| 2 " ˇˇ2iλk ¨m `λ2 ´pk ¨mq 2 `|m| 4 4 ´1 ´4γ 2 p2πq 2d |σ 1,m | 2 m 2 κ λ 2 {c 2 ¯ˇˇ2 " 4λ 2 pk ¨mq 2 ``λ 2 ´pk ¨mq 2 ˘2 `´|m| 4 4 ´1 ´4γ 2 p2πq 2d |σ 1,m | 2 m 2 κ λ 2 {c 2 ¯¯2 ``λ 2 ´pk ¨mq 2 ˘|m| 4 2 ´1 ´4γ 2 p2πq 2d |σ 1,m | 2 m 2 κ λ 2 {c 2 " `λ2 `pk ¨mq 2 ˘2 `´|m| 4 4 ´1 ´4γ 2 p2πq 2d |σ 1,m | 2 m 2 κ λ 2 {c 2 ¯¯2 ``λ 2 ´pk ¨mq 2 ˘|m| 4 2 ´1 ´4γ 2 p2πq 2d |σ 1,m | 2 m 2 κ λ 2 {c 2 ě ´|m| 4 4 ´1 ´4γ 2 p2πq 2d |σ 1,m | 2 m 2 κ λ 2 {c 2 ¯¯2 ``λ 2 ´k2 m 2 ˘|m| 4 2 ´1 ´4γ 2 p2πq 2d |σ 1,m | 2 m 2 κ λ 2 {c 2 ¯.
Let δ ą 0, that will be made precise later on. We split the last term depending whether k 2 ě δm 2 or k 2 ă δm 2 :

`λ2 ´pk ¨mq 2 ˘|m| 4 2 ´1 ´4γ 2 p2πq 2d |σ 1,m | 2 m 2 κ λ 2 {c 2 ¯1k 2 ěδm 2 ě `λ2 ´k4 {δ ˘|m| 4 2 ´1 ´4γ 2 p2πq 2d |σ 1,m | 2 m 2 κ λ 2 {c 2 ¯1k 2 ěδm 2 and `λ2 ´pk ¨mq 2 ˘|m| 4 2 ´1 ´4γ 2 p2πq 2d |σ 1,m | 2 m 2 κ λ 2 {c 2 ¯1k 2 ăδm 2 ě `λ2 ´δm 4 ˘|m| 4 2 ´1 ´4γ 2 p2πq 2d |σ 1,m | 2 m 2 κ λ 2 {c 2 ¯1k 2 ăδm 2 ě ´δ m 8 2 ´1 ´4γ 2 p2πq 2d |σ 1,m | 2 m 2 κ λ 2 {c 2 ¯1k 2 ăδm 2 .
When λ ě λ ˚" k 2 { ? δ, we can get rid of the first term in the evaluation of |R m pλq| 2 and we arrive at

|R m pλq| 2 ě m 8 16 ´1 ´4γ 2 p2πq 2d |σ 1,m | 2 m 2 κ λ 2 {c 2 ¯!1 k 2 ěδm 2 `1 ´4γ 2 @ σ 1 D 2 T d κ 1k 2 ăδm 2 ´`1 ´4γ 2 @ σ 1 D 2 T d κ ˘´8δ ¯).
We choose δ so that the last term contributes positively, for instance δ "

1´4γ 2 @ σ 1 D 2 T d κ 16
. Having defined this way δ, and thus λ ˚, we exhibit c ˚ą 0 such that |R m pλq| 2 ě c ˚m8 . Combined to the ℓ 2 estimate on S m , this allows us to conclude that }X}

V " }pλ ´Lq ´1X 1 } V ď M }X 1 } V holds for a certain constant M , when λ ě λ ˚.
Moreover, a continuity estimate holds: we can find Λ ą 0 such that for any t ě 0, }e Lt } L pV q ď e Λt . Let us also introduce K 0 " sup }e Lt } L pV q , 0 ď t ď 1 ( .

The proof of instability slightly simplifies when σpe L q " e σpLq , see [START_REF] Goudon | A simple testbed for stability analysis of quantum dissipative systems[END_REF], and the references therein, for a situation where this equality is fulfilled. According to Gearhart-Greiner-Herbst-Prüss' theorem, see [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF]Prop. 1] and the formulation proposed in [19, Section 2]), such identification holds provided the resolvent pλ ´Lq ´1 satisfies a uniform estimate as Impλq Ñ ˘8 with Repλq 0 fixed, which is far from obvious. Nevertheless, the arguments of [START_REF] Shatah | Spectral condition for abstract instabilty[END_REF] only relies on the trivial embedding e σpLq Ă σpe L q.

We are concerned with the case where spectral instability holds, which means that L has eigenvalues with positive real value. There is only a finite number of such eigenvalues (as indicated by the counting argument). In turn, the spectral radius of e L is larger than 1. Let λ ˚" a ˚`ib ẘith a ˚ą 0, be such that e λ˚l ies in the boundary of σpe L q: |e λ˚| " e a˚" max |µ|, µ P σpe L q ( . Lemma 5.19 [START_REF] Shatah | Spectral condition for abstract instabilty[END_REF]Lemma 2 & Lemma 3] The following assertions hold:

1. For any γ ą 0 and any m P Nzt0u, there exists Y ˚P V such that }Y ˚}V " 1 and }pe mL émλ˚q Y ˚}V ď γ;

2. For any 0 ď t ď m, we have }e tL Y ˚}V ď 2K 0 e a˚t ;

3. There exists a constant K 1 , such that for any t ě 0, there holds e a˚t ď }e tL } L pV q ď K 1 e 3a˚t{2 .

Let us define ǫ such that 4K 1 p2K 0 `CF q 2 e aå ˚ǫ ă 1, 8K 1 C F p2K 0 `CF q 2 e 2aå ˚ǫ ă 1.

Then, pick δ ą 0 as small as we wish and set

T δ " 1 a ˚ln ´ǫ δ ¯, m δ " tT δ u `1.
Let Y ˚be a normalized vector as defined by Lemma 5.19-1 with γ " ǫ 2δ and m " m δ . The initial data X ˇˇt"0 " δY ˚, has thus an arbitrarily small norm. Now, (70) becomes

Xptq " δe Lt Y ˚`ˆt 0 e Lpt´sq F pXpsqq ds.

We are going to contradict the orbital stability by showing that }Xpm δ q} V ą ǫ{4: the solution always exits the ball Bp0, ǫ{4q. Let

Tδ " sup t P r0, m δ s, }Xpsq ´δe Ls Y ˚}V ď δC F e a˚s , for 0 ď s ď t ( P p0, m δ s.

As a consequence of (70), together with Lemma 5.17 and 5. We deduce that

ď δ 2 K 1 C F p2K 0 `CF q 2 e 3a˚t{2 ˆt 0 e a˚s{2 ds ď 2 a ˚K1 C F p2K 0 `CF q 2 `δe a˚t ˘2 ď ǫ 2e aå ˚K1 C F p2K 0 `CF q 2 δe
}Xpm δ q} V ě }δe Lm δ Y ˚}V ´}Xpm δ q ´δe Lm δ Y ˚}V ě ǫ 2 ´2K 1 C F p2K 0 `CF q 2 a ˚δ2 e 2a˚m δ ě ǫ ´1 2 ´2K 1 C F p2K 0 `CF q 2 e 2aå ˚ǫ¯ą ǫ 4
as announced. That these estimates now imply the orbital instability of the plane wave solution, which amounts to justify that

inf θ › › › › › › › › Xpm δ q `¨1 0 ´γ@ σ 1 D T d Γ 0 ‹ ‹ ' ´¨c ospθq sinpθq ´γ@ σ 1 D T d Γ 0 ‹ ‹ ' › › › › › › › › V ě κ
˚ǫ holds for a certain positive constant κ ˚, follows by adapting the arguments of [27, sp. Theorem 6.2], see also [START_REF] Goudon | A simple testbed for stability analysis of quantum dissipative systems[END_REF].

A Scaling of the model and physical interpretation

It is worthwhile to discuss the meaning of the parameters that govern the equations and the asymptotic issues. Going back to physical units, the system reads ˆi

B t U ` 2 2m ∆ x U ˙pt, xq " ˆˆT d ˆRn σ 1 px ´yqσ 2 pzqΨpt, y, zq dy dz ˙upt, xq, ( 71a 
)
pB 2 tt Ψ ´κ2 ∆ z Ψqpt, x, zq " ´σ2 pzq ˆˆT d σ 1 px ´yq|U pt, yq| 2 dy ˙. (71b) 
The quantum particle is described by the wave function pt, xq Þ Ñ U pt, xq: given Ω Ă T d , the integral ´Ω |U pt, xq| 2 dx gives the probability of presence of the quantum particle at time t in the domain Ω; this is a dimensionless quantity. In (71a), stands for the Planck constant; its homogeneity is MassˆLength 2

Time

(and its value is 1.055 ˆ10 ´34 Js) and m is the inertial mass of the particle. Let us introduce mass, length and time units of observations: M, L and T. It helps the intuition to think of the z directions as homogeneous to a length, but in fact this is not necessarily the case: we denote by Ψ and Z the (unspecified) units for Ψ and the z j 's. Hence, κ is homogeneous to the ratio Z T . The coupling between the vibrational field and the particle is driven by the product of the form functions σ 1 σ 2 , which has the same homogeneity as TΨL d Z n from (71a) and as Ψ L d T 2 from (71b), both are thus measured with the same units. From now on, we denote by ς this coupling unit. Therefore, we are led to the following dimensionless quantities

U 1 pt 1 , x 1 q " U pt 1 T, x 1 Lq c L d m M , Ψ 1 pt 1 , x 1 , z 1 q " 1 Ψ Ψpt 1 T, x 1 L, z 1 Zq, σ 1 1 px 1 qσ 2 pz 1 q " 1 ς σ 1 px 1 Lqσ 2 pz 1 Zq.
Bearing in mind that u is a probability density, we note that

ˆTd |U 1 pt 1 , x 1 q| 2 dx 1 " m M .
Dropping the primes, (71a)-(71b) becomes, in dimensionless form,

ˆiB t U ` T mL 2 1 2 ∆ x U ˙pt, xq " ςΨL d Z n T ˆˆT d ˆRn σ 1 px ´yqσ 2 pzqΨpt, y, zq dy dz ˙U pt, xq, (72a) ´B2 tt Ψ ´κ2 T 2 Z 2 ∆ z Ψ ¯pt, x, zq " ´ςT 2 Ψ M m σ 2 pzq ˆˆT d σ 1 px ´yq|U pt, yq| 2 dy ˙. (72b) 
Energy conservation plays a central role in the analysis of the system: the total energy is defined by using the reference units and we obtain

E 0 " ´ T mL 2 ¯2 1 2 ˆTd |∇ x U | 2 dx `Ψ2 L d Z n ML 2 1 2 ¨Td ˆRn ´|B t Ψ| 2 `κ2 T 2 Z 2 |∇ z Ψ| 2 ¯dz dx `ς ΨL d Z n T 2 mL 2 ¨Td ˆRn |U | 2 σ 2 σ 1 ‹ Ψ dz dx,
with E 0 dimensionless (hence the total energy of the original system is E 0 ML 2 T 2 ). Therefore, we see that the dynamics is encoded by four independent parameters. In what follows, we get rid of a parameter by assuming T mL 2 " 1, and we work with the following three independent parameters

α " ςΨL d Z n T 2 mL 2 mL 2 T , β " ςZ 2 κ 2 Ψ M m , c " κT Z . It leads to ˆiB t U `1 2 ∆ x U ˙pt, xq " α ˆˆT d ˆRn σ 1 px ´yqσ 2 pzqΨpt, y, zq dy dz ˙U pt, xq, (73a) ´1 c 2 B 2 tt Ψ ´∆z Ψ ¯pt, x, zq " ´βσ 2 pzq ˆˆT d σ 1 px ´yq|U pt, yq| 2 dy ˙(73b)
together with ? αβ. Accordingly, we shall implicitly work with solutions with amplitude of magnitude unity. The regime where c Ñ 8, with α, β fixed leads, at least formally, to the Hartree system (1a)-(1b); arguments are sketched in Appendix B. The smallness condition (9) makes a threshold appear on the coefficients in order to guaranty the stability: since it involves the product M m αβ, it can be interpreted as a condition on the strength of the coupling between the particle and the environment, and on the amplitude of the wave function. We shall see in the proof that a sharper condition can be derived, expressed by means of the Fourier coefficients of the form function σ 1 .

E 0 " 1 2 ˆTd |∇ x U | 2 dx `1 2 α β ¨Td ˆRn ´1 c 2 |B t Ψ| 2 `|∇ z Ψ| 2 ¯dz dx `α ¨Td ˆRn |U | 2 σ 2 σ 1 ‹ Ψ dz dx.

B From Schödinger-Wave to Hartree

In this Section we wish to justify that solutions -hereafter denoted U c -of (3a)-(3c) converge to the solution of (1a)-(1b) as c Ñ 8. We adapt the ideas in [START_REF] De Bièvre | Particles interacting with a vibrating medium: existence of solutions and convergence to the Vlasov-Poisson system[END_REF] where this question is investigated for Vlasov equations. Throughout this section we consider a sequence of initial data

U Init c , Ψ Init c , Π Init c such that sup cą0 ˆTd |U Init c | 2 dx " M 0 ă 8, (74a) 
sup cą0 ˆTd |∇ x U Init c | 2 dx " M 1 ă 8, (74b) 
sup cą0 " 1 2c 2 ¨Td ˆRn |Π Init c | 2 dz dx `1 2 ¨Td ˆRn |∇ z Ψ Init c | 2 dz dx * " M 2 ă 8, (74c) 
sup cą0 ¨|U Init c | 2 σ 1 ‹ σ 2 |Ψ Init c | dz dx " M 3 ă 8. (74d) 
There are several direct consequences of these assumptions:

• The total energy is initially bounded uniformly with respect to c ą 0,

• In fact, we shall see that the last assumption can be deduced from the previous ones.

• Since the L 2 norm of U c is conserved by the equation, we already know that U c is bounded in L 8 p0, 8; L 2 pT d qq.

Next, we reformulate the expression of the potential, separating the contribution due to the initial data of the wave equation and the self-consistent part. By using the linearity of the wave equation, we can split Φ c " Φ Init,c `ΦCou,c

where Φ Init,c is defined from the free-wave equation on R n and initial data Ψ Init c , Π Init c :

1 c 2 B 2 tt Υ c ´∆z Ψ " 0, pΥ c , B t Υ c q ˇˇt"0 " pΨ Init c , Π Init c q.

(75) for any 0 ă T ă 8. Therefore, possibly at the price of extracting a subsequence, we can suppose that U c converges strongly to U in C 0 pr0, T s; L 2 pT d qq. It remains to pass to the limit in (78). The difficulty consists in letting c go to 8 in the potential term and to justify the following claim. 

Lemma B.3 For any

C Well-posedness of the Schrödinger-Wave system

The well-posedness of the Schrödinger-Wave system is justified by means of a fixed point argument.

The method described here works as well for the problem set on R d , and it is simpler than the approach in [START_REF] Goudon | On quantum dissipative systems: ground states and orbital stability[END_REF] since it avoids the use of "dual" Strichartz estimates for the Schrödinger and the wave equations. We define a mapping that associates to a function pt, xq P r0, T s ˆTd Þ Ñ V pt, xq P C:

• first, the solution Ψ of the linear wave equation

1 c 2 B 2 tt Ψ ´∆z Ψ " ´σ2 σ 1 ‹ |V | 2 ,
pΨ, B t Ψq ˇˇt"0 " pΨ 0 , Ψ 1 q;

• next, the potential Φ " σ 1 ‹ ´Rn σ 2 Ψ dz;

• and finally the solution of the linear Schrödinger equation

iB t U `1 2 ∆ x U " γΦU, U ˇˇt"0 " U Init .
These successive steps define a mapping S : V Þ ÝÑ U and we wish to show that this mapping admits a fixed point in C 0 pr0, T s; L 2 pT d qq, which, in turn, provides a solution to the non linear system (3a)-(3c). In this discussion, the initial data U Init , Ψ 0 , Ψ 1 are fixed once for all in the space of finite energy:

U Init P H 1 pT d q, Ψ 0 P L 2 pT d ;
.

We observe that d dt ˆTd |U | 2 dx " 0.

Hence, the mapping S applies the ball Bp0, }U Init } L 2 pT d q q of C 0 pr0, T s; L 2 pT d qq in itself; we thus consider U " SpV q for V P C 0 pr0, T s; L 2 pT d qq such that }V pt, ¨q} L 2 pT d q ď }U Init } L 2 pT d q . Moreover, we can split Ψ " Υ `r Ψ with Υ solution of the free wave equation 1 c 2 B 2 tt Υ ´∆z Υ " 0, pΥ, B t Υq ˇˇt"0 " pΨ 0 , Ψ 1 q, and 1 c 2 B 2 tt r Ψ ´∆z r Ψ " 0, pΥ, B t r Ψq ˇˇt"0 " 0.

We write Φ " Φ I `r Φ for the associated splitting of the potential. In particular, the standard energy conservation for the wave equation tells us that lies in L 8 pp0, T q ˆTd q, and thus Φ P L 8 pp0, T q ˆRd q. This observation guarantees that U " ;SpV q is well-defined. Thus, let us pick V 1 , V 2 in this ball of C 0 pr0, T s; L 2 pT d qq and consider U j " SpV j q. We have iB t pU 2 ´U1 q `1 2 ∆ x pU 2 ´U1 q " γΦ 2 pU 2 ´U1 q `γpΦ 2 ´Φ1 qU 1 , pU 2 ´U1 q ˇˇt"0 " 0. `p2 `}p} L 1 pp0.8q q ˆct 0 |ppτ q|}V 2 ´V1 } 2 pt ´τ {cq L 2 pT d q dτ ˙.

Set L " 2γ 2 }Σ} L 8 pT d q }U Init } 2 L 2 pT d q . We deduce that }U 2 ´U1 }ptq 2 L 2 pT d q ď p2 `}p} L 1 pp0.8q qL ˆt 0 e Lpt´sq ˆcs 0 |ppτ q|}V 2 ´V1 } 2 ps ´τ {cq L 2 pT d q dτ ds.

We use this estimate for 0 ď t ď T ă 8 and we obtain }U 2 ´U1 }ptq 2 L 2 pT d q ď p4 `}p} L 1 pp0.8q qLT e LT }p} L 1 pp0.8q sup 0ďsďT }V 2 ´V1 } 2 psq L 2 pT d q .

Hence for T small enough, S is a contraction in C 0 pr0, T s; L 2 pT d qq, and consequently it admits a unique fixed point. Since the fixed point still has its L 2 norm equal to }U Init } L 2 pT d q , the solution can be extended on the whole interval r0, 8q. The argument can be adapted to handle the Hartree system.

Lemma 3 . 2 ( 1 ˙*; 2 .

 3212 Spectral stability for the Hartree equation) Let k, m P Z d and L k,m defined as in[START_REF] Goudon | Mean field limit for particles interacting with a vibrating medium[END_REF]. Then 1. λ 0 " 0 is the unique eigenvalue of L k,0 and KerpL k,0 q " span "ˆ0 for any m P Z d t0u, the eigenvalue of L k,m are

Figure 1 :

 1 Figure 1: Typical graph for µ Þ Ñ P pµq, with its roots µ 1 ă µ 2 ă µ 3 and local extrema µ max , µ min

  4 and 5.5, adapted from [47, Prop. 1 & Prop. 3].

  This relation allows us to interpret the scaling parameters as weights in the energy balance. Now, for notational convenience, we decide to work with a m of U ; it leads to (3a)-(3c) and (8) with γ " b M m

  Z d . Similarly, λ P C is an eigenvalue of the operator L k if and only if there exists at least one Fourier mode m P Z d such that λ is an eigenvalue of the matrix L k,m , i.e. there exists pq m , p m q p0, 0q such that

						if and only if the
	Fourier coefficients ˆQm P m	˙satisfy	B t	ˆQm ptq P m ptq ˙" L k,m	P m ptq ˆQm ptq	ḟor
	any m P					

  " 0. We denote by E 0 the energy of the initial data w Init . Finally, we can simply estimate ˇˇˇˆT ‹ pw `wqpw `wq dx ˇˇˇď }Σ ‹ pw `wq} L 2 }w `w}L 2 ď }Σ} L 1 }w `w} 2 L 2 ď 4}Σ} L 1 }w} 2 L 2 .

	which holds for k To conclude, we use the Poincaré-Wirtinger estimate. Indeed, since we have already remarked that
	the condition ´Td w Init dx " 0 implies ´Td wpt, xq dx " 0 for any t ě 0, we can write }wpt, ¨q} 2 L 2 " › › ›wpt, ¨q ´1 p2πq d ˆTd wpt, yq dy › › › 2 L 2 " p2πq d ÿ |c m pwpt, ¨qq| 2 mPZ d t0u ď p2πq d ÿ mPZ d t0u m 2 |c m pwpt, ¨qq| 2 " }∇wpt, ¨q} 2 L 2
	for any t ě 0, where the c m pwpt, ¨qq's are the Fourier coefficients of the function x P T d Þ Ñ wpt, xq. Hence, for any solution with zero mean, we infer, for all t ě 0, ˆTd ˆTd ˆTd
	2E 0 "	|∇w| 2 pt, xq dx ´γ2 κ	Σ ‹ pw `wqpw `wqpt, xq dx ě p1 ´4γ 2 κ}Σ} L 1 q	|∇wpt, xq| 2 dx.
	As a consequence, if (9) is satisfied, we obtain
					sup tě0	}wpt, ¨q} H 1 ď 2
			1 2	d dt ˆTd	|∇w| 2 dx "	´γ2 κ 2i ˆTd	Σ ‹ pw `wq∆pw ´wq dx,
	and, on the other hand,	
		1 2	d dt ˆTd " ´1 2i ˆTd Σ ‹ pw `wqpw `wq dx Σ ‹ pw `wq∆pw ´wq dx ´k	¨ˆT d	∇pw `wqΣ ‹ pw `wq dx,
	where we get rid of the last term in the right hand side by assuming k " 0. This leads to the following energy conservation property d dt " 1 2 ˆTd |∇w| 2 dx ´γ2 κ * 2 ˆTd Σ ‹ pw `wqpw `wq dx " 0

d Σ

Theorem 3.5 (Orbital stability for the Hartree equation) Let

  k P Z d and ω P R such that the dispersion relation[START_REF] De Bièvre | Stability analysis of a Vlasov-Wave system describing particles interacting with their environment[END_REF] is satisfied. Suppose (9) holds. Then the plane wave u ω pt, xq " e iωt 1pxq is orbitally stable, i.e.

  ˆTd p´∆uqu dx `1 2 ¨Td ˆRn ´4c 2 τ 2 `p´∆ z φq φ dz ¯dx `2γ ˆTd ˆ¨T d ˆRn σ 1 px ´yqσ 2 pzqφpt, y, zq dz dy ˙upxq dx ´i ˆTd k ¨∇u u dx ˙(45)can be reinterpreted as a quadratic form acting on the 4-uplet W " pq, p, φ, τ q. To be specific, it expresses as the following quadratic form on W ,

	QpW, W q "	1 2 ˆTd	|∇p| 2 dx `2c 2 ˆTd ˆ¨T	¨Td ˆRn	|τ | 2 dz dx	`1 2 ˆTd	|∇q| 2 dx	`1 2 ¨Td ˆRn	p´∆ z φq φ dx dz
		`2γ							

d ˆRn σ 1 px ´yqσ 2 pzqφpt, y, zq dz dyqpxq dx ˙`2 ˆTd qk ¨∇p dx.

  2 }τ } 2

	ˆTd ˆ¨T	L 2	`1 2 ˆTd	|∇q| 2 dx	`1 2 ¨Td ˆRn	p´∆ z φq φ dx dz
	`2γ					

d ˆRn σ 1 px ´yqσ 2 pzqφpt, y, zq dz dy ˙qpxq dx

[START_REF] Pelinovsky | Localization in periodic potentials. From Schrödinger operators to the Gross-Pitaevskii equation[END_REF] 

  ˆˆT d ˆRn σ 1 px ´yqσ 2 pzqφpt, y, zq dz dy ˙qpxq dx

	which implies				
	1 2 ˆTd	|∇q| 2 dx `2γ `1 2 ¨Td ˆRn ˆTd ˆ¨T d ˆRn p´∆ z φq φ dx dz				
		" p2πq 2d Re	¨ÿ mPZ d t0u	σ 1,m q m	ˆRn	σ 2 pzqφ m pzq dz	'

σ 1 px ´yqσ 2 pzqφpt, y, zq dz dy ˙qpxq dx

  . Let us consider the following two examples in dimension d " 1, with k P Z t0u. Then, the set tm P Z t0u, m 4 ´4k 2 m 2 ď 0 and σ 1,m 0u contains t´1, `1u (since 4k 2 ě 1). Let k P Z t0u and ω P R such that the dispersion relation (12) is satisfied. Then the plane wave solution pe iωt e ikx , ´γΓpzq Let m ˚P Z t0u be the first Fourier mode such that σ 1,m˚ 0. Let k P Z and ω P R such that the dispersion relation (12) is satisfied. Then, for all k P Z such that 4k 2 ă m 2 ˚, the plane wave solution pe iωt e ikx , ´γΓpzq @ σ D T d , 0q is spectrally stable, while for all k P Z such that 4k 2 ě m 2 ˚, the plane wave solution pe iωt e ikx , ´γΓpzq In general, if k P Z d t0u, the set tm P Z d t0u, m 4 ´4pk ¨mq 2 ď 0 and σ 1,m 0u contains ´k and k provided σ 1,k 0. Hence, we have the following result. Let k P Z d t0u and ω P R such that the dispersion relation (12) is satisfied. Suppose (9) holds and σ 1,m

	Example 5.13 Suppose σ 1,0	0, and σ 1,1	0. @	σ 1	D T d , 0q is
	spectrally unstable.				
	Example 5.14 @	σ 1	D	T d , 0q is spectrally unstable.
	Corollary 5.15				

.

  For the first two components of F pXq, it suffices to obtain a uniform estimate on the potential ˇˇσ 1 ‹ ˆRn p´∆q ´1{2 σ 2 φ dz ˇˇ" ˇˇˇˆT } L 8 pT d q }p} L 2 pT d q }φ} L 2 pT d ˆRn q , and a similar estimate holds for the second component. Finally, for the forth component of F pXq, we get, with |u| 2 " |q| 2 `|p| 2 , ¨Td ˆRn |σ 2 pzq| 2 |σ 1 ‹ |u| 2 pxq| 2 dz dx ď }σ 2 } 2 L 2 pR n q ˆTd

	d σ 1 px ´yq ˇˇˆR a σ 1 px ´yq n p´∆q ´1{2 σ 2 pzqφpy, zq dz ˇˇ2 dy a σ 1 px ´yq ˆRn p´∆q ´1{2 σ 2 pzqφpy, zq dz dy ˇˇď ˙1{2 σ 1 px ´yq ˙1{2 ˆˆT d ˆˆT d σ 1 pyq dy σ 1 ˆˆT d b @ D T d ˆRn p σ 2 pξq |ξ| 2 dξ ˆRn |φpy, zq| 2 dz dy ˙1{2 b @ σ 1 D T d b κ}σ 1 } L 8 pT d q ˆ¨T d ˆRn |φpy, zq| 2 dz dy ˙1{2 . It implies that the L 2 norm of the first component of F pXq is dominated by ď ď γ b @ σ 1 D T d b d σ 1 px ´yq|u|pyq ˆ|u|pyq dy ˇˇˇ2 dx κ}σ 1 ˇˇˇˆT ď }σ 2 } 2 ˆTd L 2 pR n q ˆTd ˆTd |σ 1 | 2 px ´yq|u| 2 pyq dy |u| 2 pyq dy dx

  Lt Y ˚}V ď K 1 C F ˆt 0 e 3a˚pt´sq{2 ˇˇδ}e Ls Y ˚}V `}Xpsq ´δe Ls Y ˚}V

				19-3, we get
	}Xptq ´δe Lt Y ˚}V ď	ˆt 0	K 1 e 3a˚pt´sq{2 C F }Xpsq} 2 V ds.
				ˇˇ2 ds
	ď K 1 C F	ˆt 0	e 3a˚pt´sq{2 ˇˇ2δK 0 e a˚s `δC F e a˚s ˇˇ2 ds
				(by using Lemma 5.19-2)

It follows that, for 0 ď t ď Tδ ă m δ , }Xptq ´δe

  which would contradict the definition of Tδ if Tδ ă m δ . Accordingly, }Xptq ´δe Lt Y ˚}V ď C F δe a˚t holds for any t P r0, m δ s. Going back to the Duhamel formula thus yields, for 0 ď t ď m δ ,}Xptq ´δe Lt Y ˚}V ď 2K 1 C F p2K 0 `CF q 2 a ˚δ2 e 2a˚m δ .

	Now, by using Lemma 5.19-1, we observe that						
	}e Lm δ Y ˚}V ě }e λ˚m δ Y ˚}V	´ǫ 2δ	ě e a˚m δ	´ǫ 2δ	ě	ǫ 2δ	.
								a˚t
	holds. Hence, ǫ is chosen small enough so that this implies			
	}Xptq ´δe Lt Y ˚}V ă	C F 2	δe a˚t ,		

  Namely, we set Φ Init,c pt, xq "ˆRn σ 2 pzqσ 1 ‹ Υ c pt, x, zq dz Ψ c ´" ´γσ 2 σ 1 ‹ |U c | 2 , p r Ψ c , B t r Ψ c q ˇˇt"0 " p0, 0q. Cou,c pt, xq " γ ˆRn σ 2 pzqσ 1 ‹ r Ψ c pt, x, zq dz " γ 2 c 2 ˆt 0 ˆRn sinpc|ξ|sq c|ξ| Σ ‹ |U c | 2 pt ´s, xq|p σ 2 pξq| 2 dξ p2πq n ds Σ ‹ |U c | 2 pt ´τ {c, xq dτ,where it is known that the kernel p is integrable on r0, 8q [11,Lemma 14]. There exists a constant M w ą 0 such that|Φ Init,c pt, xq| ď M w , sup |Φ Cou,c pt, xq| ď M w .Proof. Combining the Sobolev embedding theorem (mind the condition n ě 3) and the standard energy conservation for the free linear wave equation, we obtain}Υ c } L 8 p0,8;L 2 pT d ;L 2n{pn´2q pR n qqq ď C}∇ z Υ c } L 8 p0,8;L 2 pT d ˆRn qq ď C a 2M 2 .Applying Hölder's inequality, we are thus led to:|Φ Init,c pt, xq| ď C}σ 2 } L 2n{pn`2q pR n q }σ 1 } L 2 pR d q a 2M 2 , (77)which proves the first part of the claim. Incidentally, it also shows that (74d) is a consequence of (74a) and (74c). Next, we get |Φ Cou,c pt, xq| ď γ}Σ} L 8 pT d q }U c } L 8 pr0,8q,L 2 pT d qq ˆ8 0 |ppτ q| dτ. }∇U c pt, ¨q} L 2 pT d q ď M S . This is a consequence of the energy conservation (the total energy being bounded by virtue of (74b)-(74d)) where the coupling term ˆTd pΦ Init,c `ΦCou,c q|U c | 2 dx can be dominated by 2M w M 0 .

	Corollary B.2 There exists a constant M S ą 0 such that
				sup	
					c,t	
	Proof.					
	"	ˆRn	´cospc|ξ|tqσ 1 ‹ p Ψ Init c px, |ξq	`sinpc|ξ|t c|ξ|	σ 1 ‹ p Ψ Init c px, |ξq	¯p σ 2 pξq dξ p2πq n .
	Accordingly r Ψ c " Ψ c ´Υc satisfies Coming back to		
			1 c 2 B 2 tt B t U c "	r Ψ c ´∆z r ´1 2i ∆ x U c	`γ i	pΦ Init,c `ΦCou,c qU c	(76) (78)
	we see that B					
	and we get					
	Φ " γ 2	ˆct 0 ˆˆR n	sinpτ |ξ|q |ξ|	p2πq n |p σ 2 pξq| 2 dξ	looooooooooooooooooomooooooooooooooooooon
							"ppτ q
	Lemma B.1 sup				
		c,t,x					c,t,x

t U c is bounded in L 2 p0, 8; H ´1pT d qq. Combining the obtained estimates with Aubin-Simon's lemma [51, Corollary 4], we deduce that

U c is relatively compact in in C 0 pr0, T s; L p pT d qq, 1 ď p ă 2d d ´2 ,

  ζ P C 8 c pp0, 8q ˆTd q, we have lim cÑ8 ˆ8 0 ˆTd pΦ Init,c `ΦCou,c qU c ζ dx dt " γκ ˆ8 0 ˆTd Σ ‹ |U c | 2 U c ζ dx dt. Proof. We expect that Φ Cou,c converges to γκΣ ‹ |U | 2 : ˇˇΦ Cou,c pt, xq ´γκΣ ‹ |U | 2 pt, xq ˇ"Σ ‹ |U c | 2 pt ´τ {c, xqppτ q dτ ´κΣ ‹ |U | 2 pt, xq ˇˇď ˇˇΣ ‹ |U c | 2 pt ´τ {c, xq ´Σ ‹ |U | 2 pt, xq ˇˇ|ppτ q| dτ `γ ˆ8 ct |ppτ q| dτ ˆ}Σ ‹ |U | 2 } L 8 pp0,8qˆT d q ˇˇ|U c | 2 ´|U |2 ˇˇpt ´τ {c, xq |ppτ q| dτ ˇˇ|U | 2 pt ´τ {c, xq ´|U | 2 pt, xq ˇˇ|ppτ q| dτ `γ ˆ8 ct |ppτ q| dτ }Σ} L 8 pT d q }U } L 8 pp0,8q;L 2 pT d qq . Let us denote by I c pt, xq, II c pt, xq, III c ptq, the three terms of the right hand side. Since p P L 1 pr0, 8qq, for any t ą 0, III c ptq tends to 0 as c Ñ 8, and it is dominated by }p} L 1 pr0,8q }Σ} L 8 pT d q M 0 . Next, we have |I c pt, xq| ď }p} L 1 pr0,8q }Σ} L 8 pT d q sup sě0 ˆTd ˇˇ|U c | 2 ´|U | 2 ˇˇps, yq dy ď }p} L 1 pr0,8q }Σ} L 8 pT d q sup sě0 ˆˆT d |U c ´U | 2 ps, yq dy `2Re ˆTd pU c ´U qU ps, yq dy ẇhich also goes to 0 as c Ñ 8 and is dominated by 2M 0 }p} L 1 pr0,8qq }Σ} L 8 pT d q . Eventually, we get |II c pt, xq| ď }Σ} L 8 pT d q ˆct 0 ˆˆT d ˇˇ|U | 2 pt ´τ {c, yq ´|U | pt, yq ˇˇdy ˙|ppτ q| dτ. Since U P C 0 pr0, 8q; L 2 pT d qq, with }U pt, ¨q} L 2 pT d q ď M 0 , we can apply the Lebesgue theorem to show that II c pt, xq tends to 0 for any pt, xq fixed, and it is dominated by 2M 0 }p} L 1 pr0,8qq }Σ} L 8 pT d q .This allows us to pass to the limit inˆ8 0 ˆTd Φ Cou,c U c ζ dx dt ´κ ˆ8 0 ˆTd Σ ‹ |U | 2 U ζ dx dt " ˆ8 0 ˆTd Φ Cou,c pU c ´U qζ dx dt `ˆ8 0 ˆTd ´ΦCou,c ´γκΣ ‹ |U | 2 ¯U ζ dx dt.It remains to justify thatlim cÑ8 ˆ8 0 ˆTd Φ init,c U c ζ dx dt " 0.The space variable x is just a parameter for the free wave equation (75), which is equally satisfied by σ 1 ‹ Υ c , with initial data σ 1 ‹ pΨ Init c , Π Init c q. We appeal to the Strichartz estimate for the wave equation, see[START_REF] Keel | Endpoint Strichartz estimates[END_REF] Corollary 1.3] or [52, Theorem 4.2, for the case n " 3],which yields Init c px,zq| 2 dz `ˆR n |σ 1 ‹ ∇ y Ψ Init c px, zq| 2 dzThe L 2 norm with respect to the space variable of the right hand side is dominated byb }σ 1 } L 1 pT d q M 2 . C 2 }σ 1 } L 1 pR d q M 2 1 c 2{p Ý ÝÝ ÑRepeated use of the Hölder inequality (with 1{p `1{p 1 " 1) leads to ˇˇˇˆ8On the one hand, assuming that ζ is supported in r0, Rs ˆTd and p ą 2, we have|ζ| 2p 1 {p2´p 1 q dt ˙p2´p 1 q{p 1 dx ď R 1`p2´p1 q{p 1 }ζ} L 8 pp0,8qˆT d q }U c } L 8 pp0,8q;L 2 pT d qq which is thus bounded uniformly with respect to c ą 0. On the other hand, we get pzqσ 1 ‹ Υ c pt, x, zq dz ˇˇp dt ˙2{p dx ď }σ 2 } L q 1 pR n q ˆTd ˆˆ8

	U c ζΦ Init,c dx dt ˇˇď ˜ˆT d 0 ˆTd ˆˆ8 0 |U c ζpt, xq| p 1 dt ˙2{p 1 dx ¸1{2 ˜ˆT d	ˆˆ8 0	|Φ Init,c pt, xq| p dt	˙2{p	dx	¸1{2	.
	ˆTd	ˆˆ8			˙2{p 1				ˆTd	ˆˆR	˙ˆˆR
			0		|U c ζ| p 1 dt	dx ď			0	|U c | 2 dt	0
	ˆTd	ˆˆ8 0	|Φ Init,c pt, xq| p dt	˙2{p	dx "	ˆTd	ˆˆ8 0	ˇˇˆR n	σ 2
			c 1{p	˜ˆ8 0 ˆˆR n ď C ˆ1 c 2 ˆRn |σ 1 ‹ Υ c pt, x, yq| q dy |σ 1 ‹ Π ˙1{2 ˙p{q ¸1{p dt	,
	for any admissible pair:							
		2 ď p ď q ď 8,	1 p `n q	"	n 2	´1,	2 p	`n	´1 q	ď	n	´1 2	, pp, q, nq p2, 8, 3q.
	t ˆct γ ˇˇˇˆc 0 γ 0 ˆct It follows that ˆTd ˜ˆ8 0 ˆˆR n	|σ 1 ‹ Υ c pt, x, zq| q dz	˙p{q	dt	¸2{p	dx ď cÑ8	0.
	ď γ	0 Σ ‹ `γ ˆct							

0 Σ ‹ 0 ˇˇˆR n |σ 1 ‹ Υ c pt, x, zq| q dz ˇˇp {q dt ˙2{p dx

which is of the order Opc ´2{p q.

  1 2c 2 ¨Td ˆRn |B t Υ| 2 dz dx `1 2 ¨Td ˆRn |∇ z Υ| 2 dz dx " 1 2c 2 ¨Td ˆRn |Ψ 1 | 2 dz dx `1 2 ¨Td ˆRn |∇ z Ψ 0 | 2 dz dx " M 2 holds. It follows that |Φ I pt, xq| ď C}σ 2 } L 2n{pn`2 pR n q }σ 1 } L 2 pT d q Φpt, xq| ď γ}Σ} L 8 pT d q |V | 2 pt ´τ {c, yq dy ˙dτ. Φpt, xq| ď γ}Σ} L 8 pT d q }p} L 1 pp0,8qq }V } C 0 pr0,T s;L 2 pT d qq ď γ}Σ} L 8 pT d q }p} L 1 pp0,8qq }U Init } L 2 pT d q

						a	2M 2
	by using Sobolev's embedding. Next, we obtain	
		ˆRn		
	r Φpt, xq " " γ	Ψpt, x, zq dz σ 2 pzqσ 1 ‹ r ˆct 0 ˆˆR n sinpτ |ξ|q |ξ| |p σ 2 pξq| 2 dξ p2πq n	looooooooooooooooooomooooooooooooooooooon	Σ ‹ |V | 2 pt ´τ {c, xq dτ,
			"ppτ q	
	which thus satisfies				
	sup xPT d	| r	ˆct 0	|ppτ q|	ˆˆT d
	In particular				
	| r				

  ´U1 | 2 dx " 2γIm ˆˆT d pΦ 2 ´Φ1 qU 1 pU 2 ´U1 q dx ď 2γ}U 1 } L 2 pT d q }U 2 ´U1 } L 2 pT d q }Φ 2 ´Φ1 } L 8 pT d q " 2γ}U 1 } L 2 pT d q }U 2 ´U1 } L 2 pT d q } r Φ 2 ´r Φ 1 } L 8 pT d q ď 2γ 2 }Σ} L 8 pT d q }U Init } L 2 pT d q }U 2 ´U1 } L 2 pT d q ˇˇ|V 2 | 2 ´|V 1 | 2 ˇˇpt ´τ {c, yq dy ˙dτ.We use the elementary estimateˆTd ˇˇ|V 2 | 2 ´|V 1 | 2 ˇˇdy " ˆTd ˇˇ|V 2 ´V1 | 2 `2RepV 2 ´V1 qV 1 ˇˇdy ď }V 2 ´V1 } 2 L 2 pT d q `2}V 2 ´V1 } L 2 pT d q }V 1 } L 2 pT d q .Combining this with Cauchy-Schwarz and Young inequalities, we arrive atd dt ˆTd |U 2 ´U1 | 2 dx ď 2γ 2 }Σ} L 8 pT d q }U Init } L 2 pT d q ˆ2}U Init } L 2 pT d q ˆct 0 |ppτ q|}V 2 ´V1 } 2 pt ´τ {cq L 2 pT d q dτ `}U 2 ´U1 } L 2 pT d q 2}U Init } L 2 pT d q ˆct 0 |ppτ q|}V 2 ´V1 }pt ´τ {cq L 2 pT d q dτ ď 2γ 2 }Σ} L 8 pT d q }U Init } 2 L 2 pT d q ´}U 2 ´U1 } 2 L 2 pT d q

	It follows that		
	d dt ˆTd	|U 2 ˆct 0	|ppτ q|	ˆˆT d

The Fourier transform of an integrable function ϕ : R n Ñ C is defined by p ϕpξq " ´Rn ϕpzqe ´iξ¨z dz.

For the problem set on R d , it is still possible, in the spirit of results obtained in[START_REF] Faou | Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus[END_REF] for NLS, to justify that orbital stability holds on a finite time interval: the solution remains at a distance ǫ from the orbit of the ground state over time interval of order Op1{ ? ǫq, see [55, Theorem 4.2.11 & Section 4.6]. The argument relies on the dispersive properties of the wave equation through Strichartz' estimates.
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