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Plane wave stability analysis of Hartree and quantum
dissipative systems
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Parc Valrose, F-06108 Nice, France

Abstract

We investigate the stability of plane wave solutions of equations describing quantum
particles interacting with a complex environment. The models take the form of PDE
systems with a non local (in space or in space and time) self-consistent potential; such
a coupling lead to challenging issues compared to the usual non linear Schrédinger
equations. The analysis relies on the identification of suitable Hamiltonian structures
and Lyapounov functionals. We point out analogies and differences between the original
model, involving a coupling with a wave equation, and its asymptotic counterpart
obtained in the large wave speed regime. In particular, while the analogies provide
interesting intuitions, our analysis shows that it is illusory to obtain results on the
former based on a perturbative analysis from the latter.

Keywords. Hartree equation. Open quantum systems. Particles interacting with a vibrational
field. Schrodinger-Wave equation. Plane wave. Orbital stability.

Math. Subject Classification. 35Q40 35Q51 35Q55

1 Introduction

This work is concerned with the stability analysis of certain solutions of the following Hartree-type
equation

10U + %AwU =y <01 *w/ oo dz> U, (1a)

— ALY = —703(2) (01 % [U]?) (@) (1b)
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endowed with the initial condition

U‘t=0 _ UInit7 (2)
and of the following Schrodinger-Wave system:
1
10U + §AIU = y®U, (3a)
1
6—26§t\11 - AZ\I[ = _702(z)01 * |U|2(t,ﬂj‘), (3b)

O(t,x) = // o1(x —y)oa(2)¥(t,y, z) dz dy, (3c)
Td xR"?
where 7, ¢ > 0 are given positive parameters, completed with
U‘t=0 _ UInit, \Il‘tzo _ \IJInit7 at\:["‘tzo _ Hlnit. (4)

The variable z lies in the torus T¢, meaning that the equations are understood with (2m)—periodicity
in all directions. In , the additional variable z lies in R™ and, as explained below, it is crucial to
assume n > 3. For reader’s convenience, the scaling of the equation is fully detailed in Appendix[Al
for our purposes the God-given form functions o1,09 are fixed once for all and the features of
the coupling are embodied in the parameters 7, c. The system |(1a)] can be obtained, at least
formally, from |(3a)H{(3c)| by letting the parameter ¢ run to +00, while v is kept fixed. By the way,
system |(1a)H(1b)| can be cast in the more usual form

10U + %AQCU = VK (% [UP) U, teR, zeR% (5)
Wherely 5 (£)|2 1
_ _ -1 _ 02 § .
K= / 72(2)(—=A,) Lo (2) dz = / e T 0emd S=oreon (6)

Letting now X resemble the delta-Dirac mass, the asymptotic leads to the standard cubic non linear
Schrédinger equation

1
iU + 58U = —2k|UPU. (7)

in the focusing case. These asymptotic connections can be expected to shed some light on the
dynamics of [(3a)H(3c)| and to be helpful to guide the intuition about the behavior of the solutions,
see [24, 25].

The motivation for investigating these systems takes its roots in the general landscape of the
analysis of “open systems”, describing the dynamics of particles driven by momentum and energy
exchanges with a complex environment. Such problems are modeled as Hamiltonian systems, and
it is expected that the interaction mechanisms ultimately produce the dissipation of the particles’
energy, an idea which dates back to A. O. Caldeira and A. J. Leggett [7]. These issues have been
investigated for various classical and quantum couplings, and with many different mathematical
viewpoints, see e. g. [2, 3] 28] 29, 32} [33], 34]. The case in which the environment is described as
a vibrational field, like in the definition of the potential by |(3b)H(3c)} is particularly appealing. In

'The Fourier transform of an integrable function ¢ : R" — C is defined by $(§) = [ o(z)e % dz.



fact, |(3a)H(3¢c)|is a quantum version of a model introduced by S. De Biévre and L. Bruneau, dealing
with a single classical particle [6]. Intuitively, the model of [6] can be thought of as if in each space
position z € R? there is a membrane oscillating in a direction z € R®, transverse to the motion
of the particles. When a particle hits a membrane, its kinetic energy activates vibrations and the
energy is evacuated at infinity in the z—direction. These energy transfer mechanisms eventually
act as a sort of friction force on the particle, an intuition rigorously justified in [6, Theorem 2 and
Theorem 4]. We refer the reader to [I], 13} 14}, 34, 53] for further theoretical and numerical insight
about this model. The model of [6] has been revisited by considering many interacting particles,
which leads to Vlasov-type equations, still coupled to a wave equation for defining the potential
[21]. Unexpectedly, asymptotic arguments indicate a connection with the attractive Vlasov-Poisson
dynamic [12]. In turn, the particles-environment interaction can be interpreted in terms of Lan-
dau damping [22], 23]. The quantum version |(3a)] of the De Biévre-Bruneau model has been
discussed in [24] 25], with a connection to the kinetic model by means of a semi-classical analysis
inspired from [39]. Note that in (3c)l the vibrational field remains of classical nature; a fully
quantum framework is dealt with in [3] [I5] for instance.

A remarkable feature of these systems is the presence of conserved quantities, here inherited
from the framework designed in [6] for a classical particle, and the study of these models brings out
the critical role of the wave speed ¢ > 0 and the dimension n of the space for the wave equation
(we can already notice that n > 3 is necessary for @ to be meaningful), see [6], 22} 23, 25]. For the

Schrodinger-Wave system |(3a)H(3c)| the energy

Hgw (U, ¥, 1) / \VU|2dx+// <2H2 IV \11\2> drdz + - / |UPdz, (8)
TdxR"? 2 Td

is conserved since we can readily check that

d
EHSW(U 5:5 ) =

Similarly, for the Hartree system |(1a)| we get

d

—Hp,(U)=0
& Hia(U)

where we have set

1 K
i) = 5 [ [IVUPde =25 [ S n)lvta)PiUe )P dyds.

Furthermore, for both model, the L? norm is conserved. Of course, these conservation properties
play a central role for the analysis of the equations. However, @ has further fundamental
properties which occur only for the asymptotic model: firstly, [(1a){(1b)|is Galilean invariant, which
means that, given a solution (¢,z) — wu(t,z) and for any po e T?, the function (t,z) — u(t,z —
tpo)ei(m*tpo/ 2) is a solution too; secondly, the momentum p(¢) = Im f (t,2)Vu(t,x) dx is conserved
and, accordingly, the center of mass follows a straight line at constant speed. That these properties
are not satisfied by the more complex system |(3a){(3c)| makes its analysis more challenging. Finally,
we point out that, in contrast to the usual nonlinear Schrédinger equation or Hartree-Newton
system, where ¥ is the Newtonian potential, the equations |(1a)H(1b)| or |(3a)H(3c)[ do not fulfil a
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scale invariance property. This also leads to specific mathematical difficulties: despite the possible
regularity of 3, many results and approaches of the Newton case do not extend to a general kernel,
due to the lack of scale invariance.

When the problem is set on the whole space R?, one is interested in the stability of solitary
waves, which are solutions of the equation with the specific form u(t,r) = e“!Q(x), and, for
(3a)H(3c), ¥(t,z,z) = ¥(x,z). The details of the solitary wave are embodied into the Choquard
equation, satisfied by the profile @, [36} 40]. It turns out that the Choquard equation have infinitely
many solutions; among these solutions, it is relevant to select the solitary wave which minimizes the
energy functional under a mass constraint, [36, 41] and to study the orbital stability of this minimal
energy state. This program has been investigated for and [(1a){(1b)| in the specific case where
Y(z) = ‘—glc‘ in dimension d = 3, by various approaches [8, 35 37, 38, 43| 56, 57]. Quite surprisingly,
the specific form of the potential plays a critical role in the analysis (either through explicit formula
or through scale invariance properties), and dealing with a general convolution kernel, as smooth
as it is, leads to new difficulties, that can be treated by a perturbative argument, see [31], 58] for
the case of the Yukawa potential, and [25] for |(1a){(1b)| and |(3a)H(3c)}

Here, we adopt a different viewpoint. We consider the case where the problem holds on the
torus T?, and we are specifically interested in the stability of plane wave solutions of [(3a)l(3c) and
(1a)H(1b)l We refer the reader to [4] [5, (16, 44] for results on the nonlinear Schrédinger equation
in this framework. The discussion on the stability of these plane wave solutions will make the
following smallness condition

2o <1 ©)

(assuming the plane wave has an amplitude unity) appear. Despite its restriction to the periodic
framework, the interest of this study is two-fold: on the one hand, it points out some difficulties
specific to the coupling and provides useful hints for future works; on the other hand, it clarify the
role of the parameters, by making stability conditions explicit.

The paper is organized as follows. In Section Bl we clarify the positioning of the paper. To
this end, we further discuss some mathematical features of the model. We also introduce the main
assumptions on the parameters that will be used throughout the paper and we provide an overview
of the results. Section [3lis concerned with the stability analysis of the Hartree equation |(1a){(1b)|
Section [ deals with the Schrédinger-Wave system at the price of restricting to the case where the
wave vector of the plane wave solution vanishes: k£ = 0. For reasons explained in details below, the
general case is much more difficult. Section [l justifies that in general the mode k # 0 is linearly
and orbitally unstable. The proof splits into two steps. The former is concerned by the spectral
instability; it relies on a suitable reformulation of the linearized operator, which allows us to count
indirectly the eigenvalues. The latter step proves instability by using a contradiction argument and
estimates established through the Duhamel formula. Finally, in Appendix[A] we provide a physical
interpretation of the parameters involved, and for the sake of completeness, in Appendices [Bl and
[Cl we discuss the well-posedness of the Schrodinger-Wave system [(3a)l{(3¢)| and its link with the

Hartree equation |(1a){(1b)|in the regime of large ¢’s.

2 Set up of the framework



2.1 Plane wave solutions and dispersion relation
For any k € Z%, we start by seeking solutions to [(3a)}{(3¢c)| of the form

Ut,z) = Up(t,z) :=exp (i(wt + k-2)), U(t,z,2) = Vu(z), ¥(t,z,2) = —2¢%11,.(2) = 0, (10)
with w € R. Note that the L? norm of Uy, is (21)%2 and W, actually does not depend on the time
variable, nor on x. Since |Uk(t,z)| = 1 is constant, the wave equation simplifies to

1
—20t2t\1! — AU = —’702(2)<O‘1>Td,

where < > , stands for the average over T < f >Td = de x)dz. As a consequence, z — W, (z) is
a solution to |[(3b)| if

\P* = _/71—‘ <01>Td7
with I' the solution of
—A,T(z) = 09(2).

This auxiliary function I' is thus defined by the convolution of oo with the elementary solution of
the Laplace operator in dimension n, or equivalently by means of Fourier transform:

F(z):/R %ag(z')dz':%;@?@). (11)

nlz—z €12

The corresponding potential |(3c)|is actually a constant which reads

—7// o1(z — y)oa(2)[(2){o1 ppy dzdy = —%7<01>Td
TdxRn®

with
K= /n o2(2)I'(2)dz = / |V.T'(2)]?dz > 0

(we remind the reader that this formula coincides with @ and makes sense only when n > 3). It
remains to identify the condition on the coefficients so that U} satisfies the Schrédinger equation
(3a)f this leads to the following dispersion relation

k‘2
Wt = Ya =0, Ty=7"k{o1)5 >0 (12)
with k2 = Z i1 k:JQ We can compute explicitly the associated energy:
2m)? (k2 K d
HSW<Uk7\I’*7H*) = ( 2) (? - L 1>Td> = —) k2 — T*).

Of course, among these solutions, the constant mode Uy(t, z) = ¢*!1(x) has minimal energy.

It turns out that the plane wave Uy (t,z) = e™“'e’** equally satisfies [(1a)}{(Ib)] provided the
dispersion relation holds. Incidentally, we can check that

HalUy) = & 2) (k—Z - M@%d) = —)d (k% = Ts)

is made minimal when k£ = 0.



2.2 Hamiltonian structure and symmetries of the problem

The conservation properties play a central role in the stability analysis, for instance in the reasonings
that use concentration-compactness arguments [§]. Based on the conserved quantities, one can try
to construct a Lyapounov functional, intended to evaluate how far a solution is from an equilibrium
state. Then the stability analysis relies on the ability to prove a coercivity estimate on the variations
of the Lyapounov functional, see [54] 56] [57]. This viewpoint can be further extended by identifying
analogies with finite dimensional Hamiltonian systems with symmetries, which has permitted to
set up a quite general framework [26] 27], revisited recently in [4]. The strategy relies on the ability
in exhibiting a Hamiltonian formulation of the problem

0 X = Jox A (X),

where the symplectic structure is given by the skew-symmetric operator J. As a consequence of
Noether’s Theorem, this formulation encodes the conservation properties of the system. In partic-
ular, it implies that ¢ — J2(X(t)) is a conserved quantity. For the problem under consideration, as
it will be detailed below, X is a vectorial unknown with components possibly depending on different
variables (z € T? and z € R™). This induces specific difficulties, in particular because the nature
of the coupling is non local and delicate spectral issues arise related to the essential spectrum of
the wave equation in R™. Next, we can easily observe that the systems |[(1a)H(1b)| and |(3a)H(3c)|
are invariant under multiplications by a phase factor of U, the “Schédinger unknown”, and under
translations in the 2 variable. This leads to the conservation of the L? norm of U and of the total
momentum. However, the systems |[(1a)h(1b)| and |[(3a)H(3c)| cannot be handled by a direct applica-
tion of the results in [4], 26 27]: the basic assumptions are simply not satisfied. Nevertheless, our
approach is strongly inspired from [4, 26} 27]. As we will see later, for the Hartree system, a decisive
advantage comes from the conservation of the total momentum and the Galilean invariance of the
problem. For the Schrodinger-Wave problem, since the expression of the total momentum mixes
up contribution from the “Schrédinger unknown” U and the “wave unknown” W, the information
on its conservation does not seem readily useful. 7

In what follows, we find advantages in changing the unknown by writing U(t,z) = e*®u(t, x);
in turn the Schrédinger equation 0. U + %AU = ®U becomes

. 1 k2
104U + §Au— ?u~|—zk‘-Vu= .

Accordingly, the parameter k will appear in the definition the energy functional #. This explains
a major difference between |(1a)H(1b)| and |(3a){(3c); for the former, a coercivity estimate can be
obtained for the energy functional 57, for the latter, when k # 0 there are terms which cannot be
controlled easily. This is reminiscent of the momentum conservation in |(1a){(1b)| and the lack of
Galilean invariance for |(3a)H(3c)l The detailed analysis of the linearized operators sheds more light
on the different behaviors of the systems |[(1a){(1b)| and |[(3a)H(3c)|

2For the problem set on R, it is still possible, in the spirit of results obtained in [I6] for NLS, to justify
that orbital stability holds on a finite time interval: the solution remains at a distance € from the orbit of
the ground state over time interval of order &'(1/+/€), see [55, Theorem 4.2.11 & Section 4.6]. The argument
relies on the dispersive properties of the wave equation through Strichartz’ estimates.



2.3 Outline of the main results

Let us collect the assumptions on the form functions o7 and oy that govern the coupling:

(H1) oy : T - [0,0) is C* smooth, radially symmetric; <01>Td + 0;

(H2) o5 :R" - [0,00) is C* smooth, radially symmetric and compactly supported;

(H3) (~A)""20, € L2(R");

(H4) for any £ € R", 52(&) # 0.

Assumptions are natural in the framework introduced in [6]. Hypothesis can

equivalently be rephrased as (—A)"loy € H L(R™); it appears in many places of the analysis of
such coupled systems and, at least, it makes the constant x in @ meaningful. This constant is
a component of the stability constraint [(9)] Hypothesis equally appeared in [6, Eq. (W)]
when discussing large time asymptotic issues. Assumptions |(H1)H{(H4)| are assumed throughout
the paper.

Our results can be summarized as follows. We assume @ and consider k € Z% and w € R
satisfying |(12)l For the Hartree equation, the analysis is quite complete:

o the plane wave e!@52) jg gpectrally stable (Theorem B.1);

o for any initial perturbation with zero mean, the solutions of the linearized Hartree equation
are L2-bounded, uniformly over ¢ > 0 (Theorem B.3));

o the plane wave ¢/“*+5%) js orbitally stable (Theorem [33).
For the Schrodinger-Wave system, the case k = 0 is fully addressed as follows:
« the plane wave (e™'1(x), —7F(z)<0’1>Td, 0) is spectrally stable (Corollary [5.12]);

« for any initial perturbation of (¢*'1(zx), —7F(z)<01>Td,0) with zero mean, the solutions of
the linearized Schrédinger-Wave system are L2-bounded, uniformly over ¢ > 0 (Theorem E2);

« the plane wave (e™'1(x), —7F(z)<0’1>Td, 0) is orbitally stable (Theorem [A.4]).

When k # 0, the situation is much more involved; at least we prove that in general the plane wave
solution (e!@ttk=) —’yF(z)<01>Td,O) is spectrally unstable, see Section Bl and Corollary 515, and
orbitally unstable, see Theorem

Finally, let us mention that the approach presented here has been developed on an even simpler
model, where the Schrédinger equation is replaced by a mere finite dimensional differential system
[20].

3 Stability analysis of the Hartree system |(1a)

(1b)

To study the stability of the plane wave solutions of the Hartree system, it is useful to write the

solutions of |(1a){(1b)|in the form

Ult,z) = e*%u(t, x)

7



with u(¢, z) solution to

1 k?
i0tu + §Au —gut ik - Vu = =72 k(2 * [u)?)u. (13)

If k € 24 and w € R satisfy the dispersion relation uy(t,z) = e“'1(z) is a solution to [(13)] with
initial condition w,(0,t) = 1(x). Therefore, studying the stability properties of Uy (t,z) = e™teih®
as a solution to [(1a)}(1b)] amounts to studying the stability of u,(t,z) = e“*1(x) as a solution to
(€5}

The problem has an Hamiltonian symplectic structure when considered on the real Banach
space H'(T% R) x H' (T4 R). Indeed, if we write u = q + ip, with p, ¢ real-valued, we obtain

at <]q9> = JIV(q,p)f%(q,p)

0 1
= (5)
and

1/1 k2
,%”(q,p)—5(§/d\Vq|2+|Vp\2dx+?/d(pz+q2)dx—/dpk-qux+/qu-Vpdx>
T T T T

72k
4 Td

with

S (p®+ )P+ ¢*) da.

Coming back to u = q + ip, we can write

1/1 k2
H(u) = B <§ /Td |Vu|2d:17 + 5 /Td |u(:17)|2 dr + /Tdk‘ . (—iVu)ﬂdx)

v’k 2 2
— I e ) @) )P de. (14)

As observed above, .7 is a constant of the motion.
Moreover, it is clear that |(13)| is invariant under multiplications by a phase factor so that
F(u) = 3|u|2, is conserved by the dynamics. The quantities

Gj(u) = %/Td <%6xju> udzx

are constants of the motion too, that correspond to the invariance under translations. Indeed, a
direct verification leads to

d K2
G =

Finally, we shall endow the Banach space H'(T% R) x H'(T% R) with the inner product

< <1q?> | (zq):> > - /Td (pp' + q7) da.

that can be also interpreted as an inner product for complex-valued functions:

(uu’y = Re/ uu’ dz. (15)

Td

[, [5G =)« P e plut,2) dy dz =0,
Td JTd

8



3.1 Linearized problem and spectral stability

Let us expand the solution of [(13)| around w,, as u(t,z) = wu,(t,z)(1 + w(t,z)). The linearized
equation for the fluctuation reads

10w + %Aww + ik - Vow = —29%k(2 * Re(w)). (16)

We split w = ¢ + ip, ¢ = Re(w), p = Im(w) so that |(16) recasts as

)=

1
—k-Vaeq— Ap
Ly : <q> — | 4 2 . (18)
p éAzq—l—Zysz*q—kz-Vmp

with the linear operator

From now on, while (g, p) has been introduced as a pair of real-valued functions, we consider Ly, as
acting on the C-vector space of complex-valued functions LQ(Td; C) x Lz(Td; C), and we study its
spectrum.

Theorem 3.1 (Spectral stability for the Hartree equation) Let k € Z¢ and w € R such that
the dispersion relation is satisfied. Suppose @ holds. Then the spectrum of Ly, the lineariza-
tion of|(13)] around the plane wave u,(t,z) = e“'1(x), in L*(T% C) x L?(T%; C) is contained in iR.
Consequently, this wave is spectrally stable in L? (Td).

Proof. To prove Theorem B, we expand ¢, p and o1 by means of their Fourier series

im-x _ 1 —im-x
i) = 3 n0™, Qnlt) = o [ att.oye e da,

m-T _ 1 —im-x
p(t,x) = méd P(t)e'™®,  Pp(t) = o) /Td p(t,x)e dz,
o1 (2) :n;Zd ™ () (2;[)d /T (@ da.

Note that o1 being real and radially symmetric, we have
Olom = 01lm = 01,—m (19)
and, by definition, <01>Td = (27r)d0170. As a consequence, we obtain

m2

Y imezd <7Pm — ik - QO> el

q
P Zmezd <_7Qm — ik -mPy, + 2(27[)2d’72/{|01,m|262m> e

, (%))) + > Lim @:) e (20)

meZaN{0}



with
0 0 —ik-m m
Lgo = and Ly, = 2 21
k0 <2(27r)2dfy2/1\01,0\2 0) o (—%2 +2(2m)24y 2 k|0 |? —ik - m) @)
for m e Z% \ {0}.
Note that, since the Fourier modes are uncoupled, <g> is a solution to|(17)|if and only if the

Fourier coefficients <Qm> satisfy
P

Pn(t) T\ Pn(t)
for any m € Z¢. Similarly, A € C is an eigenvalue of the operator Ly, if and only if there exists at
least one Fourier mode m € Z% such that \ is an eigenvalue of the matrix Ly m, i.e. there exists
(¢m,pm) # (0,0) such that
2
Adin = 5P + ik - Mg = 0,
; (22)

m .
Ao + - + ik - mpm = 227?601 m[* G-

A straightforward computation gives that Ay = 0 is the unique eigenvalue of the matrix Ly o
with eigenvector (0,1). This means that Ker(Lj) contains at least the vector subspace spanned by

the constant function z € T <(1)>, which corresponds to the constant solution u(t,z) = i of|(16)

Next, if m € Z% \ {0}, \,,, is an eigenvalue of Li,m if it is a solution to

2 2

(A + ik -m)? — mT (_% + 2(27’()2d’y2/€‘017m|2> =0.

This is a second order polynomial equation for A and the roots are given by

Am,+ = —tk-m + @ \/—m2 + 472K (270) %4 |0y |2.
If the smallness condition@holds, the argument of the square root is negative for any m e Z4\ {0},
and thus the roots X are all purely imaginary (and we note that A_,, + = A, 7). More precisely,

we have the following statement.

Lemma 3.2 (Spectral stability for the Hartree equation) Let k,m € Z? and Li,m defined

as in|(21)] Then
1. Ao = 0 is the unique eigenvalue of Ly o and Ker(Ly o) = span { <(1)> },,

2. for any m € Z%\ {0}, the eigenvalue of Ly,m are

(a) if 472/1(27[)%‘0;’1—’3‘2 <1, then A\, + € iR;

10



(b) if 472/{(27t)2d‘0;;b—’§‘2 > 1, then A\p, + € C\iR. Moreover, Re(Ap, 4) > 0.

Now, [(9)] implies 472/{(27t)2d‘0;’1—’§‘2 <1 for all m € Z%\ {0}, so that o(Lg) < iR and uy(t,z) =
e™t1(z) is spectrally stable. Conversely, if o1, 02 and v are such that there exists m, € Z \ {0}

2
verifying 472/{(27t)2d% > 1, then the plane wave u, is spectrally unstable for any k € Z¢ and

*
w € R that satisfy the dispersion relation |(12)l This proves Theorem [B11 [ ]

We observe that this result is consistent with the linear stability analysis of , see [44], The-
orem 1], when replacing formally ¥ by the delta-Dirac. The analogy should be considered with
caution, though, since the functional difficulties are substantially different: here u — —%ATdu —
2v2kY «Re(u) is a compact perturbation of —%ATd, which has a compact resolvent hence a spectral
decomposition.

It is important to remark that the analysis of eigenproblems for Ly has consequences on the

behavior of solutions to [(17)| of the particular form
Q(t, ) = eMg(x), P(t,x) = eMp(x).

We warn the reader that spectral stability excludes the exponential growth of the solutions of the
linearized problem when the smallness condition @ holds, but a slower growth is still possible.
This can be seen by direct inspection for the mode m = 0: we have 0,Qy = 0, so that Qo (t) = Qo(0)

and 0, Py = 2(271)2d/1<01>12r,d620(0) which shows that the solution can grow linearly in time

2
Py(t) = Po(0) + 2(2m)**y* k{01 )74 Qo (0)t.
In fact, excluding the mode m = 0 suffices to guaranty the linearized stability.

Theorem 3.3 (Linearized stability for the Hartree equation) Suppose @ Let w be the
solution of [(16)] associated to an initial data w™* € H'(T%) such that [psw™*dz = 0. Then,
there exists a constant C' > 0 such that sup,sq |w(t, )|z < C.

Proof. Note that if [, w™"dz = 0 then the corresponding Fourier coefficients Qo(0) and P, (0)
are equal to 0. As a consequence, Qo(t) = Py(t) = 0 for all t > 0, so that [, w(t,z)dz = 0 for all
t=0.

The proof follows from energetic consideration. Indeed, we observe that, on the one hand,

1d 9 72k _ _
- S » Alw —
2t o |[Vw|* dx % o * (w4 W)A(w — w) de,
and, on the other hand,

1d

—— | Ex(w+w)(w+w)dx

2 dt T 1

= —— E*(w+w)A(w—m)dx—k-/ V(w+w)E * (w+w)de,

21 Td Td

where we get rid of the last term in the right hand side by assuming k£ = 0. This leads to the
following energy conservation property

d (1 9 ’yzn . .
Bl N 1w —
dt{2/1Pd|Vw| dz 5 /Td *(w~|—w)(w+w)d$} 0

11



which holds for £k = 0. We denote by Ej the energy of the initial data w™?*. Finally, we can simply
estimate

/Td S* (w+)(w + @) dz| < |Z* (w+ )| g2|w + T2 < |2 1w + @72 < 42 1 fw] 7o

To conclude, we use the Poincaré-Wirtinger estimate. Indeed, since we have already remarked that
the condition [ w™tdz = 0 implies Jpa w(t,z)dz = 0 for any t > 0, we can write

1 2
ot )3 = futt.) = g [ wit ], - (ZN)dmeZ;{O} em(w(t, )
<@’ Y mln(ult, )P = [Vult, )

meZa\{0}

for any ¢ > 0, where the c¢,,(w(t,-))’s are the Fourier coefficients of the function z € T¢ — w(t, ).
Hence, for any solution with zero mean, we infer, for all ¢ > 0,

2E, _/ \Vw\2(t,m)da:—fy2n/ 5 x (1 + ) (w+ )¢, ) da > (1—47%2L1)/ IVt ) d.
Td Td Td
As a consequence, if @ is satisfied, we obtain

Ey

t,- L2 | ———=—-
SuIO) Hw< ) )HHl 1 _4'72’%”2”[/1

=

The stability estimate extends to the situation where k # 0. Indeed, from the solution w of

(16)] we set

v(t,x) = w(t,x + tk).

It satisfies i0,v + $A,v = —27%K% * Re(v). Hence, repeating the previous argument, [v(t,-)|m =
|w(t, )| g1 remains uniformly bounded on (0, 00). This step of the proof relies on the Galilean invari-
ance of it could have been used from the beginning, but it does not apply for the Schrédinger-
Wave system. [ |

Remark 3.4 The analysis applies mutadis mutandis to any equation of the form|(1a), with the
potential defined by a kernel ¥ and a strength encoded by the constant v*k. Then, the stability

criterion is set on the quantity 47%(27[)6[%3—‘ For instance, the elementary solution of (a?>—A,)% =

Or—0 with periodic boundary condition has its Fourier coefficients given by ¥, = i > 0.

1
2m)4 (a2 +m?2)
Coming back to the physical variable, in the one-dimension case, the function % reads

—alz| cosh(ax)

2a a(e2em™ —1)°

e

Y(x) =

The linearized stability thus holds provided 4~k (2m)%? a21+1 < 1.

3.2 Orbital stability

In this subsection, we wish to establish the orbital stability of the plane wave u,(t,r) = e“!1(x)
as a solution to [(13)] for k € Z¢ and w € R that satisfy the dispersion relation [(12)] As pointed

12



out before, [(13)[ is invariant under multiplications by a phase factor. This leads to define the
corresponding orbit through u(z) = 1(x) by

01 = {?, 9 eR]}.

Intuitively, orbital stability means that the solutions of associated to initial data close enough
to the constant function z € T% — 1 = 1(z) remain at a close distance to the set ¢;. Stability
analysis then amounts to the construction of a suitable Lyapounov functional satisfying a coercivity
property. This functional should be a constant of the motion and be invariant under the action of
the group that generates the orbit 7. Hence, the construction of such a functional relies on the
invariants of the equation. Moreover, the plane wave has to be a critical point on the Lyapounov
functional so that the coercivity can be deduced from the properties of its second variation. The
difficulty here is that, in general, the bilinear symmetric form defining the second variation of the
Lyapounov function is not positive on the whole space: according to the strategy designed in [26],
see also the review [54], it will be enough to prove the coercivity on an appropriate subspace. Here
and below, we adopt the framework presented in [4] (see also [5]).

Inspired by the strategy designed in [4, Section 8 & 9], we introduce, for any k € Z¢ and w € R
satisfying the dispersion relation , the set

272“<01>12rd 7

7, is therefore the level set of the solutions of [(13)], associated to the plane wave (t,x) — wu,(t,x) =
e“'1(x). Next, we introduce the functional

Sy = {u e H'(1%,C), F(u) = F(1) = = (2m)

d
Lo(u) = H(u) + wF(u) — Z kiGj(u), (23)
j=1

which is conserved by the solutions of |(13)l We have

2
OuZu(u)(v) = Re <1/ (—Au)@dx—kk— uv dx
2 Td 2

-’k //deTd E(q:— y)|u(y)\2u(x)mdy dz+w /Td uﬁdx) .

As a matter of fact, we observe that
0uZ,(1)=0

owing to the dispersion relation. Next, we get
2%, (u)(v,w) = Re (%/ (—A + E*)wo dx
Td
—29%K // Y(z — y)Re(u(y)w(y))u(z)v(z) dy dz
TdxTd

_72,{//TdXTdE(x—y)|u(y)|2w($)mdyd$+w/w wﬁdx).

13



Still by using the dispersion relation, we obtain

<_% 223 4 Re(w))@dw — (Suwlv).

N

02.%,(1)(v,w) = Re /T

=Sw

S : H3(TY) < L*(T¢) — L?(T¢) is an unbounded linear operator and its spectral properties will
play an important role for the orbital stability of u,. Note that the operator S is the linearized
operator |(18)] up to the advection term k - V. The main result of this subsection is the following.

Theorem 3.5 (Orbital stability for the Hartree equation) Let k € Z% and w € R such that
the dispersion relation [(12)] is satisfied. Suppose[(9)] holds. Then the plane wave u,(t, z) = €“'1(x)
is orbitally stable, i.e.

Ve >0, 30 > 0, Vo' € HY(T4C), [o™ — 1|1 < 6 = supdist(v(t), 1) < e (24)
t=0
where dist(v, 01) = infge[o oq( [v — 1) 1 and (t,z) — v(t,z) € C°([0,00); H (T9)) stands for the
solution of [(13)] with Cauchy data v™®.

The full proof of Theorem will be obtained from a series of intermediate steps, that we
detail now. The key ingredient to prove Theorem is the following coercivity estimate on the
Lyapounov functional.

Lemma 3.6 Let ke Z¢ and w € R such that the dispersion relation [(12)| is satisfied. Suppose that
there exist n > 0 and ¢ > 0 such that

Yw € .%,, d(w, O1) < n = ZLy(w) — ZL,(1) = ¢ dist(w, O1)% (25)
Then the plane wave u,(t,z) = e“*1(x) is orbitally stable.

Proof. Assume that |[(25)| holds and suppose, by contradiction, that u, is not orbitally stable.
Hence, there exists 0 < g9 < %n such that

. : 1
Vn e N\ {0}, Juldt € F1(TY), |l — 1)1 < " and 3t,, € [0, +oo[, dist(un (tn), 1) = €0,

(t,x) — u,(t,z) € C°([0,00); H(T?)) being the solution of [(13)| with Cauchy data ul*. To
1/2

apply the coercivity estimate of Lemma [B.6] we define z, = <%> U (ty). It is clear that

Zn € S, since F(z,) = F(1). Moreover, (u”(t"))neN\{o} is a bounded sequence in H'(T%) and

limy,— 1 o0 F'(un(tn)) = F(1). Indeed, on the one hand, there exists 7 € [0, 27| such that
lun ()1 < lun(tn) = €1+ €1 g1 < 2d(un(tn), 61) + |1 g1 = 2e0 + [ 1] 2

and, on the other hand,

1 1
|F(un(tn)) — F(1)] = §|||un(tn)||2L2 — [172] < un(ta) = L2 (0 + 1) < —(c0 + [ ).

As a consequence, limy,_, 1o ||2n, — Un(tn)|| g1 = 0. This implies for n € N large enough,

360

&
5°<d(zn,ﬁl)<7<n

14



Hence, thanks to Lemma [B.6] we obtain
fw(ugﬂt) — L) = Lo(un(tn)) — Zu(1) = ZLy(un(tn)) — Lo(zn) + Lio(2n) — Zu(1)

> L (un(tn)) — Lo(zn) + cd(zn, O1)2 = Lo(un(tn)) — Lolzn) + <

2
€0-
40

Finally, using the fact that 0,.%,(1) = 0 and 02.4,(1)(w,w) < C|lw|%:, we deduce that
lim (Z,(uM) — 2,(1)) =0,

n— -+

lim (L, (un(tn)) — Zu(zn)) = 0.

n——+o

We are thus led to a contradiction. ]

Since 0,,.%,(1) = 0, the coercivity estimate can be obtained from a similar estimate on the
bilinear form w e H' — 02.%,(1)(w,w). As pointed out before, the difficulty lies in the fact that,
in general, this bilinear form is not positive on the whole space H'. The following lemma states
that it is enough to have a coercivity estimate on 02.%,(1)(w,w) for any w € T1.%, n (T1O1)*.
Recall that the tangent set to .7, is given by

T = {ue HY(T%C), 0, F(1)(u) = 0} = {(q,p) e H'(T% R) x H (T R), < (Z) ‘ (3) > - o} :

This set is the orthogonal to 1 with respect to the inner product defined in |(15)l The tangent set
to 01 (which is the orbit generated by the phase multiplication) is

T1 01 = spang{il}

so that

(Ty61)" = {ue H'(TC), (u,i1) = 0} = {(q,p) TR, ( (Z) | <2> 5= o} .

Lemma 3.7 Let k€ Z and w € R such that the dispersion relation [(12)| is satisfied. Suppose that
there exists ¢ > 0

0L (1) (u, u) = &lul 7 (26)
for any ue Ty ~ (TLO1)". Then there exist n > 0 and ¢ > 0 such that[(25)] is satisfied.
Proof. Let we ., such that dist(w, 1) < n with n > 0 small enough. By means of an implicit

function theorem argument (see [4, Section 9, Lemma 8]), we obtain that there exists 6 € [0, 27|
and v € (Ty01)* such that

ePw =1+, dist(w, 01) < |v||gn < Cdist(w, O4)

for some positive constant C'.
Next, we use the fact that H'(T?) = T1.%, @ spang {1} to write v = vy + vo with v; € T1.7, N
(T101)* and vy € spang {1} N (T101)*. Since v = ew — 1 and F(w) = F(1), we obtain

. 1 1
0= F(e®w)— F(1) = §/Td |v|2dx~|—Re/Td(v1~l—v2)1dx= §/Td|v|2dx+Re/Tdv21d:E.
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Since v € spang {1}, it follows that

This implies
sl = Jo — ol > ol — L0 5 Ly
2t~ 2

provided |[v]| g1 < |1]z2. As a consequence, if |v] g1 is small enough, using that 2., (1)(w,2) <
Cllw| 1] 2] g1, we obtain

02.L,(1)(v1,v2)
02 Z,(1)(va, v2)

< Cl|3,
< CHUH‘}{L
This leads to
02 Z,(1)(v,0) = 05.L,(1)(v1,v1) + o([v][ 7).

Finally, let w € ., be such that d(w, 01) <n. We have
; 1
Lo(w) = Z,(1) = gw(‘aww) - Z,(1) = —85$w(1)(’u,v) + O(HUH%N)
1 c
= 5% [0l + oll7p)

= ™

50nZo()(v1,01) + o([ol7p) = Sl + o(lvl7p) =

[\

> gdlst(w, 04)?
where we use 0,.%,(1) = 0 and v; € T1.%, N (T101)*. ]

At the end of the day, to prove the orbital stability of the plane wave u,(t,z) = e“!1(x) it
is enough to prove for any u € T1.%1 n (Ty01)*. This can be done by studying the spectral
properties of the operator S. However, in the simpler case of the Hartree equation, the coercivity
of 2.2,(1) on T1.%; ~ (T101)* can be also obtained directly from the expression

A -
2%,(1)(u,u) = Re (/ (—7“ — 29%KkY % Re(u)> u(z) d:z:> = (Su|u). (27)
Td
Let u e Th.%1 n (T101)* and write u = g + ip. This leads to
1 1
ELWww) =5 [ Ve do =297 [ (Sxqados ;[ VoPda.
2 Td Td 2 Td
Moreover, since u € T1.% n (Ty01)*, we have
/ qgdz =0 and pdz = 0.
Td T
As a consequence, thanks to the Poincaré-Wirtinger inequality, we deduce
1 1
L) > 5 [ Ve do -2k [ (S gads+ JlplB (25)
2 Td Td 4

Next, we expand ¢ and ¥ in Fourier series, i.e.

= Z Gme™® and X(z) = Z P el™e,

mezZd mezZd
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Note that, if ¥ = o1 * 01, then %, = (27T)d0%7m. Moreover, de gdz = 0 implies gg = 0. Hence,

1 2
5/ Vq|* dz — 272%/ (Sxq)gde = 207 )] (mT — 29*k(2m) %, ) 47,
Td Td

meZ4\{0}
T\ m2
_ d A2 d%m\ M- o
(27) ezgd o (1 4v* Kk (2m) m2> 5 dm- (29)

As a consequence, we obtain the following statement.

Proposition 3.8 Let k € Z¢ and w € R such that the dispersion relation [(12)] is satisfied. Suppose
that there exists § € (0,1) such that

2
2 2d 91,m
for all m € Z4\ {0}. Then, there exists ¢ > 0 such that
02.2,(1) (u,u) = &lul?n (31)

for any we Ty n (T101)* .

Proof. If|(30)|holds, then [(28)H(29)| lead to
1-6 1 1-6 1 1-96
RLW ) > 00T S wi+ el = 5 Vel + el > Sl
meZi\{0}

where in the last inequality we used the Poincaré-Wirtinger inequality together with the fact that
de qdz = 0. [ |

Remark 3.9 By decomposing the linear operator S into real and imaginary part and by using
Fourier series, one can study its spectrum. In particular, S has exactly one negative eigenvalue
Ao = —272/£<E>Td with eigenspace spang{1}. Moreover, Ker(S) = spang{il}. Finally, if[(30)] is
satisifed, then inf(o(S) n (0,00)) = 1—56. Then, by applying the same arguments as in [3, Section
6], we can recover the coercivity of 0>.%,(1) on Ty.% n (T101)*.

Finally, Proposition B.8 together with Lemma [3.7] and Lemma B.6], gives Theorem and the

orbital stability of the plane wave u,,.

4 Stability analysis of the Schrodinger-Wave system:
the case k =0

Like in the case of the Hartree system, to study the stability of the plane wave solutions of the
Schrodinger-Wave system [(3a)H(3c)], it is useful to write its solutions in the form

Ult,z) = e*%u(t, x)

17



with (t,z,z) — (u(t,z), ¥(t,z, z)) solution to

1 k?
0+ =Ayu — —u + ik - Vyu = (’yal */ oW dz> U
2 2 n
1 (32)
6—20?t\1! — AU = —yoq0q * |ul?.
If k € Z¢ and w € R satisfy the dispersion relation [(12)
) 1
uw(t7$) = EZth(x)v W (t €, Z _7F <O-1>Td7 H*(t,x,z) = _2_2815\1/*(75733»2) =0
c
with T' the solution of —A,I" = o9 (see|(11)]), is a solution to |[(32)| with initial condition
uw(07$) = 1($)7 \P*(O,l‘ Z = _7F <01>Td7 H*(O,ZE,Z) = 0.
For the time being, we stick to the framework identified for the study of the asymptotic Hartree
equation. Problem - has a natural Hamiltonian symplectic structure when considered on the

real Banach space H'(T¢) x H'(T¢) x L?(T%; It (R™)) x L*(T? x R™). Indeed, if we write u = g +ip,
with p, g real-valued, we obtain

J 0
& B (O _J> V(gpw,m7w (¢, p, ¥, 1)

0 1
=% o)
1/1 2 2 k? 2 2
How (q,p, U, 1) == (= [ |Vq? +|VpPPdz+— | (p*+¢°)de— [ pk-Vgdz+ | g¢k-Vpdax
2 2 Td 2 Td Td Td

1
+/ <C2H2 + —|VZ\I’|2> drdz
TdxR"? 4

1 ( [, o1~ voa()¥it.p.2) dz> 0 + ) () d.

Hres e

with

and

Coming back to u = q + ip, we can write

1
Hsw (u, U, 1) —§< /|Vu|2d:17~|——/ lu(z |2dx+/ k- zVuudx)

+/ (C2H2 + —\VZ\I/\2> dzdz
TdxRn 4

03 ([, @@ nn@uts)dd:) P @
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As a consequence, 75y is a constant of the motion. Moreover, it is clear that is invariant
under multiplications by a phase factor of u so that F(u) = 3||lu|2, is conserved by the dynamics.

However, now, the quantities
1 1

Gs(w) = 5 /Td <;axju> 7dz (34)

are not constants of the motion:

%Gj(u)(t) _ %/Td [ o=y </ oo ()W (E, g, 2) dz> luf2(t, z) dy dz.

As a consequence, they cannot be used in the construction of the Lyapounov functional as we did
for the Hartree system (see [(23)).

Finally, we consider the Banach space H'(T%) x H'(T%) x L?(T¢; H! (R™)) x L*(T? x R™) endowed
with the inner product

(

that can be also interpreted as an inner product for complex valued functions:

/

q

/
‘ \II),, —/ (pp' + qd') dx+/ (V. OV, ¥ +1IIT') dz dz
, Td TdxR"
II

H s

{(u, U, | (u/, 0 IT)) = Re/

uu’ dz + / (V.U .V, ¥ + ') de d=. (35)
Td TdxR"

We denote by | - | the norm on HY(T%) x L2(T% H'(R™)) x L*(T® x R") induced by this inner
product.

4.1 Preliminary results for the linearized problem: spectral sta-
bility when k£ =0

As before, we linearize the system [(3a)H(3c)|around the plane wave solution obtained in Section 2]
Namely, we expand

U(t,z) = Ug(t,z)(1 + u(t, x)), U(t,x,2) = —y(o1 )T (2) + P(t, z, 2)

and, assuming that wu,% and their derivatives are small, we are led to the following equations for
the fluctuation (¢,x) — u(t,x) € C, (t,z,2) — (t,z,z) € R

1
10 + EAxu + 1k - Vyu = v,

<cigat2t1/} - Azw) (tv €, Z) = _702<2)Ul * p(t, x)v
p(t,z) = 2Re(u(t, z)),

vta) = [ o= poa@itp)dzd
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We split the solution into real and imaginary parts

u(t,z) = q(t,z) +ip(t, z), q(t,z) = Re(u(t, x)), p(t,z) = Im(u(t, x)).

We obtain
1
(atq + §A:cp + k- VxQ)(t7x) =0,
1
(atp - §A5L‘q + k - pr)(t7x) = -7 (Ul */ 0-2<Z)1/}<t7 %y Z) dZ) (Z’), (37)

(S — 8.) (1.2, 2) = ~210()o *alt, ).

n

It is convenient to set 1

- -0
7T 262 t’l;[)7

in order to rewrite the wave equation as a first order system. We obtain

q q
p p
0 =L 38
T T
where L, is the operator defined by
1
—=Aup—k-Vuq
q ] 2
p —Azq—k‘-Vmp—vcn*(/ cmbdZ>
Lk ’l/} > 2 n
—2¢2T

T

1
—§Az¢ + y0201 x q

For the next step, we proceed via Fourier analysis as before. We expand ¢, p, ¥, m and o1 by means
of their Fourier series:

Gt ,2) = D Yt 2)e™T, Pt 2) = ﬁ /Td D(t, 2, 2)e "™ g

mezZd

j 1 .
W(ty x7 Z) = Z 7TTI’L(ty Z)elm-fE7 7TTI’L(ty Z) = W /Td ﬂ'(t7 x7 Z)eflmx dx.

mezZd

Moreover, recall that o; being real and radially symmetric, [(19)| holds and, by definition, <01>Td =
(27’[)d0' 1,0-
As a consequence, since the Fourier modes are uncoupled, the Fourier coefficients

(Qm(t), Pn(t), Ym(t, 2), mm(t, 2))

satisfy
Qm Qm
P, P,
0 Tl =Lgm | " 39
o e (39
Tm Tm
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where Ly, ,,, stands for the operator defined by

2
m
—ik - mQ.y, + — Py,
Qm 2 “ 2
L, Py, _ —7Qm — ik -mP,, — 7(27{)d01,m / o9(2)y dz
T —2¢27 Rn
T, m

1
7(210)%0(2) 01, Q. — 38:0m
Like for the Hartree equation, the behavior of the mode m = 0 can be analysed explicitly.

Lemma 4.1 (The mode m = 0) For any k € Z%, the kernel of Lio s spanned by (0,1,0,0).
Moreover, equation |(39)| for m = 0 admits solutions which grow linearly with time.

Proof. Let (Qo, Py, v, m0) € Ker(Lg,). It means that

Y@y, / oa(2)o(2) dz = 0,

n

m = 0,
Aty = 27(2m) 02 (2)01,0Qo,
which yields 1o(z) = —27{o1)3sQol'(z) with I'(z) = (=A)"o3(z) so that
_2’}’2<0’1>q2rd"<5Q0 =0.

It implies that Q¢ = 0, ¥g = 0 while Fy is left undetermined.
For m = 0, the first equation in |(39)| tells us that Qo(t) = Qo(0) € C is constant. Next, we get
dpo = —2c%my which leads to

Cibo — *Asthy = —03(2) 29¢*(01)14Q0(0) (40)
—au

The solution of [(40)] with initial condition (1o (2), mo(2) = —50¥(0, 2)) € HY(R") x L2(R™) satisfies

N N . t .
Bolt, €) = o(0, €) cos(cle]t) — 2c2%o<s>% - /0 %32(5)01 as

where (¢, &) and 7g(t, €) are the Fourier transforms of z — t(t,z) and z — m(t, z) respectively.
Finally, integrating
8tP0 = —7<01>Td/ 02(2)¢0(Z) dz
—onr—JR"
:=C>

we obtain

_ ~ D sin(c|¢]t) d€ 2 A ena 1 —cos(clé|t) d€
Po(t) = Po(0) + Co /R” 02(5)¢0(075)W 2 2¢7Cy - 72(&)70(0,§) 2P Tk

t s
- C1C2/ / pe(T)drds
0 Jo

pelr) = [ 1oa(O P

where

(clg]r) dg
cél - (2mm
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This kernel already appears in the analysis performed in [I1} 23]. The contribution involving the
initial data of the vibrational field can be uniformly bounded by

(271r)" (/Rd %\(;)2'2 >1/2{</ [$0(0,6)? d§>1/2+402 (/Rd |7T?;g\)g|£2)| d§>1/2}.

Next, as a consequence of [(H2) - )} it turns out that p. is compactly supported, with fooo pe(T)dT = %5,
see [11, Lemma 14] and [23, Section 2.4]. It follows that

//pc des—/pc( )(/ ds> dTZ/Ot(t—T)pC(T)th:OOtCz /OmTpC(T)dT,

which concludes the proof. [ |

When k = 0, basic estimates based on the energy conservation allow us to justify the stability
of the solutions with zero mean. However, in contrast to what has been established for the Hartree
system, this analysis does not extend to any mode k # 0, since the system is not Galilean invariant.

Theorem 4.2 (Linearized stability for the Schrodinger-Wave system when k =0) Letk =
0. Suppose@ and let (u, 1, ) be the solution of associated to an initial data u™* e Hl(Td), it ¢
L2(T4; HY(R™)), wlnit e L2 (T4 x R") such that [z, u™"dz = 0. Then, there exists a constant C' > 0
such that sup;sq |u(t, )| g < C.

Proof. Again, we use the energetic properties of the linearized equation |(36), We have already
remarked that [, u(t,z)dz = 0 for any ¢t > 0 when [, u™t dz = 0. We start by computing

d 1 2 1 |at¢|2
E{Q/wam d$+§/1rd><Rn< + VL )dzdx

- PA,(u —Tu)dr — 7/ Orpogoy * (u + u) dz de.
2 Jra TdxRP
Next, we get
i / O(u+u)de = / Oppogoy * (u + 1) dzdx
dt Td Td xR"

~|—1/ @Am(u—ﬂ)dx—/ Ok - Vy(u+ w) de.
2 T Td

We get rid of the last term by assuming &k = 0 and we arrive in this case at

d 1 ) 1 |atw|2 / = _
dt{ / |V ul dx+2/TdXRn< 2 + V.| )dzdx—i—’y Td@(u—i—u)dx =0.
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We estimate the coupling term as follows

/ P(u+u)de / o2 (2)Y(t, x, 2)o1 * (u + 1) (t, z) dzde
Td TdxR™

9 1/2
02( )(t, x,z)dz‘ da:)

< lor  (u+ )2 x (

4e 2 1/2
<lorlslusalax ([ \/n@ t:co(f)n )

d
<Aorlloliex ([ | [ 286l 2.0l

5\ 1/2
)" d“)

1/2 R d 1/2
<oloulurtules x ([ P9 a) ( [ 1600200 5 00

1/2
<2vAlalplap ([, Vot OF dds) = 2vElorlnfulel 90l

xR™
1
< ng?X)ll%z + 26701 [ ful .
By using the Poincaré-Wirtinger inequality ||u/ 2 < [|[Vzu| 2, we deduce that

1 E
—/ Vou(t, 2)[2 dz < 0
2 Td

1 — 49?07,
where Fy depends on the energy of the initial state. [ |

While it is natural to start with the linearized operator L; in it turns out that this
formulation is not well-adapted to study the spectral stability issue. The difficulties relies on the
fact that the wave part of the system induces an essential spectrum, reminiscent to the fact that
Oess(—A,) = [0,00). For instance, this is even an obstacle to set up a perturbation argument from
the Hartree equation, in the spirit of [I7]. We shall introduce later on a more adapted formulation
of the linearized equation, which will allow us to overcome these difficulties (and also to go beyond
a mere perturbation analysis).

4.2 Orbital stability for the Schrodinger-Wave system when k£ = 0

In this subsection, we wish to establish the orbital stability of the plane wave solution to |(32)]
obtained in Section 2.1] namely

uw(t7$) = ei‘”tl(m), \If*(t,ﬂ;‘ Z = _/7F <O-1>Td7 H*(t,l‘,Z) =0

with k € Z? and w € R that satisfy the dispersion relation[(12)]and T'(z) = (—A)~'o9(z). The system
- being invariant under multiplications of u by a phase factor, we define the corresponding orbit
through (1 <01>Td’

01 = {(e"”, =T (2){01 )74, 0), 0 € R}.

As before, orbital stability intuitively means that the solutions of |(32)| associated to initial data
close enough to (1(x), —7F(z)<01>Td, 0) remain at a close distance to the set 0.
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Let us introduce, for any k € Z¢ and w € R satisfying the dispersion relation [(12)] the set

Sy ={ (w0, 10) € H(T%.C) x LA(T% H(R™)) x LA(T, L(R™), F(u) = F(1) = <2;‘)d},

and the functional
Lok (u, V1) = How (u, U, 11) + wF(u), (41)

intended to serve as a Lyapounov functional, where %5y is the constant of motion defined in|(33)|
For further purposes, we simply denote .Z, = %, 0. Note that

2
Lo k(u, W 1) = Hew (u, U, 1) + l/ k- Vu ﬂdx~|—<w + k—)F(u)
’ 21 Td 2
d R
= D kiGy(u)
j=1

with Hgw defined in and G;(u) defined in Thanks to the dispersion relation , only the
second term of this expression depends on k. Unfortunately, as pointed out before, the quantities
Gj(u) are not constants of the motion so that the dependence on & of the Lyapounov functional
cannot be disregarded, in contrast to what we did for the Hartree system in

Next, as in subsection 3.2] we need to evaluate the first and second order variations of .Z, j.
We compute

Otu,w,myHsw (u, ¥,1I)(v, ¢, 7)

= Re <% /Td(—Au)E dz + ’y/Td <//deRn o1(z —y)oa(2)¥(t,y, z)dz dy) u(z)v(z) da:)
3 ([ o= ootz dzay ) o)y
n %//dew (4c2n T (—AL) ¢dz) dz

and

Fuw iy Hsw (u, U, 1) ((v,6,7), (v, ¢/, 7))

_ Re{%/}rd(—Av)Fdx
w1 [ ([ e = 1o 0607 + 60,0 200) dzdy ) ) o)
. /Td </[rden o1 (x — )2 () U(t, y, ) d dy> (@) (7) dx)}
= //T (w7 s (c00) o az) e

Besides, we have

OuF (u)(v) = Re (/Td uﬁdx) , 2F (u)(v,v") = Re </Td v?dm) ,
0uGj(u)(v) = Im (fra Oz,uvdz) , F2G(u)(v,v') = Im (fpa Oz, 0"V dx) .
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Accordingly, we are led to
a(u,\Il,l'[)D%u.J,k(]-7 _/7<0-1>Tdr7 0)(’07 b, T)

= Re (—72<01>q2rd/1/Tdﬁdx + <w +

0

2

%) /ngdx + %<01>Td //deRn (o2 + A.T) ¢dz dx)

thanks to the dispersion relation|(12)and the definition of I". Similarly, the second order derivative
casts as

0w Lok (1, =701 )7L, 0) (v, 6,7), (v, ¢, 7))
= Re (;/ (—Av)vdr + ; //deRn <4c27'2 + (=A%) (bdz) dz
+ 27/Td <//deRn (x —y)oa(2)é(t,y, z) dz dy> v(z) dz
015 /T d ( //T ol Pr(ErE) dy> ()o@ da + (w + %2) /T ()o@ d:z:)
+Im <Zd: k‘j/ 6’Ijv6dx> .
j=1 T

The forth and fifth integrals combine as

k? —
/ (w + = - 72/£<01>72Fd)v(x)v(:17) dz =0
Td 2
which cancels out by virtue of the dispersion relation |(12), Hence we get

a(u\IlH)"%UJk 1 /7<0-1>Tdr 0 ((U qba (U ¢a ))

_Re< /Td( Av)jpdz + //wa (4277 + (~0.0) 9d2) da
+ 27/Td (//dew o1(z —y)oa(2)(t,y, )dzdy> v(z)de —i Tdk:-Vv Eda:).

Remark 4.3 Note that the following continuity estimate holds: for any (v, ¢,7) € H'(T% C) x
L*(T% HY(R™)) x L*(T? x R™),

—_

6(2%\1/,1'[)3(0,]@(17 _’7<O-1>Tdrv 0) ((Uv ¢a 7—)7 (U7 Qb, T)) a5 ”VUHL2 + 262 HTHLZ +3 ”¢”L2H1

[\

1
+ 296 2ol ol |61 1y gy + KV Ol L2 0] z2 < 5 ((1 + [kDIvlFn + 47|72 + Clél

max(4c2, 1 + |k|, C)
< L9, 6,712

L2H1)

with C =1+ 4v*k| o132,
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The functional £, is conserved by the solutions of |(32); however the difficulty relies on
justifying its coercivity. We are only able to answer positively in the specific case & = 0. Hence,
the main result of this subsection restricts to this situation.

Theorem 4.4 (Orbital stability for the Schrodinger-Wave system) Let k = 0 and w € R

such that the dz'spersion relation |(12)| is satisfied. Suppose @ holds. Then the plane wave solution
(e“'1(x <O'>Td, is orbitally stable, i.e.

Ve >0, 30 >0, V("™ o™t 7Y e gY(T% C) x L2(T% HYR™)) x L2(T¢ x R™),

[0 = 11 + "™ + 4T ) lpaim + |7 e <6 = sup dist((v(t), ¢(t),7(1)), O1) <e (42)
where diSt((U7¢a7—)7 ﬁl) = inf@e[O,Qﬂ[ ”U - eie]'”Hl + H¢ + 7F<O->Td ”L%f}; + ”T”L2 and (t,x,z) =
(v(t,x), d(t,x, 2), 7(t,x, 2)) stands for the solution of[(32)] with Cauchy data (v™t, @it 7nit).

Using the same argument as in the case of Theorem [3.5, we can reduce the proof of Theorem

X4 to the following coercivity estimate on the Lyapounov functional (and this is where we use that
£,k is a conserved quantity).

Lemma 4.5 Let k€ Z% and w € R such that the dispersion relation [(12)| is satisfied. Suppose that
there exist n > 0 and ¢ > 0 such that ¥V (w,v¥, x) € S,

diSt((wv ¢7 X)v ﬁl) <n= gw,k((wv ¢7 X)) - fu&k((l($)7 —’YF(Z)<O'>Td, 0)) = CdiSt((w7 7/)7 X)7 61)2'
(43)

Then the the plane wave solution (e™'1(x <O‘>Td, is orbitally stable.

As we have seen before, since 0y y, 1)L,k ((1, —T'(2 <0>Td, = 0, the coercivity estimate
(43)| can be obtained from an estimate on the blhnear form

a%u,w,ﬂ)gwk((l? _’Y<01>Tdr7 O))((U, b, T)7 (U, b, T))
for any (u,¢,7) € T1.%, N (T101)*. Here the tangent set to .7, is given by
", = {u e H'(T%C), Re </ u(x)1(x) dx) = 0} x L3(T% HY(R™)) x L*(T? x R™).
Td

This set is the orthogonal to (1,0,0) with respect to the inner product defined in|(35)l The tangent
set to 07 (which is the orbit generated by the phase multiplications of 1) is

Ty 01 = spang{(i1,0,0)}

so that

(TyO1)*F = {u e H (T4 C),Re <1 /Td w(z)1(x) dx) — o} x L2(T% H'(R™)) x L*(T% x R™).
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Lemma 4.6 Let k€ Z% and w € R such that the dispersion relation [(12)| is satisfied. Suppose that
there exists ¢ > 0

a?u,z/z,l‘[)"% _,-YI‘ <U>Td’ U b, T)7 (U, b, T)) (HuHHl + H(ZsHLzHl + HTH%Q) = 5“('&, b, T)H2
(44)
for any (u,¢,7) € T1.%1 n (T1O1)*. Then there exist n > 0 and ¢ > 0 such that[(43)] is satisfied.

Proof. Let (w,%,x) € 4, such that dist((w,v,x),01) < n with n > 0 small enough. Hence,
infpeo,om) [w — ¢1| < n and, by means of an implicit function theorem argument (see [4 Section 9,

Lemma 8]), we obtain that there exists 6 € [0,27n) and v € {u € H'(T%C),Re (i [q u(z) dz) = 0}
such that ' ‘
ePw =1+, inf |Jw—e?1| < |v| <C inf |w—e?1]
6<[0,2m) 0e[0,2m)

for some positive constant C. Denote by ¢(z,z) = ¢(x,2) +7T(2){01 )74 Then (v,¢,x) € (T1 O1)*

and |(v, ¢, x)| <
Next, we use the fact that H'(T%) = {u € H'(T%C),Re (de u(z)dz) = 0} @spang {1} to write

(v, 0,x) = (v1,0,Xx) + (v2,0,0) Wlth (v1,¢, )ele m(Tlﬁl) and vy € spang{1}. Moreover,
[0l

|2l < S —
21

and
1
[or] e = Sl
provided |v| 1 < ||1]|z2. As a consequence, if |v| 1 is small enough, using that
6(2%\1171'[)3(0,]6(17 _’7<O-1>Tdrv 0) ((U7 qba T)7 (Ulv ¢/7 7—/)) < CH (Uv ¢a 7—) ” ” (U/7 ¢/, T/) ”7
we obtain
a(2u7\1/7]'[)gw,k(17 _’Y<01>Tdr7 O) ((Ula (ba X)7 <U27 07 0)) < CH (U7 ¢7 X) H Hvlﬁfl < CH (U7 ¢7 X) H37
a(zu,\ll,ﬂ)gwyk(]“? _7<01>Tdr7 O) ((U27 07 0)7 (1)27 07 O)) < CHUHiﬂ < CH (Ua ¢7 X)H4
This leads to
a(2u7\1/,n)$w,k(17 _/7<0-1>Tdr7 0) ((Uv ¢a X)7 (Uv ¢a X))
= 8(2%\1/,1'[)9%0.1,16(17 _/7<0-1>Tdry 0) ((Uh qb’ X)7 (Uh qb’ X)) + O(H (Uv ¢a X)H2)
Finally, let (w, 1, x) € ., such that d((w,, x), O1) < n, we have
gg;,k((’ll),lb,)()) —fw k( <0>Td’ = wk((eww 1/}7 )) _gw,k«l(x)v_7P<Z)<U>Td70))
= a(u N H)fw,k(]-a _/7<0-1>Tdry 0) ((Uv ¢a X)v (Ua ¢a X)) + O(” (’U’ Qb, X)”2)
8(2%\1/,1'[)20.1,16(17 _/7<0-1>Tdry 0) ((Ula ¢7 X)v (Uh qb’ X)) + O(H (Uv ¢a X) H2)
[(v1,6,7)% + o[l (v, &, X)) = =I(v, 6, 7)1 + o(l (v, 6, X)I*)

= %d«wa 1/}7 X)7 ﬁ1)2

where we use 0y, w,m)-Z,k(1, —7<01>Tdf,0) =0 and (vi, ¢, x) € T1.%% N (TLO1)". [ |

WV
= ™

i
2
¢
2
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As before, to prove the orbital stability of the plane solution (e®!1(z <O‘>Td, ) it is
enough to prove [(44)| for any (u, ¢, 7) € T1.%1 n (T1O1)*. Let (u, ¢,7) € lel (T1 01)* and write
u = q+ip with ¢,p € H'(T%R). Then

a(u\IlH)"%UJk 1 /7<0-1>Tdr 0 ((u ¢7 (u b, ))

—Re< /Td( Aw)adz + - //deRn 4c +(~As0) qﬁdz) da
+ 27/Td (//dew o1(x —y)oa(2)d(t, vy, )dzdy) u(z) dz —Z/Tdk -Vu ﬂdx) (45)

can be reinterpreted as a quadratic form acting on the 4-uplet W = (¢, p, ¢, 7). To be specific, it
expresses as the following quadratic form on W,

oW, W) == [ |Vpl2d + 202 // 7 dzdz + / Vgl2dz + // “A.0) ddrd:
Td TdxRn® TdxRn®

-2y /T (//TR o1 (2 — )oa(2)6(t, . 2) d= dyq(x) d:n) + 2/Td gk - Vpda.

The crossed term de gk - Vpdx is an obstacle for proving a coercivity on 2.
For this reason, let us focus on the case k = 0. Since (u, ¢, 7) € T1.%1 N (T101)*, we have

/qu—Oand/pda;—O.
T Td

As a consequence, thanks to the Poincaré-Wirtinger inequality, we deduce, when k = 0

1
2W, W) = Z”p”Hl +2¢ 772 + 5 / Va* dz + //er . —A.¢) ¢drdz
X n

v [ ([ o= woaledote ) dz ) ate) ao (46)

Next, we expand ¢, o1 and ¢(-, z) in Fourier series, i.e.

= Z Qmeim-my ¢($,Z) = Z Qbm(Z)Gim-m and 0'1(33‘) = Z O'17m€im'w,

mezZd mezd mezZd

Note that &1,, = 01,m = 01,—m since o7 is real and radially symmetric. Moreover, de qdz =0
implies qo = 0. Hence,

/Td </1rden o1(z —y)oa(2)d(t, y, z) dz dy)q(;p) dz

—PRe | Y ovntn [ oa(efnlEd:

meZa\{0}

28



which implies

%/er IVq|? dz +%//Ed Rn(—Ang) o dadz
+ 2 /Td <//dew o1(x —y)oa(2)o(t,y,z) dz dy) q(x)dx

2
= (2m)? Z Re <m—q,2n + % /R" |V m|? dz + 2(27r)dfyal7mqm/ 02(2)dm(2) dz) .

meZaN{0} 2 "

Next, we remark that for any m e Z¢,

< 2(27'[)[17‘71,771 |G| VEIV i 12

Re (2(27r)d70'1,QO/ 0'2<Z)¢m(z) dZ)
L9 2d 2 \2 O 2
< 2—5(47 K(270)°07 1) G, + §||V¢mHL2

for any 6 > 0. Finally, for any 6 € (0,1), we get

%/Td |vq\2dx+1//TdXRn(—Az¢) ¢dadz
+2’Y/Td (//dew (z —y)oa(z )cb(t,y,Z)dzdy) q(z)dx

> amt 3 (% teamod,0 ) i+ L) )

mezZd

As a consequence, we obtain the following statement.

Proposition 4.7 Let k = 0 and w € R such that the dispersion relation s satisfied. Suppose
that there exists 6 € (0,1) such that
o2
o1

442k (2m)% m;n ) (48)

for all m € Z4\ {0}. Then, there exists ¢ > 0 such that
a(u U H)gw(la _'Y<0'1>Tdr7 O) ((ua o, 7)7 (u7 o, T)) = 6” (u, o, T)H2 (49)

for any (u,¢,7) € TyS1  (T1O1)".

Proof. If[(48)] holds, then, for any 6 € (4, 1), [(45)(46)}(47)] lead to

1
a(u ¥ 1) ’Y<01>Tdr 0 ((ua ¢7 T)7 (U, ¢7 T)) = ZHpH%ﬂ + 262 HTH%Q

Zu(1,
5—46 1-96
+ —S(QW)d Z m*qh, + 7(2”)d Z IV éml 72
meZ4\{0} meZd

1 6—6, 5 1=90

1 0 .
= 1lolin + 5577 + —5 IValz + —5—olTzm > ell(w, 6, 7))
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where in the last inequality we used the Poincaré-Wirtinger inequality together with the fact that
Jpa qda = 0. [ ]

Finally, Proposition 1.7 together with Lemma and Lemma gives Theorem [4.4] and the
orbital stability of the plane wave solution (e“'1(x), =vI'(2){0 )14,0) in the case k = 0.

Remark 4.8 The coercivity of 6(2u o H)fw(l, —3{01 )4, 0) ((u, ¢, 7), (u, ¢, 7)) on T1.1 0 (Th O1)*
can be recovered from the spectral properties of a convenient unbounded linear operator S. Indeed,
as we have seen before, by decomposing u into real and imaginary part, the quadratic form defined

by |(45)| (with k = 0) can be written as

awwy =g [[ofarsad | itasan (s (G)] ()

with S : H2(T?) x L2(T% HY(R")) < L3(T?) x L3(T% HY(R™)) — L2(TY) x L2(T% HY(R™)) the
unbounded linear operator given by

1
——AzQ+701*/ oopdz
1) 1

§¢+7F01*q

(where we remind the reader that T' = (—=A)"'oy)) and the inner product

q q/ . ’ . / o / " % |£|2d
<<¢> ‘ <¢,>> - /Td aq dH/deRn V.6V, 4 dzde = Ad qq dx+/Td><Rn é(z, €9 (x,€) G

Note that L2(T%) x L2(T% HY(R™)) is an Hilbert space with this inner product since n = 3.
Since

/Td (01 * /n 02¢dz> (z)q'(z) dx = /Td (/deRn o1(z — y)oa(2)9(y, 2) dz dy) ¢ (x)dz

= 2
- [ swamE@e @i = [ 302 0w )@ arkSE
TdxRn Td xR™ &l (2m)"
we can check that S is a self-adjoint operator on L2(T%) x L2(T; HY(R™)). In particular, o(S) < R
and one can easily study the spectrum of S.
More precisely, using Fourier series, we find that if X is an eigenvalue of S then there exists at
least one m € Z% such that for some (¢m,dm) # (0,0) there holds

(m; _ >\> a + (270 / 2(2)om(2)dz =0,

(% — A) dm(2) +v(2m) T (2)01 m@m = 0.

Let A # % Hence, for any m € Z%, q,,, = 0 implies ¢m(2) = 0 for any z € R™. As a consequence,

we may assume G, # 0. This leads to ¢m(z) = —%F(z) and

2
(% - )\> <% - )\> - 72(271)%0%7,”/4 =0.
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By solving this equation, we obtain

2
2

Adm =

so that Ay p, = % for any m € Z¢. Neat, we remark that

b — 3+ 42 emol gr
)\_70 = 5 <0

since 42k (2m) 0 > 0. This eigenvalue corresponds to an eigenfunction (§, ¢) with G € spang{1}.
In particular, de G(xz)dx # 0. Finally, z’f holds,

() e

A = >

2 5

2d 0%

for any m e 24\ {0}.
We conclude that

1
——Ayq + oy * oopdz /1 1-6
B (D1(4)- < 2 J. | <§>> > min (5,252 ) (ol + 10l )

§¢+’YP01*Q

for all (q,¢) € {q € L*(T%), [;aqdz = 0} x L2(T4; HY(R™)). This, together with the Poincaré-
Wirtinger inequality, proves the coercivity of 0(2%\1,71-[),,2”0,(1,—’y<01>TdF,O)((u, o, 7), (u, qS,T)) on
lel (@) (Tlﬁl)J‘.

5 Discussion about the case k£ # 0

5.1 A new symplectic form of the linearized Schrodinger-Wave
system

We go back to the linearized problem. The viewpoint presented in Section 4.1l looks quite natural;
however, it misses some structural properties of the problem. In order to work in a unified functional
framework, we find convenient to change the wave unknown 4, which is naturally valued in H? (R™),
into (—A)~Y2¢, where the new unknown ¢ now lies in L?(R"). The last component of the unknown
vector X becomes m = —M. (The change of unknowns allows us to work in a convenient
unified functional framework, based on L? spaces; the constants are chosen in order to make
symmetry properties appear, see Lemma [5.1] and the continuity estimate after below.) Hence,
the linearized problem is rephrased as
0 X =LX,
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where X stands for the 4-uplet (¢, p, ¢, 7) and
1
_EAgcp —k-Vauq

1 _
LX = §Aacq —k- VD — Yol * </ (_A) 1/2J2¢dz> . (50)
—c(=A)2r
c(—A)2¢ + 2cy0901 *
The operator L is seen as an operator on the Hilbert space
¥ = L3(T9) x L3(T%) x L*(T% L3(R"™)) x L*(T% L3(R")),
with domain D(L) = H?(T¢)x H?(T%) x L?(T%; H'(R™)) x L?>(T%; H'(R™)). The considered functional
framework is now made of complex valued functions, which makes the space ¥ a complex Hilbert
space when endowed with the norm ||-||4 based on the L? inner product on each component. We are
thus going to study the spectral properties of L on the space ¥. We can start with the following

basic information, which has the consequence that the spectral stability amounts to justify that
o(L) ciR.

Lemma 5.1 Let (\, X) be an eigenpair of L. LetY : (z,z) — (¢(—x), —p(—x), ¢(—z, 2), —7(—x, 2)).
Then, (A, X), (=\,Y) and (=\,Y) are equally eigenpairs of L.

Proof. Since L has real coefficients, LX = AX implies LX = AX. Next, we check that

1
gAxp + k-Vzq

LY (z,2) = %qu —k-Vaip—yoy * (/n(—A)l/zag(b dz’) (—2, 2)
c(—A)Y2r
c(—A)V2¢ + 2cy0901 % g
—(é(—ﬂ% z)
p(—z, 2
= A b=, i) = —\Y (z,2).
(—x, 2)

Next, we make a new symplectic structure appear. To this end, let us introduce the blockwise

operator
(A0 (0 1 B 0 —(=A)12
/_<0 H2)’ H={110) S (—A)/2 0 ‘
We are thus led to
L= 72
with

—%qu +k-Vip+yor* </ (—A)*l/zagqﬁ dz)
1

—~Ap—k-V,
B p q

n

ZX =

% +y(—=A) 2001 % q

2
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For further purposes, we also set

~ (A 0 . 0 —1 | 0 (—A)~1/2
= - = = — . 2
7 < o ) 7o) ST e aye 0 (52)
The operator / has 0 in its essential spectrum; nevertheless / plays the role of its inverse since
IS == 77

Lemma 5.2 The operator £ is an unbounded self adjoint operator on ¥ with domain D(L) =
H%(T4) x H2(T?) x L?(T4; L2(R™)) x L?(T%; L%(R™)), and the operator ¢ is skew-symmetric.

Proof. The space ¥ is endowed with the standard L? inner product
(X‘X/)—/ (QE‘FI)Z?)CLT-F// (¢¢’ + 77’) dx dz.
Td Td xR

We get
1 — 1 -
N — _ - . 7 _Z — k- 7
(£X|X") = /Td{< 5800+ k pr)q +( 580 — k VmQ>p}d$
_|_f7/ o1 * </ ( A)_1/202¢d2>?d$
T
// <z$<z5’ + ) dzdz
deR”
—|—fy// — 71/20201*q)¢/dxdz
deR"
1 _ _
j— —_— —_— / —_— . /
A N R AL
—|—7// 1/20201 * ¢’ dzdx
TdXR”
4+ // qﬁqﬁ’ + ﬂ?) dxdz
2 TdxR™
+fy/ qoy * </ (—A)1/202$d2> dz
Td n
= (X]£X),
and

(/XIX) = // dx+2c//]rdxw (-( ARG 4 (~A) 267 da d
= // qr’ — pq’ dx—2c//TdXRn —A)2l 4 (= )1/2¢’) dzdz

= —(xlrx)

As said above, justifying the spectral stability for the Schrodinger-Wave equation reduces to
verify that the spectrum o(L) is purely imaginary. However, the coupling with the wave equation
induces delicate subtleties and a direct approach is not obvious. Instead, based on the expression
L = Z.2, we can take advantage of stronger structural properties. In particular, the functional
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framework adopted here allows us to overcome the difficulties related to the essential spectrum
induced by the wave equation, which ranges over all the imaginary axis. This approach is strongly
inspired by the methods introduced by D. Pelinovsky and M. Chugunova [9, 46|, [47]. The workplan
can be summarized as follows. It can be shown that the eigenproblem LX = AX for L is equivalent
to a generalized eigenvalue problem AW = oKW, with a = —\2, see Proposition (.41 and
below, where the auxiliary operators A and K depend on _#,.#. Then, we need to identify negative
eigenvalues and complex but non real eigenvalues of the generalized eigenproblem. To this end, we
appeal to a counting statement due to [9].

5.2 Spectral properties of the operator ¥
The stability analysis relies on the spectral properties of .Z, collected in the following claim.

Proposition 5.3 Let .Z the linear operator defined by [(51)] on D(£) < ¥. Suppose[(9)] Then,
the following assertions hold:

1. 0ess(Z) = {1/2},
2. £ has a finite number of negative eigenvalues, with eigenfunctions in D(£), given by

(&) = 1+#{mezi\ {0}, m* —4(k-m)? <0 and o1, = 0}
+#{m e ZI\ {0}, m* — 4(k-m)? <0 and o1, # 0}.

In particular, n(£) = 1 when k = 0. The eigenspaces associated to the negative eigenvalues
are all finite-dimensional.

3. With Xo = (0,1,0,0), we have spang{Xo} < Ker(Z). Moreover, given k € Z4~\{0}, let H#; =
{mez4\ {0}, m*—4(k-m)%? =0 and 01,, = 0}. Then, we get dim(Ker(L)) = 1 + #.%;.

We remind the reader that oy is assumed radially symmetric, see |[(H1)| Consequently oy ., =
01,—m = 01.+m and both #.#; and #{m € 24\ {0}, m* —4(k-m)? < 0 and oy ,, # 0} are necessarily
even.

Proof. Since .Z is self-adjoint, 0(.Z) < R. Let us study the eigenproblem for .Z: \X = ZX
means

n

1
)‘q:_iAmQ“‘k'vmp‘l"yo-l*(/

Ap = _%Amp —k-V,.q,

(—A)_1/202¢ dz> ,

1 -

Ao = 56 +1(=2) o1 % g,
1

L)\7T =5

Clearly A = % is an eigenvalue with eigenfunctions of the form (0,0,0,7), 7 € L?(T¢ x R?). As

a consequence, dim(Ker(Z — 1)) is not finite and § € 0ess(-Z).
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We turn to the case A # %, where the last equation imposes m = 0. Using Fourier series, we

obtain
2

>\Qm = mTQm + ik - mpm + ’7(27T)d0-1,m </ (_A)_1/20-2¢m dZ) 5

m2

ADm = 7pm — ik - mgp, (54)

1 _
A = §¢m + V(ZN)d(_A) 1/20'20'17711‘.7m-
where ¢y, pm € C are the Fourier coefficients of ¢, p € L?(T¢) while ¢,,(z) = ﬁ Jra O(, z)e” T dg

for all z € R® and ¢ € L?(T¢; L2(R™)).
We split the discussion into several cases.

Case m = 0. For m = 0, the equations degenerate to
Mo = r@ora ([ (~8)Vouonds )
Apo = 0, '
(r- %)qﬁo = (2 (= A) 20501 0q0.
Combining the first and the third equation yields
A<A - %)qo = 7*(21)** 07 yrqo,
still with k = [ (—A)logoy dz. It permits us to identify the following eigenvalues:
o A\ =0 is an eigenvalue associated to the eigenfunction (0, 1,0,0),

» since 019 = ﬁ de ordx # 0, and (—A)*1/202 # 0, A = 1/2 is an eigenvalue associated
to eigenfunctions (0,0, ¢,0), for any function z — ¢(z) orthogonal to (—A)~'2gy. We find
another infinite dimensional eigenspace associated to the eigenvalue A = %

e the roots of

1 A
)\</\ - 5) - 72(271)%0%70/{ =2 - 5 72(271)%0%70/4 =0,

provide two additional eigenvalues

1/2 + \/ 1/4 + 442 (21202 o

>‘i = 2 )
d _AV-1/2
associated to the eigenfunctions (1,0, 1(2m) U/\lf(_l/Az) 72 0), respectively.

To sum up, the Fourier mode m = 0 gives rise to two positive eigenvalues (1/2 and A\;), one

negative eigenvalue (A_) and the eigenvalue 0, the last two being both one-dimensional. It tells us
that

dim(Ker(.Z)) > 1 and n(.Z) > 1.
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Case m # 0 with oy ,, = 0. In this case, the m-mode equations |(54)| for the particle and the
wave are uncoupled

A= 1/2)om =0, (M —A) <g:> o

where we have introduced the 2 x 2 matrix

M,, = < m’/2 ik:'”1> . (55)

—ik-m  m?/2
We identify the following eigenvalues:
¢ )\ = 1/2is an eigenvalue associated to the eigenfunction (0,0, e *¢(z),0), for any ¢ € L?(R").
Once again, this tells us that % € Oess(Z).

e the eigenvalues Ay = m# € R of the 2 x 2 matrix M,,, associated to the eigenfunctions
(" Fie"™ 7 0,0), respectively. Since tr(M,,) > 0, at most only one of these eigenvalues
can be negative, which occurs when det(M,,) = %4 —(k-m)? <0.

Given k € Z%, we conclude this case by asserting
n(ZL) =1+ #{mez\ {0}, m* —4(k-m)? <0, om =0},

and
dim(Ker(.2)) = 1+ #{m e Z*\ {0}, m* = +2k -m, oy, = 0}.

Case m # 0 with oy, # 0. Again, we distinguish several subcases.
o if A = 3, the third equation on [(54)] imposes g,,, = 0, and we are led to

1—m?
2

n

pm =0, ik -mpm + 7(27[)d01,m </ (—A)_1/202<;5m dz> =0.

Thus, A = % is an eigenvalue associated to the eigenfunctions:
(0,0,€™%¢(2),0), for any function z — ¢(z) orthogonal to (—A)fl/zag,
(we recover the same eigenfunctions as for the case m = 0),
(0,e™.0,0) if k-m =0, m? =1,
and

_7(27-[)[1’%0-17”7« mer ( A\—1/2 imex : 2 _
<O, e © ,(=A)  oy(2)e ,0) iftk-m#0, m*=1.
2

o if A =2 # 1 [(54)] becomes

0 =ik -mp, + ’y(27r)d017m </
0 = —ik - mqp,

m? —1 _
9 qu = /7(27T)d(_A) 1/20-20'1,QO-

There is no non-trivial solution when k- m # 0. Otherwise, we see that A\ = m?/2 is an
eigenvalue associated to the eigenfunctions: (0,e"* 0,0)

n

(—A) o3¢y, dz) :
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o if X ¢ {3, mTz}, we set g = A\ — mTZ We see that a non trivial solution of |(54)| exists if its
component ¢, does not vanish. We combine the equations in to obtain

P(:“’)Qm =0
where P is the third order polynomial
P(p) = p® + bp® + cu + d,

2_1 2—1
b=l o0 o (ke Mot <0, d— (ke

Observe that d = —(k-m)?b and (k-m)? < |c| < (k-m)? + 1. We thus need to examine the
roots of this polynomial. To this end, we compute the discriminant

D = 18bed — 4b3d + b>? — 4% — 2742,

<0.

A tedious, but elementary, computation allows us to reorganize terms as follows
D = 4(k-m)*((k-m)?—?)% + 0202,,v(20(k - m)* + yo2,,)
+4(k - m)?of 2k - m)? +yoi ) + 4ot v ((k-m)t + 2(k - m)?of Ly + of ),

where we have set y = v2x(2m)2?. Since 01, # 0, we thus have D > 0 and P has 3 distinct
real roots, p1 < pg < ps. In order to bring further information about the location of the roots,
we observe that lim, 1o P(n) = +00 while P(0) = d < 0 and P'(0) = ¢ < 0. Moreover,

studying the zeroes of P'(i) = 3u? + 2by + ¢, we see that jip., = ——Y2=3¢ ngz_?’c < 0 is a local
maximum and gy, = —bbi=se 31’2_30 > 0 is a local minimum. Moreover, P"(u) = 6u + 2b,

showing that P is convex on the domain (—(m? —1)/6, +0), concave on (—c0, —(m? —1)/6).
A typical shape of the polynomial P is depicted in Figure [l From this discussion, we infer

p1 < Pmax < 2 < 0 < lmin < @3-

50

40+

30

P(u)

20 -

30 -

-40

Figure 1: Typical graph for p+— P(u), with its roots p; < po < pg and local extrema fiyay,
Hmin

Coming back to the issue of counting the negative eigenvalues of .Z, we are thus wondering

37



whether or not A\; = pu; + m?/2 is negative. We already know that g3 > pmin > 0, hence
ps > —m?/2 and we have at most 2 negative eigenvalues for each Fourier mode m # 0 such
that o1, # 0. To decide how many negative eigenvalues should be counted, we look at the
sign of P(—m?/2) (see Fig. [I)):

i) if P(—m?/2) > 0 then py < —m?/2 < po,

ii) if P(—m?/2) = 0 then either —m?/2 < pimax, in which case p3 = —m?/2 < pg, or
—m?2/2 > jimax, in which case po = —m?/2 > py,

iii) if P(—m?/2) < 0 then either —m?/2 < fimax, in which case —m?/2 < p; < g, or
—m?2/2 > fimax, in which case p < po < —m?/2.

However, we remark that

mb  mi(m?—1 m? m? —1
Pl = T D T e yod) T )
B _m_4<1_4'YO'%’m> (l{:m)2 __1( 4_4(k )2_4 _ ) (56)
- ] m2 2 - ] m m m Yo-l,m 9

0.2
where, by virtue of@ m#0and oy, #0, 1 > 4\{—"1’2E > 0.
This can be combined together with

4 2(m2 _ 1 4 2
T L R L
4 2 20,2 2,, .2 m?
(m* —4(k - m)® — 4m*yo1 ,,) + m*yoi,, + 5

2
- Yal,m

]

2
— —2P(—m?/2) + mT + (m? = 1yo,, > —2P(-m2/2).

Finally,
P"(—m?/2) = —2m? — 1 < 0.

As a consequence, P(—m?/2) < 0 implies P'(—m?/2) > 0, while P”(—m?/2) < 0. This shows
that —m?/2 < p1. Therefore, in case iii), the only remaining possibility is the situation where
P(—m?/2) < 0 with —m?/2 < p1 < pa. As a conclusion, if P(—m?/2) < 0, all eigenvalues )\,
are positive.

Next, we claim that case ii) cannot occur. Indeed, P(—m?/2) = 0 if and only if
(m? — 2k - m)(m? + 2k -m) = 4m2yaim.

In particular, the term on the left hand side of this equality has to be positive. This is
possible if and only if both factors, which belong to Z, are positive. In this case, according
to the sign of k - m, one of them is > m? so that

m? < 4m2ya%m.

This contradicts the smallness condition [[9)] Note that P(—m?/2) # 0 implies \; # 0, i.e.
m-modes with m # 0 and oy ,, # 0 cannot generate elements of Ker(.Z).

As a conclusion, negative eigenvalues only come from case i) and for each m-mode such that
P(—m?/2) > 0 we have exactly one negative eigenvalue. Going back to[(56)} in this case, we
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have

(m* —4(k-m)?) = (m? — 2k -m)(m? + 2k -m) < m24ya%7m < m?

owing to@ This excludes the possibility that m*—4(k-m)? > 0, since we noticed above that
whenever this term is positive, it is > m?. Hence, case i) holds if and only if m*—4(k-m)? < 0.

This ends the counting of the negative eigenvalues of . in Proposition (33l Note that the
associated eigenspaces are spanned by

. ik . . my (2704 (—AL)1/2
<ezm~:c7 __Ww-m ezm-ac7 eim-a o1, 7( 7-[) ( ) 02 : 0) ]
X —m22 A—1/2

The discussion has permitted us to find the elements of Ker(.#). To be specific, the equation
ZX =0 yields 7 = 0 and the following relations for the Fourier coefficients

2
D p — ik - gy = 0,
2
%ﬂ + (27t)d7(—A)_1/2020’17mqm =0,
m2
— m + ik - mp, + (2n)d’yal,m /(—A)_1/202¢m dz = 0.

We have seen that the mode m = 0 gives rise the eigenspace spanned by (0,1,0,0). For m # 0, ele-
ments of Ker(.#) can be obtained only in the case o1 ,, = 0. Moreover, the condition m? = +2k-m
has to be fulfilled. In such a case, (e%, Fie™ %, 0,0) € Ker(.Z).

Finally, it remains to prove that oess(-Z) = {%} We have already noticed that % lies in oess(-Z).
Suppose, by contradiction, that there exists A € gess(-Z) with A # % Hence, by Weyl’s criterion
[46] Theorem B.14], there exists a sequence (X, )yen with X, = (qu, py, ¢v, 7)) € D(Z) such that,
as v goes to oo,

(& - X)X, —0, [|X,]=1and X, — 0 weakly in 7. (57)
Since A # 5 and A # 2¢2, from [(53)] and we have
1 ~1
7o) L2(re;L2(mny) — 0 and ¢, = — (5 - )\> Y(=A) 20301 % gy + 2y

with e, € L?(T%; L?*(R™)) such that lim, lev | 2(ra;L2mny) = 0. This leads to

1 VK </ -1/2 ) ;
—=Apqy — MA@y + k- Vup, — X q, + o1 * —A)V209e, dz 0,
H 5800, = Aq Y e Ol (=A) oy Ly V%

1
H—iAxpu — Ay — k- Vg D ow 0

L2(T)

Using the fact that the sequence ((qy,py,€y))ven is bounded in L2(T?) x L?(T?) x L%(T%; L?(R")),
we deduce that (q,,p,)ven is bounded in H?(T%) x H?(T?). Indeed, reasoning on Fourier series,
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this amounts to estimate
Z |m‘4(‘qmm|2 + |pl/,m|2)

meZa
<2 Z (|m2qV,m + 2ik - mp,,7m\2 + \mzp,,,m — 2k - mq,,,m|2)
meZa

+8 Z <|k : mpu,m‘2 + ‘k : mQV,mF)
meZd
< 2H — Azqy + 2k - prVHLz(Td) + 2H — Azpy — 2k - V:(:QVHL2(Td)
4
+g|k‘4 Z (|qV7m‘2 + ‘pV,m‘z) + 49 Z ‘m|4<|QV7m‘2 + ‘pv7m‘2)-
mezZd mezZd

Choosing 0 < § < 1/4 and using the already known estimates, we conclude that |Azqy |2, +
1Azpu |22 = D nezd Im[* (|gvm|? + |pyvm|?) is bounded, uniformly with respect to v. Hence, because
of the compact Sobolev embedding of H?(T?) into L?(T%), we have that (g, p, )ven has a (strongly)
convergent subsequence in L?(T%) x L?(T?). As a consequence, the sequence (X, ),en has a conver-
gent subsequence in ¥, which contradicts |(57)| [ |

A consequence of Proposition [0.3]is that 0 is an isolated eigenvalue of .. Since the restriction
of .Z to the subspace (Ker(.Z))* is, by definition, injective, it makes sense to define on it its inverse
71, with domain Ran(.Z) c (Ker(.Z))* < #. In fact, 0 being an isolated eigenvalue, Ran(.%) is
closed and coincides with (Ker(.#))*, [46, Section B.4]. This can be shown by means of spectral
measures. Given X € (Ker(.Z))", the support of the associated spectral measure duy does not
meet the interval (—e, +¢) for € > 0 small enough, independent of X. Accordingly, we get

+00
l2X|? = / A2 dux (V) = /A| N dux(N) = X2,
—0o0 =€

In particular, the Fredholm alternative applies: for any Y € (Ker(,i”))L, there exists a unique
X e (Ker(£))* such that X =Y. We will denote X = .2~ 'Y.
For further purposes, let us set

Xo =1(0,1,0,0) € Ker(Z) and Yy = 7 X, = (1,0,0,0).
Note that Yy € (Ker(.Z))*, so that it makes sense to consider the equation
20Uy =Y.

We find
T =0, ¢m = =272 (=A) 20901 mm, M>pm = 2ik - MGy,

and
m2qy, + 2ik - mpm, + 27(27r)d01,m /(—A)1/20'2¢m dz = 00 ,m.

It yields, for m # 0, (%4 — (k-m)? — Y|01,m|2m2) gm = 0 and ¢p = . Therefore, we

can set

1
272(2m)2d o1 ,0[%K
1

U= 2Ly = —
0 0 2’72(27'[)2d|0'170|2li

(1,0, —2v(2m)4(—=A) Y2090, ,0),
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solution of ZUy = Y; such that Uy € (Ker(.Z))*. We note that

1
Yy) = — .
(Lo, Yo) 292 (2m) oy o[k <0 58)

5.3 Reformulation of the eigenvalue problem, and counting theo-
rem

The aim of the section is to introduce several reformulations of the eigenvalue problem. This will
allow us to make use of general counting arguments, set up by [9, [46], [47].

Proposition 5.4 Let us set # = — 7.2 7. The coupled system
MY = )X, ZLX =)\Y, (59)

admits a solution with X # 0, X € D(Z) {0}, Y € D(_ 7L _7) \ {0} iff there exists two vectors
X+ € D(L) \ {0} that satisfy LX1 = £AX4.

Let & stand for the orthogonal projection from 7 to (Ker(.£))* < 7.

Proposition 5.5 Let us set A = PH P and K = PL 1P, Let us define the following Hilbert
space

H = D(M) A (Ker(ZL) ¥,

The coupled system ((59)| has a pair of non trivial solutions (£, X, £Y"), with XA # 0 iff the gener-
alized eigenproblem
AW = oKW, We s, (60)

admits the eigenvalue oo = —\% # 0, with at least two linearly independent eigenfunctions.

Recall that the plane wave solution obtained Section 2.1 is spectrally stable, if the spectrum
of L is contained in iR. In view of Propositions 5.4l and 55 this happens if and only if all the
eigenvalues of the generalized eigenproblem are real and positive. In other words, the presence
of spectrally unstable directions corresponds to the existence of negative eigenvalues or complex
but non real eigenvalues of the generalized eigenproblem

Our goal is then to count the eigenvalues o of the generalized eigenvalue problem In
particular we define the following quantities:

e N, , the number of negative eigenvalues
e N2, the number of eigenvalues zero
e N,7, the number of positive eigenvalues

of counted with their algebraic multiplicity, the eigenvectors of which are associated to non-
positive values of the the quadratic form W — (KW |W) = (L1 2W|2W). Moreover, let No+
be the number of eigenvalues o € C with Im(a) > 0.

As pointed out above, the eigenvalues counted by NV, and Ng+ correspond to cases of instabil-
ities for the linearized problem Note that to prove the spectral stability, it is enough to show
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that the generalized eigenproblem does not have negative eigenvalues and N+ = 0. Indeed,
as a consequence of Propositions [5.4] and and Lemma [5.1] if @ € C\ R is an eigenvalue of
then a is an eigenvalue too. Hence, if No+ = 0, then the generalized eigenproblem does not
have solutions in C \ R.

Finally, for using the counting argument introduce by Chugunova and Pelinovsky in [9], we need
the following information on the essential spectrum of A, see [47, Lemma 2-(H1’) and Lemma 4].

Lemma 5.6 Let # = — 7. 7 be defined on V. Then oess( M) = [0,+0). Let A = M P and
K =221 be defined on . Then oess(A) = [0, +00) and we can find 0y, ds > 0 such that for
any real number 0 < 6 < 04, A+0K admits a bounded inverse and we have oess(A+0K) < [dyd, +00).

Proof. We check that

Ay
2q——k-pr
Agp —1/2 1/2
s gx— | TR Vet 200 [(ZA)7 Fes(=A:) P de
2¢2 A, ¢

A
2CQTZ7T + 2cyo901 * p

As a matter of fact, for any ¢ € H?(R"), the vector X, = (0,0, $,0) lies in (Ker(.Z))* and satisfies

0
JLIX, = 26212 5 | ez
0

Consequently #X. = AX. = - 7% 7 X. = (0,0, —2c¢2A,¢,0). It indicates that a Weyl sequence
for A — A\, A > 0, can be obtained by adapting a Weyl sequence for (—A, — ul), p > 0. Let us
consider a sequence of smooth functions ¢, € C(R™) such that supp(¢,) < B(0,v + 1), (,(2) =1
for € B(0,v) and |V.¢ || po@ny < Co < 0, |D2¢, | o @y < Co < o0, uniformly with respect to
veN. We set ¢,(2) = ¢, (2)e#/ V2¢) for some £eR". We get

%5 -V + 262Az<1/) (Z),

which is thus bounded in L®(R™) and supported in B(0,v + 1) \ B(0,v). It follows that |(—|¢|? —
I6v17 2 am)

[(=1€P—2¢2A2)u 75 o)

v — o as v — 00. Therefore, ¢, equally provides a Weyl sequence for .# — |¢2T and A — |¢]?1,

showing the inclusions [0, 00) € 0ess(#) and [0,00) C Tess(A).

(—€]2 = 2620, (2) = —e&2/1 ﬁ@(

202AZ)¢VH%2(R”) < v 1) while "¢V“%2(Rn) > v". Accordingly, we obtain >
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Next, let A ¢ [0,00). We suppose that we can find a Weyl sequence (X)) en for 4, such that

ACE‘ 14
A, — =2+ k- Vap,
Aypy, _
Xy =X, = | M= 2k V,q, 2070, * /(_Az) Y2oy(=A,) P, dz
_)‘(bu - 202Az¢1/
—AT, — 262 AT, — 2cy0901 * Dy
q/
/
- Zl’/ V—00 0,

i

v

with, moreover, | X, | =1 and X,, — 0 weakly in ¥. In particular, we can set

-~ o (2,¢)
(2, 8) = 22—, 61
It defines a sequence which tends to 0 strongly L?(T¢ x R") since, writing A = a 4 ib € C\ [0, ),
we get |2¢2|€2 — A2 = |2¢?[€]? — al? + b? which is > b? > 0 when A ¢ R, and, in case b = 0, > a® > 0.

Similarly, we can write

BN A CX9) 20773(€)
7711(:1775) - 202|£|2 Y 2C2|£|2 Y 01 * P, (62)
=hy(x,§)ezz(deR”) eL;((]R”)

where h,, tends to 0 strongly L?(T¢ x R"). We are led to the system

—()\+ ﬁ)q,,+k‘-Vmp,,

2
Ay 2 2 72|
Vo = (A 57 ) — ey / @ aleE —x) 2 (63)
a0,
= oP) d¢ | ——o.
', — 2cyo */02—@hy z,8)—— | vow

Reasoning as in the proof of Proposition (.3+), we conclude that X, converges strongly to 0
in ¥, a contradiction. Hence, A € C \ [0,00) cannot belong to cess(.#) and the identification

Oess(«#) = [0,0) holds.

Proposition (5:3}3) identifies Ker(.%). Let us introduce the mapping
Z (Qm _ ipm)eim-x + Z (Qm + ipm)ez’m.:c

05 q 2 (nd 2 (rd meXy, k-m>0 meKXy, k-m<0
@:<>EL@UXL@)- = e Cm
p po+i Y (@m—ipm)e™ T =i Y (g +ipm)e™ "
meHXy, k-m>0 meXy, k-m<0

Then,

) (70)

p p

X =
(b | 0
s 0
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is the projection of ¥ on Ker(.#). Accordingly, we realize that & does not modify the last two
components of a vector X = (¢,p,¢,7) € ¥, and for X e (Ker(Z))*, we have py = 0, and
Gm = tipy, for any m € J#,, depending on the sign of k - m.

Now, let A € C\ [0,00) and suppose that we can exhibit a Weyl sequence (X, )yen for A — AL
X, e # c Ker(L), X, =X, |X,| =1, X, = 0in ¥ and lim,_,o [(A — A X, | = 0. We
can apply the same reasoning as before for the last two components of (A — A\I) X, ; it leads to|(61)]
and where, using \ ¢ [0,0), ¢, and h, converge strongly to 0 in L?(T? x R"). We arrive at
the following analog to |(63)]

gy —()\—F%)qy—kk'vxpy

Aq 2 2 |72
—k- V;cql/ - <)\ + 7)]71/ —4c Yy / (27’[)"(202‘§|2 — )\) df X * Dy, (64)
/ 0
_ Q\ _ m_ —~ d
(pL) e [ “Téf) ho(2,€) (27[5)” —t

In order to derive from an estimate in a positive Sobolev space as we did in the proof of
Proposition [5.3+1), we should consider the Fourier coefficients arising from —%qu,, +k-Vgp, and
—%Ampl, —k-V.q,, namely Q,, = mTqum +ik-mp, m and P, = mszMm —ik-mqym. Only the coef-
ficients belonging to J#; are affected by the action of C@, which leads to Q, — (Qum FiP) = 1Py,
and P, F i(Qm F iPy) = FiQm, according to the sign of k- m. However, we bear in mind that
Ggm = tip,, when m € J#, with £k - m > 0. Hence, for coefficients in .7, the contributions of the
differential operators reduces to +im?p,, = +m?q,, and Fim?q, = +m>*pm, respectively. Note
also that for these coefficients there is no contributions coming from the convolution with o; in
since o1,, = 0 for m € J#,. Therefore, reasoning as in the proof of Proposition (3}1) for
coefficients m € Z% \ ¥, we can obtain a uniform bound on Y _-a |m|*(|gym|? + |pvm|?), which
provides a uniform H? bound on ¢, and p,, leading eventually to a contradiction. We conclude
that oess(A) = [0, 00).

Let 0 > 0 and consider the shifted operator A + §K. As a consequence of Lemma [B.10] we will
see that Ker(A + 0K) = {0} for any § > 0: 0 is not an eigenvalue for A + JK; let us justify it does
not belong to the essential spectrum neither. To this end, we need to detail the expression of the
operator K. Given X € 2, we wish to find X’ € ./ satisfying

—%qu’ + k- Vap' + 01+ </ (—A) gy d2>
5D~k Y

1 _
§¢/ +y(=A) 20901 * ¢
/

n

X' =

T
2

We infer 7/ = 27 and the relation ¢’ = 2¢ — 2y(—=A.)" Y2001 * ¢’ In turn, the Fourier coefficients

of ¢/, p' are required to satisfy

m?/2 — 29%5(2m) %oy |? ik -m\ (dn) [ @m — 27(270) %01 m /(—A)1/202<;5m dz
—ik-m m2/2 ) \p., ) ’
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When m # 0, m ¢ J#, the matrix of this system has its determinant equal to

4 2
m 2 2d191,m] 2

Owing to [(9)} since (k- m)? takes values in N, it does not vanish and we obtain ¢/, p/, by solving
the system

1 [/m? _ .
Q;n = @ (7 <Qm - 27(27r)d01,m/(_A) 1/20'2(25771 dz) — ik - mpm) s

1 ) _ m?
= 2z (418 (1 = 222000 [ (28) 020, 02) 4 (-~ 2202 M) ).

If m € H#; we find a solution in (Ker(#))* by setting p/,, = 2% ¢/, = +ip/,, according to the sign

m2

of k-m; if m =0, we set pjy = 0 and ¢ = m(qo —2y(2m)do1 0 [(—A) 209600 dz). This
defines X' = KX.
Therefore, the last two components of (A + K — M) X read

(26 — N)p — 22 AL ¢ — 207(—A) V20901 % ¢/,
(20 — N7 — §AZ7T — yogo1 *x .

Hence, when A does not belong to [2d,0), we can repeat the analysis performed above to establish
that A ¢ 0ess(A + 0K). In particular the essential spectrum of A has been shifted away from 0. m

We are now able to apply the results of Chugunova and Pelinovsky [9] (see also [47]), to obtain
the following.

Theorem 5.7 [9, Theorem 1] Let £ be defined by|(51). Suppose @ With the operators A , A, K
defined as in Propositions [5.H5.3, the following identity holds

N, + N2+ N,f + Ng+ = n(ZL).
Let us now detail the proof of Proposition [5.4] and 5.5, adapted from [47, Prop. 1 & Prop. 3|.

Proof of Propositions 5.4l and The goal is to establish connections between the following
three problems:

(Ev) the eigenvalue problem LX = AX, with L = 7.2,
(Co) the coupled problem X = \Y, #Y = —\X, with # = - J.Z 7,

(GEv) the generalized eigenvalue problem AW = oKW, with A = AP, K = PL 1P, the
projection & on (Ker(Z))*, and W e s = D(#) n (Ker(ZL))*.

The proof of Propositions [5.4] and follows from the following sequence of arguments.

(i) By Lemma B.1], we already know that if there exists a solution (A, X) of with A # 0
and X, # 0, then, there exists X_ # 0, such that (—\, X_) satisfies Being eigenvectors
associated to distinct eigenvalues, X, and X_ are linearly independent. Note that only this
part of the proof uses the specific structure of the operator L.
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(if)

(iif)
(iv)

From these eigenpairs for L, we set
X+ X_ ~( X, —X_
2+ T A Y = o+ 27,
e V=I5
Since X, and X_ are linearly independent, we have X # 0, Y # 0. Moreover, X =
and 7Y = % are linearly independent. We get

X++X,
2

ZX = JLX = /N@(x; — X)) =Y,
MY = g <¥> - L <H> - DX X ) = A,

2
so that (A, X,Y) satisfies |(Co)
If (\, X,Y) is a solution |(Co)} then (—\, X, —Y") satisfies |(Co)| too.

Let (A, X,Y) be a solution |(Co)| Set
X' = 7Y, Y = JgX
We observe that
MY' = - FL F IX == FLX =— F(AY) = —\X/,
LX =L JY = IJLIY =—FJ MY =\ 77X =)\Y,
which means that (A, 7Y, f X) is a solution of |(Co)| Moreover, if X and #Y are linearly
independent, Y and _# X are linearly independent too.
Let (A, X,Y) be a solution |[(Co)| with X # 0. We get
LX+ 2Y) = X+ JLIY = JLXTMY
= JOY)£AX = £A(X + 7Y,

so that (£A, X + ZY) satisfy In the situation where X and _#Y are linearly inde-
pendent, we have X + ZY # 0 and (£, X £ ¢Y) are eigenpairs for L. Otherwise, one of
the vectors X + #Y might vanish. Nevertheless, since only one of these two vectors can be
0, we still obtain an eigenvector X4 # 0 of L, associated to either +\. Coming back to i), we
conclude that F\ is an eigenvalue too.

Items i) to v) justify the equivalence stated in Proposition [5.4]

(vi)

Let (A, X,Y) be a solution [(Co)l From X = \Y, we infer Y € Ran(.¥) c (Ker(£))* so
that £Y =Y. The relation thus recasts as
X = \2L7 ' PY +, Y € Ker(.%), PY = 0.

(Here, £~ 2Y stands for the unique solution of .#Z = Y which lies in (Ker(.%))*.) We
obtain

LAY

P(—AX) = ANP\NPLTPY +7Y)
~NPLTPY = _NKY = PMPY = AY,

so that (—\2,Y) satisfies [[GEv)l Going back to iv), we know that (—\?, f X) is equally a
solution to |[(GEv)| If X and #Y are linearly independent, we obtain this way two linearly
independent vectors, Y and _# X, solutions of [[GEV)| with a = —)2.
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(vii)

(viii)

Let (o, W) satisfy | GEv)| with a # 0, W # 0. We set X = %—F‘if We have
1

JX = mj%w—\/%fjfjw—\/%fjw

which lies in Ran(.%) < (Ker(.#))*. Thus, using L@ZX = jX, we compute

7N _ -1 7 _ -1 73 _ 1 -1 _ 1
KJX=PLTPJX=PLTJX = =P LT LJW = —=P JW.
Next, we observe that
Asz9///9sz—@/$/sz—@/sz%QJX%W.

However, we can use W = W (since W € # < (Ker(Z))') and the fact that, for any
vector Z, L7 = L(1 - P2+ LP7Z =0+ LPZ, which yields

~ 1 1
= V- aP FLPLIPW = —\/—aP FLLW = —\/[—aP _FW.
We conclude that A f X =aK f X: (a, f X) satisfies [(GEvV)

Let (o, W) satisty [((GEv)| with oo # 0, W # 0. We have
P(MPW — oL PW) =0

and thus )
MPW — oL PPW =Y e Ker(L).
Let us set
M PW -1 -
_ 1 _ _ -1
Y = PW € (Ker(¥)) ™, X T \/ja(Y + ol PW),

so that
ZLX = V/—aPW = y/—aY, MY = MPW = —/—aX.

(Incidentally, since W is assumed to belong to ., we have W = ZW = Y.) Therefore
(vV—0a, X,Y) satisfies |(Co)l By v), (£v/—a, X £ ZY) satisty [(Ev)l and at least one of
the vectors X + #Y does not vanish; using i), we thus obtain eigenpairs (4++/—a, X+) of

L. With ii), we construct solutions of [(Co)| under the form (/—a, X*;X* ) f( X*gX*)),
= XJrin)) Of
2

which, owing to iv) and vi), provide the linearly independent solutions (a, I (
(GEv)L The dimension of the linear space of solutions of [ GEv)|is at least 2.
At least one of these vectors X4 is given by the formula

%, W

+ JW.

_a -
By the way, we indeed note that AW = oKW, with W € J#, can be cast as & .2 JW =
—aW since it means
(A— oKW = P(M — L) PW =-P(JFL F +alL HW =0
=Wen
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sothat ( 7% 7 + a1 )W € Ker(Z). It follows that
L(-%ijw) - ﬁj(ﬁ/ﬁ/W)i/f/W
— VEagwraw - ty=a( -2 s pw).

—«
With these manipulations we have checked that (++/—a, X +) satisfy If both vectors
X are non zero, we get X4 = X and we recover W = j()qu,)‘ If X+ = 0, then, we
get X+ = F_ZW # 0, and we directly obtain X3 = X4, W = 1jX¢. In any cases, W lies
in the space spanned by X, and X_ and the dimension of the space of solutions of

is even.

This ends the proof of Proposition [5.4] and [

5.4 Spectral instability

We are going to compute the terms arising in Theorem[5.7] Eventually, it will allow us to identify the
possible unstable modes. In what follows, we find convenient to work with the operator .# —a.Z !
instead of (M — aL71)P = A — oK, owing to to the following claim.

Lemma 5.8 Let a # 0 and X € 5Z. The following two problems are equivalent:
D X € Ker(A — aK),
@ there exists X € ¥ such that #4X = aX and X = X.

Proof. Suppose . Since X = ZX € 7, it means P (M — oL )X = 0, that is (A —
ol NX = Z € Ker(&). Since a # 0, we can set X = @ e V. It satisfies X = L2(Z +
a7 1X) = X, and @ holds.

Conversely, suppose 2. We bear in mind that the pseudo-inverse .# ! is defined as an applica-
tion from (Ker(.Z))* to itself, hence we can decompose X = £ 1 X + Z, with Z € Ker(.Z). There-
fore, we get M X —aX = (M —al )X —aZ = 0. Inother words, (A4 —a? )X = aZ € Ker(ZL)
which implies, since X = 22X € 7, (A — aK)X = P (M — oL )X = 0: D is satisfied. |

Therefore, we shall consider auxiliary problem:
MX = aX, ZX = X.
Lemma 5.9 Suppose @ NO =1.
Proof. We are interested in the solutions of
—%qu +k-Vep=0,
—%Axp —k-Vzq—2cyo; * /0277 dz =0,
—2¢2A.¢ = 0,

—2¢2 A, — 2cyo901 xp = 0.
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We infer ¢(z,z) = 0 and 7(x,§) = %%ﬁ—)al * p(z), and, next,

1 1
—§Amq+k‘-vmp=0, —§Amp—k-vxq—272/{2 *p=20
with 3 = o1 * 01. In terms of Fourier coefficients, it becomes
2 2
m . m )
7qm + ik - mpy, = 0, 7pm — ik - mqgm, — 2(27[)2d72/1|01,m|2pm =0.

For m = 0, we get pp = 0 and we find the eigenfunction (1,0,0,0) = Yy = + _# X, with X =
(0,1,0,0) € Ker(.2).
For m # 0 with oy, # 0, we get
mt — 4k -m)? = 2(2m) %2 k|oy | M2
€0
which cannot hold (see the proof of Proposition for more details).

For m # 0 with o1, = 0, we get M, (Zm> = 0 with M, defined in [(55)] As far as

m

m* —4(k-m)? # 0, M,, is invertible and the only solution is p,, = 0 = g,. If m* —4(k-m)? = 0, we
find the eigenfunctions (e?*™, +ie?*™ 0,0). These functions belong to Ker(.#), and thus do not
lie in the working space .57 .

We conclude that Ker(.#') = spang{Yy}. Moreover, this vector Y; does not belong to Ran(.#)
so that the algebraic multiplicity of the eigenvalue 0 is 1. Finally, bearing in mind which can
be recast as (KYy|Yp) < 0, we arrive at NY = 1. [ ]

Lemma 5.10 Suppose @ The generalized eigenproblem does not admit negative eigenvalues.
In particular, N, = 0.
Proof. Let a <0, X = (¢,p,¢,7) and X = (q,p, b, %) satisfy
1 -
—5Baq + k- Vap = ag,

1
—§Amp — k- Viq—2cyo; * /ng dz = ap,

(65)
—262Az¢ = a‘lﬁga
—2¢2 A, — 2cy0901 * p = af,
where 1
g = —58xG+ k- Vap+ 901 * /(—Az)1/202¢3dzv
1
2 (66)
6 =50 +7(=0:) " Pozor g,
i
=5
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This leads to solve an elliptic equation for 7
Q@
<% - AZ>7T = 10201 * P.
c c
In other words, we get, by means of Fourier transform
- ol o2(8)
T(x,8) = =01 * p(x) X —5—2—.
¢ €17 + [al/c
On the same token, we obtain

(M - Az)ﬁg = —2v(=A,)Y 20901 * G,

which yields

3 . €12 (8)
d(xr,&) = —2v01 * (%) X ——.
) e 1 a2
For A > 0, we introduce the symbol
|72
0< Ky = < K.
SRR

It turns out that )
3800+ k- Vap = ad

1 -
—58wp =k Vaq = 297Ky X + p = ap,

with 1
0= =580 + k- VoP — 2/ Kjq X * 4,

1
b= _gAxﬁ_ k- V:Bq

For the Fourier coefficients, it casts as

2

m . ~
TQm + ik - mpy, = oG,

2

m . D.
5 Pm — ik M = 297K ja)c2 (20|01 [P = OBim,
with
m2 - . ~ 2 2d 2~
Gm = 5 Gm + Tk - P = 27K o) je2 (27001, [* G,
m2 ~ . ~
P = " ik i

We are going to see that these equations do not have non trivial solutions with a < 0:

o If m =0, we get pg = 0, §o = 0, and, consequently, pyp = 0, go = 0. Hence, for o < 0, we
cannot find an eigenvector with a non trivial 0-mode.

o If m#0and o1,, =0, we see that (¢, pm) and (¢m,Pm) are related by
M, <Qm> ~a (qm> : <qm> — M, (qm> : (67)
Pm b Pm Pm
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It means that « is an eigenvalue of

M2:<mT4~I-(k:'m)2 im2k-m )

—im?k - m %4 + (k- m)?

The roots of the characteristic polynomial of M2 are (mT2 + k- m)? > 0, which contradicts
the assumption a < 0.

For the case where m # 0 and 01, # 0, we introduce the shorthand notation a,, =
22 (271)2d|017m|2/1‘a| Je2, bearing in mind that 0 < a,, < %2 by virtue of the smallness condi-

tion @ We are led to the systems
Qm \ _ [ am 0 dm
(o) = (o= (5 0)) G)

(= (5 ) ) = (i)
(= () (= (%5 0)):

which imply that a is an eigenvalue of the matrix
2

However the eigenvalues of this matrix read ( m—(m—2 — am)

(% (k- m)z)2 > 0, contradicting

that « is negative.

Lemma 5.11 Suppose[9)] N,f = #{m € 24\ {0}, 01, = 0, and m* — 4(k - m)? < 0}.

Proof. = We should consider the system of equations |(65){(66)| now with « > 0. For Fourier
coefficients, it casts as

where

m2 . ~
7(]m + ik - mpy, = g,

m2

7pm — ik - mqgy, — 267(27T)d01,m / 0oTm dz = APy,

—22 A,y = ozqz;m,
—202A 7, — 267(27T)d01,m0’2pm = Qftm,

m? . . - - b
Gm = 5 Gm + ik P + ¥(2m) o1 m /(_Az) V202¢m dz,
m? _

Pm = 7pm — ik - MG,

Om = %ﬁgm + ’7(27T)d(_Az)71/20201,mq~m7

7‘%7’1’1,

TR

For m = 0, we obtain py = 0, o = 0. Hence my satisfies (—a/c? — A,)my = 0. Here, +a/c?
lies in the essential spectrum of —A, and the only solution in L? of this equation is my = 0.
In turn, this implies pp = 0, (—a/c® — A, )po = 0, and thus ¢y = 0, go = 0. Hence, for a > 0,
we cannot find an eigenvector with a non trivial 0-mode.

Tm =
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o When m # 0 and 0y1,, = 0, we are led to (—a/c®* — A)py, = 0, (—a/c® — A)mp, = 0 that
imply ¢,, = 0, m,, = 0. In turn, we get for qm,Pms Gm,Pm- This holds iff « is an
eigenvalue of M2. If m* # 4(k-m)?, we find two eigenvalues o, + = (mTz +k-m)? > 0, with
associated eigenvectors X, + = ("%, Fie"™*,0,0), respectively. To decide whether these
modes should be counted, we need to evaluate the sign of (£ 71X, +| X, +). We start by

solving £ X, | = Xy +. It yields m £ =0, ’"2'1“ =0 and

We obtain -
/ _ 2 / . F24
qm,i_ m2+2k m7 7Tm,i_ m2+2]€ my
so that
2 . ) . .
gilX X = - S —— m-T ,—1m-T d + / -3 Zm'ibi s —1m-x d
(& Xmamt) = o (/Tde R T
_ 42m
 om24+2k-m’

the sign of which is determined by the sign of m? + 2k -m. We count only the situation where
these quantities are negative; reproducing a discussion made in the proof of Proposition (.3,
we conclude that

N, = #{m e Z*\ {0}, 01, = 0 and m* — 4(k - m)* < 0}.

When m* — 4(k - m)? = 0, the eigenvalues of M?2 are 0 and m*, and we just have to consider

the positive eigenvalue @ = m?*, associated to the eigenvector X, = (™% +ie?™* 0,0)

(depending whether mTZ = Fk-m). The equation £Y,, = X,, has infinitely many solu-
tions of the form (2/m2e™™%,0,0,0) + z(+ie!™?® ™ 0,0), with 2 € C. We deduce that

(L X | X)) = ﬁ?— > (. Thus these modes do not affect the counting.

o When m # 0 and oy, # 0, we are led to the relations (—a/c? — A,)m, = %02(27r)d017mpm,
(—a/—=A)bm = —2(—A)2027(2m) %01 ;mGm. The only solutions with square integrability
on R™ are m, = 0, ¢y = 0, prm = 0, Gm = 0. This can be seen by means of Fourier transform:
(—a/c® — A.)¢ = o amounts to QS({) = EQ_(T)/CZ7 due to [(H4)| this function has a singularity
which cannot be square-integrable. In turn, this equally implies ¢,, = 0 and 7, = 0. Hence,
we arrive at %2qm = 0 and —ik - mq,, = apm,, together with ¢, = ik - mp,, and %213”,, = 0.
We conclude that o > 0 cannot be an eigenvalue associated to a m-mode such that m # 0
and o1, # 0.

We can now make use of Theorem 5.7, together with Proposition 5.3l This leads to

0+1+#{meZ'\{0},01,m =0, and m* —4(k - m)? < 0} + Nov = N,, + N+ N, + Ne+
=n(Z) =1+ #{mez'\{0},m* —4(k-m)? <0 and oy, = 0}
+#{m e 24\ {0}, m* — 4(k-m)? <0 and oy, # 0}
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so that
Net = #{m e 23\ {0}, m* — 4(k -m)? < 0 and 0y, # 0}.

Since the eigenvalue problem does not have negative (real) eigenvalues, this is the only source
of instabilities.

As a matter of fact, when k = 0, we obtain No+ = 0, which yields the following statement,
(hopefully!) consistent with Lemma 1] and Proposition

Corollary 5.12 Let k = 0 and w € R such that the dz'spersz’on relation |(12)| is satisfied. Suppose
@ holds. Then the plane wave solution (e™'1(x <0>Td’ 1s spectrally stable.

In contrast to what happens for the Hartree equation, for which the eigenvalues are purely
imaginary, see Lemma [B.2] we can find unstable modes, despite the smallness condition @ Let us
consider the following two examples in dimension d = 1, with k € Z \ {0}.

Example 5.13 Suppose o19 # 0, and 011 # 0. Then, the set {m € Z \ {0}, m* — 4k*m? <
0 and o1, # 0} contains {—1,+1} (since 4k* > 1). Let k € Z\ {0} and w € R such that the
dispersion relation s satisfied. Then the plane wave solution (ei“’teikx,—’yF(z)<al>Td,0) is
spectrally unstable.

Example 5.14 Let my € Z \ {0} be the first Fourier mode such that o1, # 0. Let k € Z and
w € R such that the dispersion relation [(12)| is satisfied. Then, for all k € Z such that 4k* < m?2,
the plane wave solution (ei‘*’teikm, —’yF(z)<a>Td,O) 1s spectrally stable, while for all k € Z such that

4k% = m2, the plane wave solution (e*'e™®, —7F(z)<01>Td, 0) is spectrally unstable.

In general, if k € Z9 \ {0}, the set {m € Z¢\ {0},m* — 4(k - m)? < 0 and 71 ,, # 0} contains —k
and k provided oy 5, # 0. Hence, we have the following result.

Corollary 5.15 Let k € Z¢ \ {0} and w € R such that the dispersion relation [(12)| is satis-
fied.  Suppose @ holds and o1,, # 0 for all m € Z4 N\ {0}. Then the plane wave solution
(ei(“’t*kx —T'(2z <01>Td’ 1s spectrally unstable.

5.5 Orbital instability

Given Corollary B.I5] it is natural to ask whether or not the plane wave solution with k # 0 is
orbitally unstable in this case.

Theorem 5.16 Let k € Z% \ {0} and w € R such that the dispersion relation [(12)| is satis-
fied.  Suppose @ holds and o1,, # 0 for all m € Z4 N\ {0}. Then the plane wave solution
(ei(“’t*kx —T'(2 <01>Td’ s orbitally unstable.

Note that, if o1, # 0 for all m € Z¢ \ {0}, we deduce from Proposition (3] that n(£) > 3.
As a consequence, the arguments used in [26] to prove the orbital instability (see also [42] [45])
do not apply. It seems then necessary to work directly with the propagator generated by the
linearized operator as in [10, (18] 27]. These arguments are of different nature: the former relies
on specific spectral properties of the self-adjoint operator £, the latter uses the existence of at
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least an eigenvalue of the linearized operator L with positive real part, a fact which has been just
justified by the counting argument.

We go back to the non linear problem [(32)] More precisely, we write u(t,z) = (1 + a(t, z))
and W (t,z,z) = —(o1 ). L(2) + U(t,z,z), where the perturbation (@, ¥) now satisfies

ALl N N
i@t&+Txu—|—ik‘-Vmﬂ=701*/ JQ\Ifdz+<701*/ JQ\Ifdz> a,

6—25%@ — Az\if = —2"}/0'20'1 * Re(ﬁ) — Y0201 * ‘?NL|2

(68)

Showing that the plane wave solution is orbitally instable is then equivalent to prove that the
~ —1/2
solution (0,0) of [(68)] is orbitally instable. By setting ¥ = (=A)"12¢ and © = _ (Ao o

C
before, we obtain that can be expressed as a perturbation from the linearized equation

& X =LX + F(X). (69)

The strategy consists in showing that we can exhibit initial data, as small as we wish, such that the
solution exits a certain ball in finite time. The exit time is related to the logarithm of the inverse of
the size of the initial perturbation (the smaller the initial data, the larger the exit time). In|(69)]
the non linear reminder is given by

—71?0’1*/ (—A) Y2090 dz

P = | a8 o0as
0
yeoo1 + (g + [pl?)

and L: D(L) € ¥ — ¥ is the linear operator defined in |(50)]
Lemma 5.17 We can find a constant Cp such that, for any X, there holds |F(X)|y < Cr|X|%.

Proof. For the first two components of F(X), it suffices to obtain a uniform estimate on the
potential

‘01 * /n(—A)_l/fozcbdZ’ = wl(x —y)\oi(z - y)/n(—A)_l/2a2(z)¢(y,z) dz dy‘
(/Td a1(y) dy>1/2 (/ o1z —y ’/n 205 (2)e(y, 2) dzrdy)l/2
m</ o1 fc—y)/ 22l¢ 5/ oy, = \dedy>l/2

< yforynefulorlogen (ff, \dedy>1/2.

It implies that the L? norm of the first component of F(X) is dominated by
YO0 A1 oy [Pl 20y | ooy

N
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and a similar estimate holds for the second component. Finally, for the forth component of F(X),
we get, with [ul? = |q* + |p[,

2
[, 1@ o s P@P dzde < Joalage [ | [ ore = plul@) x @) dy] o
Td xR"™ Td | JTd
< Noliage [, [P =@y [ P dyda
Td JTd Td
2
S ”02”%2(Rn)H01H%2(Td) <[er Jul*(y) dy>

Hence the L? norm of the last component of F(X) is dominated by

veloalza ey lol 2 ey (lal 72 ray + 1PI72(pa))

Next, we are going to use the Duhamel formula
t
X(t) = X(0) + / IR (X (s)) ds. (70)
0

The definition of the operator semi-group {e'!, ¢+ > 0} follows from the application of Lumer-
Phillips’ theorem [49, Th. 12.22] by combining the basic estimate

KLX|X)| = ’—’y/ poq * </ (—A)*l/zag(bdz) da:+2c*y// ooy *x gdzdz
Td n Td xR™
< Wo)pa(VE + 204 loal a2l 1y ) X3

together with the following claim.
Lemma 5.18 There exists Ay > 0 such that for any real A = Ay, the operator A — L is onto.

Proof. We try to solve the system

A,
Aq + 2p+k'qu:q',

A, .
Ap — 2q+k‘-Vmp+701*/ (D) Y200¢dz = p,

A+ c(=A) P = ¢,
M — e(=A)2p — 2cy0901 x q = 7,

with A € R\{0}. By using the Fourier transform, the last two equations become
Ao+
cél

T = /\7’%—c|£|$—207550’1*q= 7,
which yields

~ 7 2 lelar B . .
. 6) = A (z,€)/c |§|7>T\2(/€C)2/ir |£2|27|£|02(§)0—1 q(;l;).

Let us introduce the quantity

YGRS
MER'_)@_/WM‘FKP@W)"‘
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The function p — £, is non increasing on [0,%0), and the inequality 0 < x, < & holds for any
1 € R. Reasoning by means of Fourier coefficients we are led to

A+ik-m —m?/2 N
m2/2—272(271)2d|017m|2/{>\2/02 A+ ik-m m)  \Sm

, 32(0) M1 (/e ~ el (©)/e s
S =t =22 [ S S

Since A?/c? + |€|2 = A2/c?, we observe that the £? norm of the right hand side S, is dominated by

with

VE c
HP/HL2(Td) + ’Y<01>Td (W¢/HL2(deRn) + WHUzHLZ(Rn)HW/HL2(deRn) .

We obtain Agp = ¢, Apo = So + 272<01>72de)\2/6qu and, for m # 0,

2

N2 m|* A2 2d|1m‘ _ . ;o m
<()\+zk m)° + 1 <1 4= (2m) 3 H,)\z/cz))qm—()\—l-zk m)g, + 5 S,

<

5 :R:(A)
= (A + ik -m)g — ).
P mg(( + ik - m)gm — qr,)

2
By virtue of [(9)] 1 — 442 (271)26[%/@\2/62 >1- 472<01>12rd“ > 0, so that the coefficient R,,())
4
does not vanish: either its imaginary part Ak -m # 0, or when k- m = 0, its real part \? + + (1=
4~ (2ﬂ)2d%mAz /c2) is bounded from below by a positive quantity. It remains to check that
A+ ik -m)q,, + mTSm
R (M)

defines a square-summable sequence, at least when A is large enough. To this end, for m # 0, we
evaluate

qm =

RuE =[xk 32— (om+ 70 (1 - a2 mpal 7l )
m - 4 Y m )\2/02

= A2(k-m)2 4 (V= (k-m)?)’ + (@(1 — 472 (2n )2d%m%g>)2

4 2
+(A2 = (k-m)?) % (1 — 4y2(2n)2d7‘0;"2?| /<;>\2/62>

4 2
= N+ (k- m)2)2 + (% (1 - 472(271)2d‘71nim|/@\2/02)>
4
+(A2—(k.m)2)—‘”;| (1-2%(2n rolotml” :nm| e )

4 2 2

4
+()\2 — kzmz) @ <1 — 472(27[)2d7| 71nm| H,)\z/cz)

Let 6 > 0, that will be made precise later on. We split the last term depending whether k? > §m?
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or k? < ém?: mfd | 2
m 01,

()\2 — (k‘ . m)z) T <1 — 4’72(27'[)2dm77§l{>\2/62) 1k2>5m2

m|*

|01, ?
e <1 - 4’}/2(27'[)2dm7m/€)\2/02) 125 5m2

> (A2 —k1)0) .

and

s

2
(2 — (k- m)?) 2L (1 - 472(27:)%%@2 /Cz) 102

2

> (02 — smi ml* 1 — 4~2(9 2 101,m|” 1
> (A2 —om )T — 4~*(2m) 2 e ) Lizsm?

8 2
m lo1,m]
= —57 <1 - 4’}/2(27'[)%77;/1)\2/02) 12 5m2-
When A > A\, = k2/+/0, we can get rid of the first term in the evaluation of |R,,(\)|? and we arrive

at
8

m 21024 |01m[? 2 2
(1 — 4 2mT—>5 “AZ/a){lkZzéW(l — 47*(01)74K)

16
1o ((1 — 4y2(01)2aK) — 85) }

2
We choose ¢ so that the last term contributes positively, for instance § = M. Having
defined this way &, and thus A, we exhibit ¢, > 0 such that |R,,(\)|?> = c,m® Combined to the
% estimate on S,,, this allows us to conclude that | X||y = |(A —L)"'X’|» < M| X’| 4 holds for a
certain constant M, when A > .. [ |

RN =

Moreover, a continuity estimate holds: we can find A > 0 such that for any ¢ > 0, [e"| &y <

e Let us also introduce
Ko = sup {[[e"] 2(»),0 <t < 1}.

The proof of instability slightly simplifies when o(ef) = e’®), see [20], and the references
therein, for a situation where this equality is fulfilled. According to Gearhart-Greiner-Herbst-Priiss’
theorem, see [48] Prop. 1] and the formulation proposed in [19, Section 2]), such identification holds
provided the resolvent (A —L)~! satisfies a uniform estimate as Im(\) — +0o0 with Re(\) # 0 fixed,
which is far from obvious. Nevertheless, the arguments of [50] only relies on the trivial embedding
@) < g ().

We are concerned with the case where spectral instability holds, which means that L has
eigenvalues with positive real value. There is only a finite number of such eigenvalues (as indicated
by the counting argument). In turn, the spectral radius of e is larger than 1. Let Ay = ay + iby
with as > 0, be such that e** lies in the boundary of o (e"):

>\*|

e™| = e™* = max {|u], ,ueo*(eL)}.

Lemma 5.19 [50, Lemma 2 & Lemma 3] The following assertions hold:

1. For any v > 0 and any m € N\{0}, there exists Yy € ¥ such that |Ys||y = 1 and |(e™ —
emA*)Y* HV/ < s
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2. For any 0 <t < m, we have ||e™Y,|ly < 2Koe®?t;

3. There exists a constant K1, such that for any t = 0, there holds e™*' < [[e'] gy < Kyedut/?,

Let us define € such that

2 jax 2 2ax
4K1(2K0+CF) e e<1, 8K10F(2K0+CF) e c<1
[0 Ay

Then, pick § > 0 as small as we wish and set

Tg—iln (g), ms = |T5] + 1.

Let Yy be a normalized vector as defined by Lemma [5.I91 with v = 55 and m = mgs. The initial
data
X|,_y = 0Ys,

has thus an arbitrarily small norm. Now, becomes

t
X(t) = 61y, + / T P(X (s)) ds.
0

We are going to contradict the orbital stability by showing that | X (mgs)|y > €/4: the solution
always exits the ball B(0,¢€/4).
Let

Ty = sup {t € [0,ms], | X (s) — de“* Y|y < 6Cre™*, for 0 < s <t} € (0,ms].
As a consequence of together with Lemma 517 and B.191-3, we get
IX(t) - 6Yal < /0 Ky IR0 | X (s)]5 d.
It follows that, for 0 < ¢t < Tj < ms,
|X () — 6e4Yslly < KiCrp /0 t =925V, |y + | X (s) — 3¢ Ya] | ds

t
< chF/ ega*(t_s)/2‘2(5Koea*S—l—(SCFea*S‘zdS
0

(by using Lemma [5.191-2)

t
< 52K1CF(2K0+CF)263“*t/2/ ™52 4
0

2 2e%*
< a_chF<2KO + CF)2((5ea*t)2 <e€ Z KiCr(2Ky + CF)zéea*t
* s

holds. Hence, € is chosen small enough so that this implies
C
| X (t) — 6" Y|y < TFM*'*,
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which would contradict the definition of Tj if T < mgs. Accordingly,
IX(t) — 6" Yy |y < Croe!
holds for any ¢ € [0, ms]. Going back to the Duhamel formula thus yields, for 0 <t < ms,

2K10F(2K0 + CF)252e2a*m5

1X () — 8e“Y, |y <

(e
Now, by using Lemma 5191, we observe that
Lmsy > ey, _ £ > eMs _ £ > i
7Yl > [ Yally — o > €™~ = >

We deduce that
[ X(ms)[y = 0" Y]y — || X (ms) — de" Y|y

€ 2K1Cr (2K + CF)252e2a*m5
- 2 Ay
2 2a
. 6<1 _ 2K1Cp(2Ky + Cp)©e *6) - €
2 A 4

as announced.
That these estimates now imply the orbital instability of the plane wave solution, which amounts
to justify that

1 cos(#)
. 0 sin(#)
f|X + - >
2 R BRI Il B B
0 0 »

holds for a certain positive constant k., follows by adapting the arguments of [27, sp. Theorem 6.2],
see also [20].

A Scaling of the model and physical interpretation

It is worthwhile to discuss the meaning of the parameters that govern the equations and the
asymptotic issues. Going back to physical units, the system reads

(z’h&tU + %AJ]) (t,x) = </Td><Rn o1(x — y)oa(2)¥(t,y, z) dy dz> u(t, ), (71a)
@0 A W)t0.2) = ~na2) [ orle - nIUEnP ). (71b)

The quantum particle is described by the wave function (¢, ) — U(t,z): given Q < T?, the integral
fQ |U(t,z)|> dz gives the probability of presence of the quantum particle at time ¢ in the domain

Q; this is a dimensionless quantity. In h stands for the Planck constant; its homogeneity

2
is % (and its value is 1.055 x 10734 Js) and m is the inertial mass of the particle. Let
us introduce mass, length and time units of observations: M, L and T. It helps the intuition to

think of the z directions as homogeneous to a length, but in fact this is not necessarily the case:
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we denote by ¥ and Z the (unspecified) units for ¥ and the z;’s. Hence, » is homogeneous to the
ratio % The coupling between the vibrational field and the particle is driven by the product of
the form functions o102, which has the same homogeneity as W from |(71a)| and as % from
(71b)} both are thus measured with the same units. From now on, we denote by ¢ this coupling
unit. Therefore, we are led to the following dimensionless quantities
14 W ! / am
U, 2")=U{'T,2'L) LM’

1
V't 2, 2) = ‘?\I!(t’T, 'L, 2'7),

o (') oa (') = % o1 (' L)oa(2'Z).

Bearing in mind that u is a probability density, we note that

/ U )2 de =
Td

M
Dropping the primes, |(71a)| becomes, in dimensionless form,
AT 1 YLAZ"T
o+ LA ) 1,2y = 22T / o1 (@ — 9)oa(2)U(ty, 2) dydz ) Ut z), (72a)
L2 2 h Td xR™
2 2
S __sI°M _ 2
(v~ G a0 0.2) = = monlo) ([ e = iUt ay) (720)

Energy conservation plays a central role in the analysis of the system: the total energy is defined
by using the reference units and we obtain

w%dzn
by — / VLU dz // (1ovw? +
deR”

WLAZT?
7// U 20901 + ¥ dzdz,
TdxR"

with &y dimensionless (hence the total energy of the original system is é"()&TL;). Therefore, we see
that the dynamics is encoded by four independent parameters. In what follows, we get rid of a
parameter by assuming

22 |v | >dzda;

W
mL2

and we work with the following three independent parameters

~ QYLZMT? mlL2 _ZPM AT
Tz awr P vm T 7
It leads to
1
(z’c?tU + §AxU> (t,x) =« </ o1(z —y)oa(2)¥(t,y, z) dy dz> Ul(t,x), (73a)
TdxR™
1
(C_28t2t\11 - AZ\I/> (taxa Z) = _/802<Z) </Td O-l(x - y)‘U(t7y)‘2 dy) (73b)
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together with

1 , la 1 )
& = 2/Td VU dx + 2/3//1rden <02\at\11\ + (V.0 )dzdx

—|—a/ |U2o901 * U dzda.
TdxR"

This relation allows us to interpret the scaling parameters as weights in the energy balance. Now,
for notational convenience, we decide to work with /gt \/%\If instead of ¥ and 4/%U instead

of U; it leads to |(3a){(3c)| and with v = \/% vapB. Accordingly, we shall implicitly work
with solutions with amplitude of magnitude unity. The regime where ¢ — oo, with «, 3 fixed
leads, at least formally, to the Hartree system [(1a)H(1b)} arguments are sketched in Appendix [Bl
The smallness condition @ makes a threshold appear on the coefficients in order to guaranty the
stability: since it involves the product %a,@, it can be interpreted as a condition on the strength of
the coupling between the particle and the environment, and on the amplitude of the wave function.
We shall see in the proof that a sharper condition can be derived, expressed by means of the Fourier
coefficients of the form function o;.

B From Schodinger-Wave to Hartree

In this Section we wish to justify that solutions — hereafter denoted U, — of|(3a)H(3c)|converge to the
solution of (1b) as ¢ — o0. We adapt the ideas in [II] where this question is investigated for
Vlasov equations. Throughout this section we consider a sequence of initial data UMt ynit Tynit
such that

sup/ | UM 12 4z = My < oo, (74a)
c>0JTd
sup / VUM dz = M,y < oo, (74b)
c>0.JTd

1 ; 1 .
sup {—2 // T2 4z da + = // |V, Wit |2 4 d:z:} = M, < o0, (74c)
>0 2c Td xR™ 2 Td «R™
sup // (U261 % o[ W d 2 i = M3 < 0. (74d)
c>0

There are several direct consequences of these assumptions:
o The total energy is initially bounded uniformly with respect to ¢ > 0,
e In fact, we shall see that the last assumption can be deduced from the previous ones.

e Since the L? norm of U, is conserved by the equation, we already know that

U, is bounded in L*(0,00; L?(T%)).
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Next, we reformulate the expression of the potential, separating the contribution due to the
initial data of the wave equation and the self-consistent part. By using the linearity of the wave
equation, we can split

(I)c = q)Init,c + (I)Cou,c

where ®1,; . is defined from the free-wave equation on R™ and initial data \Ilimt, Himt:

aftr ALV =0,

. (75)
(TC’ at ‘t:() _ (\I,imt’ Himt)‘
Namely, we set
Drnit o (t,z) = / o9(z)o1 x Te(t, x, 2z)dz
=———— si t =\ 02(§)d¢
— PInit sm(c\§| Plnit 2 .
[ (costeletton « B Je) + et « B (e [6)) 25000
Accordingly U, = U, — Y, satisfies
0tt — A, \I’ — = —y0907 * |UC|2, (76)

(lI/a at (0 O)

iz =

and we get

(I)Cou,c<tax) = ’Y/ 0'2( )0’1 *E’ (t x Z)dZ

R d
) / /n smc|cé|§| . |Uc|2(t_8’$)|02(£)|2ﬁ ds

_ 72/0@ </n%\ag(g)|2<2‘j§n> 5« [U2(t — 7/c, ) dr.

"

=p(T)

where it is known that the kernel p is integrable on [0,00) [11, Lemma 14].

Lemma B.1 There exists a constant M,, > 0 such that

sup |®Init,c(ta £)| < Mw: sup ‘q)Cou,c(ta £)| < Mw-

c,t,x c,t,x

Proof. Combining the Sobolev embedding theorem (mind the condition n > 3) and the standard
energy conservation for the free linear wave equation, we obtain

el oo (0,00 L2 (1 L2n/n-2 (Rmyy) < CIV Y el Lo 0,00502(raxmnyy < CA/2Mo.
Applying Hélder’s inequality, we are thus led to:

i e(t, 2)] < Cloal panrins gm0t |2ty V2o, (77)
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which proves the first part of the claim. Incidentally, it also shows that |(74d)|is a consequence of
[(74a)| and |(74c)l Next, we get

0
[ Pcou,c(t, )| < ’YELw(Td)UcHLw([o,oo),LZ(Td))/O lp(7)|dr.

Corollary B.2 There exists a constant Mg > 0 such that
Suf HVUc<ta ')HL2(Td) < Ms.
C7

Proof. This is a consequence of the energy conservation (the total energy being bounded by
virtue of |(74b)H(74d)|) where the coupling term

/d ((I)Init,c + <I>Cou,c)|Uc|2 dx
T
can be dominated by 2M,, M. [ ]

Coming back to .
atljc = _EAIUC + %(q)lnit,c + CI)(Tou,c)Uc (78)
we see that 0,U, is bounded in L?(0,c0; H~1(T9)). Combining the obtained estimates with Aubin-
Simon’s lemma [51], Corollary 4], we deduce that

2d
U, is relatively compact in in C°([0,T]; LP(T9)), 1 < p < T

for any 0 < T < oo. Therefore, possibly at the price of extracting a subsequence, we can suppose
that U, converges strongly to U in C°([0, T]; L?>(T%)). It remains to pass to the limit in [(78)] The
difficulty comnsists in letting ¢ go to o0 in the potential term and to justify the following claim.

Lemma B.3 For any ¢ € C*((0,00) x T%), we have

o0 o0
lim / / (Prnit,c + Pou,c)UcC dadt = 7/{/ / ¥ * |UC|2 U.Cdzdt.
0 Td 0 Td

c—0

Proof. We expect that ®coy . converges to yrX * |U|%:
|(I)Cou,c(ta 517) - ’7“2 * |U|2(t7 l‘)|

=7

ct
<7/
0

ct
gfy/() S+ ||U? = [UP|(t = 7/e,z) |p(r)|dT

ct
/ PR \Uc\2(t —7/c,x)p(T)dT — KX % |U\2(t,x)
0

0

S Ut = /ea) = S [UP )] o) dr 4 [ Il dr x 12 % 0P ]ooonpnsy

ct

y /0 S PG - 7/e, ) — U )| p(r)] dr

o0
T / )14 [l e U e osoazaey
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Let us denote by I.(t, ), IL.(t, x), IT11.(t), the three terms of the right hand side. Since p € L' ([0, ®0)),
for any t > 0, II;(?) tends to 0 as ¢ — o0, and it is dominated by |p L1 ((0,00)[ %] zoo(ra)Mo. Next,
we have

Le(t,z)] < le([O,oo)ELOO(Td)Sup/ HUC|2_|U‘2’<Say)dy
s=0 JT1d

< ol (go.c0)| =] o ray Sup ( / U, — UP(s,y) dy + 2Re / <UC—U)U<s,y>dy)
520 \JTd Td

which also goes to 0 as ¢ — o0 and is dominated by 2Mo|p[ 1(0,00)) X oo (ray- Eventually, we get
ct
M (t0)] < (e [ ([ NOP /e = 0P ay) ool

Since U € C°([0, 00); L2(T%)), with |U(t, 2wy < Mo, we can apply the Lebesgue theorem to
show that II.(f,z) tends to 0 for any (¢, ) fixed, and it is dominated by 2Mo||p| L1 ([0,00)) 1 Z ]| oo (74)-
This allows us to pass to the limit in

oe) oe}
/ / cI)Cou,c[]ccdxdt_1'43/‘ / DRY \U|2UCdxdt
0 Td 0 Td

[00] 0]
- / / Beoue(Ue — U)C dadt + / / ((I)cOuvc — KD * \U|2> U¢ dadt.
0 Td 0 Td

It remains to justify that

ee}
lim / / <I>init,cUc< dxdt = 0.
c—0 0 Td

The space variable z is just a parameter for the free wave equation which is equally satisfied
by o1 *x Y., with initial data oy (UM TIIM%) We appeal to the Strichartz estimate for the wave
equation, see [30, Corollary 1.3] or [52] Theorem 4.2, for the case n = 3|,which yields

0 p/q 1/p
cl/P(/ (/ |al*rc<t,x,y>|qdy) dt)
0 n

1 . . 1/2
<C (C—2 / oy * T (2, 2) 2 dz + / oy * V, Ot (g 22 dz) ,
R® R®

for any admissible pair:
1 n n 2 n—-1 n-1
2<p<qg<©, -+—-=--1, —+ < ,
p g 2 p q 2
The L? norm with respect to the space variable of the right hand side is dominated by /|1 | 1 (ray Ma.
It follows that

© P/ 2/p ) 1
/;Fd /0 </n |O'1 * Tc(t,$,z)|q dZ> dt dz < C ”O'lHLl(Rd) MQ% :}? 0.

(p,q,n) # (2,00,3).
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Repeated use of the Holder inequality (with 1/p 4+ 1/p’ = 1) leads to

o0
/ / UCCq)Init,c dz dt’
o Jrd
0 , 2/p’ 0 2/p
<</ ([ Wt ) dx) (/ ([ et ar) dx)
Td 0 Td 0

On the one hand, assuming that ¢ is supported in [0, R] x T¢ and p > 2, we have

0 ) 2/p' R R ) , @2-p")/v
/ </ |U.CIP dt) da / </ |UC|2dt> (/ |¢| %/ 2P dt> da
T¢ \Jo T 270,)/ , 0
< RPEPIPC Lo 0,00) ey 10 Lo (0,000;22 ()
which is thus bounded uniformly with respect to ¢ > 0. On the other hand, we get
o 2/p 0 » 2/p
/ (/ | Pnit, o (t, )P dt> de = / (/ ‘/ o9(2)o1 * Teo(t, z, 2) dz‘ dt> dz
T¢ \JO T¢ \JO n
@ pla \P
< o2l oy /d </ ‘/ oy * Tolt, @, 2)|° dz‘ dt> da
T 0 n

which is of the order &'(c¢=2/P). |

1/2 1/2

N

C Well-posedness of the Schrodinger-Wave system

The well-posedness of the Schrodinger-Wave system is justified by means of a fixed point argument.
The method described here works as well for the problem set on R?, and it is simpler than the
approach in [25] since it avoids the use of “dual” Strichartz estimates for the Schrédinger and the
wave equations.

We define a mapping that associates to a function (t,z) € [0,7] x T¢ — V (¢, z) € C:

o first, the solution ¥ of the linear wave equation

1
C—Qaftxlf — AU =~ + V2, (0,09)],_, = (Yo, ¥1);

o next, the potential ® = o1 * [5, 02V dz;

« and finally the solution of the linear Schrédinger equation
1 .
iU + S5 0.U =4@U, U], = U™

These successive steps define a mapping § : V —— U and we wish to show that this mapping
admits a fixed point in CO([0,T]; L?(T?)), which, in turn, provides a solution to the non linear
system [(3a)l{(3c)l In this discussion, the initial data U™ Wy W, are fixed once for all in the space
of finite energy:

U™t e gYTY),  Woe LX(T%HY(R™), Uy e LA(T? x RY).
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We observe that d
— Ul?dz = 0.
dt /Td U] dz

Hence, the mapping S applies the ball B(0, |U™ | z2(ray) of C°([0,T]; L? (T)) in itself; we thus
consider U = S(V) for V e C°([0,T]; L*(T%)) such that |V (¢, WM rzeray < U™ 12¢pay. Moreover,
we can split

U="+V

with T solution of the free wave equation
1
C—ﬁ?ﬂ — AT =0, (T, 07)|,_y = (Wo, ¥1),

and 1
C—gaft\l’ — AU =0, (T, 0,%)|,_, = 0.

We write & = &7 + ® for the associated splitting of the potential. In particular, the standard
energy conservation for the wave equation tells us that

1 1
—// 16; Y2 dz dz + —// V. Y2dzdz
262 Td xR™ 2 Td xR

1 1
= — // |\I/1‘2 dzdx + = // |VZ\I’()‘2 dzdx = My
2C2 Td « R" 2 Td « R"

|q)[(t, ZE)| < CHO’2||L27L/(7L+2(Rn) HO’l HL2(Td) 2M2

holds. It follows that

by using Sobolev’s embedding. Next, we obtain

~

O(t,z) = /nag(z)al*\fl(t,x,z)dz

- o [M ([ 2D pep ) s ey - ey an

"

=p(7)

which thus satisfies

ct
sup (.)€ 912logen [ 1] ([ IVEC /e d) ar

xeTd
In particular
1B (t, )| < Y E ] oo ray 121 21 (0,00 |V o o122 xayy < VIEN Lo ray 1] 21 (0,000 1T 20
lies in L®((0,T) x T?), and thus ® € L*((0,T) x R?). This observation guarantees that U = ;S(V)

is well-defined.
Thus, let us pick V4, V4 in this ball of C°([0,T]; L?(T%)) and consider U; = S(V;). We have

. 1
i0t(Us — Ur) + §Asc(U2 —U1) = 7®2(Us — Uy) + (P2 — ©1)U7, (Us = Uh)],_, = 0.
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It follows that

i/ Uy — Uy |* dz = 2¢Im (/ (@2 — @1)U (U — Uy) dx)
dt Td Td
< 29|01 | 2 (ray U2 — Ut p2(ray |@2 — @1 poo(ray = 29U [ L2(ray [U2 — Unlp2(ray |92 — @1 poo ey

ct
< 221 e |l zage U2 = Vilzageey [ |p<f>|( / d||v2|2—|v1|2|<t—7/c,y>dy) dr.

We use the elementary estimate
[ VPV dy = [ VeV P+ 2Re(Va=Vi)VA| dy < 1Va=Val ooy +20Va Vil ooy [Vl ey

Combining this with Cauchy-Schwarz and Young inequalities, we arrive at

d
dt/ |U2—U1| dx

ct
< 29212 poo gy [ U™ 2 (QUIthZ(Td) /0 p(T)Va = Vi[2(t = 7/¢) g2 ay dT

ct
Uz = U] g2 g 2] U™ 220 /0 Ip(T)[IIVa = Va[[(t = 7/¢) 2 (za) dT>

< 2923 ooy JU 2, 0y (102 = U112 gy
ct
+(2+ ”p”Ll((O.oo))/O Ip(7)[[Va = Va[*(t = 7/¢) 12 ay dT> .

Set L = 29*||Z oo 7a) |Utmi)2, We deduce that

(T)

t cs
V2 = U100y < 2+ ol o) [ €207 [ pI1Ve = ViI(s = /) ooy dr .
We use this estimate for 0 < ¢t < T < o and we obtain

|02 = U ()72 ¢ray < (4 + [P 21 (0.00)) LT [Pl L1 0.00) sup (V2 - VA[2(8) L2 7a)-

<s<T

Hence for T small enough, S is a contraction in C°([0,T]; L?(T%)), and consequently it admits a
unique fixed point. Since the fixed point still has its L? norm equal to |U™| £2(14), the solution
can be extended on the whole interval [0, 00). The argument can be adapted to handle the Hartree
system.
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