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Abstract

We investigate the stability of plane wave solutions of equations describing quantum
particles interacting with a complex environment. The models take the form of PDE
systems with a non local (in space or in space and time) self-consistent potential; such
a coupling lead to challenging issues compared to the usual non linear Schrödinger
equations. The analysis relies on the identification of suitable Hamiltonian structures
and Lyapounov functionals. We point out analogies and differences between the original
model, involving a coupling with a wave equation, and its asymptotic counterpart
obtained in the large wave speed regime. In particular, while the analogies provide
interesting intuitions, our analysis shows that it is illusory to obtain results on the
former based on a perturbative analysis from the latter.

Keywords. Hartree equation. Open quantum systems. Particles interacting with a vibrational
field. Schrödinger-Wave equation. Plane wave. Orbital stability.
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1 Introduction

This work is concerned with the stability analysis of certain solutions of the following Hartree-type
equation

iBtU ` 1

2
∆xU “ γ

ˆ
σ1 ‹x

ˆ

Rn

σ2Ψ dz

˙
U, (1a)

´ ∆zΨ “ ´γσ2pzq
`
σ1 ‹x |U |2

˘
pxq (1b)
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endowed with the initial condition
U
ˇ̌
t“0

“ U Init, (2)

and of the following Schrödinger-Wave system:

iBtU ` 1

2
∆xU “ γΦU, (3a)

1

c2
B2
ttΨ ´ ∆zΨ “ ´γσ2pzqσ1 ‹ |U |2pt, xq, (3b)

Φpt, xq “
¨

TdˆRn

σ1px´ yqσ2pzqΨpt, y, zq dz dy, (3c)

where γ, c ą 0 are given positive parameters, completed with

U
ˇ̌
t“0

“ U Init, Ψ
ˇ̌
t“0

“ ΨInit, BtΨ
ˇ̌
t“0

“ ΠInit. (4)

The variable x lies in the torus Td, meaning that the equations are understood with p2πq´periodicity
in all directions. In (3b), the additional variable z lies in Rn and, as explained below, it is crucial to
assume n ě 3. For reader’s convenience, the scaling of the equation is fully detailed in Appendix A;
for our purposes the God-given form functions σ1, σ2 are fixed once for all and the features of
the coupling are embodied in the parameters γ, c. The system (1a)-(1b) can be obtained, at least
formally, from (3a)-(3c) by letting the parameter c run to `8, while γ is kept fixed. By the way,
system (1a)-(1b) can be cast in the more usual form

iBtU ` 1

2
∆xU “ ´γ2κ

`
Σ ‹x |U |2

˘
U, t P R, x P Rd. (5)

where1

κ “
ˆ

Rn

σ2pzqp´∆zq´1σ2pzq dz “
ˆ

Rn

|pσ2pξq|2
|ξ|2

dξ

p2πqn ą 0 and Σ “ σ1 ‹ σ1. (6)

Letting now Σ resemble the delta-Dirac mass, the asymptotic leads to the standard cubic non linear
Schrödinger equation

iBtU ` 1

2
∆xU “ ´γ2κ|U |2U. (7)

in the focusing case. These asymptotic connections can be expected to shed some light on the
dynamics of (3a)-(3c) and to be helpful to guide the intuition about the behavior of the solutions,
see [20, 21].

The motivation for investigating these systems takes its roots in the general landscape of the
analysis of “open systems”, describing the dynamics of particles driven by momentum and energy
exchanges with a complex environment. Such problems are modeled as Hamiltonian systems, and
it is expected that the interaction mechanisms ultimately produce the dissipation of the particles’
energy, an idea which dates back to A. O. Caldeira and A. J. Leggett [7]. These issues have been
investigated for various classical and quantum couplings, and with many different mathematical
viewpoints, see e. g. [2, 3, 24, 25, 28, 29, 30]. The case in which the environment is described as
a vibrational field, like in the definition of the potential by (3b)-(3c), is particularly appealing. In

1The Fourier transform of an integrable function ϕ : Rn Ñ C is defined by pϕpξq “
´

Rn
ϕpzqe´iξ¨z dz.
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fact, (3a)-(3c) is a quantum version of a model introduced by S. De Bièvre and L. Bruneau, dealing
with a single classical particle [6]. Intuitively, the model of [6] can be thought of as if in each space
position x P Rd there is a membrane oscillating in a direction z P Rn, transverse to the motion
of the particles. When a particle hits a membrane, its kinetic energy activates vibrations and the
energy is evacuated at infinity in the z´direction. These energy transfer mechanisms eventually
act as a sort of friction force on the particle, an intuition rigorously justified in [6, Theorem 2 and
Theorem 4]. We refer the reader to [1, 12, 13, 30, 46] for further theoretical and numerical insight
about this model. The model of [6] has been revisited by considering many interacting particles,
which leads to Vlasov-type equations, still coupled to a wave equation for defining the potential
[17]. Unexpectedly, asymptotic arguments indicate a connection with the attractive Vlasov-Poisson
dynamic [11]. In turn, the particles-environment interaction can be interpreted in terms of Lan-
dau damping [19, 18]. The quantum version (3a)-(3c) of the De Bièvre-Bruneau model has been
discussed in [21, 20], with a connection to the kinetic model by means of a semi-classical analysis
inspired from [35]. Note that in (3a)-(3c), the vibrational field remains of classical nature; a fully
quantum framework is dealt with in [3] for instance.

A remarkable feature of these systems is the presence of conserved quantities, here inherited
from the framework designed in [6] for a classical particle, and the study of these models brings out
the critical role of the wave speed c ą 0 and the dimension n of the space for the wave equation
(we can already notice that n ě 3 is necessary for (6) to be meaningful), see [6, 18, 19, 21]. For the
Schrödinger-Wave system (3a)-(3c) the energy

HSW pU,Ψ,Πq “ 1

4

ˆ

Td

|∇U |2 dx` 1

4

¨

TdˆRn

ˆ
Π2

c2
` |∇zΨ|2

˙
dxdz ` γ

2

ˆ

Td

Φ|U |2 dx, (8)

is conserved since we can readily check that

d

dt
HSW pU,Ψ, BtΨq “ 0.

Similarly, for the Hartree system (1a)-(1b), we get

d

dt
HHapUq “ 0

where we have set

HHapUq “ 1

4

ˆ

Td

|∇U |2 dx´ γ2κ

4

ˆ

Td

Σpx´ yq|Upt, xq|2|Upt, yq|2 dy dx.

Furthermore, for both model, the L2 norm is conserved. Of course, these conservation properties
play a central role for the analysis of the equations. However, (1a)-(1b) has further fundamental
properties which occur only for the asymptotic model: firstly, (1a)-(1b) is Galilean invariant, which
means that, given a solution pt, xq ÞÑ upt, xq and for any p0 P Td, the function pt, xq ÞÑ upt, x ´
tp0qeipx´tp0{2q is a solution too; secondly, the momentum pptq “ Im

´

ūpt, xq∇xupt, xq dx is conserved
and, accordingly, the center of mass follows a straight line at constant speed. That these properties
are not satisfied by the more complex system (3a)-(3c) makes its analysis more challenging. Finally,
we point out that, in contrast to the usual nonlinear Schrödinger equation or Hartree-Newton
system, where Σ is the Newtonian potential, the equations (1a)-(1b) or (3a)-(3c) do not fulfil a
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scale invariance property. This also leads to specific mathematical difficulties: despite the possible
regularity of Σ, many results and approaches of the Newton case do not extend to a general kernel,
due to the lack of scale invariance.

When the problem is set on the whole space Rd, one is interested in the stability of solitary
waves, which are solutions of the equation with the specific form upt, xq “ eiωtQpxq, and, for
(3a)-(3c), ψpt, x, zq “ Ψpx, zq. The details of the solitary wave are embodied into the Choquard
equation, satisfied by the profile Q, [32, 36]. It turns out that the Choquard equation have infinitely
many solutions; among these solutions, it is relevant to select the solitary wave which minimizes the
energy functional under a mass constraint, [32, 37] and to study the orbital stability of this minimal
energy state. This program has been investigated for (7) and (1a)-(1b) in the specific case where
Σpxq “ 1

|x| in dimension d “ 3, by various approaches [8, 31, 33, 34, 39, 49, 50]. Quite surprisingly,

the specific form of the potential plays a critical role in the analysis (either through explicit formula
or through scale invariance properties), and dealing with a general convolution kernel, as smooth
as it is, leads to new difficulties, that can be treated by a perturbative argument, see [27, 51] for
the case of the Yukawa potential, and [21] for (1a)-(1b) and (3a)-(3c).

Here, we adopt a different viewpoint. We consider the case where the problem holds on the
torus Td, and we are specifically interested in the stability of plane wave solutions of (3a)-(3c) and
(1a)-(1b). We refer the reader to [4, 5, 14, 40] for results on the nonlinear Schrödinger equation
(7) in this framework. The discussion on the stability of these plane wave solutions will make the
following smallness condition

4γ2κ}σ1}2
L1 ă 1 (9)

(assuming the plane wave has an amplitude unity) appear. Despite its restriction to the periodic
framework, the interest of this study is two-fold: on the one hand, it points out some difficulties
specific to the coupling and provides useful hints for future works; on the other hand, it clarify the
role of the parameters, by making stability conditions explicit.

The paper is organized as follows. In Section 2, we clarify the positioning of the paper. To
this end, we further discuss some mathematical features of the model. We also introduce the main
assumptions on the parameters that will be used throughout the paper and we provide an overview
of the results. Section 3 is concerned with the stability analysis of the Hartree equation (1a)-(1b).
Section 4 deals with the Schrödinger-Wave system at the price of restricting to the case where the
wave vector of the plane wave solution vanishes: k “ 0. For reasons explained in details below, the
general case is much more difficult. Section 5 justifies that in general the mode k , 0 is linearly
unstable. Finally, in Appendix A, we provide a physical interpretation of the parameters involved,
and for the sake of completeness, in Appendices B and C, we discuss the well-posedness of the
Schrödinger-Wave system (3a)-(3c) and its link with the Hartree equation (1a)-(1b) in the regime
of large c’s.

2 Set up of the framework
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2.1 Plane wave solutions and dispersion relation

For any k P Zd, we start by seeking solutions to (3a)-(3c) of the form

Upt, xq “ Ukpt, xq :“ exp
`
ipωt ` k ¨ xq

˘
, Ψpt, x, zq “ Ψ˚pzq, BtΨpt, x, zq “ Π˚pzq “ 0, (10)

with ω ě 0. Note that the L2 norm of Uk is p2πqd{2 and Ψ˚ actually does not depend on the time
variable, nor on x. Since |Ukpt, xq| “ 1 is constant, the wave equation simplifies to

1

c2
B2
ttΨ ´ ∆zΨ “ ´γσ2pzq

@
σ1

D
Td ,

where
@

¨
D
Td stands for the average over Td:

@
f
D
Td “

´

Td fpxq dx. As a consequence, z ÞÑ Ψ˚pzq is
a solution to (3b) if

Ψ˚pzq “ ´γΓpzq
@
σ1

D
Td ,

with Γ the solution of
´∆zΓpzq “ σ2pzq.

This auxiliary function Γ is thus defined by the convolution of σ2 with the elementary solution of
the Laplace operator in dimension n, or equivalently by means of Fourier transform:

Γpzq “
ˆ

Rn

Cn

|z ´ z1|n´2
σ2pz1q dz1 “ F´1

ξÑz

´pσ2pξq
|ξ|2

¯
. (11)

The corresponding potential (3c) is actually a constant which reads

´γ
¨

TdˆRn

σ1px ´ yqσ2pzqΓpzq
@
σ1

D
Td dz dy “ ´κγ

@
σ1

D2

Td

with

κ “
ˆ

Rn

σ2pzqΓpzq dz “
ˆ

Rn

|∇zΓpzq|2 dz ą 0

(we remind the reader that this formula coincides with (6) and makes sense only when n ě 3). It
remains to identify the condition on the coefficients so that Uk satisfies the Schrödinger equation
(3a): this leads to the following dispersion relation

ω ` k2

2
´ Υ˚ “ 0, Υ˚ “ γ2κ

@
σ1

D2

Td ą 0 (12)

with k2 “ řd
j“1 k

2
j . We can compute explicitly the associated energy:

HSW pUk,Ψ˚,Π˚q “ p2πqd
2

ˆ
k2

2
´ γ2κ

2

@
σ1

D2

Td

˙
“ p2πqd

4
pk2 ´ Υ˚q.

Of course, among these solutions, the constant mode U0pt, xq “ eiωt1pxq has minimal energy.

It turns out that the plane wave Ukpt, xq “ eiωteik¨x equally satisfies (1a)-(1b) provided the
dispersion relation (12) holds. Incidentally, we can check that

HHapUkq “ p2πqd
2

ˆ
k2

2
´ γ2κ

2

@
Σ
D
Td

˙
“ p2πqd

4
pk2 ´ Υ˚q

is made minimal when k “ 0.
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2.2 Hamiltonian structure and symmetries of the problem

The conservation properties play a central role in the stability analysis, for instance in the reasonings
that use concentration-compactness arguments [8]. Based on the conserved quantities, one can try
to construct a Lyapounov functional, intended to evaluate how far a solution is from an equilibrium
state. Then the stability analysis relies on the ability to prove a coercivity estimate on the variations
of the Lyapounov functional, see [47, 49, 50]. This viewpoint can be further extended by identifying
analogies with finite dimensional Hamiltonian systems with symmetries, which has permitted to
set up a quite general framework [22, 23], revisited recently in [4]. The strategy relies on the ability
in exhibiting a Hamiltonian formulation of the problem

BtX “ JBXH pXq,

where the symplectic structure is given by the skew-symmetric operator J. As a consequence of
Noether’s Theorem, this formulation encodes the conservation properties of the system. In partic-
ular, it implies that t ÞÑ H pXptqq is a conserved quantity. For the problem under consideration, as
it will be detailed below, X is a vectorial unknown with components possibly depending on different
variables (x P Td and z P Rn). This induces specific difficulties, in particular because the nature
of the coupling is non local and delicate spectral issues arise related to the essential spectrum of
the wave equation in Rn. Next, we can easily observe that the systems (1a)-(1b) and (3a)-(3c)
are invariant under multiplications by a phase factor of U , the “Schödinger unknown”, and under
translations in the x variable. This leads to the conservation of the L2 norm of U and of the total
momentum. However, the systems (1a)-(1b) and (3a)-(3c) cannot be handled by a direct applica-
tion of the results in [4, 22, 23]: the basic assumptions are simply not satisfied. Nevertheless, our
approach is strongly inspired from [4, 22, 23]. As we will see later, for the Hartree system, a decisive
advantage comes from the conservation of the total momentum and the Galilean invariance of the
problem. For the Schrödinger-Wave problem, since the expression of the total momentum mixes
up contribution from the “Schrödinger unknown” U and the “wave unknown” Ψ, the information
on its conservation does not seem readily useful. 2

In what follows, we find advantages in changing the unknown by writing Upt, xq “ eik¨xupt, xq;
in turn the Schrödinger equation iBtU ` 1

2
∆U “ ΦU becomes

iBtU ` 1

2
∆u´ k2

2
u` ik ¨ ∇u “ Φu.

Accordingly, the parameter k will appear in the definition the energy functional H . This explains
a major difference between (1a)-(1b) and (3a)-(3c): for the former, a coercivity estimate can be
obtained for the energy functional H , for the latter, when k , 0 there are terms which cannot be
controlled easily. This is reminiscent of the momentum conservation in (1a)-(1b) and the lack of
Galilean invariance for (3a)-(3c). The detailed analysis of the linearized operators sheds more light
on the different behaviors of the systems (1a)-(1b) and (3a)-(3c).

2For the problem set on Rd, it is still possible, in the spirit of results obtained in [14] for NLS, to justify
that orbital stability holds on a finite time interval: the solution remains at a distance ǫ from the orbit of
the ground state over time interval of order Op1{ ?

ǫq, see [48, Theorem 4.2.11 & Section 4.6]. The argument
relies on the dispersive properties of the wave equation through Strichartz’ estimates.
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2.3 Outline of the main results

Let us collect the assumptions on the form functions σ1 and σ2 that govern the coupling:

(H1) σ1 : Td Ñ r0,8q is C8 smooth, radially symmetric;
@
σ1

D
Td , 0;

(H2) σ2 : Rn Ñ r0,8q is C8 smooth, radially symmetric and compactly supported;

(H3) p´∆q´1{2σ2 P L2pRnq;

(H4) for any ξ P Rn, pσ2pξq , 0.

Assumptions (H1)-(H2) are natural in the framework introduced in [6]. Hypothesis (H3) can
equivalently be rephrased as p´∆q´1σ2 P

.
H1pRnq; it appears in many places of the analysis of

such coupled systems and, at least, it makes the constant κ in (6) meaningful. This constant is
a component of the stability constraint (9). Hypothesis (H4) equally appeared in [6, Eq. (W)]
when discussing large time asymptotic issues. Assumptions (H1)-(H4) are assumed throughout
the paper.

Our results can be summarized as follows. We assume (9) and consider k P Zd and ω ą 0
satisfying (12). For the Hartree equation, the analysis is quite complete:

• the plane wave eipωt`k¨xq is spectrally stable (Theorem 3.1);

• for any initial perturbation with zero mean, the solutions of the linearized Hartree equation
are L2-bounded, uniformly over t ě 0 (Theorem 3.3);

• the plane wave eipωt`k¨xq is orbitally stable (Theorem 3.5).

For the Schrödinger-Wave system, only the case k “ 0 is fully addressed:

• the plane wave peiωt1pxq,´γΓpzq
@
σ
D
Td , 0q is spectrally stable (Corollary 5.12);

• for any initial perturbation of peiωt1pxq,´γΓpzq
@
σ
D
Td , 0q with zero mean, the solutions of the

linearized Schrödinger-Wave system are L2-bounded, uniformly over t ě 0 (Theorem 4.2);

• the plane wave peiωt1pxq,´γΓpzq
@
σ
D
Td , 0q is orbitally stable (Theorem 4.4).

When k , 0, the situation is much more involved; at least we prove that in general the plane wave
solution peipωt`k¨xq,´γΓpzq

@
σ1

D
Td , 0q is spectrally unstable, see Section 5 and Corollary 5.15.

3 Stability analysis of the Hartree system (1a)-(1b)

To study the stability of the plane wave solutions of the Hartree system, it is useful to write the
solutions of (1a)-(1b) in the form

Upt, xq “ eik¨xupt, xq
with upt, xq solution to

iBtu` 1

2
∆u´ k2

2
u ` ik ¨ ∇u “ ´γ2κpΣ ‹ |u|2qu. (13)

7



If k P Zd and ω ą 0 satisfy the dispersion relation (12), uωpt, xq “ eiωt1pxq is a solution to (13) with
initial condition uωp0, tq “ 1pxq. Therefore, studying the stability properties of Ukpt, xq “ eiωteik¨x

as a solution to (1a)-(1b) amounts to studying the stability of uωpt, xq “ eiωt1pxq as a solution to
(13).

The problem (13) has an Hamiltonian symplectic structure when considered on the real Banach
space H1pTd;Rq ˆH1pTd;Rq. Indeed, if we write u “ q ` ip, with p, q real-valued, we obtain

Bt
ˆ
q

p

˙
“ J∇pq,pqH pq, pq

with

J “
ˆ

0 1
´1 0

˙

and

H pq, pq “ 1

2

ˆ
1

2

ˆ

Td

|∇q|2 ` |∇p|2 dx` k2

2

ˆ

Td

pp2 ` q2q dx´
ˆ

Td

pk ¨ ∇q dx`
ˆ

Td

qk ¨ ∇p dx

˙

´ γ2κ

4

ˆ

Td

Σ ‹ pp2 ` q2qpp2 ` q2q dx.

Coming back to u “ q ` ip, we can write

H puq “ 1

2

ˆ
1

2

ˆ

Td

|∇u|2 dx` k2

2

ˆ

Td

|upxq|2 dx`
ˆ

Td

k ¨ p´i∇uqu dx

˙

´ γ2κ

4

ˆ

Td

pΣ ‹ |u|2qpxq|upxq|2 dx. (14)

As observed above, H is a constant of the motion.
Moreover, it is clear that (13) is invariant under multiplications by a phase factor so that

F puq “ 1
2
}u}2

L2 is conserved by the dynamics. The quantities

Gjpuq “ 1

2

ˆ

Td

ˆ
1

i
Bxj

u

˙
udx

are constants of the motion too, that correspond to the invariance under translations. Indeed, a
direct verification leads to

d

dt
Gjpuqptq “ κγ2

2

ˆ

Td

ˆ

Td

Bxj
Σpx´ yq ‹ |u|2pt, yq|u|2pt, xq dy dx “ 0.

Finally, we shall endow the Banach space H1pTd;Rq ˆH1pTd;Rq with the inner product

Bˆ
q

p

˙ ˇ̌
ˇ
ˆ
q1

p1

˙F
“
ˆ

Td

`
pp1 ` qq1q dx.

that can be also interpreted as an inner product for complex-valued functions:

xu|u1y “ Re

ˆ

Td

uu1 dx. (15)

8



3.1 Linearized problem and spectral stability

Let us expand the solution of (13) around uω as upt, xq “ uωpt, xqp1 ` wpt, xqq. The linearized
equation for the fluctuation reads

iBtw ` 1

2
∆xw ` ik ¨ ∇xw “ ´2γ2κpΣ ‹ Repwqq. (16)

We split w “ q ` ip, q “ Repwq, p “ Impwq so that (16) recasts as

Bt
ˆ
q

p

˙
“ Lk

ˆ
q

p

˙
(17)

with the linear operator

Lk :

ˆ
q

p

˙
ÞÝÑ

¨
˝ ´k ¨ ∇xq ´ 1

2
∆xp

1

2
∆xq ` 2γ2κΣ ‹ q ´ k ¨ ∇xp

˛
‚. (18)

Theorem 3.1 (Spectral stability for the Hartree equation) Let k P Zd and ω ą 0 such that
the dispersion relation (12) is satisfied. Suppose (9) holds. Then the spectrum of Lk, the lineariza-
tion of (13) around the plane wave uωpt, xq “ eiωt1pxq, in L2pTd;Cq ˆL2pTd;Cq is contained in iR.
Consequently, this wave is spectrally stable in L2pTdq.

Proof. To prove Theorem 3.1, we expand q, p and σ1 by means of their Fourier series

qpt, xq “
ÿ

mPZd

Qmptqeim¨x, Qmptq “ 1

p2πqd
ˆ

Td

qpt, xqe´im¨x dx,

ppt, xq “
ÿ

mPZd

Pmptqeim¨x, Pmptq “ 1

p2πqd
ˆ

Td

ppt, xqe´im¨x dx,

σ1pxq “
ÿ

mPZd

σ1,me
im¨x, σ1,mptq “ 1

p2πqd
ˆ

Td

σ1pxqe´im¨x dx.

Note that σ1 being real and radially symmetric, we have

σ1,m “ σ1,m “ σ1,´m (19)

and, by definition,
@
σ1

D
Td “ p2πqdσ1,0. As a consequence, we obtain

Lk

ˆ
q

p

˙
“

¨
˚̊
˝

ř
mPZd

ˆ
m2

2
Pm ´ ik ¨ mQm

˙
eim¨x

ř
mPZd

ˆ
´m2

2
Qm ´ ik ¨ mPm ` 2p2πq2dγ2κ|σ1,m|2Qm

˙
eim¨x

˛
‹‹‚

“ Lk,0
ˆ
Q0

P0

˙
`

ÿ

mPZdrt0u
Lk,m

ˆ
Qm
Pm

˙
eik¨x (20)

with

Lk,0 “
ˆ

0 0
2p2πq2dγ2κ|σ1,0|2 0

˙
and Lk,m “

˜
´ik ¨m m2

2

´m2

2
` 2p2πq2dγ2κ|σ1,m|2 ´ik ¨ m

¸
(21)

for m P Zd r t0u.

9



Note that, since the Fourier modes are uncoupled,

ˆ
q

p

˙
is a solution to (17) if and only if the

Fourier coefficients

ˆ
Qm
Pm

˙
satisfy

Bt
ˆ
Qmptq
Pmptq

˙
“ Lk,m

ˆ
Qmptq
Pmptq

˙

for any m P Zd. Similarly, λ P C is an eigenvalue of the operator Lk if and only if there exists at
least one Fourier mode m P Zd such that λ is an eigenvalue of the matrix Lk,m, i.e. there exists
pqm, pmq , p0, 0q such that

λqm ´ m2

2
pm ` ik ¨ mqm “ 0,

λpm ` m2

2
qm ` ik ¨ mpm “ 2p2πq2dγ2κ|σ1,m|2qm.

(22)

A straightforward computation gives that λ0 “ 0 is the unique eigenvalue of the matrix Lk,0
with eigenvector p0, 1q. This means that KerpLkq contains at least the vector subspace spanned by

the constant function x P Td ÞÑ
ˆ

0
1

˙
, which corresponds to the constant solution upt, xq “ i of (16).

Next, if m P Zd r t0u, λm is an eigenvalue of Lk,m if it is a solution to

pλ ` ik ¨mq2 ´ m2

2

ˆ
´m2

2
` 2p2πq2dγ2κ|σ1,m|2

˙
“ 0.

This is a second order polynomial equation for λ and the roots are given by

λm,˘ “ ´ik ¨ m˘ |m|
2

b
´m2 ` 4γ2κp2πq2d|σ1,m|2.

If the smallness condition (9) holds, the argument of the square root is negative for any m P Zdrt0u,
and thus the roots λ are all purely imaginary (and we note that λ´m,˘ “ λm,¯). More precisely,
we have the following statement.

Lemma 3.2 (Spectral stability for the Hartree equation) Let k,m P Zd and Lk,m defined
as in (21). Then

1. λ0 “ 0 is the unique eigenvalue of Lk,0 and KerpLk,0q “ span

"ˆ
0
1

˙*
;

2. for any m P Zd r t0u, the eigenvalue of Lk,m are

λm,˘ “ ´ik ¨ m˘ |m|
2

b
´m2 ` 4γ2κp2πq2d|σ1,m|2.

(a) if 4γ2κp2πq2d |σ1,m|2
m2 ď 1, then λm,˘ P iR;

(b) if 4γ2κp2πq2d |σ1,m|2
m2 ą 1, then λm,˘ P C r iR. Moreover, Repλm,`q ą 0.

Now, (9) implies 4γ2κp2πq2d |σ1,m|2
m2 ă 1 for all m P Zd r t0u, so that σpLkq Ă iR and uωpt, xq “

eiωt1pxq is spectrally stable. Conversely, if σ1, σ2 and γ are such that there exists m˚ P Zd r t0u

10



verifying 4γ2κp2πq2d |σ1,m˚ |2
m2

˚
ą 1, then the plane wave uω is spectrally unstable for any k P Zd and

ω ą 0 that satisfy the dispersion relation (12). This proves Proposition 3.1.

We observe that this result is consistent with the linear stability analysis of (7), see [40, The-
orem 1], when replacing formally Σ by the delta-Dirac. The analogy should be considered with
caution, though, since the functional difficulties are substantially different: here u ÞÑ ´1

2
∆Tdu ´

2γ2κΣ‹Repuq is a compact perturbation of ´1
2
∆Td , which has a compact resolvent hence a spectral

decomposition.
It is important to remark that the analysis of eigenproblems for Lk has consequences on the

behavior of solutions to (17) of the particular form

Qpt, xq “ eλtqpxq, P pt, xq “ eλtppxq.

We warn the reader that spectral stability excludes the exponential growth of the solutions of the
linearized problem when the smallness condition (9) holds, but a slower growth is still possible.
This can be seen by direct inspection for the mode m “ 0: we have BtQ0 “ 0, so that Q0ptq “ Q0p0q
and BtP0 “ 2p2πq2dκ

@
σ1

D2

TdQ0p0q which shows that the solution can grow linearly in time

P0ptq “ P0p0q ` 2p2πq2dγ2κ
@
σ1

D2

TdQ0p0qt.

In fact, excluding the mode m “ 0 suffices to guaranty the linearized stability.

Theorem 3.3 (Linearized stability for the Hartree equation) Suppose (9). Let w be the
solution of (16) associated to an initial data wInit P H1pTdq such that

´

Td w
Init dx “ 0. Then,

there exists a constant C ą 0 such that suptě0 }wpt, ¨q}H1 ď C.

Proof. Note that if
´

Td w
Init dx “ 0 then the corresponding Fourier coefficients Q0p0q and P0p0q

are equal to 0. As a consequence, Q0ptq “ P0ptq “ 0 for all t ě 0, so that
´

Td wpt, xq dx “ 0 for all
t ě 0.

The proof follows from energetic consideration. Indeed, we observe that, on the one hand,

1

2

d

dt

ˆ

Td

|∇w|2 dx “ ´γ2κ

2i

ˆ

Td

Σ ‹ pw `wq∆pw ´ wq dx,

and, on the other hand,

1

2

d

dt

ˆ

Td

Σ ‹ pw ` wqpw `wq dx

“ ´ 1

2i

ˆ

Td

Σ ‹ pw ` wq∆pw ´ wq dx´ k ¨
ˆ

Td

∇pw ` wqΣ ‹ pw ` wq dx,

where we get rid of the last term in the right hand side by assuming k “ 0. This leads to the
following energy conservation property

d

dt

"
1

2

ˆ

Td

|∇w|2 dx´ γ2κ

2

ˆ

Td

Σ ‹ pw ` wqpw ` wq dx

*
“ 0

which holds for k “ 0. We denote by E0 the energy of the initial data wInit. Finally, we can simply
estimateˇ̌

ˇ̌
ˆ

Td

Σ ‹ pw ` wqpw ` wq dx

ˇ̌
ˇ̌ ď }Σ ‹ pw ` wq}L2}w ` w}L2 ď }Σ}L1}w ` w}2

L2 ď 4}Σ}L1}w}2
L2 .

11



To conclude, we use the Poincaré-Wirtinger estimate. Indeed, since we have already remarked that
the condition

´

Td w
Init dx “ 0 implies

´

Td wpt, xq dx “ 0 for any t ě 0, we can write

}wpt, ¨q}2
L2 “

›››wpt, ¨q ´ 1

p2πqd
ˆ

Td

wpt, yq dy
›››

2

L2

“ p2πqd
ÿ

mPZdrt0u
|cmpwpt, ¨qq|2

ď p2πqd
ÿ

mPZdrt0u
m2|cmpwpt, ¨qq|2 “ }∇wpt, ¨q}2

L2

for any t ě 0, where the cmpwpt, ¨qq’s are the Fourier coefficients of the function x P Td ÞÑ wpt, xq.
Hence, for any solution with zero mean, we infer, for all t ě 0,

2E0 “
ˆ

Td

|∇w|2pt, xq dx´γ2κ

ˆ

Td

Σ ‹ pw`wqpw`wqpt, xq dx ě p1´ 4γ2κ}Σ}L1q
ˆ

Td

|∇wpt, xq|2 dx.

As a consequence, if (9) is satisfied, we obtain

sup
tě0

}wpt, ¨q}H1 ď 2

d
E0

1 ´ 4γ2κ}Σ}L1

.

The stability estimate extends to the situation where k , 0. Indeed, from the solution w of
(16), we set

vpt, xq “ wpt, x ` tkq.
It satisfies iBtv ` 1

2
∆xv “ ´2γ2κΣ ‹ Repvq. Hence, repeating the previous argument, }vpt, ¨q}H1 “

}wpt, ¨q}H1 remains uniformly bounded on p0,8q. This step of the proof relies on the Galilean invari-
ance of (5); it could have been used from the beginning, but it does not apply for the Schrödinger-
Wave system.

Remark 3.4 The analysis applies mutadis mutandis to any equation of the form (1a), with the
potential defined by a kernel Σ and a strength encoded by the constant γ2κ. Then, the stability

criterion is set on the quantity 4γ2κp2πqd |pΣm|
m2 For instance, the elementary solution of pa2´∆xqΣ “

δx“0 with periodic boundary condition has its Fourier coefficients given by pΣm “ 1
p2πqdpa2`m2q ą 0.

Coming back to the physical variable, in the one-dimension case, the function Σ reads

Σpxq “ e´a|x|

2a
` coshpaxq
ape2aπ ´ 1q .

The linearized stability thus holds provided 4γ2κp2πq2d 1
a2`1

ă 1.

3.2 Orbital stability

In this subsection, we wish to establish the orbital stability of the plane wave uωpt, xq “ eiωt1pxq
as a solution to (13) for k P Zd and ω ą 0 that satisfy the dispersion relation (12). As pointed
out before, (13) is invariant under multiplications by a phase factor. This leads to define the
corresponding orbit through upxq “ 1pxq by

O1 “ teiθ, θ P Ru.

12



Intuitively, orbital stability means that the solutions of (13) associated to initial data close enough
to the constant function x P Td ÞÑ 1 “ 1pxq remain at a close distance to the set O1. Stability
analysis then amounts to the construction of a suitable Lyapounov functional satisfying a coercivity
property. This functional should be a constant of the motion and be invariant under the action of
the group that generates the orbit O1. Hence, the construction of such a functional relies on the
invariants of the equation. Moreover, the plane wave has to be a critical point on the Lyapounov
functional so that the coercivity can be deduced from the properties of its second variation. The
difficulty here is that, in general, the bilinear symmetric form defining the second variation of the
Lyapounov function is not positive on the whole space: according to the strategy designed in [22],
see also the review [47], it will be enough to prove the coercivity on an appropiate subspace. Here
and below, we adopt the framework presented in [4] (see also [5]).

Inspired by the strategy designed in [4, Section 8 & 9], we introduce, for any k P Zd and ω ą 0
satisfying the dispersion relation (12), the set

Sω “
!
u P H1pTd;Cq, F puq “ F p1q “ p2πqd

2
“ p2πqd k2{2 ` ω

2γ2κ
@
σ1

D2

Td

)
;

Sω is therefore the level set of the solutions of (13), associated to the plane wave pt, xq ÞÑ uωpt, xq “
eiωt1pxq. Next, we introduce the functional

Lωpuq “ H puq ` ωF puq ´
dÿ

j“1

kjGjpuq, (23)

which is conserved by the solutions of (13). We have

BuLωpuqpvq “ Re

ˆ
1

2

ˆ

Td

p´∆uqv dx` k2

2

ˆ

Td

uv dx

´γ2κ

¨

TdˆTd

Σpx´ yq|upyq|2upxqvpxq dy dx`ω
ˆ

Td

uv dx

˙
.

As a matter of fact, we observe that
BuLωp1q “ 0

owing to the dispersion relation. Next, we get

B2
uLωpuqpv,wq “ Re

ˆ
1

2

ˆ

Td

p´∆ ` k2qwv dx

´2γ2κ

¨

TdˆTd

Σpx ´ yqRe
`
upyqwpyq

˘
upxqvpxq dy dx

´γ2κ

¨

TdˆTd

Σpx´ yq|upyq|2wpxqvpxq dy dx` ω

ˆ

Td

wv dx

˙
.

Still by using the dispersion relation, we obtain

B2
uLωp1qpv,wq “ Re

¨
˚̊
˚̋
ˆ

Td

ˆ
´∆w

2
´ 2γ2κΣ ‹ Repwq

˙

looooooooooooooooomooooooooooooooooon
:“Sw

vpxq dx

˛
‹‹‹‚“ xSw|vy.
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S : H2pTdq Ă L2pTdq Ñ L2pTdq is an unbounded linear operator and its spectral properties will
play an important role for the orbital stability of uω. Note that the operator S is the linearized
operator (18), up to the advection term k ¨ ∇.

The main result of this subsection is the following.

Theorem 3.5 (Orbital stability for the Hartree equation) Let k P Zd and ω ą 0 such that
the dispersion relation (12) is satisfied. Suppose (9) holds. Then the plane wave uωpt, xq “ eiωt1pxq
is orbitally stable, i.e.

@ε ą 0, Dδ ą 0, @vInit P H1pTd;Cq, }vInit ´ 1}H1 ă δ ñ sup
tě0

distpvptq,O1q ă ε (24)

where distpv,O1q “ infθPr0,2πr }v ´ eiθ1} and pt, xq ÞÑ vpt, xq P C0pr0,8q;H1pTdqq stands for the

solution of (13) with Cauchy data vInit.

The key ingredient to prove Theorem 3.5 is the following coercivity estimate on the Lyapounov
functional.

Lemma 3.6 Let k P Zd and ω ą 0 such that the dispersion relation (12) is satisfied. Suppose that
there exist η ą 0 and c ą 0 such that

@w P Sω, dpw,O1q ă η ñ Lωpwq ´ Lωp1q ě c distpw,O1q2. (25)

Then the the plane wave uωpt, xq “ eiωt1pxq is orbitally stable.

Proof of Theorem 3.5. Assume that Lemma 3.6 holds and suppose, by contradiction, that uω
is not orbitally stable. Hence, there exists 0 ă ε0 ă 2

3
η such that

@n P N r t0u, DuInit
n P H1pTdq, }uInit

n ´ 1}H1 ă 1

n
and Dtn P r0,`8r,distpunptnq,O1q “ ε0,

pt, xq ÞÑ unpt, xq P C0pr0,8q;H1pTdqq being the solution of (13) with Cauchy data uInit
n . To

apply the coercivity estimate of Lemma 3.6, we define zn “
´

F p1q
F punptnqq

¯1{2

unptnq. It is clear that

zn P Sω since F pznq “ F p1q. Moreover,
`
unptnq

˘
nPNrt0u is a bounded sequence in H1pTdq and

limnÑ`8 F punptnqq “ F p1q. Indeed, on the one hand, there exists γ P r0, 2πr such that

}unptnq}H1 ď }unptnq ´ eiθ1}H1 ` }eiθ1}H1 ď 2dpunptnq,O1q ` }eiθ1}H1 “ 2ε0 ` }1}H1

and, on the other hand,

|F punptnqq ´ F p1q| “ 1

2
|}unptnq}2

L2 ´ }1}2
L2| ď }unptnq ´ 1}L2pε0 ` }1}H1q ă 1

n
pε0 ` }1}H1q.

As a consequence, limnÑ`8 }zn ´ unptnq}H1 “ 0. This implies for n P N large enough,

ε0

2
ď dpzn,O1q ď 3ε0

2
ă η.

Hence, thanks to Lemma 3.6, we obtain

LωpuInit
n q ´ Lωp1q “ Lωpunptnqq ´ Lωp1q “ Lωpunptnqq ´ Lωpznq ` Lωpznq ´ Lωp1q

ě Lωpunptnqq ´ Lωpznq ` cdpzn,O1q2 ě Lωpunptnqq ´ Lωpznq ` c

4
ε2

0.
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Finally, using the fact that BuLωp1q “ 0 and B2
uLωp1qpw,wq ď C}w}2

H1 , we deduce that

lim
nÑ`8

pLωpuInit
n q ´ Lωp1qq “ 0,

lim
nÑ`8

pLωpunptnqq ´ Lωpznqq “ 0.

We are thus led to a contradiction.

Since BuLωp1q “ 0, the coercivity estimate (25) can be obtained from a similar estimate on the
bilinear form B2

uLωp1qpw,wq for any w P H1. As pointed out before, the difficulty lies in the fact
that, in general, this bilinear form is not positive on the whole space H1. The following lemma
states that it is enough to have a coercivity estimate on B2

uLωp1qpw,wq for any w P T1SωXpT1O1qK.
Recall that the tangent set to Sω is given by

T1Sω “ tu P H1pTd;Cq, BuF p1q “ 0u “
"

pq, pq P H1pTd,Rq ˆH1pTd,Rq,
Aˆ

q

p

˙ ˇ̌
ˇ
ˆ

1
0

˙E
“ 0

*

This set is the orthogonal to 1 with respect to the inner product defined in (15). The tangent set
to O1 (which is the orbit generated by the phase multiplication) is

T1O1 “ spanRti1u

so that

pT1O1qK “ tu P H1pTd,Cq, xu, i1y “ 0u “
"

pq, pq : Td Ñ R,
Aˆ

q

p

˙ ˇ̌
ˇ
ˆ

0
1

˙E
“ 0

*
.

Lemma 3.7 Let k P Zd and ω ą 0 such that the dispersion relation (12) is satisfied. Suppose that
there exists c̃ ą 0

B2
uLωp1qpu, uq ě c̃}u}2

H1 (26)

for any u P T1S1 X pT1O1qK. Then there exist η ą 0 and c ą 0 such that (25) is satisfied.

Proof. Let w P Sω such that distpw,O1q ă η with η ą 0 small enough. By means of an implicit
function theorem argument (see [4, Section 9, Lemma 8]), we obtain that there exists θ P r0, 2πr
and v P pT1O1qK such that

eiθw “ 1 ` v, distpw,O1q ď }v}H1 ď Cdistpw,O1q
for some positive constant C.

Next, we use the fact that H1pTdq “ T1Sω ‘ spanRt1u to write v “ v1 ` v2 with v1 P T1Sω X
pT1O1qK and v2 P spanRt1u X pT1O1qK. Since v “ eiθw ´ 1 and F pwq “ F p1q, we obtain

0 “ F peiθwq ´ F p1q “ 1

2

ˆ

Td

|v|2 dx` Re

ˆ

Td

pv1 ` v2q1 dx “ 1

2

ˆ

Td

|v|2 dx` Re

ˆ

Td

v21 dx.

Since v2 P spanRt1u, it follows that

}v2}H1 ď }v}2
H1

}1}L2

.

This implies

}v1}H1 “ }v ´ v2}H1 ě }v}H1 ´ 1

}1}L2

}v}2
H1 ě 1

2
}v}H1
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provided }v}H1 ď }1}L2 . As a consequence, if }v}H1 is small enough, using that B2
uLωp1qpw, zq ď

C}w}H1}z}H1, we obtain

B2
uLωp1qpv1, v2q ď C}v}3

H1,

B2
uLωp1qpv2, v2q ď C}v}4

H1.

This leads to
B2
uLωp1qpv, vq “ B2

uLωp1qpv1, v1q ` op}v}2
H1q.

Finally, let w P Sω be such that dpw,O1q ă η. We have

Lωpwq ´ Lωp1q “ Lωpeiθwq ´ Lωp1q “ 1

2
B2
uLωp1qpv, vq ` op}v}2

H1q

“ 1

2
B2
uLωp1qpv1, v1q ` op}v}2

H1q ě c̃}v1}2
H1 ` op}v}2

H1 q ě c̃

2
}v}2

H1 ` op}v}2
H1 q

ě c̃

4
distpw,O1q2

where we use BuLωp1q “ 0 and v1 P T1Sω X pT1O1qK.

At the end of the day, to prove the orbital stability of the plane wave uωpt, xq “ eiωt1pxq it
is enough to prove (26) for any u P T1S1 X pT1O1qK. This can be done by studying the spectral
properties of the operator S. However, in the simpler case of the Hartree equation, the coercivity
of B2

uLωp1q on T1S1 X pT1O1qK can be also obtained directly from the expression

B2
uLωp1qpu, uq “ Re

ˆ
ˆ

Td

ˆ
´∆u

2
´ 2γ2κΣ ‹ Repuq

˙
upxq dx

˙
“ xSu|uy. (27)

Let u P T1S1 X pT1O1qK and write u “ q ` ip. This leads to

B2
uLωp1qpu, uq “ 1

2

ˆ

Td

|∇q|2 dx´ 2γ2κ

ˆ

Td

pΣ ‹ qqq dx` 1

2

ˆ

Td

|∇p|2 dx.

Moreover, since u P T1S1 X pT1O1qK, we have
ˆ

Td

q dx “ 0 and

ˆ

Td

p dx “ 0.

As a consequence, thanks to the Poincaré-Wirtinger inequality, we deduce

B2
uLωp1qpu, uq ě 1

2

ˆ

Td

|∇q|2 dx´ 2γ2κ

ˆ

Td

pΣ ‹ qqq dx` 1

4
}p}2

H1. (28)

Next, we expand q and Σ in Fourier series, i.e.

qpxq “
ÿ

mPZd

qme
im¨x and Σpxq “

ÿ

mPZd

Σme
im¨x.

Note that, if Σ “ σ1 ‹ σ1, then Σm “ p2πqdσ2
1,m. Moreover,

´

Td q dx “ 0 implies q0 “ 0. Hence,

1

2

ˆ

Td

|∇q|2 dx´ 2γ2κ

ˆ

Td

pΣ ‹ qqq dx “ p2πqd
ÿ

mPZdrt0u

ˆ
m2

2
´ 2γ2κp2πqdΣm

˙
q2
m

“ p2πqd
ÿ

mPZdrt0u

ˆ
1 ´ 4γ2κp2πqdΣm

m2

˙
m2

2
q2
m. (29)

As a consequence, we obtain the following statement.
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Proposition 3.8 Let k P Zd and ω ą 0 such that the dispersion relation (12) is satisfied. Suppose
that there exists δ P p0, 1q such that

4γ2κp2πq2d
σ2

1,m

m2
ď δ (30)

for all m P Zd r t0u. Then, there exists c̃ ą 0 such that

B2
uLωp1qpu, uq ě c̃}u}2

H1 (31)

for any u P T1S1 X pT1O1qK.

Proof. If (30) holds, then (28)-(29) lead to

B2
uLωp1qpu, uq ě 1 ´ δ

2
p2πqd

ÿ

mPZdrt0u
m2q2

m ` 1

4
}p}H1 “ 1 ´ δ

2
}∇q}2

L2 ` 1

4
}p}2

H1 ě 1 ´ δ

4
}u}2

H1 .

where in the last inequality we used the Poincaré-Wirtinger inequality together with the fact that
´

Td q dx “ 0.

Remark 3.9 By decomposing the linear operator S into real and imaginary part and by using
Fourier series, one can study its spectrum. In particular, S has exactly one negative eigenvalue
λ´ “ ´2γ2κ

@
Σ
D
Td with eigenspace spanRt1u. Moreover, KerpSq “ spanRti1u. Finally, if (30) is

satisifed, then infpσpSq X p0,8qq ě 1´δ
2

. Then, by applying the same arguments as in [5, Section
6], we can recover the coercivity of B2

uLωp1q on T1S1 X pT1O1qK.

Finally, Proposition 3.8 together with Lemma 3.7 and Lemma 3.6, gives Theorem 3.5 and the
orbital stability of the plane wave uω.

4 Stability analysis of the Schrödinger-Wave system:

the case k “ 0

Like in the case of the Hartree system, to study the stability of the plane wave solutions of the
Schrödinger-Wave system (3a)-(3c), it is useful to write its solutions in the form

Upt, xq “ eik¨xupt, xq

with pt, x, zq ÞÑ pupt, xq,Ψpt, x, zqq solution to

iBtu` 1

2
∆xu´ k2

2
u ` ik ¨ ∇xu “ ´

ˆ
γσ1 ‹

ˆ

Rn

σ2Ψ dz

˙
u,

1

c2
B2
ttΨ ´ ∆zΨ “ ´γσ2σ1 ‹ |u|2.

(32)

If k P Zd and ω ą 0 satisfy the dispersion relation (12),

uωpt, xq “ eiωt1pxq, Ψ˚pt, x, zq “ ´γΓpzq
@
σ1

D
Td , Π˚pt, x, zq “ BtΨ˚pt, x, zq “ 0
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with Γ the solution of ´∆zΓ “ σ2 (see (11)), is a solution to (32) with initial condition

uωp0, tq “ 1pxq, Ψ˚p0, x, zq “ ´γΓpzq
@
σ1

D
Td , Π˚p0, x, zq “ 0.

For the time being, we stick to the framework identified for the study of the asymptotic Hartree
equation. Problem (32) has a natural Hamiltonian symplectic structure when considered on the
real Banach space H1pTdqˆH1pTdqˆL2pTd;

.
H1pRnqqˆL2pTdˆRnq. Indeed, if we write u “ q` ip,

with p, q real-valued, we obtain

Bt

¨
˚̊
˝

q

p

Ψ
Π

˛
‹‹‚“

ˆ
J 0
0 ´J

˙
∇pq,p,Ψ,ΠqHSW pq, p,Ψ,Πq

with

J “
ˆ

0 1
´1 0

˙

and

HSW pq, p,Ψ,Πq “ 1

2

ˆ
1

2

ˆ

Td

|∇q|2 ` |∇p|2 dx` k2

2

ˆ

Td

pp2 ` q2q dx´
ˆ

Td

pk ¨ ∇q dx`
ˆ

Td

qk ¨ ∇p dx

˙

` 1

4

ˆ

TdˆRn

ˆ
Π2

c2
` |∇zΨ|2

˙
dxdz

` γ

2

ˆ

Td

ˆ
ˆ

TdˆRn

pσ1px ´ yqσ2pzqΨpt, y, zq dy dz

˙
pp2 ` q2qpxq dx.

Coming back to u “ q ` ip, we can write

HSW pu,Ψ,Πq “ 1

2

ˆ
1

2

ˆ

Td

|∇u|2 dx` k2

2

ˆ

Td

|upxq|2 dx`
ˆ

Td

k ¨ p´i∇uqu dx

˙

` 1

4

ˆ

TdˆRn

ˆ
Π2

c2
` |∇zΨ|2

˙
dxdz

` γ

2

ˆ

Td

ˆ
ˆ

TdˆRn

pσ1px ´ yqσ2pzqΨpt, y, zq dy dz

˙
|upxq|2 dx. (33)

As a consequence, HSW is a constant of the motion. Moreover, it is clear that (32) is invariant
under multiplications by a phase factor of u so that F puq “ 1

2
}u}2

L2 is conserved by the dynamics.
However, now, the quantities

Gjpuq “ 1

2

ˆ

Td

ˆ
1

i
Bxj

u

˙
udx (34)

are not constants of the motion:

d

dt
Gjpuqptq “ γ

2

ˆ

Td

ˆ

Td

Bxj
σ1px ´ yq

ˆ
ˆ

Rn

σ2pzqΨpt, y, zq dz

˙
|u|2pt, xq dy dx.

As a consequence, they cannot be used in the construction of the Lyapounov functional as we did
for the Hartree system (see (23)).
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Finally, we consider the Banach space H1pTdqˆH1pTdqˆL2pTd;
.
H1pRnqqˆL2pTdˆRnq endowed

with the inner product

C
¨
˚̊
˝

q

p

Ψ
Π

˛
‹‹‚
ˇ̌
ˇ

¨
˚̊
˝

q1

p1

Ψ1

Π1

˛
‹‹‚

G
“
ˆ

Td

`
pp1 ` qq1q dx`

ˆ

TdˆRn

p∇zΨ∇zΨ
1 ` ΠΠ1q dxdz

that can be also interpreted as an inner product for complex valued functions:

xpu,Ψ,Πq|pu1,Ψ1,Π1qy “ Re

ˆ

Td

uu1 dx`
ˆ

TdˆRn

p∇zΨ ¨ ∇zΨ
1 ` ΠΠ1q dxdz. (35)

We denote by } ¨ } the norm on H1pTdq ˆ L2pTd;
.
H1pRnqq ˆ L2pTd ˆ Rnq induced by this inner

product.

4.1 Preliminary results for the linearized problem: spectral sta-

bility when k “ 0

As before, we linearize the system (3a)-(3c) around the plane wave solution obtained in Section 2.1.
Namely, we expand

Upt, xq “ Ukpt, xqp1 ` upt, xqq, Ψpt, x, zq “ ´γ
@
σ1

D
TdΓpzq ` ψpt, x, zq

and, assuming that u, ψ and their derivatives are small, we are led to the following equations for
the fluctuation pt, xq ÞÑ upt, xq P C, pt, x, zq ÞÑ ψpt, x, zq P R

iBtu` 1

2
∆xu` ik ¨ ∇xu “ γΦ,

´ 1

c2
B2
ttψ ´ ∆zψ

¯
pt, x, zq “ ´γσ2pzqσ1 ‹ ρpt, xq,

ρpt, xq “ 2Re
`
upt, xq

˘
,

Φpt, xq “
¨

TdˆRn

σ1px´ yqσ2pzqψpt, y, zq dz dy.

(36)

We split the solution into real and imaginary parts

upt, xq “ qpt, xq ` ippt, xq, qpt, xq “ Repupt, xqq, ppt, xq “ Impupt, xqq.

We obtain

pBtq ` 1

2
∆xp` k ¨ ∇xqqpt, xq “ 0,

pBtp´ 1

2
∆xq ` k ¨ ∇xpqpt, xq “ ´γ

ˆ
σ1 ‹
ˆ

Rn

σ2pzqψpt, ¨, zq dz

˙
pxq,

´ 1

c2
B2
ttψ ´ ∆zψ

¯
pt, x, zq “ ´2γσ2pzqσ1 ‹ qpt, xq.

(37)

19



It is convenient to set

π “ ´ 1

2c2
Btψ,

in order to rewrite the wave equation as a first order system. We obtain

Bt

¨
˚̊
˝

q

p

ψ

π

˛
‹‹‚“ Lk

¨
˚̊
˝

q

p

ψ

π

˛
‹‹‚ (38)

where Lk is the operator defined by

Lk :

¨
˚̊
˝

q

p

ψ

π

˛
‹‹‚ ÞÝÑ

¨
˚̊
˚̊
˚̊
˝

´1

2
∆xp´ k ¨ ∇xq

1

2
∆xq ´ k ¨ ∇xp´ γσ1 ‹

ˆ
ˆ

Rn

σ2ψ dz

˙

´2c2π

´1

2
∆zψ ` γσ2σ1 ‹ q

˛
‹‹‹‹‹‹‚

For the next step, we proceed via Fourier analysis as before. We expand q, p, ψ, π and σ1 by means
of their Fourier series:

ψpt, x, zq “
ÿ

mPZd

ψmpt, zqeim¨x, ψmpt, zq “ 1

p2πqd
ˆ

Td

ψpt, x, zqe´im¨x dx,

πpt, x, zq “
ÿ

mPZd

πmpt, zqeim¨x, πmpt, zq “ 1

p2πqd
ˆ

Td

πpt, x, zqe´im¨x dx.

Moreover, recall that σ1 being real and radially symmetric, (19) holds and, by definition,
@
σ1

D
Td “

p2πqdσ1,0.
As a consequence, since the Fourier modes are uncoupled, the Fourier coefficients

pQmptq, Pmptq, ψmpt, zq, πmpt, zqq

satisfy

Bt

¨
˚̊
˝

Qm
Pm
ψm
πm

˛
‹‹‚“ Lk,m

¨
˚̊
˝

Qm
Pm
ψm
πm

˛
‹‹‚ (39)

where Lk,m stands for the operator defined by

Lk,m

¨
˚̊
˝

Qm
Pm
ψm
πm

˛
‹‹‚“

¨
˚̊
˚̊
˚̊
˚̋

´ik ¨mQm ` m2

2
Pm

´m2

2
Qm ´ ik ¨ mPm ´ γp2πqdσ1,m

ˆ

Rn

σ2pzqψm dz

´2c2πm

γp2πqdσ2pzqσ1,mQm ´ 1

2
∆zψm

˛
‹‹‹‹‹‹‹‚
.

Like for the Hartree equation, the behavior of the mode m “ 0 can be analysed explicitly.
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Lemma 4.1 (The mode m “ 0) For any k P Zd, the kernel of Lk,0 is spanned by p0, 1, 0, 0q.
Moreover, equation (39) for m “ 0 admits solutions which grow linearly with time.

Proof. Let pQ0, P0, ψ0, π0q P KerpLk,0q. It means that
$
’’’&
’’’%

γp2πqdσ1,0

ˆ

Rn

σ2pzqψ0pzq dz “ 0,

π0 “ 0,

∆zψ0 “ 2γp2πqdσ2pzqσ1,0Q0,

which yields ψ0pzq “ ´2γ
@
σ1

D
TdQ0Γpzq with Γpzq “ p´∆q´1σ2pzq so that

´2γ2
@
σ1

D2

TdκQ0 “ 0.

It implies that Q0 “ 0, ψ0 “ 0 while P0 is left undetermined.
For m “ 0, the first equation in (39) tells us that Q0ptq “ Q0p0q P C is constant. Next, we get

Btψ0 “ ´2c2π0 which leads to

B2
ttψ0 ´ c2∆zψ0 “ ´σ2pzq 2γc2

@
σ1

D
TdQ0p0qlooooooooomooooooooon

:“C1

(40)

The solution of (40) with initial condition pψ0pzq, π0pzq “ ´ 1
2c2 Btψp0, zqq P

.
H1pRnqˆL2pRnq satisfies

pψ0pt, ξq “ pψ0p0, ξq cospc|ξ|tq ´ 2c2pπ0pξqsinpc|ξ|tq
c|ξ| ´

ˆ t

0

sinpc|ξ|sq
c|ξ| pσ2pξqC1 ds

where pψ0pt, ξq and pπ0pt, ξq are the Fourier transforms of z ÞÑ ψpt, zq and z ÞÑ πpt, zq respectively.
Finally, integrating

BtP0 “ ´γ
@
σ1

D
Tdloooomoooon

:“C2

ˆ

Rn

σ2pzqψ0pzq dz

we obtain

P0ptq “ P0p0q ` C2

ˆ

Rn

pσ2pξq pψ0p0, ξqsinpc|ξ|tq
c|ξ|

dξ

p2πqn ´ 2c2C2

ˆ

Rn

pσ2pξqpπ0p0, ξq1 ´ cospc|ξ|tq
c2|ξ|2

dξ

p2πqn

´ C1C2

ˆ t

0

ˆ s

0

pcpτq dτ ds

where

pcpτq “
ˆ

Rd

|pσ2pξq|2 sinpc|ξ|τq
c|ξ|

dξ

p2πqn .

This kernel already appears in the analysis performed in [10, 19]. The contribution involving the
initial data of the vibrational field can be uniformly bounded by

1

p2πqn
ˆ
ˆ

Rd

|pσ2pξq|2
c2|ξ|2 dξ

˙1{2
#ˆ
ˆ

Rd

| pψ0p0, ξq|2 dξ

˙1{2

` 4c2

ˆ
ˆ

Rd

|pπ0p0, ξq|2
c2|ξ|2 dξ

˙1{2
+
.

Next, as a consequence of (H2), it turns out that pc is compactly supported, with
´8

0
pcpτq dτ “ κ

c2 ,
see [10, Lemma 14] and [19, Section 2.4]. It follows that

ˆ t

0

ˆ s

0

pcpτq dτ ds “
ˆ t

0

pcpτq
ˆ
ˆ t

τ

ds

˙
dτ “

ˆ t

0

pt´ τqpcpτq dτ „
tÑ8

t
κ

c2
´
ˆ 8

0

τpcpτq dτ,
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which concludes the proof.

When k “ 0, basic estimates based on the energy conservation allow us to justify the stability
of the solutions with zero mean. However, in contrast to what has been established for the Hartree
system, this analysis does not extend to any mode k , 0, since the system is not Galilean invariant.

Theorem 4.2 (Linearized stability for the Schrödinger-Wave system when k “ 0) Let k “
0. Suppose (9) and let pu, ψ, πq be the solution of (36) associated to an initial data uInit P H1pTdq, ψInit P
L2pTd;

.

H1pRnqq, πInit P L2pTd ˆ Rnq such that
´

Td u
Init dx “ 0. Then, there exists a constant C ą 0

such that suptě0 }upt, ¨q}H1 ď C.

Proof. Again, we use the energetic properties of the linearized equation (36). We have already
remarked that

´

Td upt, xq dx “ 0 for any t ě 0 when
´

Td u
Init dx “ 0. We start by computing

d

dt

"
1

2

ˆ

Td

|∇xu|2 dx` 1

2

ˆ

TdˆRn

´ |Btψ|2
c2

` |∇zψ|2
¯

dz dx

*

“ ´ iγ

2

ˆ

Td

Φ∆xpu ´ uq dx´ γ

ˆ

TdˆRn

Btψσ2σ1 ‹ pu ` uq dz dx.

Next, we get

d

dt

ˆ

Td

Φpu` uq dx “
ˆ

TdˆRn

Btψσ2σ1 ‹ pu ` uq dz dx

` i

2

ˆ

Td

Φ∆xpu ´ uq dx´
ˆ

Td

Φk ¨ ∇xpu ` uq dx.

We get rid of the last term by assuming k “ 0 and we arrive in this case at

d

dt

"
1

2

ˆ

Td

|∇xu|2 dx` 1

2

ˆ

TdˆRn

´ |Btψ|2
c2

` |∇zψ|2
¯

dz dx` γ

ˆ

Td

Φpu` uq dx

*
“ 0.

We estimate the coupling term as follows
ˇ̌
ˇ̌
ˆ

Td

Φpu ` uq dx

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ˆ

TdˆRn

σ2pzqψpt, x, zqσ1 ‹ pu ` uqpt, xq dz dx

ˇ̌
ˇ̌

ď }σ1 ‹ pu` uq}L2 ˆ
ˆ
ˆ

Td

ˇ̌
ˇ
ˆ

Rn

σ2pzqψpt, x, zq dz
ˇ̌
ˇ
2

dx

˙1{2

ď }σ1}L1}u` u}L2 ˆ
ˆ
ˆ

Td

ˇ̌
ˇ
ˆ

Rn

pσ2pξq pψpt, x, ξq dξ

p2πqn
ˇ̌
ˇ
2

dx

˙1{2

ď 2}σ1}L1}u}L2 ˆ
ˆ
ˆ

Td

ˇ̌
ˇ
ˆ

Rn

pσ2pξq
|ξ| |ξ|| pψpt, x, ξq| dξ

p2πqn
ˇ̌
ˇ
2

dx

˙1{2

ď 2}σ1}L1}u}L2 ˆ
ˆ
ˆ

Rn

|pσ2pξq|2
|ξ|2 dξ

˙1{2

ˆ
ˆ
ˆ

TdˆRn

|ξ|2| pψpt, x, ξq|2 dξ

p2πqn dx

˙1{2

ď 2
?
κ}σ1}L1}u}L2 ˆ

ˆ
ˆ

TdˆRn

|∇zψpt, x, ξq|2 dz dx

˙1{2

“ 2
?
κ}σ1}L1}u}L2}∇zψ}L2

ď 1

2γ
}∇zψ}2

L2 ` 2κγ}σ1}2
L1}u}2

L2 .
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By using the Poincaré-Wirtinger inequality }u}L2 ď }∇xu}L2 , we deduce that

1

2

ˆ

Td

|∇xupt, xq|2 dx ď E0

1 ´ 4γ2κ}σ1}2
L1

,

where E0 depends on the energy of the initial state.

While it is natural to start with the linearized operator Lk in (38), it turns out that this
formulation is not well-adapted to study the spectral stability issue. The difficulties relies on the
fact that the wave part of the system induces an essential spectrum, reminiscent to the fact that
σessp´∆zq “ r0,8q. For instance, this is even an obstacle to set up a perturbation argument from
the Hartree equation, in the spirit of [15]. We shall introduce later on a more adapted formulation
of the linearized equation, which will allow us to overcome these difficulties (and also to go beyond
a mere perturbation analysis).

4.2 Orbital stability for the Schrödinger-Wave system when k “ 0

In this subsection, we wish to establish the orbital stability of the plane wave solution to (32)
obtained in Section 2.1, namely

uωpt, xq “ eiωt1pxq, Ψ˚pt, x, zq “ ´γΓpzq
@
σ1

D
Td , Π˚pt, x, zq “ 0

with k P Zd and ω ą 0 that satisfy the dispersion relation (12) and Γpzq “ p´∆q´1σ2pzq. The
system (32) being invariant under multiplications of u by a phase factor, we define the corresponding
orbit through p1pxq,´γΓpzq

@
σ1

D
Td , 0q by

O1 “ tpeiθ ,´γΓpzq
@
σ1

D
Td , 0q, θ P Ru.

As before, orbital stability intuitively means that the solutions of (32) associated to initial data
close enough to p1pxq,´γΓpzq

@
σ1

D
Td , 0q remain at a close distance to the set O1.

Let us introduce, for any k P Zd and ω ą 0 satisfying the dispersion relation (12), the set

Sω “
!

pu,Ψ,Πq P H1pTd;Cq ˆ L2pTd;
.
H1pRnqq ˆ L2pTd, L2pRnqq, F puq “ F p1q “ p2πqd

2

)
,

and the functional
Lω,kpu,Ψ,Πq “ HSW pu,Ψ,Πq ` ωF puq, (41)

intended to serve as a Lyapounov functional, where HSW is the constant of motion defined in (33).
For further purposes, we simply denote Lω “ Lω,0. Note that

Lω,kpu,Ψ,Πq “ HSW pu,Ψ,Πq ` 1

2i

ˆ

Td

k ¨ ∇u ūdx
loooooooooomoooooooooon

“
dÿ

j“1

kjGjpuq

`
´
ω ` k2

2

¯
F puq

with HSW defined in (8) and Gjpuq defined in (34). Thanks to the dispersion relation (12), only the
second term of this expression depends on k. Unfortunately, as pointed out before, the quantities
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Gjpuq are not constants of the motion so that the dependence on k of the Lyapounov functional
(41) cannot be disregarded, in contrast to what we did for the Hartree system in (23).

Next, as in subsection 3.2, we need to evaluate the first and second order variations of Lω,k.
We compute

Bpu,Ψ,ΠqHSW pu,Ψ,Πqpv, φ, τq

“ Re

ˆ
1

2

ˆ

Td

p´∆uqv dx` γ

ˆ

Td

ˆ
¨

TdˆRn

σ1px´ yqσ2pzqΨpt, y, zq dz dy

˙
upxqvpxq dx

˙

` γ

2

ˆ

Td

ˆ
¨

TdˆRn

σ1px´ yqσ2pzqφpt, y, zq dz dy

˙
|upxq|2 dy dx

` 1

2

¨

TdˆRn

´ 1

c2
Π τ ` p´∆zΨq φdz

¯
dx

and

B2
pu,Ψ,ΠqHSW pu,Ψ,Πq

`
pv, φ, τq, pv1, φ1, τ 1q

˘

“ Re

"
1

2

ˆ

Td

p´∆vqv1 dx

`γ
ˆ

Td

ˆ
¨

TdˆRn

σ1px´ yqσ2pzqpφpt, y, zqv1pxq ` φ1pt, y, zqvpxqq dz dy

˙
upxq dx

˙

`γ
ˆ

Td

ˆ
¨

TdˆRn

σ1px´ yqσ2pzqΨpt, y, zq dz dy

˙
vpxqv1pxq dx

˙*

` 1

2

¨

TdˆRn

´ 1

c2
τ τ 1 ` p´∆zφq φ1 dz

¯
dx.

Besides, we have

BuF puqpvq “ Re

ˆ
ˆ

Td

uv dx

˙
, B2

uF puqpv, v1q “ Re

ˆ
ˆ

Td

vv1 dx

˙
,

BuGjpuqpvq “ Im
`
´

Td Bxj
uv dx

˘
, B2

uGpuqpv, v1q “ Im
`
´

Td Bxj
v1v dx

˘
.

Accordingly, we are led to

Bpu,Ψ,ΠqLω,kp1,´γ
@
σ1

D
TdΓ, 0qpv, φ, τq

“ Re

ˆ
´γ2

@
σ1

D2

Tdκ

ˆ

Td

v dx`
´
ω ` k2

2

¯ˆ

Td

v dx` γ

2

@
σ1

D
Td

¨

TdˆRn

pσ2 ` ∆zΓq φdz dx

˙

“ 0

thanks to the dispersion relation (12) and the definition of Γ. Similarly, the second order derivative
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casts as

B2
pu,Ψ,ΠqLω,kp1,´γ

@
σ1

D
TdΓ, 0q

`
pv, φ, τq, pv, φ, τq

˘

“ Re

ˆ
1

2

ˆ

Td

p´∆vqv dx` 1

2

¨

TdˆRn

´τ2

c2
` p´∆zφq φdz

¯
dx

` 2γ

ˆ

Td

ˆ
¨

TdˆRn

σ1px´ yqσ2pzqφpt, y, zq dz dy

˙
vpxq dx

´ γ2
@
σ1

D
Td

ˆ

Td

ˆ
¨

TdˆRn

σ1px´ yqσ2pzqΓpzq dz dy

˙
vpxqvpxq dx`

´
ω ` k2

2

¯ ˆ

Td

vpxqvpxq dx

˙

` Im

˜
dÿ

j“1

kj

ˆ

Td

Bxj
vv dx

¸
.

The forth and fifth integrals combine as
ˆ

Td

´
ω ` k2

2
´ γ2κ

@
σ1

D2

Td

¯
vpxqvpxq dx “ 0

which cancels out by virtue of the dispersion relation (12). Hence we get

B2
pu,Ψ,ΠqLω,kp1,´γ

@
σ1

D
TdΓ, 0q

`
pv, φ, τq, pv, φ, τq

˘

“ Re

ˆ
1

2

ˆ

Td

p´∆vqv dx` 1

2

¨

TdˆRn

´τ2

c2
` p´∆zφq φdz

¯
dx

` 2γ

ˆ

Td

ˆ
¨

TdˆRn

σ1px ´ yqσ2pzqφpt, y, zq dz dy

˙
vpxq dx´ i

ˆ

Td

k ¨ ∇v v dx

˙
.

Remark 4.3 Note that the following continuity estimate holds: for any pv, φ, τq P H1pTd;Cq ˆ
L2pTd;

.

H1pRnqq ˆ L2pTd ˆ Rnq,

B2
pu,Ψ,ΠqLω,kp1,´γ

@
σ1

D
TdΓ, 0q

`
pv, φ, τq, pv, φ, τq

˘
ď 1

2
}∇v}2

L2 ` 1

2c2
}τ}2

L2 ` 1

2
}φ}2

L2
x

.

H1
z

` 2γκ1{2}σ1}L1}v}L2}φ}
L2

x

.

H1
z

` |k|}∇v}L2 }v}L2 ď 1

2

ˆ
p1 ` |k|q}v}2

H1 ` 1

c2
}τ}2

L2 ` C}φ}2

L2
x

.

H1
z

˙

ď maxp1{c2, 1 ` |k|, Cq
2

}pv, φ, τq}2

with C “ 1 ` 4γ2κ}σ1}2
L1 .

The functional Lω,k is conserved by the solutions of (32); however the difficulty relies on
justifying its coercivity. We are only able to answer positively in the specific case k “ 0. Hence,
the main result of this subsection restricts to this situation.

Theorem 4.4 (Orbital stability for the Schrödinger-Wave system) Let k “ 0 and ω ą 0
such that the dispersion relation (12) is satisfied. Suppose (9) holds. Then the plane wave solution
peiωt1pxq,´γΓpzq

@
σ
D
Td , 0q is orbitally stable, i.e.

@ε ą 0, Dδ ą 0, @pvInit, φInit, τ Initq P H1pTd;Cq ˆ L2pTd;
.

H1pRnqq ˆ L2pTd ˆ Rnq,
}vInit ´ 1}H1 ` }φInit ` γΓ

@
σ
D
Td}

L2
x

.

H1
z

` }τ Init}L2 ă δ ñ sup
tě0

distppvptq, φptq, τptqq,O1q ă ε (42)
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where distppv, φ, τq,O1q “ infθPr0,2πr }v ´ eiθ1}H1 ` }φ ` γΓ
@
σ
D
Td}

L2
x

.

H1
z

` }τ}L2 and pt, x, zq ÞÑ
pvpt, xq, φpt, x, zq, τpt, x, zqq stands for the solution of (32) with Cauchy data pvInit, φInit, τ Initq.

Using the same argument as in the case of Theorem 3.5, we can reduce the proof of Theorem
4.4 to the following coercivity estimate on the Lyapounov functional (and this is where we use that
Lω,k is a conserved quantity).

Lemma 4.5 Let k P Zd and ω ą 0 such that the dispersion relation (12) is satisfied. Suppose that
there exist η ą 0 and c ą 0 such that @pw,ψ, χq P Sω,

distppw,ψ, χq,O1q ă η ñ Lω,kppw,ψ, χqq ´ Lω,kpp1pxq,´γΓpzq
@
σ
D
Td , 0qq ě cdistppw,ψ, χq,O1q2.

(43)

Then the the plane wave solution peiωt1pxq,´γΓpzq
@
σ
D
Td , 0q is orbitally stable.

As we have seen before, since Bpu,ψ,ΠqLω,kpp1,´γΓpzq
@
σ
D
Td, 0qq “ 0, the coercivity estimate

(43) can be obtained from an estimate on the bilinear form

B2
pu,ψ,ΠqLω,kpp1,´γ

@
σ1

D
TdΓ, 0qqppu, φ, τq, pu, φ, τqq

for any pu, φ, τq P T1Sω X pT1O1qK. Here the tangent set to Sω is given by

T1Sω “
"
u P H1pTd;Cq,Re

ˆ
ˆ

Td

upxq1pxq dx

˙
“ 0

*
ˆ L2pTd;

.
H1pRnqq ˆ L2pTd ˆ Rnq.

This set is the orthogonal to p1, 0, 0q with respect to the inner product defined in (35). The tangent
set to O1 (which is the orbit generated by the phase multiplications of 1) is

T1O1 “ spanRtpi1, 0, 0qu

so that

pT1O1qK “
"
u P H1pTd;Cq,Re

ˆ
i

ˆ

Td

upxq1pxq dx

˙
“ 0

*
ˆ L2pTd;

.
H1pRnqq ˆ L2pTd ˆ Rnq.

Lemma 4.6 Let k P Zd and ω ą 0 such that the dispersion relation (12) is satisfied. Suppose that
there exists c̃ ą 0

B2
pu,ψ,ΠqLω,kpp1,´γΓpzq

@
σ
D
Td , 0qqppu, φ, τq, pu, φ, τqq ě c̃p}u}2

H1 ` }φ}2

L2
x

.

H1
z

` }τ}2
L2q “ c̃}pu, φ, τq}2

(44)
for any pu, φ, τq P T1S1 X pT1O1qK. Then there exist η ą 0 and c ą 0 such that (43) is satisfied.

Proof. Let pw,ψ, χq P Sω such that distppw,ψ, χq,O1q ă η with η ą 0 small enough. Hence,
infθPr0,2πq }w´eiθ1} ă η and, by means of an implicit function theorem argument (see [4, Section 9,

Lemma 8]), we obtain that there exists θ P r0, 2πq and v P
 
u P H1pTd;Cq,Re

`
i
´

Td upxq dx
˘

“ 0
(

such that
eiθw “ 1 ` v, inf

θPr0,2πq
}w ´ eiθ1} ď }v}H1 ď C inf

θPr0,2πq
}w ´ eiθ1}
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for some positive constant C. Denote by φpx, zq “ ψpx, zq`γΓpzq
@
σ1

D
Td. Then pv, φ, χq P pT1O1qK

and }pv, φ, χq} ď Cη.
Next, we use the fact that H1pTdq “

 
u P H1pTd;Cq,Re

`´
Td upxq dx

˘
“ 0

(
‘ spanRt1u to write

pv, φ, χq “ pv1, φ, χq ` pv2, 0, 0q with pv1, φ, χq P T1Sω X pT1O1qK and v2 P spanRt1u. Moreover,

}v2}H1 ď }v}2
H1

}1}L2

and

}v1}H1 ě 1

2
}v}H1

provided }v}H1 ď }1}L2 . As a consequence, if }v}H1 is small enough, using that

B2
pu,Ψ,ΠqLω,kp1,´γ

@
σ1

D
TdΓ, 0q

`
pv, φ, τq, pv1, φ1, τ 1q

˘
ď C}pv, φ, τq}}pv1, φ1, τ 1q},

we obtain

B2
pu,Ψ,ΠqLω,kp1,´γ

@
σ1

D
TdΓ, 0q

`
pv1, φ, χq, pv2, 0, 0q

˘
ď C}pv, φ, χq} }v}2

H1 ď C}pv, φ, χq}3,

B2
pu,Ψ,ΠqLω,kp1,´γ

@
σ1

D
TdΓ, 0q

`
pv2, 0, 0q, pv2, 0, 0q

˘
ď C}v}4

H1 ď C}pv, φ, χq}4.

This leads to

B2
pu,Ψ,ΠqLω,kp1,´γ

@
σ1

D
TdΓ, 0q

`
pv, φ, χq, pv, φ, χq

˘

“ B2
pu,Ψ,ΠqLω,kp1,´γ

@
σ1

D
TdΓ, 0q

`
pv1, φ, χq, pv1, φ, χq

˘
` op}pv, φ, χq}2q.

Finally, let pw,ψ, χq P Sω such that dppw,ψ, χq,O1q ă η, we have

Lω,kppw,ψ, χqq ´ Lω,kpp1pxq,´γΓpzq
@
σ
D
Td , 0qq “ Lω,kppeiθw,ψ, χqq ´ Lω,kpp1pxq,´γΓpzq

@
σ
D
Td , 0qq

“ B2
pu,Ψ,ΠqLω,kp1,´γ

@
σ1

D
TdΓ, 0q

`
pv, φ, χq, pv, φ, χq

˘
` op}pv, φ, χq}2q

“ B2
pu,Ψ,ΠqLω,kp1,´γ

@
σ1

D
TdΓ, 0q

`
pv1, φ, χq, pv1, φ, χq

˘
` op}pv, φ, χq}2q

ě c̃}pv1, φ, τq}2 ` op}pv, φ, χq}2q ě c̃

2
}pv, φ, τq}2 ` op}pv, φ, χq}2q

ě c̃

6
dppw,ψ, χq,O1q2

where we use Bpu,Ψ,ΠqLω,kp1,´γ
@
σ1

D
TdΓ, 0q “ 0 and pv1, φ, χq P T1Sω X pT1O1qK.

As before, to prove the orbital stability of the plane solution peiωt1pxq,´γΓpzq
@
σ
D
Td , 0q it is

enough to prove (44) for any pu, φ, τq P T1S1 X pT1O1qK. Let pu, φ, τq P T1S1 X pT1O1qK and write
u “ q ` ip with q, p P H1pTd;Rq. Then

B2
pu,Ψ,ΠqLω,kp1,´γ

@
σ1

D
TdΓ, 0q

`
pu, φ, τq, pu, φ, τq

˘

“ Re

ˆ
1

2

ˆ

Td

p´∆uqudx` 1

2

¨

TdˆRn

´τ2

c2
` p´∆zφq φdz

¯
dx

` 2γ

ˆ

Td

ˆ
¨

TdˆRn

σ1px´ yqσ2pzqφpt, y, zq dz dy

˙
upxq dx´ i

ˆ

Td

k ¨ ∇u udx

˙
(45)

can be reinterpreted as a quadratic form acting on the 4-uplet W “ pq, p, φ, τq. To be specific, it
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expresses as the following quadratic form on W ,

QpW,W q “1

2

ˆ

Td

|∇p|2 dx` 1

2c2

¨

TdˆRn

|τ |2 dz dx` 1

2

ˆ

Td

|∇q|2 dx` 1

2

¨

TdˆRn

p´∆zφq φdxdz

` 2γ

ˆ

Td

ˆ
¨

TdˆRn

σ1px ´ yqσ2pzqφpt, y, zq dz dyqpxq dx

˙
` 2

ˆ

Td

qk ¨ ∇p dx.

The crossed term
´

Td qk ¨ ∇p dx is an obstacle for proving a coercivity on Q.
For this reason, let us focus on the case k “ 0. Since pu, φ, τq P T1S1 X pT1O1qK, we have

ˆ

Td

q dx “ 0 and

ˆ

Td

p dx “ 0.

As a consequence, thanks to the Poincaré-Wirtinger inequality, we deduce, when k “ 0

QpW,W q ě1

4
}p}2

H1 ` 1

2c2
}τ}2

L2 ` 1

2

ˆ

Td

|∇q|2 dx` 1

2

¨

TdˆRn

p´∆zφq φdxdz

` 2γ

ˆ

Td

ˆ
¨

TdˆRn

σ1px´ yqσ2pzqφpt, y, zq dz dy

˙
qpxq dx (46)

Next, we expand q, σ1 and φp¨, zq in Fourier series, i.e.

qpxq “
ÿ

mPZd

qme
im¨x, φpx, zq “

ÿ

mPZd

φmpzqeim¨x and σ1pxq “
ÿ

mPZd

σ1,me
im¨x.

Note that σ1,m “ σ1,m “ σ1,´m since σ1 is real and radially symmetric. Moreover,
´

Td q dx “ 0
implies q0 “ 0. Hence,
ˆ

Td

ˆ
ˆ

TdˆRn

σ1px ´ yqσ2pzqφpt, y, zq dz dy

˙
qpxq dx

“ p2πq2dRe

¨
˝ ÿ

mPZdrt0u
σ1,mqm

ˆ

Rn

σ2pzqφmpzq dz

˛
‚

which implies

1

2

ˆ

Td

|∇q|2 dx` 1

2

¨

TdˆRn

p´∆zφq φdxdz

` 2γ

ˆ

Td

ˆ
¨

TdˆRn

σ1px´ yqσ2pzqφpt, y, zq dz dy

˙
qpxq dx

“ p2πqd
ÿ

mPZdrt0u
Re

ˆ
m2

2
q2
m ` 1

2

ˆ

Rn

|∇zφm|2 dz ` 2p2πqdγσ1,mqm

ˆ

Rn

σ2pzqφmpzq dz

˙
.

Next, we remark that for any m P Zd,
ˇ̌
ˇ̌Re

ˆ
2p2πqdγσ1,mqm

ˆ

Rn

σ2pzqφmpzq dz

˙ˇ̌
ˇ̌ ď 2p2πqdγσ1,m|qm|

?
κ}∇φm}L2

ď 1

2δ̃
p4γ2κp2πq2dσ2

1,mqq2
m ` δ̃

2
}∇φm}2

L2
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for any δ̃ ą 0. Finally, for any δ̃ P p0, 1q, we get

1

2

ˆ

Td

|∇q|2 dx` 1

2

¨

TdˆRn

p´∆zφq φdxdz

` 2γ

ˆ

Td

ˆ
¨

TdˆRn

σ1px´ yqσ2pzqφpt, y, zq dz dy

˙
qpxq dx

ě p2πqd
ÿ

mPZd

ˆˆ
m2

2
´ 1

2δ̃
p4γ2κp2πq2dσ2

1,mq
˙
q2
m ` 1 ´ δ̃

2
}∇φm}2

L2

˙
(47)

As a consequence, we obtain the following statement.

Proposition 4.7 Let k “ 0 and ω ą 0 such that the dispersion relation (12) is satisfied. Suppose
that there exists δ P p0, 1q such that

4γ2κp2πq2d
σ2

1,m

m2
ď δ (48)

for all m P Zd r t0u. Then, there exists c̃ ą 0 such that

B2
pu,Ψ,ΠqLωp1,´γ

@
σ1

D
TdΓ, 0q

`
pu, φ, τq, pu, φ, τq

˘
ě c̃}pu, φ, τq}2 (49)

for any pu, φ, τq P T1S1 X pT1O1qK.

Proof. If (48) holds, then, for any δ̃ P pδ, 1q, (45)-(46)-(47) lead to

B2
pu,Ψ,ΠqLωp1,´γ

@
σ1

D
TdΓ, 0q

`
pu, φ, τq, pu, φ, τq

˘
ě 1

4
}p}2

H1 ` 1

2c2
}τ}2

L2

` δ̃ ´ δ

2δ̃
p2πqd

ÿ

mPZdrt0u
m2q2

m ` 1 ´ δ̃

2
p2πqd

ÿ

mPZd

}∇φm}2
L2

“ 1

4
}p}2

H1 ` 1

2c2
}τ}2

L2 ` δ̃ ´ δ

2δ̃
}∇q}L2 ` 1 ´ δ̃

2
}φ}L2

xH
1
z

ě c̃}pu, φ, τq}2

where in the last inequality we used the Poincaré-Wirtinger inequality together with the fact that
´

Td q dx “ 0.

Finally, Proposition 4.7 together with Lemma 4.6 and Lemma 4.5 gives Theorem 4.4 and the
orbital stability of the plane wave solution peiωt1pxq,´γΓpzq

@
σ
D
Td, 0q in the case k “ 0.

Remark 4.8 The coercivity of B2
pu,Ψ,ΠqLωp1,´γ

@
σ1

D
TdΓ, 0q

`
pu, φ, τq, pu, φ, τq

˘
on T1S1XpT1O1qK

can be recovered from the spectral properties of a convenient unbounded linear operator S. Indeed,
as we have seen before, by decomposing u into real and imaginary part, the quadratic form defined
by (45) (with k “ 0) can be written as

QpW,W q “ 1

2

ˆ

Td

|∇p|2 dx` 1

2c2

¨

TdˆRn

|τ |2 dz dx`
B
S

ˆ
q

φ

˙ ˇ̌
ˇ
ˆ
q

φ

˙F
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with S : H2pTdq ˆ L2pTd;
.

H1pRnqq Ă L2pTdq ˆ L2pTd;
.

H1pRnqq Ñ L2pTdq ˆ L2pTd;
.

H1pRnqq the
unbounded linear operator given by

S

ˆ
q

φ

˙
“

¨
˚̋´1

2
∆xq ` γσ1 ‹

ˆ

Rn

σ2φdz

1

2
φ` γΓσ1 ‹ q

˛
‹‚

(where we remind the reader that Γ “ p´∆q´1σ2q) and the inner product

Bˆ
q

φ

˙ ˇ̌
ˇ
ˆ
q1

φ1

˙F
“
ˆ

Td

qq1 dx`
ˆ

TdˆRn

∇zφ¨∇zφ
1 dz dx “

ˆ

Td

qq1 dx`
ˆ

TdˆRn

φ̂px, ξqφ̂1px, ξq |ξ|2 dξ

p2πqn dx.

Note that L2pTdq ˆ L2pTd;
.

H1pRnqq is an Hilbert space with this inner product since n ě 3.
Since
ˆ

T d

ˆ
σ1 ‹
ˆ

Rn

σ2φdz

˙
pxqq1pxq dx “

ˆ

Td

ˆ
ˆ

TdˆRn

σ1px´ yqσ2pzqφpy, zq dz dy

˙
q1pxq dx

“
ˆ

TdˆRn

φpx, zqσ2pzqpσ1 ‹ q1qpxq dxdz “
ˆ

TdˆRn

φ̂px, ξq σ̂2pξq
|ξ|2 pσ1 ‹ q1qpxq dx

|ξ|2 dξ

p2πqn

we can check that S is a self-adjoint operator on L2pTdq ˆL2pTd;
.

H1pRnqq. In particular, σpSq Ă R
and one can easily study the spectrum of S.

More precisely, using Fourier series, we find that if λ is an eigenvalue of S then there exists at
least one m P Zd such that for some pqm, φmq , p0, 0q there holds

$
’’&
’’%

ˆ
m2

2
´ λ

˙
qm ` γp2πqdσ1,m

ˆ

Rn

σ2pzqφmpzq dz “ 0,

ˆ
1

2
´ λ

˙
φmpzq ` γp2πqdΓpzqσ1,mqm “ 0.

Let λ , 1
2
. Hence, for any m P Zd, qm “ 0 implies φmpzq “ 0 for any z P Rn. As a consequence,

we may assume qm , 0. This leads to φmpzq “ ´γp2πqdσ1,mqm

1{2´λ Γpzq and

ˆ
m2

2
´ λ

˙ˆ
1

2
´ λ

˙
´ γ2p2πq2dσ2

1,mκ “ 0.

By solving this equation, we obtain

λ˘,m “

´
m2`1

2

¯
˘

c´
m2´1

2

¯2

` 4γ2p2πq2dσ2
1,mκ

2

so that λ`,m ě 1
4

for any m P Zd. Next, we remark that

λ´,0 “
1
2

´
b

1
4

` 4γ2p2πq2dσ2
1,0κ

2
ă 0
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since 4γ2κp2πq2dσ2
1,0 ą 0. This eigenvalue corresponds to an eigenfunction pq̃, φ̃q with q̃ P spanRt1u.

In particular,
´

Td q̃pxq dx , 0. Finally, if (30) holds,

λ´,m ě

´
m2`1

2

¯
´

c´
m2´1

2

¯2

` δm2

2
ě 1 ´ δ

5

for any m P Zd r t0u.
We conclude that

B
S

ˆ
q

φ

˙ ˇ̌
ˇ
ˆ
q

φ

˙F
“
C¨
˚̋´1

2
∆xq ` γσ1 ‹

ˆ

Rn

σ2φdz

1

2
φ` γΓσ1 ‹ q

˛
‹‚
ˇ̌
ˇ
ˆ
q

φ

˙G
ě min

ˆ
1

2
,
1 ´ δ

5

˙
p}q}2

L2 ` }φ}
L2

x

.

H1
z

q

for all pq, φq P tq P L2pTdq,
´

T d q dx “ 0u ˆ L2pTd;
.

H1pRnqq. This, together with the Poincaré-
Wirtinger inequality, proves the coercivity of B2

pu,Ψ,ΠqLωp1,´γ
@
σ1

D
TdΓ, 0q

`
pu, φ, τq, pu, φ, τq

˘
on

T1S1 X pT1O1qK.

5 Discussion about the case k , 0

5.1 A new symplectic form of the linearized Schrödinger-Wave

system

We go back to the linearized problem. The viewpoint presented in Section 4.1 looks quite natural;
however, it misses some structural properties of the problem. In order to work in a unified functional
framework, we find convenient to change the wave unknown ψ, which is naturally valued in

.
H1pRnq,

into p´∆q´1{2φ, where the new unknown φ now lies in L2pRnq. Hence, the linearized problem is
rephrased as

BtX “ LX,
where X stands for the 4-uplet pq, p, φ, πq and

LX “

¨
˚̊
˚̊
˚̊
˚̋

´1

2
∆xp´ k ¨ ∇xq

1

2
∆xq ´ k ¨ ∇xp´ γσ1 ‹

ˆ
ˆ

Rn

p´∆q´1{2σ2φdz

˙

´2c2p´∆q1{2π
1

2
p´∆q1{2φ` γσ2σ1 ‹ q

˛
‹‹‹‹‹‹‹‚
.

The operator L is seen as an operator on the Hilbert space

V “ L2pTdq ˆ L2pTdq ˆ L2pTd;L2pRnqq ˆ L2pTd;L2pRnqq,

with domain DpLq “ H2pTdq ˆ H2pTdq ˆ L2pTd;H1pRnqq ˆ L2pTd;H1pRnqq. We can start with
the following basic information, which has the consequence that the spectral stability amounts to
justify that σpLq Ă iR.
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Lemma 5.1 Let pλ,Xq be an eigenpair of L. Let Y : px, zq ÞÑ pqp´xq,´pp´xq, φp´x, zq,´πp´x, zqq.
Then, pλ,Xq, p´λ, Y q and p´λ, Y q are equally eigenpairs of L.

Proof. Since L has real coefficients, LX “ λX implies LX “ λX . Next, we check that

LY px, zq “

¨
˚̊
˚̊
˚̊
˚̋

1

2
∆xp` k ¨ ∇xq

1

2
∆xq ´ k ¨ ∇xp´ γσ1 ‹

ˆ
ˆ

Rn

p´∆q´1{2σ2φdz1
˙

2c2p´∆q1{2π
1

2
p´∆q1{2φ` γσ2σ1 ‹ q

˛
‹‹‹‹‹‹‹‚

p´x, zq

“ λ

¨
˚̊
˝

´qp´x, zq
pp´x, zq

´φp´x, zq
πp´x, zq

˛
‹‹‚“ ´λY px, zq.

Next, we make a new symplectic structure appear. To this end, let us introduce the blockwise
operator

J “
ˆ

J1 0
0 J2

˙
, J1 “

ˆ
0 1

´1 0

˙
, J2 “

ˆ
0 ´p´∆q1{2

p´∆q1{2 0

˙
.

We are thus led to
L “ J L

with

LX “

¨
˚̊
˚̊
˚̊
˝

´1

2
∆xq ` k ¨ ∇xp` γσ1 ‹

ˆ
ˆ

Rn

p´∆q´1{2σ2φdz

˙

´1

2
∆xp´ k ¨ ∇xq

1

2
φ ` γp´∆q´1{2σ2σ1 ‹ q

2c2π

˛
‹‹‹‹‹‹‚
. (50)

For further purposes, we also set

ĂJ “
ˆ

J̃1 0

0 J̃2

˙
, J̃1 “

ˆ
0 ´1
1 0

˙
, J̃2 “

ˆ
0 p´∆q´1{2

´p´∆q´1{2 0

˙
. (51)

The operator J has 0 in its essential spectrum; nevertheless ĂJ plays the role of its inverse since

J ĂJ “ I “ ĂJ J .

Lemma 5.2 The operator L is an unbounded self adjoint operator on V with domain DpL q “
H2pTdq ˆH2pTdq ˆ L2pTd;L2pRnqq ˆ L2pTd;L2pRnqq, and the operator J is skew-symmetric.

Proof. The space V is endowed with the standard L2 inner product

`
X|X 1q “

ˆ

Td

pqq1 ` pp1q dx`
¨

TdˆRn

pφφ1 ` ππ1q dxdz.
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We get

`
LX|X 1˘ “

ˆ

Td

!´
´ 1

2
∆xq ` k ¨ ∇xp

¯
q1 `

´
´ 1

2
∆xp´ k ¨ ∇xq

¯
p1
)

dx

`γ
ˆ

Td

σ1 ‹
ˆ
ˆ

Rn

p´∆q´1{2σ2φdz

˙
q1 dx

`
¨

TdˆRn

´1

2
φφ1 ` 2c2ππ1

¯
dxdz

`γ
¨

TdˆRn

´
p´∆q´1{2σ2σ1 ‹ q

¯
φ1 dxdz

“
ˆ

Td

!
q
´

´ 1

2
∆xq1 ` k ¨ ∇xp1

¯
` p

´
´ 1

2
∆xp1 ´ k ¨ ∇xq1

¯)
dx

`γ
¨

TdˆRn

φp´∆q´1{2σ2σ1 ‹ q1 dz dx

`
¨

TdˆRn

´1

2
φφ1 ` 2c2ππ1

¯
dxdz

`γ
ˆ

Td

qσ1 ‹
ˆ
ˆ

Rn

p´∆q´1{2σ2φ1 dz

˙
dx

“
`
X|LX 1˘,

and
`
JX|X 1˘ “

¨

Td

´
pq1 ´ qp1

¯
dx`

¨

TdˆRn

´
´ p´∆q1{2πφ1 ` p´∆q1{2φπ1

¯
dxdz

“ ´
¨

Td

´
qp1 ´ pq1

¯
dx´

¨

TdˆRn

´
´ φp´∆q1{2π1 ` πp´∆q1{2φ1

¯
dxdz

“ ´
`
X|JX 1˘

As said above, justifying the spectral stability for the Schrödinger-Wave equation reduces to
verify that the spectrum σpLq is purely imaginary. However, the coupling with the wave equation
induces delicate subtleties and a direct approach is not obvious. Instead, based on the expression
L “ J L , we can take advantage of stronger structural properties. In particular, the functional
framework adopted here allows us to overcome the difficulties related to the essential spectrum
induced by the wave equation, which ranges over all the imaginary axis. This approach is strongly
inspired by the methods introduced by D. Pelinovsky and M. Chugunova [9, 42, 43]. The workplan
can be summarized as follows. It can be shown that the eigenproblem LX “ λX for L is equivalent
to a generalized eigenvalue problem AW “ αKW , with α “ ´λ2, see Proposition 5.4 and 5.5
below, where the auxiliary operators A and K depend on J ,L . Then, we need to identify negative
eigenvalues and complex but non real eigenvalues of the generalized eigenproblem. To this end, we
appeal to a counting statement due to [9].

5.2 Spectral properties of the operator L

The stability analysis relies on the spectral properties of L , collected in the following claim.

Proposition 5.3 Let L the linear operator defined by (50) on DpL q Ă V . Suppose (9). Then,
the following assertions hold:
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1. σesspL q “
 

1
2
, 2c2

(
,

2. L has a finite number of negative eigenvalues, with eigenfunctions in DpL q, given by

npL q “ 1 ` #tm P Zd r t0u,m4 ´ 4pk ¨mq2 ă 0 and σ1,m “ 0u
`#tm P Zd r t0u,m4 ´ 4pk ¨ mq2 ď 0 and σ1,m , 0u.

In particular, npL q “ 1 when k “ 0. The eigenspaces associated to the negative eigenvalues
are all finite-dimensional.

3. With X0 “ p0,1, 0, 0q, we have spanRtX0u Ă KerpL q. Moreover, given k P Zdrt0u, let K˚ “
tm P Zd r t0u, m4 ´ 4pk ¨ mq2 “ 0 and σ1,m “ 0u. Then, we get dimpKerpL qq “ 1 ` #K˚.

We remind the reader that σ1 is assumed radially symmetric, see (H1). Consequently σ1,m “
σ1,´m “ σ1,˘m and both #K˚ and #tm P Zdrt0u,m4 ´4pk ¨mq2 ď 0 and σ1,m , 0u are necessarily
even.

Proof. Since L is self-adjoint, σpL q Ă R. Let us study the eigenproblem for L : λX “ LX

means $
’’’’’’’’&
’’’’’’’’%

λq “ ´1

2
∆xq ` k ¨ ∇xp` γσ1 ‹

ˆ
ˆ

Rn

p´∆q´1{2σ2φdz

˙
,

λp “ ´1

2
∆xp´ k ¨ ∇xq,

λφ “ 1

2
φ ` γp´∆q´1{2σ2σ1 ‹ q,

λπ “ 2c2π.

(52)

Clearly λ “ 2c2 is an eigenvalue with eigenfunctions of the form p0, 0, 0, πq, π P L2pTd ˆ Rnq.
As a consequence, dimpKerpL ´ 2c2Iqq is not finite and 2c2 P σesspL q.

We turn to the case λ , 2c2, where the last equation imposes π “ 0. Using Fourier series, we
obtain

λqm “ m2

2
qm ` ik ¨mpm ` γp2πqdσ1,m

ˆ
ˆ

Rn

p´∆q´1{2σ2φm dz

˙
,

λpm “ m2

2
pm ´ ik ¨ mqm,

λφm “ 1

2
φm ` γp2πqdp´∆q´1{2σ2σ1,mqm.

(53)

where qm, pm P C are the Fourier coefficients of q, p P L2pTdq while φmpzq “ 1
p2πqd

´

Td φpx, zqe´im¨x dx

for all z P Rn and φ P L2pTd;L2pRnqq.
We split the discussion into several cases.

Case m “ 0. For m “ 0, the equations (53) degenerate to

λq0 “ γp2πqdσ1,0

ˆ
ˆ

Rn

p´∆q´1{2σ2φ0 dz

˙
,

λp0 “ 0,´
λ ´ 1

2

¯
φ0 “ γp2πqdp´∆q´1{2σ2σ1,0q0.
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Combining the first and the third equation yields

λ
´
λ´ 1

2

¯
q0 “ γ2p2πq2dσ2

1,0κq0,

still with κ “
´

p´∆q´1σ2σ2 dz. It permits us to identify the following eigenvalues:

• λ “ 0 is an eigenvalue associated to the eigenfunction p0,1, 0, 0q,

• since σ1,0 “ 1
p2πqd

´

Td σ1 dx , 0, and p´∆q´1{2σ2 , 0, λ “ 1{2 is an eigenvalue associated to

eigenfunctions p0, 0, φ, 0q, for any function z ÞÑ φpzq orthogonal to p´∆q´1{2σ2. As before,
since dimpKerpL ´ 1

2
Iqq is not finite, 1

2
P σesspL q.

• the roots of

λ
´
λ ´ 1

2

¯
´ γ2p2πq2dσ2

1,0κ “ λ2 ´ λ

2
´ γ2p2πq2dσ2

1,0κ “ 0,

provide two additional eigenvalues

λ˘ “
1{2 ˘

b
1{4 ` 4γ2p2πq2dσ2

1,0κ

2
,

associated to the eigenfunctions p1, 0, γp2πqdσ1,0p´∆q´1{2σ2

λ˘´1{2
, 0q, respectively.

To sum up, the Fourier mode m “ 0 gives rise to two positive eigenvalues (1/2 and λ`), one
negative eigenvalue (λ´) and the eigenvalue 0, the last two being both one-dimensional. It tells us
that

dimpKerpL qq ě 1 and npL q ě 1.

Case m , 0 with σ1,m “ 0. In this case, the m-mode equations (53) for the particle and the
wave are uncoupled

pλ ´ 1{2qφm “ 0, pMm ´ λq
ˆ
qm
pm

˙
“ 0

where we have introduced the 2 ˆ 2 matrix

Mm “
ˆ
m2{2 ik ¨ m

´ik ¨ m m2{2

˙
. (54)

We identify the following eigenvalues:

• λ “ 1{2 is an eigenvalue associated to the eigenfunction p0, 0, eim¨xφpzq, 0q, for any φ P L2pRnq.
Once again, this tells us that 1

2
P σesspL q.

• the eigenvalues λ˘ “ m2˘2k¨m
2

P R of the 2 ˆ 2 matrix Mm, associated to the eigenfunctions
peim¨x,¯ieim¨x, 0, 0q, respectively. Since trpMmq ą 0, at most only one of these eigenvalues

can be negative, which occurs when detpMmq “ m4

4
´ pk ¨ mq2 ă 0.

Given k P Zd, we conclude this case by asserting

npL q ě 1 ` #tm P Zd r t0u, m4 ´ 4pk ¨mq2 ă 0, σ1,m “ 0u,
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and
dimpKerpL qq ě 1 ` #tm P Zd r t0u, m2 “ ˘2k ¨m, σ1,m “ 0u.

Case m , 0 with σ1,m , 0. Again, we distinguish several subcases.

• if λ “ 1{2, the third equation on (53) imposes qm “ 0, and we are led to

1 ´m2

2
pm “ 0, ik ¨ mpm ` γp2πqdσ1,m

ˆ
ˆ

Rn

p´∆q´1{2σ2φm dz

˙
“ 0.

Thus, λ “ 1{2 is an eigenvalue associated to the eigenfunctions:

p0, 0, eim¨xφpzq, 0q, for any function z ÞÑ φpzq orthogonal to p´∆q´1{2σ2,

(we recover the same eigenfunctions as for the case m “ 0),

p0, eim¨x, 0, 0q if k ¨m “ 0, m2 “ 1,

and ´
0,´γp2πqdκσ1,m

ik ¨ m eim¨x, p´∆q´1{2σ2pzqeim¨x, 0
¯

if k ¨m , 0, m2 “ 1.

• if λ “ m2

2
,

1
2
, (53) becomes

0 “ ik ¨mpm ` γp2πqdσ1,m

ˆ
ˆ

Rn

p´∆q´1{2σ2φm dz

˙
,

0 “ ´ik ¨mqm,
m2 ´ 1

2
φm “ γp2πqdp´∆q´1{2σ2σ1,mqm.

There is no non-trivial solution when k ¨ m , 0. Otherwise, we see that λ “ m2{2 is an
eigenvalue associated to the eigenfunctions: p0, eim¨x, 0, 0q

• if λ < t1
2
, m

2

2
u, we set µ “ λ ´ m2

2
. We see that a non trivial solution of (53) exists if its

component qm does not vanish. We combine the equations in (53) to obtain

P pµqqm “ 0

where P is the third order polynomial

P pµq “ µ3 ` bµ2 ` cµ` d,

b “ m2 ´ 1

2
ě 0, c “ ´ppk ¨ mq2 ` γ2κp2πq2dσ2

1,mq ă 0, d “ ´pk ¨ mq2m
2 ´ 1

2
ď 0.

.

Observe that d “ ´pk ¨mq2b and pk ¨mq2 ă |c| ă pk ¨mq2 ` 1
4
. We thus need to examine the

roots of this polynomial. To this end, we compute the discriminant

D “ 18bcd ´ 4b3d ` b2c2 ´ 4c3 ´ 27d2.

A tedious, but elementary, computation allows us to reorganize terms as follows

D “ 4pk ¨mq2
`
pk ¨ mq2 ´ b2

˘2 ` b2σ2
1,mγp20pk ¨mq2 ` γσ2

1,mq

`4pk ¨mq2σ2
1,mγp2pk ¨ mq2 ` γσ2

1,mq ` 4σ2
1,mγ

`
pk ¨mq4 ` 2pk ¨mq2σ2

1,mγ` σ4
1,mγ

2
˘
,
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where we have set γ “ γ2κp2πq2d. Since σ1,m , 0, we thus have D ą 0 and P has 3 distinct
real roots, µ1 ă µ2 ă µ3. In order to bring further information about the location of the roots,
we observe that limµÑ˘8 P pµq “ ˘8 while P p0q “ d ď 0 and P 1p0q “ c ă 0. Moreover,

studying the zeroes of P 1pµq “ 3µ2 ` 2bµ ` c, we see that µmax “ ´b´
?
b2´3c

3
ă 0 is a local

maximum and µmin “ ´b`
?
b2´3c

3
ą 0 is a local minimum. Moreover, P 2pµq “ 6µ ` 2b,

showing that P is convex on the domain p´pm2 ´ 1q{6,`8q, concave on p´8,´pm2 ´ 1q{6q.
A typical shape of the polynomial P is depicted in Figure 1. From this discussion, we infer

µ1 ă µmax ă µ2 ď 0 ă µmin ă µ3.
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Figure 1: Typical graph for µ ÞÑ P pµq, with its roots µ1 ă µ2 ă µ3 and local extrema µmax,

µmin

Coming back to the issue of counting the negative eigenvalues of L , we are thus wondering
whether or not λj “ µj ` m2{2 is negative. We already know that µ3 ą µmin ą 0, hence
µ3 ą ´m2{2 and we have at most 2 negative eigenvalues for each Fourier mode m , 0 such
that σ1,m , 0. To decide how many negative eigenvalues should be counted, we look at the
sign of P p´m2{2q (see Fig. 1):

i) if P p´m2{2q ą 0 then µ1 ă ´m2{2 ă µ2,

ii) if P p´m2{2q “ 0 then either ´m2{2 ă µmax, in which case µ1 “ ´m2{2 ă µ2, or
´m2{2 ą µmax, in which case µ2 “ ´m2{2 ą µ1,

iii) if P p´m2{2q ă 0 then either ´m2{2 ă µmax, in which case ´m2{2 ă µ1 ă µ2, or
´m2{2 ą µmax, in which case µ1 ă µ2 ă ´m2{2.

However, we remark that

P p´m2{2q “ ´m6

8
` m4pm2 ´ 1q

8
` m2

2
ppk ¨mq2 ` γσ2

1,mq ´ m2 ´ 1

2
pk ¨mq2

“ ´m4

8

´
1 ´ 4

γσ2
1,m

m2

¯
` pk ¨mq2

2
“ ´1

8
pm4 ´ 4pk ¨mq2 ´ 4m2

γσ2
1,mq,

(55)
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where, by virtue of (9), m , 0 and σ1m , 0, 1 ą 4
γσ2

1,m

m2 ą 0.

This can be combined together with

P 1p´m2{2q “3
m4

4
´ m2pm2 ´ 1q

2
´ pk ¨mq2 ´ γσ2

1,m “ m4

4
` m2

2
´ pk ¨ mq2 ´ γσ2

1,m

“1

4

`
m4 ´ 4pk ¨ mq2 ´ 4m2

γσ2
1,m

˘
`m2

γσ2
1,m ` m2

2
´ γσ2

1,m

“ ´ 2P p´m2{2q ` m2

2
` pm2 ´ 1qγσ2

1,m ą ´2P p´m2{2q.

Finally,
P 2p´m2{2q “ ´2m2 ´ 1 ă 0.

As a consequence, P p´m2{2q ă 0 implies P 1p´m2{2q ą 0, while P 2p´m2{2q ă 0. This shows
that ´m2{2 ă µ1. Therefore, in case iii), the only remaining possibility is the situation where
P p´m2{2q ă 0 with ´m2{2 ă µ1 ă µ2. As a conclusion, if P p´m2{2q ă 0, all eigenvalues λj
are positive.

Next, we claim that case ii) cannot occur. Indeed, P p´m2{2q “ 0 if and only if

pm2 ´ 2k ¨ mqpm2 ` 2k ¨ mq “ 4m2
γσ2

1,m.

In particular, the term on the left hand side of this equality has to be positive. This is
possible if and only if both factors, which belong to Z, are positive. In this case, according
to the sign of k ¨m, one of them is ě m2 so that

m2 ď 4m2
γσ2

1,m.

This contradicts the smallness condition (9). Note that P p´m2{2q , 0 implies λj , 0, i.e.
m-modes with m , 0 and σ1,m , 0 cannot generate elements of KerpL q.
As a conclusion, negative eigenvalues only come from case i) and for each m-mode such that
P p´m2{2q ą 0 we have exactly one negative eigenvalue. Going back to (55), in this case, we
have

pm4 ´ 4pk ¨ mq2q “ pm2 ´ 2k ¨ mqpm2 ` 2k ¨mq ă m24γσ2
1,m ă m2

owing to (9). This excludes the possibility that m4´4pk ¨mq2 ą 0, since we noticed above that
whenever this term is positive, it is ě m2. Hence, case i) holds if and only if m4´4pk¨mq2 ď 0.

This ends the counting of the negative eigenvalues of L in Proposition 5.3. Note that the
associated eigenspaces are spanned by

´
eim¨x,´ ik ¨m

λ´m2{2
eim¨x, eim¨xσ1,mγp2πqdp´∆zq´1{2σ2

λ ´ 1{2
, 0
¯
.

The discussion has permitted us to find the elements of KerpL q. To be specific, the equation
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LX “ 0 yields π “ 0 and the following relations for the Fourier coefficients

m2

2
pm ´ ik ¨mqm “ 0,

φm

2
` p2πqdγp´∆q´1{2σ2σ1,mqm “ 0,

m2

2
qm ` ik ¨mpm ` p2πqdγσ1,m

ˆ

p´∆q´1{2σ2φm dz “ 0.

We have seen that the mode m “ 0 gives rise the eigenspace spanned by p0,1, 0, 0q. For m , 0, ele-
ments of KerpL q can be obtained only in the case σ1,m “ 0. Moreover, the condition m2 “ ˘2k ¨m
has to be fulfilled. In such a case, peim¨x,¯ieim¨x, 0, 0q P KerpL q.

Finally, it remains to prove that σesspL q “
 

1
2
, 2c2

(
. We have already noticed that

 
1
2
, 2c2

(
Ă

σesspL q. Suppose, by contradiction, that there exists λ P σesspL q r
 

1
2
, 2c2

(
. Hence, by Weyl’s

criterion [42, Theorem B.14], there exists a sequence pXνqνPN with Xν “ pqν , pν , φν , πνq P DpL q
such that, as ν goes to 8,

}pL ´ λIqXν} Ñ 0, }Xν} “ 1 and Xν á 0 weakly in V . (56)

Since λ , 1
2

and λ , 2c2, from (52) and (56) we have

}πν}L2pTd;L2pRnqq Ñ 0 and φν “ ´
ˆ

1

2
´ λ

˙´1

γp´∆q´1{2σ2σ1 ‹ qν ` εν

with εν P L2pTd;L2pRnqq such that limνÑ8 }εν}L2pTd;L2pRnqq “ 0. This leads to
››››´

1

2
∆xqν ´ λqν ` k ¨ ∇xpν ´ γ2κ

1{2 ´ λ
Σ ‹ qν ` γσ1 ‹

ˆ
ˆ

Rn

p´∆q´1{2σ2εν dz

˙››››
L2pTdq

ÝÝÝÑ
νÑ8 0,

››››´
1

2
∆xpν ´ λpν ´ k ¨ ∇xqν

››››
L2pTdq

ÝÝÝÑ
νÑ8 0.

Using the fact that the sequence ppqν , pν , ενqqνPN is bounded in L2pTdq ˆ L2pTdq ˆ L2pTd;L2pRnqq,
we deduce that pqν , pνqνPN is bounded in H2pTdq ˆ H2pTdq. Indeed, reasoning on Fourier series,
this amounts to estimateÿ

mPZd

|m|4p|qν,m|2 ` |pν,m|2q

ď 2
ÿ

mPZd

`
|m2qν,m ` 2ik ¨mpν,m|2 ` |m2pν,m ´ 2ik ¨ mqν,m|2q

`8
ÿ

mPZd

p|k ¨ mpν,m|2 ` |k ¨ mqν,m|2q

ď 2
›› ´ ∆xqν ` 2k ¨ ∇xpν

››
L2pTdq ` 2

›› ´ ∆xpν ´ 2k ¨ ∇xqν
››
L2pTdq

`4

δ
|k|4

ÿ

mPZd

`
|qν,m|2 ` |pν,m|2

˘
` 4δ

ÿ

mPZd

|m|4p|qν,m|2 ` |pν,m|2q.

.

Choosing 0 ă δ ă 1{4 and using the already known estimates, we conclude that }∆xqν}2
L2 `

}∆xpν}2
L2 “ ř

mPZd |m|4
`
|qν,m|2 ` |pν,m|2

˘
is bounded, uniformly with respect to ν. Hence, because

of the compact Sobolev embedding of H2pTdq into L2pTdq, we have that pqν , pνqνPN has a (strongly)
convergent subsequence in L2pTdq ˆL2pTdq. As a consequence, the sequence pXνqνPN has a conver-
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gent subsequence in V , which contradicts (56).

A consequence of Proposition 5.3 is that 0 is an isolated eigenvalue of L . Since the restriction
of L to the subspace pKerpL qqK is, by definition, injective, it makes sense to define on it its inverse
L ´1, with domain RanpL q Ă pKerpL qqK Ă V . In fact, 0 being an isolated eigenvalue, RanpL q is
closed and coincides with pKerpL qqK, [42, Section B.4]. This can be shown by means of spectral
measures. Given X P pKerpL qqK, the support of the associated spectral measure dµX does not
meet the interval p´ǫ,`ǫq for ǫ ą 0 small enough, independent of X. Accordingly, we get

}LX}2 “
ˆ `8

´8
λ2 dµXpλq “

ˆ

|λ|ěǫ
λ2 dµXpλq ě ǫ2}X}2.

In particular, the Fredholm alternative applies: for any Y P pKerpL qqK, there exists a unique
X P pKerpL qqK such that LX “ Y . We will denote X “ L ´1Y .

For further purposes, let us set

X0 “ p0,1, 0, 0q P KerpL q and Y0 “ ´JX0 “ p1, 0, 0, 0q.

Note that Y0 P pKerpL qqK, so that it makes sense to consider the equation

LU0 “ Y0.

We find
πm “ 0, φm “ ´2γp2πqdp´∆q´1{2σ2σ1,mqm, m2pm “ 2ik ¨mqm,

and

m2qm ` 2ik ¨mpm ` 2γp2πqdσ1,m

ˆ

p´∆q´1{2σ2φm dz “ δ0,m.

It yields, for m , 0, pm4

4
´ pk ¨ mq2 ´ γ|σ1,m|2m2

¯
qm “ 0 and q0 “ ´ 1

2γ2p2πq2d |σ1,0|2κ . Therefore, we

can set

U0 “ L ´1Y0 “ ´ 1

2γ2p2πq2d|σ1,0|2κ
`
1, 0,´2γp2πqdp´∆q´1{2σ2σ1,0, 0

˘
,

solution of LU0 “ Y0 such that U0 P pKerpL qqK. We note that

pU0, Y0q “ ´ 1

2γ2p2πqd|σ1,0|2κ ă 0. (57)

5.3 Reformulation of the eigenvalue problem, and counting theo-

rem

The aim of the section is to introduce several reformulations of the eigenvalue problem. This will
allow us to make use of general counting arguments, set up by [9, 42, 43].

Proposition 5.4 Let us set M “ ´J L J . The coupled system

MY “ ´λX, LX “ λY, (58)

admits a solution with λ , 0, X P DpL q r t0u, Y P DpJ L J q r t0u iff there exists two vectors
X˘ P DpLq r t0u that satisfy LX˘ “ ˘λX˘.
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Let P stand for the orthogonal projection from V to pKerpL qqK Ă V .

Proposition 5.5 Let us set A “ PMP and K “ PL ´1P. Let us define the following Hilbert
space

H “ DpM q X pKerpL qqK Ă V .

The coupled system (58) has a pair of non trivial solutions p˘λ,X,˘Y q, with λ , 0 iff the gener-
alized eigenproblem

AW “ αKW, W P H , (59)

admits the eigenvalue α “ ´λ2
, 0, with at least two linearly independent eigenfunctions.

Recall that the plane wave solution obtained Section 2.1 is spectrally stable, if the spectrum
of L is contained in iR. In view of Propositions 5.4 and 5.5, this happens if and only if all the
eigenvalues of the generalized eigenproblem (59) are real and positive. In other words, the presence
of spectrally unstable directions corresponds to the existence of negative eigenvalues or complex
but non real eigenvalues of the generalized eigenproblem (59).

Our goal is then to count the eigenvalues α of the generalized eigenvalue problem (59). In
particular we define the following quantities:

• N´
n , the number of negative eigenvalues

• N0
n, the number of eigenvalues zero

• Np
n, the number of positive eigenvalues

of (59), counted with their algebraic multiplicity, the eigenvectors of which are associated to non-
positive values of the the quadratic form W ÞÑ pKW |W q “ pL ´1PW |PW q. Moreover, let NC`

be the number of eigenvalues α P C with Impαq ą 0.
As pointed out above, the eigenvalues counted by N´

n and NC` correspond to cases of instabil-
ities for the linearized problem (38). Note that to prove the spectral stability, it is enough to show
that the generalized eigenproblem (59) does not have negative eigenvalues and NC` “ 0. Indeed,
as a consequence of Propositions 5.4 and 5.5 and Lemma 5.1, if α P C r R is an eigenvalue of (59),
then ᾱ is an eigenvalue too. Hence, if NC` “ 0, then the generalized eigenproblem (59) does not
have solutions in C r R.

Finally, for using the counting argument introduce by Chugunova and Pelinovsky in [9], we need
the following information on the essential spectrum of A, see [43, Lemma 2-(H1’) and Lemma 4].

Lemma 5.6 Let M “ ´J L J be defined on V . Then σesspM q “ r0,`8q. Let A “ PMP and
K “ PL ´1P be defined on H . Then σesspAq “ r0,`8q and we can find δ˚, d˚ ą 0 such that for
any real number 0 ă δ ă δ˚, A`δK admits a bounded inverse and we have σesspA`δKq Ă rd˚δ,`8q.

Proof. We check that

J L JX “

¨
˚̊
˚̊
˚̊
˝

∆xq

2
´ k ¨ ∇xp

∆xp

2
` k ¨ ∇xq ` γσ1 ‹

ˆ

p´∆zq´1{2σ2p´∆zq1{2π dz

2c2∆zφ
∆zπ

2
` γσ2σ1 ‹ p

˛
‹‹‹‹‹‹‚
.
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As a matter of fact, for any φ P H2pRnq, the vector Xe “ p0, 0, φ, 0q lies in pKerpL qqK and satisfies

J L JXe “

¨
˚̊
˝

0
0

2c2∆zφ

0

˛
‹‹‚P pKerpL qqK.

Consequently MXe “ AXe “ ´J L JXe “ p0, 0,´2c2∆zφ, 0q. It indicates that a Weyl sequence
for A ´ λI, λ ą 0, can be obtained by adapting a Weyl sequence for p´∆z ´ µIq, µ ą 0. Let us
consider a sequence of smooth functions ζν P C8

c pRnq such that supppζνq Ă Bp0, ν ` 1q, ζνpzq “ 1
for x P Bp0, νq and }∇zζν}L8pRnq ď C0 ă 8, }D2

zζν}L8pRnq ď C0 ă 8, uniformly with respect to

ν P N. We set φνpzq “ ζνpzqeiξ¨z{p
?

2cq for some ξ P Rn. We get

p´|ξ|2 ´ 2c2∆zqφνpzq “ eiξ¨z{p
?

2cq
´ 2i?

2c
ξ ¨ ∇zζν ` 2c2∆zζν

¯
pzq,

which is thus bounded in L8pRnq and supported in Bp0, ν ` 1q rBp0, νq. It follows that }p´|ξ|2 ´
2c2∆zqφν}2

L2pRnq . νn´1, while }φν}2
L2pRnq & νn. Accordingly, we obtain

}φν }2

L2pRnq

}p´|ξ|2´2c2∆zqφν }2

L2pRnq

&

ν Ñ 8 as ν Ñ 8. Therefore, φν equally provides a Weyl sequence for M ´ |ξ|2I and A ´ |ξ|2I,
showing the inclusions r0,8q Ă σesspM q and r0,8q Ă σesspAq.

Next, let λ < r0,8q. We suppose that we can find a Weyl sequence pXνqνPN for M , such that

MXν ´ λXν “

¨
˚̊
˚̊
˚̊
˝

´λqν ´ ∆xqν

2
` k ¨ ∇xpν

´λpν ´ ∆xpν

2
´ k ¨ ∇xqν ´ γσ1 ‹

ˆ

p´∆zq´1{2σ2p´∆zq1{2πν dz

´λφν ´ 2c2∆zφν

´λπν ´ ∆zπν

2
´ γσ2σ1 ‹ pν

˛
‹‹‹‹‹‹‚

“

¨
˚̊
˝

q1
ν

p1
ν

φ1
ν

π1
ν

˛
‹‹‚ÝÝÝÑ

νÑ8 0,

with, moreover, }Xν} “ 1 and Xν á 0 weakly in V . In particular, we can set

xφνpx, ξq “
xφ1
νpx, ξq

2c2|ξ|2 ´ λ
. (60)

It defines a sequence which tends to 0 strongly L2pTd ˆ Rnq since, writing λ “ a` ib P C r r0,8q,
we get |2c2|ξ|2 ´λ|2 “ |2c2|ξ|2 ´a|2 `b2 which is ě b2 ą 0 when λ < R, and, in case b “ 0, ě a2 ą 0.
Similarly, we can write

xπνpx, ξq “ 2xπ1
νpx, ξq

|ξ|2 ´ 2λloooomoooon
“hνpx,ξqPL2pTdˆRnq

`γ 2xσ2pξq
|ξ|2 ´ 2λloooomoooon

PL2pRnq

σ1 ‹ pν , (61)
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where hν tends to 0 strongly L2pTd ˆ Rnq. We are led to the system
¨
˚̋ ´

´
λ` ∆x

2

¯
qν ` k ¨ ∇xpν

´k ¨ ∇xqν ´
´
λ` ∆x

2

¯
pν ´ 2γ2

ˆ |xσ2|2
p2πqnp|ξ|2 ´ 2λq dξ ˆ Σ ‹ pν

˛
‹‚

“

¨
˝

q1
ν

p1
ν ´ γσ1 ‹

ˆ xσ2pξq
|ξ| hνpx, ξq dξ

p2πqn

˛
‚ÝÝÝÑ

νÑ8 0.

(62)

Reasoning as in the proof of Proposition 5.3-1), we conclude that Xν converges strongly to 0
in V , a contradiction. Hence, λ P C r r0,8q cannot belong to σesspM q and the identification
σesspM q “ r0,8q holds.

Proposition 5.3-3) identifies KerpL q. Let us introduce the mapping

ĂP :

ˆ
q

p

˙
P L2pTdqˆL2pTdq ÞÝÑ

¨
˚̊
˝

ÿ

mPK˚, k¨mą0

pqm ´ ipmqeim¨x `
ÿ

mPK˚, k¨mă0

pqm ` ipmqeim¨x

p0 ` i
ÿ

mPK˚, k¨mą0

pqm ´ ipmqeim¨x ´ i
ÿ

mPK˚, k¨mă0

pqm ` ipmqeim¨x

˛
‹‹‚.

Then,

X “

¨
˚̊
˝

q

p

φ

π

˛
‹‹‚ ÞÝÑ

¨
˚̊
˝

ĂP
ˆ
q

p

˙

0
0

˛
‹‹‚

is the projection of V on KerpL q. Accordingly, we realize that P does not modify the last two
components of a vector X “ pq, p, φ, πq P V , and for X P pKerpL qqK, we have p0 “ 0, and
qm “ ˘ipm for any m P K˚, depending on the sign of k ¨m.

Now, let λ P C r r0,8q and suppose that we can exhibit a Weyl sequence pXνqνPN for A ´ λI:
Xν P H Ă pKerpL qqK, PXν “ Xν , }Xν} “ 1, Xν á 0 in V and limνÑ8 }pA ´ λIqXν} “ 0. We
can apply the same reasoning as before for the last two components of pA´ λIqXν ; it leads to (60)
and (61), where, using λ < r0,8q, φν and hν converge strongly to 0 in L2pTd ˆ Rnq. We arrive at
the following analog to (62)

pI´ ĂPq

¨
˚̋ ´

´
λ` ∆x

2

¯
qν ` k ¨ ∇xpν

´k ¨ ∇xqν ´
´
λ` ∆x

2

¯
pν ´ 2γ2

ˆ |xσ2|2
p2πqnp|ξ|2 ´ 2λq dξ ˆ Σ ‹ pν

˛
‹‚

“
ˆ
q1
ν

p1
ν

˙
´ pI´ ĂPq

¨
˝

0

γσ1 ‹
ˆ xσ2pξq

|ξ| hνpx, ξq dξ

p2πqn

˛
‚ÝÝÝÑ

νÑ8 0.

(63)

In order to derive from (63) an estimate in a positive Sobolev space as we did in the proof of
Proposition 5.3-1), we should consider the Fourier coefficients arising from ´1

2
∆xqν ` k ¨ ∇xpν and

´1
2
∆xpν ´k ¨∇xqν , namely Qm “ m2

2
qν,m` ik ¨mpν,m and Pm “ m2

2
pν,m´ ik ¨mqν,m. Only the coef-

ficients belonging to K˚ are affected by the action of ĂP, which leads to Qm ´ pQm ¯ iPmq “ ˘iPm
and Pm ¯ ipQm ¯ iPmq “ ¯iQm, according to the sign of k ¨ m. However, we bear in mind that
qm “ ˘ipm when m P K˚ with ˘k ¨ m ą 0. Hence, for coefficients in K˚, the contributions of the
differential operators reduces to ˘im2pm “ ˘m2qm and ¯im2qm “ ˘m2pm, respectively. Note
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also that for these coefficients there is no contributions coming from the convolution with σ1 in
(63) since σ1,m “ 0 for m P K˚. Therefore, reasoning as in the proof of Proposition 5.3-1) for
coefficients m P Zd rK˚, we can obtain a uniform bound on

ř
mPZd |m|4p|qν,m|2 ` |pν,m|2q, which

provides a uniform H2 bound on qν and pν , leading eventually to a contradiction. We conclude
that σesspAq “ r0,8q.

Let δ ą 0 and consider the shifted operator A` δK. As a consequence of Lemma 5.10, we will
see that KerpA ` δKq “ t0u for any δ ą 0: 0 is not an eigenvalue for A` δK; let us justify it does
not belong to the essential spectrum neither. To this end, we need to detail the expression of the
operator K. Given X P H , we wish to find X 1 P H satisfying

LX 1 “

¨
˚̊
˚̊
˚̊
˝

´1

2
∆xq

1 ` k ¨ ∇xp
1 ` γσ1 ‹

ˆ
ˆ

Rn

p´∆q´1{2σ2φ
1 dz

˙

´1

2
∆xp

1 ´ k ¨ ∇xq
1

1

2
φ1 ` γp´∆q´1{2σ2σ1 ‹ q1

2c2π1

˛
‹‹‹‹‹‹‚

“ X.

We infer π1 “ π
2c2 and the relation φ1 “ 2φ´ 2γp´∆zq´1{2σ2σ1 ‹ q1. In turn, the Fourier coefficients

of q1, p1 are required to satisfy

ˆ
m2{2 ´ 2γ2κp2πq2d|σ1,m|2 ik ¨m

´ik ¨ m m2{2

˙ˆ
q1
m

p1
m

˙
“

¨
˝qm ´ 2γp2πqdσ1,m

ˆ

p´∆q´1{2σ2φm dz

pm

˛
‚.

When m , 0, m < K˚, the matrix of this system has its determinant equal to

det “ m4

4

`
1 ´ 4γ2κp2πq2d |σ1,m|2

m2

˘
´ pk ¨mq2.

Owing to (9), since pk ¨ mq2 takes values in N, it does not vanish and we obtain q1
m, p

1
m by solving

the system

q1
m “ 1

det

ˆ
m2

2

´
qm ´ 2γp2πqdσ1,m

ˆ

p´∆q´1{2σ2φm dz
¯

´ ik ¨mpm
˙
,

p1
m “ 1

det

ˆ
`ik ¨m

´
qm ´ 2γp2πqdσ1,m

ˆ

p´∆q´1{2σ2φm dz
¯

`
´m2

2
´ 2γ2κp2πq2d|σ1,m|2

¯
pm

˙
.

If m P K˚ we find a solution in pKerpL qqK by setting p1
m “ pm

m2 , q1
m “ ˘ip1

m, according to the sign

of k ¨m; if m “ 0, we set p1
0 “ 0 and q1

0 “ 1
2γ2κp2πq2d |σ1,0|2

`
q0 ´ 2γp2πqdσ1,0

´

p´∆q´1{2σ2φ0 dz
˘
. This

defines X 1 “ KX.
Therefore, the last two components of pA` δK ´ λIqX read

p2δ ´ λqφ´ 2c2∆zφ´ 2δγp´∆q´1{2σ2σ1 ‹ q1,´ δ

2c2
´ λ

¯
π ´ 1

2
∆zπ ´ γσ2σ1 ‹ p1.

Hence, when λ does not belong to rδd˚,8q, with d˚ “ minp2, 1
2c2 q, we can repeat the analysis

performed above to establish that λ < σesspA ` δKq. In particular the essential spectrum of A has
been shifted away from 0.

We are now able to apply the results of Chugunova and Pelinovsky [9] (see also [43]), to obtain
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the following.

Theorem 5.7 [9, Theorem 1] Let L be defined by (50). Suppose (9). With the operators M ,A,K

defined as in Propositions 5.4-5.5, the following identity holds

N´
n `N0

n `N`
n `NC` “ npL q.

Let us now detail the proof of Proposition 5.4 and 5.5, adapted from [43, Prop. 1 & Prop. 3].

Proof of Propositions 5.4 and 5.5. The goal is to establish connections between the following
three problems:

(Ev) the eigenvalue problem LX “ λX, with L “ J L ,

(Co) the coupled problem LX “ λY , MY “ ´λX, with M “ ´J L J ,

(GEv) the generalized eigenvalue problem AW “ αKW , with A “ PMP, K “ PL ´1P, the
projection P on pKerpL qqK, and W P H “ DpM q X pKerpL qqK.

The proof of Propositions 5.4 and 5.5 follows from the following sequence of arguments.

(i) By Lemma 5.1, we already know that if there exists a solution pλ,X`q of (Ev), with λ , 0
and X` , 0, then, there exists X´ , 0, such that p´λ,X´q satisfies (Ev). Being eigenvectors
associated to distinct eigenvalues, X` and X´ are linearly independent. Note that only this
part of the proof uses the specific structure of the operator L.

(ii) From these eigenpairs for L, we set

X “ X` `X´
2

, Y “ ĂJ
ˆ
X` ´X´

2

˙
.

Since X` and X´ are linearly independent, we have X , 0, Y , 0. Moreover, X “ X``X´

2

and J Y “ X`´X´

2
are linearly independent. We get

LX “ ĂJ LX “ ĂJ
ˆ
λ

2
pX` ´X´q

˙
“ λY,

MY “ ´J L

ˆ
X` ´X´

2

˙
“ ´L

ˆ
X` ´X´

2

˙
“ ´λ

2
pX` `X´q “ ´λX,

so that pλ,X, Y q satisfies (Co).

(iii) If pλ,X, Y q is a solution (Co), then p´λ,X,´Y q satisfies (Co) too.

(iv) Let pλ,X, Y q be a solution (Co). Set

X 1 “ J Y, Y 1 “ ĂJX.

We observe that

MY 1 “ ´J L J ĂJX “ ´J LX “ ´J pλY q “ ´λX 1,

LX 1 “ L J Y “ ĂJ J L J Y “ ´ ĂJ MY “ λ ĂJX “ λY 1,

which means that pλ,J Y, ĂJXq is a solution of (Co). Moreover, if X and J Y are linearly

independent, Y and ĂJX are linearly independent too.
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(v) Let pλ,X, Y q be a solution (Co), with X , 0. We get

LpX ˘ J Y q “ J LX ˘ J L J Y “ J LX ¯ MY

“ J pλY q ˘ λX “ ˘λpX ˘ J Y q,
so that p˘λ,X ˘ J Y q satisfy (Ev). In the situation where X and J Y are linearly inde-
pendent, we have X ˘ J Y , 0 and p˘λ,X ˘ J Y q are eigenpairs for L. Otherwise, one of
the vectors X ˘ J Y might vanish. Nevertheless, since only one of these two vectors can be
0, we still obtain an eigenvector X˘ , 0 of L, associated to either ˘λ. Coming back to i), we
conclude that ¯λ is an eigenvalue too.

Items i) to v) justify the equivalence stated in Proposition 5.4.

(vi) Let pλ,X, Y q be a solution (Co). From LX “ λY , we infer Y P RanpL q Ă pKerpL qqK so
that PY “ Y . The relation thus recasts as

X “ λPL ´1PY ` Ỹ, Ỹ P KerpL q, PỸ “ 0.

(Here, PL ´1PY stands for the unique solution of LZ “ Y which lies in pKerpL qqK.) We
obtain

PMY “ Pp ´ λXq “ ´λPpλPL ´1PY ` Ỹ q
“ ´λ2PL ´1PY “ ´λ2

KY “ PMPY “ AY,
so that p´λ2, Y q satisfies (GEv). Going back to iv), we know that p´λ2, ĂJXq is equally a
solution to (GEv). If X and J Y are linearly independent, we obtain this way two linearly

independent vectors, Y and ĂJX, solutions of (GEv) with α “ ´λ2.

(vii) Let pα,W q satisfy (GEv), with α , 0, W , 0. We set X “ ´MW?
´α . We have

ĂJX “ ´ 1?
´α

ĂJ MW “ 1?
´α

ĂJ J L JW “ 1?
´αL JW

which lies in RanpL q Ă pKerpL qqK. Thus, using P ĂJX “ ĂJX, we compute

K ĂJX “ PL ´1P ĂJX “ PL ´1 ĂJX “ 1?
´αPL ´1L JW “ 1?

´αPJW.

Next, we observe that

A ĂJX “ PMP ĂJX “ ´PJ L J ĂJX “ ´PJ LX “ 1?
´αPJ L MW.

However, we can use PW “ W (since W P H Ă pKerpL qqK) and the fact that, for any
vector Z, LZ “ L pI´ PqZ ` L PZ “ 0 ` L PZ, which yields

A ĂJX “ 1?
´αPJ L PMPW “ 1?

´αPJ LAW “ ´
?

´αPJ LKW

“ ´
?

´αPJ L PL ´1PW “ ´
?

´αPJ L L ´1W “ ´
?

´αPJW.

We conclude that A ĂJX “ αK ĂJX: pα, ĂJXq satisfies (GEv).

(viii) Let pα,W q satisfy (GEv), with α , 0, W , 0. We have

PpMPW ´ αL ´1PW q “ 0

and thus
MPW ´ αL ´1PW “ Ỹ P KerpL q.
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Let us set

Y “ PW P pKerpL qqK, X “ ´MPW?
´α “ ´1?

´αpỸ ` αL ´1PW q,

so that
LX “

?
´αPW “

?
´αY, MY “ MPW “ ´

?
´αX.

Therefore p
?

´α,X, Y q satisfies (Co). By v), p˘
?

´α,X ˘ J Y q satisfy (Ev), and at least
one of the vectors X˘J Y does not vanish; using i), we thus obtain eigenpairs p˘

?
´α,X˘q

of L. With ii), we construct solutions of (Co) under the form
`?

´α, X``X´

2
, ĂJ

`X`´X´

2

˘˘
,

which, owing to iv) and vi), provide the linearly independent solutions
`
α, ĂJ

`
X`˘X´

2

˘˘
of

(GEv). The dimension of the linear space of solutions of (GEv) is at least 2.

At least one of these vectors X˘ is given by the formula

X̃˘ “ ´ MW?
´α ˘ JW.

By the way, we indeed note that AW “ αKW , with W P H , can be cast as L J L JW “
´αW (see Lemma 5.8 below) so that

L

´
´ MW?

´α ˘ JW
¯

“ 1?
´αJ pL J L JW q ˘ J L JW

“ ?´αJW ¯ MW “ ˘ ?´α
´

´ MW?
´α ˘ JW

¯
.

With these manipulations we have checked that p˘
?

´α, X̃˘q satisfy (Ev). If both vectors

X̃˘ are non zero, we get X˘ “ X̃˘ and we recover W “ ĂJ
`
X`´X´

2

˘
. If X̃˘ “ 0, then, we

get X̃¯ “ ¯JW , 0, and we directly obtain X¯ “ X̃¯, W “ ¯ ĂJX¯. In any cases, W lies
in the space spanned by X` and X´ and the dimension of the space of solutions of (GEv)
is even.

This ends the proof of Proposition 5.4 and 5.5.

5.4 Spectral instability

We are going to compute the terms arising in Theorem 5.7. Eventually, it will allow us to identify the
possible unstable modes. In what follows, we find convenient to work with the operator M ´αL ´1

instead of PpM ´ αL ´1qP “ A´ αK, owing to to the following claim.

Lemma 5.8 Let α , 0. In the space H “ DpM q X pKerpL qqK, the two subspaces KerpA ´ αKq
and KerpM ´ αL ´1q coincide.

Proof. Let X P H satisfy MX “ αL ´1X. Then, we have X “ PX and, thus, pA ´ αKqX “
PpM ´ αL ´1qPX “ PpMX ´ αL ´1Xq “ 0, showing the inclusion KerpM ´ αL ´1q X H Ă
KerpA´ αKq.

Conversely, the equation pA ´ αKqX “ 0, with X “ PX P pKerpL qqK means that pM ´
αL ´1qX “ Y P KerpL q. Applying L then yields L MX “ αX. Since both terms of this relation
lie in pKerpL qqK, it is legitimate to apply L ´1, showing that MX “ αL ´1X: we have shown
KerpA´ αKq X H Ă KerpM ´ αL ´1q.
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Therefore, we shall consider the solutions of the generalized eigenvalue problem MX “ αL ´1X,
with X P H . We rewrite the equation by introducing an auxiliary unknown:

MX “ αX̃, L X̃ “ X.

Lemma 5.9 Suppose (9). N0
n “ 1.

Proof. We are interested in the solutions of

´1

2
∆xq ` k ¨ ∇xp “ 0,

´1

2
∆xp´ k ¨ ∇xq ´ γσ1 ‹

ˆ

σ2π dz “ 0,

´2c2∆zφ “ 0,

´1

2
∆zπ ´ γσ2σ1 ‹ p “ 0.

We infer φpx, zq “ 0 and pπpx, ξq “ 2γxσ2pξq
|ξ|2 σ1 ‹ ppxq, and, next,

´1

2
∆xq ` k ¨ ∇xp “ 0, ´1

2
∆xp´ k ¨ ∇xq ´ 2γ2κΣ ‹ p “ 0

with Σ “ σ1 ‹ σ1. In terms of Fourier coefficients, it becomes

m2

2
qm ` ik ¨ mpm “ 0,

m2

2
pm ´ ik ¨ mqm ´ 2p2πq2dγ2κ|σ1,m|2pm “ 0.

For m “ 0, we get p0 “ 0 and we find the eigenfunction p1, 0, 0, 0q “ Y0 “ ´JX0 with X0 “
p0,1, 0, 0q P KerpL q.

For m , 0 with σ1,m , 0, we get

m4 ´ 4pk ¨ mq2 “ 2p2πq2dγ2κ|σ1,m|2loooooooooomoooooooooon
Pp0,1q

m2.

which cannot hold (see the proof of Proposition 5.3 for more details).

For m , 0 with σ1,m “ 0, we get Mm

ˆ
qm
pm

˙
“ 0 with Mm defined in (54). As far as

m4 ´ 4pk ¨mq2
, 0, Mm is invertible and the only solution is pm “ 0 “ qm. If m4 ´ 4pk ¨mq2 “ 0, we

find the eigenfunctions peik¨m,˘ieik¨m, 0, 0q. These functions belong to KerpL q, and thus do not
lie in the working space H .

We conclude that KerpM q “ spanRtY0u. Moreover, this vector Y0 does not belong to RanpM q
so that the algebraic multiplicity of the eigenvalue 0 is 1. Finally, bearing in mind (57), which can
be recast as pKY0|Y0q ă 0, we arrive at N0

n “ 1.

Lemma 5.10 Suppose (9). The generalized eigenproblem (59) does not admit negative eigenvalues.
In particular, N´

n “ 0.
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Proof. Let α ă 0, X “ pq, p, φ, πq and X̃ “ pq̃, p̃, φ̃, π̃q satisfy

´1

2
∆xq ` k ¨ ∇xp “ αq̃,

´1

2
∆xp´ k ¨ ∇xq ´ γσ1 ‹

ˆ

σ2π dz “ αp̃,

´2c2∆zφ “ αφ̃,

´1

2
∆zπ ´ γσ2σ1 ‹ p “ απ̃,

(64)

where

q “ ´1

2
∆xq̃ ` k ¨ ∇xp̃` γσ1 ‹

ˆ

p´∆zq´1{2σ2φ̃dz,

p “ ´1

2
∆xp̃´ k ¨ ∇xq̃,

φ “ 1

2
φ̃` γp´∆zq´1{2σ2σ1 ‹ q̃,

π “ 2c2π̃.

(65)

This leads to solve an elliptic equation for π
´ |α|
c2

´ ∆z

¯
π “ 2γσ2σ1 ‹ p.

In other words, we get, by means of Fourier transform

pπpx, ξq “ 2γσ1 ‹ ppxq ˆ xσ2pξq
|ξ|2 ` |α|{c2

.

On the same token, we obtain
´ |α|
c2

´ ∆z

¯
φ̃ “ ´2γp´∆zq1{2σ2σ1 ‹ q̃,

which yields

p̃φpx, ξq “ ´2γσ1 ‹ q̃pxq ˆ |ξ|xσ2pξq
|ξ|2 ` |α|{c2

.

For λ ą 0, we introduce the symbol

0 ď κλ “
ˆ |xσ2pξq|2

|ξ|2 ` λ
ď κ.

It turns out that

´1

2
∆xq ` k ¨ ∇xp “ αq̃,

´1

2
∆xp´ k ¨ ∇xq ´ 2γ2κ|α|{c2Σ ‹ p “ αp̃,

with

q “ ´1

2
∆xq̃ ` k ¨ ∇xp̃´ 2γ2κ|α|{c2Σ ‹ q̃,

p “ ´1

2
∆xp̃´ k ¨ ∇xq̃.
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For the Fourier coefficients, it casts as

m2

2
qm ` ik ¨ mpm “ αq̃m,

m2

2
pm ´ ik ¨ mqm ´ 2γ2κ|α|{c2p2πq2d|σ1,m|2pm “ αp̃m,

with

qm “ m2

2
q̃m ` ik ¨mp̃m ´ 2γ2κ|α|{c2p2πq2d|σ1,m|2q̃m,

pm “ m2

2
p̃m ´ ik ¨ mq̃m.

We are going to see that these equations do not have non trivial solutions with α ă 0:

• If m “ 0, we get p0 “ 0, q̃0 “ 0, and, consequently, p̃0 “ 0, q0 “ 0. Hence, for α ă 0, we
cannot find an eigenvector with a non trivial 0-mode.

• If m , 0 and σ1,m “ 0, we see that pqm, pmq and pq̃m, p̃mq are related by

Mm

ˆ
qm
pm

˙
“ α

ˆ
q̃m
p̃m

˙
,

ˆ
qm
pm

˙
“ Mm

ˆ
q̃m
p̃m

˙
. (66)

It means that α is an eigenvalue of

M2
m “

˜
m4

4
` pk ¨ mq2 im2k ¨m

´im2k ¨ m m4

4
` pk ¨mq2

¸
.

The roots of the characteristic polynomial of M2
m are pm2

2
˘ k ¨ mq2 ě 0, which contradicts

the assumption α ă 0.

• For the case where m , 0 and σ1,m , 0, we introduce the shorthand notation am “
2γ2p2πq2d|σ1,m|2κ|α|{c2, bearing in mind that 0 ă am ă m2

2
by virtue of the smallness condi-

tion (9). We are led to the systems
ˆ
Mm ´

ˆ
0 0
0 am

˙˙ˆ
qm
pm

˙
“ α

ˆ
q̃m
p̃m

˙
,

ˆ
qm
pm

˙
“
ˆ
Mm ´

ˆ
am 0
0 0

˙˙ˆ
q̃m
p̃m

˙
,

which imply that α is an eigenvalue of the matrix
ˆ
Mm ´

ˆ
0 0
0 am

˙˙ˆ
Mm ´

ˆ
am 0
0 0

˙˙
.

However the eigenvalues of this matrix read
`b

m2

2
pm2

2
´ amq ˘ pk ¨mq2

˘2 ě 0, contradicting

that α is negative.

Lemma 5.11 Suppose (9). N`
n “ #tm P Zd r t0u, σ1,m “ 0, and m4 ´ 4pk ¨mq2 ă 0u.
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Proof. We should consider the system of equations (64)-(65), now with α ą 0. For Fourier
coefficients, it casts as

m2

2
qm ` ik ¨ mpm “ αq̃m,

m2

2
pm ´ ik ¨mqm ´ γp2πqdσ1,m

ˆ

σ2πm dz “ αp̃m,

´2c2∆zφm “ αφ̃m,

´1

2
∆zπm ´ γp2πqdσ1,mσ2pm “ απ̃m,

where

qm “ m2

2
q̃m ` ik ¨ mp̃m ` γp2πqdσ1,m

ˆ

p´∆zq´1{2σ2φ̃m dz,

pm “ m2

2
p̃m ´ ik ¨mq̃m,

φm “ 1

2
φ̃m ` γp2πqdp´∆zq´1{2σ2σ1,mq̃m,

πm “ 2c2π̃m.

• For m “ 0, we obtain p0 “ 0, q̃0 “ 0. Hence π0 satisfies p´α{c2 ´ ∆zqπ0 “ 0. Here, `α{c2

lies in the essential spectrum of ´∆z and the only solution in L2 of this equation is π0 “ 0.
In turn, this implies p̃0 “ 0, p´α{c2 ´ ∆zqφ0 “ 0, and thus φ0 “ 0, q0 “ 0. Hence, for α ą 0,
we cannot find an eigenvector with a non trivial 0-mode.

• When m , 0 and σ1,m “ 0, we are led to p´α{c2 ´ ∆qφm “ 0, p´α{c2 ´ ∆qπm “ 0 that
imply φm “ 0, πm “ 0. In turn, we get (66) for qm, pm, q̃m, p̃m. This holds iff α is an

eigenvalue of M2
m. If m4

, 4pk ¨mq2, we find two eigenvalues αm,˘ “ pm2

2
˘ k ¨mq2 ą 0, with

associated eigenvectors Xm,˘ “ peim¨x,¯ieim¨x, 0, 0q, respectively. To decide whether these
modes should be counted, we need to evaluate the sign of pL ´1Xm,˘|Xm,˘q. We start by

solving LX 1
m,˘ “ Xm,˘. It yields

φ1
m,˘

2
“ 0, 2c2π1

m,˘ “ 0 and

Mm

ˆ
q1
m,˘
p1
m,˘

˙
“
ˆ

1
¯i

˙
.

We obtain

q1
m,˘ “ 2

m2 ˘ 2k ¨m, π1
m,˘ “ ¯2i

m2 ˘ 2k ¨m,

so that

pL ´1Xm,˘|Xm,˘q “ 2

m2 ˘ 2k ¨ m

ˆ
ˆ

Td

eim¨xe´im¨x dx`
ˆ

Td

p¯iqeim¨x˘ie´im¨x dx

˙

“ 4p2πqd
m2 ˘ 2k ¨ m,

the sign of which is determined by the sign of m2 ˘2k ¨m. We count only the situation where
these quantities are negative; reproducing a discussion made in the proof of Proposition 5.3,
we conclude that

N`
n ě #tm P Zd r t0u, σ1,m “ 0 and m4 ´ 4pk ¨ mq2 ă 0u.
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When m4 ´ 4pk ¨mq2 “ 0, the eigenvalues of M2
n are 0 and m4, and we just have to consider

the positive eigenvalue α “ m4, associated to the eigenvector Xm “ peim¨x,˘ieim¨x, 0, 0q
(depending whether m2

2
“ ¯k ¨ m). The equation L Ym “ Xm has infinitely many solu-

tions of the form p2{m2eim¨x, 0, 0, 0q ` zp˘ieim¨x, eim¨x, 0, 0q, with z P C. We deduce that

pL ´1Xm|Xmq “ 2p2πqd

m2 ą 0. Thus these modes do not affect the counting.

• When m , 0 and σ1,m , 0, we are led to the relations p´α{c2 ´ ∆zqπm “ 2σ2γp2πqdσ1,mpm,
p´α{c2 ´∆zqφ̃m “ ´2p´∆zq1{2σ2γp2πqdσ1,mq̃m. The only solutions with square integrability
on Rn are πm “ 0, φ̃m “ 0, pm “ 0, q̃m “ 0. This can be seen by means of Fourier transform:
p´α{c2 ´ ∆zqφ “ σ amounts to pφpξq “ pσpξq

|ξ|2´α{c2 ; due to (H4) this function has a singularity

which cannot be square-integrable. In turn, this equally implies φm “ 0 and π̃m “ 0. Hence,
we arrive at m2

2
qm “ 0 and ´ik ¨ mqm “ αp̃m, together with qm “ ik ¨ mp̃m and m2

2
p̃m “ 0.

We conclude that α ą 0 cannot be an eigenvalue associated to a m-mode such that m , 0
and σ1,m , 0.

We can now make use of Theorem 5.7, together with Proposition 5.3. This leads to

0 ` 1 ` #tm P Zd r t0u, σ1,m “ 0, and m4 ´ 4pk ¨ mq2 ă 0u `NC` “ N´
n `N0

n `N`
n `NC`

“ npL q “ 1 ` #tm P Zd r t0u,m4 ´ 4pk ¨mq2 ă 0 and σ1,m “ 0u
`#tm P Zd r t0u,m4 ´ 4pk ¨mq2 ď 0 and σ1,m , 0u

so that
NC` “ #tm P Zd r t0u,m4 ´ 4pk ¨ mq2 ď 0 and σ1,m , 0u.

Since the eigenvalue problem (59) does not have negative (real) eigenvalues, this is the only source
of instabilities.

As a matter of fact, when k “ 0, we obtain NC` “ 0, which yields the following statement,
(hopefully!) consistent with Lemma 4.1 and Proposition 4.2.

Corollary 5.12 Let k “ 0 and ω ą 0 such that the dispersion relation (12) is satisfied. Suppose
(9) holds. Then the plane wave solution peiωt1pxq,´γΓpzq

@
σ
D
Td , 0q is spectrally stable.

In contrast to what happens for the Hartree equation, for which the eigenvalues are purely
imaginary, see Lemma 3.2, we can find unstable modes, despite the smallness condition (9). Let us
consider the following two examples in dimension d “ 1, with k P Z r t0u.

Example 5.13 Suppose σ1,0 , 0, and σ1,1 , 0. Then, the set tm P Z r t0u, m4 ´ 4k2m2 ď
0 and σ1,m , 0u contains t´1,`1u (since 4k2 ě 1). Let k P Z r t0u and ω ą 0 such that the
dispersion relation (12) is satisfied. Then the plane wave solution peiωteikx,´γΓpzq

@
σ1

D
Td , 0q is

spectrally unstable.

Example 5.14 Let m˚ P Z r t0u be the first Fourier mode such that σ1,m˚ , 0. Let k P Z and
ω ą 0 such that the dispersion relation (12) is satisfied. Then, for all k P Z such that 4k2 ă m2

˚,
the plane wave solution peiωteikx,´γΓpzq

@
σ
D
Td , 0q is spectrally stable, while for all k P Z such that

4k2 ě m2
˚, the plane wave solution peiωteikx,´γΓpzq

@
σ1

D
Td , 0q is spectrally unstable.
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In general, if k P Zd r t0u, the set tm P Zd r t0u,m4 ´ 4pk ¨mq2 ď 0 and σ1,m , 0u contains ´k
and k provided σ1,k , 0. Hence, we have the following result.

Corollary 5.15 Let k P Zd r t0u and ω ą 0 such that the dispersion relation (12) is satis-
fied. Suppose (9) holds and σ1,m , 0 for all m P Zd r t0u. Then the plane wave solution
peipωt`k¨xq,´γΓpzq

@
σ1

D
Td , 0q is spectrally unstable.

Remark 5.16 (Orbital instability) Given Corollary 5.15, it is natural to ask whether in this
case the plane wave solution peipωt`k¨xq,´γΓpzq

@
σ1

D
Td , 0q is orbitally unstable.

Note that, if σ1,m , 0 for all m P Zd r t0u, we deduce from Proposition 5.3 that npLq ě
3. As a consequence, the arguments used in [22] to prove the orbital instability (see also [38,
41]) do not apply. It seems then necessary to work directly with the propagator generated by the
linearized operator as in [23, 16]. In particular, one has to establish Strichartz type estimates for
the propagator of L (a task we leave for future work).

A Scaling of the model and physical interpretation

It is worthwhile to discuss the meaning of the parameters that govern the equations and the
asymptotic issues. Going back to physical units, the system reads

ˆ
i~BtU ` ~

2

2m
∆xU

˙
pt, xq “

ˆ
ˆ

TdˆRn

σ1px ´ yqσ2pzqΨpt, y, zq dy dz

˙
upt, xq, (67a)

pB2
ttΨ ´ κ2∆zΨqpt, x, zq “ ´σ2pzq

ˆ
ˆ

Td

σ1px´ yq|Upt, yq|2 dy

˙
. (67b)

The quantum particle is described by the wave function pt, xq ÞÑ Upt, xq: given Ω Ă Td, the integral
´

Ω
|Upt, xq|2 dx gives the probability of presence of the quantum particle at time t in the domain

Ω; this is a dimensionless quantity. In (67a), ~ stands for the Planck constant; its homogeneity

is MassˆLength2

Time
(and its value is 1.055 ˆ 10´34 Js) and m is the inertial mass of the particle. Let

us introduce mass, length and time units of observations: M, L and T. It helps the intuition to
think of the z directions as homogeneous to a length, but in fact this is not necessarily the case:
we denote by Ψ and Z the (unspecified) units for Ψ and the zj ’s. Hence, κ is homogeneous to the
ratio Z

T
. The coupling between the vibrational field and the particle is driven by the product of

the form functions σ1σ2, which has the same homogeneity as ~

TΨLdZn from (67a) and as Ψ

LdT2 from
(67b), both are thus measured with the same units. From now on, we denote by ς this coupling
unit. Therefore, we are led to the following dimensionless quantities

U 1pt1, x1q “ Upt1T, x1Lq
c

Ld
m

M
,

Ψ1pt1, x1, z1q “ 1

Ψ
Ψpt1T, x1L, z1Zq,

σ1
1px1qσ2pz1q “ 1

ς
σ1px1Lqσ2pz1Zq.

Bearing in mind that u is a probability density, we note that
ˆ

Td

|U 1pt1, x1q|2 dx1 “ m

M
.
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Dropping the primes, (67a)-(67b) becomes, in dimensionless form,
ˆ
iBtU ` ~T

mL2

1

2
∆xU

˙
pt, xq “ ςΨLdZnT

~

ˆ
ˆ

TdˆRn

σ1px ´ yqσ2pzqΨpt, y, zq dy dz

˙
Upt, xq, (68a)

´
B2
ttΨ ´ κ

2T2

Z2
∆zΨ

¯
pt, x, zq “ ´ ςT2

Ψ

M

m
σ2pzq

ˆ
ˆ

Td

σ1px´ yq|Upt, yq|2 dy

˙
. (68b)

Energy conservation plays a central role in the analysis of the system: the total energy is defined
by using the reference units and we obtain

E0 “
´
~T

mL2

¯2 1

2

ˆ

Td

|∇xU |2 dx` Ψ
2LdZn

ML2

1

2

¨

TdˆRn

´
|BtΨ|2 ` κ

2T2

Z2
|∇zΨ|2

¯
dz dx

`ςΨLdZnT2

mL2

¨

TdˆRn

|U |2σ2σ1 ‹ Ψ dz dx,

with E0 dimensionless (hence the total energy of the original system is E0
ML2

T2 ). Therefore, we see
that the dynamics is encoded by four independent parameters. In what follows, we get rid of a
parameter by assuming

~T

mL2
“ 1,

and we work with the following three independent parameters

α “ ςΨLdZnT2

mL2

mL2

~T
, β “ ςZ2

κ2Ψ

M

m
, c “ κT

Z
.

It leads to
ˆ
iBtU ` 1

2
∆xU

˙
pt, xq “ α

ˆ
ˆ

TdˆRn

σ1px´ yqσ2pzqΨpt, y, zq dy dz

˙
Upt, xq, (69a)

´ 1

c2
B2
ttΨ ´ ∆zΨ

¯
pt, x, zq “ ´βσ2pzq

ˆ
ˆ

Td

σ1px´ yq|Upt, yq|2 dy

˙
(69b)

together with

E0 “ 1

2

ˆ

Td

|∇xU |2 dx` 1

2

α

β

¨

TdˆRn

´ 1

c2
|BtΨ|2 ` |∇zΨ|2

¯
dz dx

`α
¨

TdˆRn

|U |2σ2σ1 ‹ Ψ dz dx.

This relation allows us to interpret the scaling parameters as weights in the energy balance. Now,

for notational convenience, we decide to work with
a

m
M

b
α
β

Ψ instead of Ψ and
b

M
m
U instead

of U ; it leads to (3a)-(3c) and (8) with γ “
b

M
m

?
αβ. Accordingly, we shall implicitly work

with solutions with amplitude of magnitude unity. The regime where c Ñ 8, with α, β fixed
leads, at least formally, to the Hartree system (1a)-(1b); arguments are sketched in Appendix B.
The smallness condition (9) makes a threshold appear on the coefficients in order to guaranty the
stability: since it involves the product M

m
αβ, it can be interpreted as a condition on the strength of

the coupling between the particle and the environment, and on the amplitude of the wave function.
We shall see in the proof that a sharper condition can be derived, expressed by means of the Fourier
coefficients of the form function σ1.
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B From Schödinger-Wave to Hartree

In this Section we wish to justify that solutions – hereafter denoted Uc – of (3a)-(3c) converge to the
solution of (1a)-(1b) as c Ñ 8. We adapt the ideas in [10] where this question is investigated for
Vlasov equations. Throughout this section we consider a sequence of initial data U Init

c ,ΨInit
c ,ΠInit

c

such that

sup
cą0

ˆ

Td

|U Init
c |2 dx “ M0 ă 8, (70a)

sup
cą0

ˆ

Td

|∇xU
Init
c |2 dx “ M1 ă 8, (70b)

sup
cą0

"
1

2c2

¨

TdˆRn

|ΠInit
c |2 dz dx` 1

2

¨

TdˆRn

|∇zΨ
Init
c |2 dz dx

*
“ M2 ă 8, (70c)

sup
cą0

¨

|U Init
c |2σ1 ‹ σ2|ΨInit

c | dz dx “ M3 ă 8. (70d)

There are several direct consequences of these assumptions:

• The total energy is initially bounded uniformly with respect to c ą 0,

• In fact, we shall see that the last assumption can be deduced from the previous ones.

• Since the L2 norm of Uc is conserved by the equation, we already know that

Uc is bounded in L8p0,8;L2pTdqq.

Next, we reformulate the expression of the potential, separating the contribution due to the
initial data of the wave equation and the self-consistent part. By using the linearity of the wave
equation, we can split

Φc “ ΦInit,c ` ΦCou,c

where ΦInit,c is defined from the free-wave equation on Rn and initial data ΨInit
c ,ΠInit

c :

1

c2
B2
ttΥc ´ ∆zΨ “ 0,

pΥc, BtΥcq
ˇ̌
t“0

“ pΨInit
c ,ΠInit

c q.
(71)

Namely, we set

ΦInit,cpt, xq “
ˆ

Rn

σ2pzqσ1 ‹ Υcpt, x, zq dz

“
ˆ

Rn

´
cospc|ξ|tqσ1 ‹ pΨInit

c px, |ξq ` sinpc|ξ|t
c|ξ| σ1 ‹ pΨInit

c px, |ξq
¯pσ2pξq dξ

p2πqn .

Accordingly rΨc “ Ψc ´ Υc satisfies

1

c2
B2
tt
rΨc ´ ∆z

rΨc´ “ ´γσ2σ1 ‹ |Uc|2,
prΨc, Bt rΨcq

ˇ̌
t“0

“ p0, 0q.
(72)
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and we get

ΦCou,cpt, xq “ γ

ˆ

Rn

σ2pzqσ1 ‹ rΨcpt, x, zq dz

“ γ2c2

ˆ t

0

ˆ

Rn

sinpc|ξ|sq
c|ξ| Σ ‹ |Uc|2pt´ s, xq|pσ2pξq|2 dξ

p2πqn ds

“ γ2

ˆ ct

0

ˆ
ˆ

Rn

sinpτ |ξ|q
|ξ| |pσ2pξq|2 dξ

p2πqn
˙

looooooooooooooooooomooooooooooooooooooon
“ppτq

Σ ‹ |Uc|2pt´ τ{c, xq dτ,

where it is known that the kernel p is integrable on r0,8q [10, Lemma 14].

Lemma B.1 There exists a constant Mw ą 0 such that

sup
c,t,x

|ΦInit,cpt, xq| ď Mw, sup
c,t,x

|ΦCou,cpt, xq| ď Mw.

Proof. Combining the Sobolev embedding theorem (mind the condition n ě 3) and the standard
energy conservation for the free linear wave equation, we obtain

}Υc}L8p0,8;L2pTd;L2n{pn´2qpRnqqq ď C}∇zΥc}L8p0,8;L2pTdˆRnqq ď C
a

2M2.

Applying Hölder’s inequality, we are thus led to:

|ΦInit,cpt, xq| ď C}σ2}L2n{pn`2qpRnq}σ1}L2pRdq
a

2M2, (73)

which proves the first part of the claim. Incidentally, it also shows that (70d) is a consequence of
(70a) and (70c). Next, we get

|ΦCou,cpt, xq| ď γ}Σ}L8pTdq}Uc}L8pr0,8q,L2pTdqq

ˆ 8

0

|ppτq| dτ.

Corollary B.2 There exists a constant MS ą 0 such that

sup
c,t

}∇Ucpt, ¨q}L2pTdq ď MS .

Proof. This is a consequence of the energy conservation (the total energy being bounded by
virtue of (70b)-(70d)) where the coupling term

ˆ

Td

pΦInit,c ` ΦCou,cq|Uc|2 dx

can be dominated by 2MwM0.

Coming back to

BtUc “ ´ 1

2i
∆xUc ` γ

i
pΦInit,c ` ΦCou,cqUc (74)
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we see that BtUc is bounded in L2p0,8;H´1pTdqq. Combining the obtained estimates with Aubin-
Simon’s lemma [44, Corollary 4], we deduce that

Uc is relatively compact in in C0pr0, T s;LppTdqq, 1 ď p ă 2d

d´ 2
,

for any 0 ă T ă 8. Therefore, possibly at the price of extracting a subsequence, we can suppose
that Uc converges strongly to U in C0pr0, T s;L2pTdqq. It remains to pass to the limit in (74). The
difficulty consists in letting c go to 8 in the potential term and to justify the following claim.

Lemma B.3 For any ζ P C8
c pp0,8q ˆ Tdq, we have

lim
cÑ8

ˆ 8

0

ˆ

Td

pΦInit,c ` ΦCou,cqUcζ dxdt “ γκ

ˆ 8

0

ˆ

Td

Σ ‹ |Uc|2 Ucζ dxdt.

Proof. We expect that ΦCou,c converges to γκΣ ‹ |U |2:
ˇ̌
ΦCou,cpt, xq ´ γκΣ ‹ |U |2pt, xq

ˇ̌

“ γ

ˇ̌
ˇ̌
ˆ ct

0

Σ ‹ |Uc|2pt ´ τ{c, xqppτq dτ ´ κΣ ‹ |U |2pt, xq
ˇ̌
ˇ̌

ď γ

ˆ ct

0

ˇ̌
ˇΣ ‹ |Uc|2pt´ τ{c, xq ´ Σ ‹ |U |2pt, xq

ˇ̌
ˇ |ppτq| dτ ` γ

ˆ 8

ct

|ppτq| dτ ˆ }Σ ‹ |U |2}L8pp0,8qˆTdq

ď γ

ˆ ct

0

Σ ‹
ˇ̌
|Uc|2 ´ |U |2

ˇ̌
pt´ τ{c, xq |ppτq| dτ

`γ
ˆ ct

0

Σ ‹
ˇ̌
|U |2pt´ τ{c, xq ´ |U |2pt, xq

ˇ̌
|ppτq| dτ

`γ
ˆ 8

ct

|ppτq| dτ }Σ}L8pTdq}U}L8pp0,8q;L2pTdqq.

Let us denote by Icpt, xq, IIcpt, xq, IIIcptq, the three terms of the right hand side. Since p P L1pr0,8qq,
for any t ą 0, IIIcptq tends to 0 as c Ñ 8, and it is dominated by }p}L1pr0,8q}Σ}L8pTdqM0. Next,
we have

|Icpt, xq| ď }p}L1pr0,8q}Σ}L8pTdq sup
sě0

ˆ

Td

ˇ̌
|Uc|2 ´ |U |2

ˇ̌
ps, yq dy

ď }p}L1pr0,8q}Σ}L8pTdq sup
sě0

ˆ
ˆ

Td

|Uc ´ U |2ps, yq dy ` 2Re

ˆ

Td

pUc ´ UqUps, yq dy

˙

which also goes to 0 as c Ñ 8 and is dominated by 2M0}p}L1pr0,8qq}Σ}L8pTdq. Eventually, we get

|IIcpt, xq| ď }Σ}L8pTdq

ˆ ct

0

ˆ
ˆ

Td

ˇ̌
|U |2pt ´ τ{c, yq ´ |U |2pt, yq

ˇ̌
dy

˙
|ppτq| dτ.

Since U P C0pr0,8q;L2pTdqq, with }Upt, ¨q}L2pTdq ď M0, we can apply the Lebesgue theorem to
show that IIcpt, xq tends to 0 for any pt, xq fixed, and it is dominated by 2M0}p}L1pr0,8qq}Σ}L8pTdq.
This allows us to pass to the limit in

ˆ 8

0

ˆ

Td

ΦCou,cUcζ dxdt´ κ

ˆ 8

0

ˆ

Td

Σ ‹ |U |2Uζ dxdt

“
ˆ 8

0

ˆ

Td

ΦCou,cpUc ´ Uqζ dxdt`
ˆ 8

0

ˆ

Td

´
ΦCou,c ´ γκΣ ‹ |U |2

¯
Uζ dxdt.
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It remains to justify that

lim
cÑ8

ˆ 8

0

ˆ

Td

Φinit,cUcζ dxdt “ 0.

The space variable x is just a parameter for the free wave equation (71), which is equally satisfied
by σ1 ‹ Υc, with initial data σ1 ‹ pΨInit

c ,ΠInit
c q. We appeal to the Strichartz estimate for the wave

equation, see [26, Corollary 1.3] or [45, Theorem 4.2, for the case n “ 3],which yields

c1{p
˜
ˆ 8

0

ˆ
ˆ

Rn

|σ1 ‹ Υcpt, x, yq|q dy

˙p{q
dt

¸1{p

ď C

ˆ
1

c2

ˆ

Rn

|σ1 ‹ ΠInit
c px, zq|2 dz `

ˆ

Rn

|σ1 ‹ ∇yΨ
Init
c px, zq|2 dz

˙1{2

,

for any admissible pair:

2 ď p ď q ď 8,
1

p
` n

q
“ n

2
´ 1,

2

p
` n´ 1

q
ď n´ 1

2
, pp, q, nq , p2,8, 3q.

The L2 norm with respect to the space variable of the right hand side is dominated by
b

}σ1}L1pTdq M2.

It follows that
ˆ

Td

˜
ˆ 8

0

ˆ
ˆ

Rn

|σ1 ‹ Υcpt, x, zq|q dz

˙p{q
dt

¸2{p

dx ď C2}σ1}L1pRdq M2
1

c2{p ÝÝÝÑ
cÑ8 0.

Repeated use of the Hölder inequality (with 1{p` 1{p1 “ 1) leads to
ˇ̌
ˇ̌
ˆ 8

0

ˆ

Td

UcζΦInit,c dxdt

ˇ̌
ˇ̌

ď
˜
ˆ

Td

ˆ
ˆ 8

0

|Ucζpt, xq|p1
dt

˙2{p1

dx

¸1{2 ˜
ˆ

Td

ˆ
ˆ 8

0

|ΦInit,cpt, xq|p dt

˙2{p
dx

¸1{2

.

On the one hand, assuming that ζ is supported in r0, Rs ˆ Td and p ą 2, we have

ˆ

Td

ˆ
ˆ 8

0

|Ucζ|p1
dt

˙2{p1

dx ď
ˆ

Td

ˆ
ˆ R

0

|Uc|2 dt

˙ˆ
ˆ R

0

|ζ|2p1{p2´p1q dt

˙p2´p1q{p1

dx

ď R1`p2´p1q{p1}ζ}L8pp0,8qˆTdq}Uc}L8pp0,8q;L2pTdqq

which is thus bounded uniformly with respect to c ą 0. On the other hand, we get
ˆ

Td

ˆ
ˆ 8

0

|ΦInit,cpt, xq|p dt

˙2{p
dx “

ˆ

Td

ˆ
ˆ 8

0

ˇ̌
ˇ
ˆ

Rn

σ2pzqσ1 ‹ Υcpt, x, zq dz
ˇ̌
ˇ
p

dt

˙2{p
dx

ď }σ2}Lq1 pRnq

ˆ

Td

ˆ
ˆ 8

0

ˇ̌
ˇ
ˆ

Rn

|σ1 ‹ Υcpt, x, zq|q dz
ˇ̌
ˇ
p{q

dt

˙2{p
dx

which is of the order Opc´2{pq.
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C Well-posedness of the Schrödinger-Wave system

The well-posedness of the Schrödinger-Wave system is justified by means of a fixed point argument.
The method described here works as well for the problem set on Rd, and it is simpler than the
approach in [21] since it avoids the use of “dual” Strichartz estimates for the Schrödinger and the
wave equations.

We define a mapping that associates to a function pt, xq P r0, T s ˆ Td ÞÑ V pt, xq P C:

• first, the solution Ψ of the linear wave equation

1

c2
B2
ttΨ ´ ∆zΨ “ ´σ2σ1 ‹ |V |2, pΨ, BtΨq

ˇ̌
t“0

“ pΨ0,Ψ1q;

• next, the potential Φ “ σ1 ‹
´

Rn σ2Ψ dz;

• and finally the solution of the linear Schrödinger equation

iBtU ` 1

2
∆xU “ γΦU, U

ˇ̌
t“0

“ U Init.

These successive steps define a mapping S : V ÞÝÑ U and we wish to show that this mapping
admits a fixed point in C0pr0, T s;L2pTdqq, which, in turn, provides a solution to the non linear
system (3a)-(3c). In this discussion, the initial data U Init,Ψ0,Ψ1 are fixed once for all in the space
of finite energy:

U Init P H1pTdq, Ψ0 P L2pTd;
.
H1pRnqq, Ψ1 P L2pTd ˆ Rnq.

We observe that
d

dt

ˆ

Td

|U |2 dx “ 0.

Hence, the mapping S applies the ball Bp0, }U Init}L2pTdqq of C0pr0, T s;L2pTdqq in itself; we thus

consider U “ SpV q for V P C0pr0, T s;L2pTdqq such that }V pt, ¨q}L2pTdq ď }U Init}L2pTdq. Moreover,
we can split

Ψ “ Υ ` rΨ
with Υ solution of the free wave equation

1

c2
B2
ttΥ ´ ∆zΥ “ 0, pΥ, BtΥq

ˇ̌
t“0

“ pΨ0,Ψ1q,

and
1

c2
B2
tt
rΨ ´ ∆z

rΨ “ 0, pΥ, BtrΨq
ˇ̌
t“0

“ 0.

We write Φ “ ΦI ` rΦ for the associated splitting of the potential. In particular, the standard
energy conservation for the wave equation tells us that

1

2c2

¨

TdˆRn

|BtΥ|2 dz dx` 1

2

¨

TdˆRn

|∇zΥ|2 dz dx

“ 1

2c2

¨

TdˆRn

|Ψ1|2 dz dx` 1

2

¨

TdˆRn

|∇zΨ0|2 dz dx “ M2
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holds. It follows that
|ΦIpt, xq| ď C}σ2}L2n{pn`2pRnq}σ1}L2pTdq

a
2M2

by using Sobolev’s embedding. Next, we obtain

rΦpt, xq “
ˆ

Rn

σ2pzqσ1 ‹ rΨpt, x, zq dz

“ γ

ˆ ct

0

ˆ
ˆ

Rn

sinpτ |ξ|q
|ξ| |pσ2pξq|2 dξ

p2πqn
˙

looooooooooooooooooomooooooooooooooooooon
“ppτq

Σ ‹ |V |2pt ´ τ{c, xq dτ,

which thus satisfies

sup
xPTd

|rΦpt, xq| ď γ}Σ}L8pTdq

ˆ ct

0

|ppτq|
ˆ
ˆ

Td

|V |2pt´ τ{c, yq dy

˙
dτ.

In particular

|rΦpt, xq| ď γ}Σ}L8pTdq}p}L1pp0,8qq}V }C0pr0,T s;L2pTdqq ď γ}Σ}L8pTdq}p}L1pp0,8qq}U Init}L2pTdq

lies in L8pp0, T q ˆTdq, and thus Φ P L8pp0, T q ˆRdq. This observation guarantees that U “ ;SpV q
is well-defined.

Thus, let us pick V1, V2 in this ball of C0pr0, T s;L2pTdqq and consider Uj “ SpVjq. We have

iBtpU2 ´ U1q ` 1

2
∆xpU2 ´ U1q “ γΦ2pU2 ´ U1q ` γpΦ2 ´ Φ1qU1, pU2 ´ U1q

ˇ̌
t“0

“ 0.

It follows that

d

dt

ˆ

Td

|U2 ´ U1|2 dx “ 2γIm

ˆ
ˆ

Td

pΦ2 ´ Φ1qU 1pU2 ´ U1q dx

˙

ď 2γ}U1}L2pTdq }U2 ´ U1}L2pTdq }Φ2 ´ Φ1}L8pTdq “ 2γ}U1}L2pTdq }U2 ´ U1}L2pTdq }rΦ2 ´ rΦ1}L8pTdq

ď 2γ2}Σ}L8pTdq}U Init}L2pTdq }U2 ´ U1}L2pTdq

ˆ ct

0

|ppτq|
ˆ
ˆ

Td

ˇ̌
|V2|2 ´ |V1|2

ˇ̌
pt´ τ{c, yq dy

˙
dτ.

We use the elementary estimate
ˆ

Td

ˇ̌
|V2|2´|V1|2

ˇ̌
dy “

ˆ

Td

ˇ̌
|V2´V1|2`2RepV2´V1qV1

ˇ̌
dy ď }V2´V1}2

L2pTdq`2}V2´V1}L2pTdq }V1}L2pTdq.

Combining this with Cauchy-Schwarz and Young inequalities, we arrive at

d

dt

ˆ

Td

|U2 ´ U1|2 dx

ď 2γ2}Σ}L8pTdq}U Init}L2pTdq

ˆ
2}U Init}L2pTdq

ˆ ct

0

|ppτq|}V2 ´ V1}2pt´ τ{cqL2pTdq dτ

`}U2 ´ U1}L2pTdq2}U Init}L2pTdq

ˆ ct

0

|ppτq|}V2 ´ V1}pt´ τ{cqL2pTdq dτ

˙

ď 2γ2}Σ}L8pTdq}U Init}2
L2pTdq

´
}U2 ´ U1}2

L2pTdq

`p2 ` }p}L1pp0.8qq
ˆ ct

0

|ppτq|}V2 ´ V1}2pt ´ τ{cqL2pTdq dτ

˙
.
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Set L “ 2γ2}Σ}L8pTdq}U Init}2
L2pTdq. We deduce that

}U2 ´ U1}ptq2
L2pTdq ď p2 ` }p}L1pp0.8qqL

ˆ t

0

eLpt´sq
ˆ cs

0

|ppτq|}V2 ´ V1}2ps´ τ{cqL2pTdq dτ ds.

We use this estimate for 0 ď t ď T ă 8 and we obtain

}U2 ´ U1}ptq2
L2pTdq ď p4 ` }p}L1pp0.8qqLTeLT }p}L1pp0.8q sup

0ďsďT
}V2 ´ V1}2psqL2pTdq.

Hence for T small enough, S is a contraction in C0pr0, T s;L2pTdqq, and consequently it admits a
unique fixed point. Since the fixed point still has its L2 norm equal to }U Init}L2pTdq, the solution
can be extended on the whole interval r0,8q. The argument can be adapted to handle the Hartree
system.
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