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Abstract

Most of existing graph neural networks (GNNs) developed for the prevalent
text-rich networks typically treat texts as node attributes. This kind of ap-
proach unavoidably results in the loss of important semantic structures and
restricts the representational power of GNNs. In this work, we introduce a
document similarity-based graph convolutional network (DS-GCN) encoder
to combine graph convolutional networks and embedded topic models for
text-rich network representation. Then, a latent position-based decoder is
used to reconstruct the graph while preserving the network topology. Simi-
larly, the document matrix is rebuilt using a decoder that takes both topic
and word embeddings into account. By including a cluster membership vari-
able for each node in the network, we thus develop an end-to-end clustering
technique relying on a new deep probabilistic model called the graph em-
bedded topic model (GETM). Numerical experiments on three simulated
scenarios emphasize the ability of GETM in fusing the graph topology struc-
ture and the document embeddings, and highlight its node clustering per-
formance. Moreover, an application on the Cora-enrich citation network is
conducted to demonstrate the e↵ectiveness and interest of GETM in practice.
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1. Introduction and related work

Heterogeneous mixed-type data is a common component of real-world
networks. In a scientific citation network, for example, textual informa-
tion such as paper titles, abstracts, and sometimes the papers themselves,
is included, as well as the graph characterizing the citation relationships as
links between papers represented as nodes. The way to incorporate these
two valuable sources of information under the graph structure is crucial and
would a↵ect the quality of network representations through latent embed-
dings. Currently available graph neural networks (GNNs) for such heteroge-
neous networks typically treat the texts as node attributes and the similarity
between the texts is lost when aggregating the sources of information (Kipf
andWelling, 2016b; Mehta et al., 2019; Wang et al., 2019). This inevitably re-
stricts the representation ability on graph topological structure (Wang et al.,
2020) and results in the loss of topic and word semantics in embedding spaces,
as demonstrated in Section 2.

This work focuses on the modeling and clustering of ubiquitous text-rich
networks, where each node in a network is associated with a document that
contains the textual information about that node, and where the connection
relationships are represented by links between each pair of nodes. Recently,
numerous e↵orts have been made to combine graph embeddings learning
with text analysis techniques like word embeddings and topic modeling. To
date, numerous models have been developed based on the standard graph
convolutional networks (GCNs) (Kipf and Welling, 2016a), in which node
representation is produced through a convolution operation between a graph
adjacency matrix encoding node interactions and a node feature matrix en-
coding texts as attributes.

In this line of methods, an adaptive multi-channel graph convolutional
networks (AM-GCN) was proposed by Wang et al. (2020), where the authors
showed that the fusion capability of GCNs on network topological structures
and node attributes is inadequate. The fundamental idea behind AM-GCN
is that node embeddings are simultaneously learned on topology and feature
spaces, and that the final representation is a combination of embeddings from
various spaces. An alternative approach based on the GCN architecture was
introduced in BiTe-GCN (Jin et al., 2021) to investigate the word semantic
structures. This model initially converts the original text-rich network into a
bipartite network with two sorts of nodes, namely the real nodes (document
nodes in the original network) and the entity nodes (words extracted from
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documents), as well as three types of edges between the nodes. Three sepa-
rate GCNs are used with di↵erent kinds of nodes and edges to enable message
passing within the three kinds of sub-networks. Then, the final graph repre-
sentation is obtained by combining the embeddings learned from each type
of sub-network. Lately, as an extension of BiTe-GCN, AS-GCN (Yu et al.,
2021) introduced an augmented tri-typed (document, topic and word nodes)
networks. AS-GCN combines a GCN module with a neural topic model that
extracts word and topic semantics from raw text. Finally, the network learn-
ing part and the topic model are jointly trained so that they can benefit from
one another.

Even though these well-established techniques yield satisfactory results,
they merely discover various ways to mix document and graph embeddings
without modifying the basic structure of GCNs. Conversely, in this paper,
we address the key limit at the core of GCNs, which results in such an
important loss of information as shown in Section 2. In addition, most of
the aforementioned approaches concentrate on the node classification task,
whereas true labels for nodes are frequently absent in real-world networks,
making the need for a robust unsupervised clustering algorithm critical.

In this work, we propose a graph embedded topic model (GETM) to
integrate graph embeddings, topic modeling and node clustering in an end-
to-end manner. We also examine the limitation of GCNs in fusing graph
topological structure and node features, and further introduce a new docu-
ment similarity-based GCN to better account for these two aspects and to
improve the performance of node clustering in networks. Additionally, the
word and topic embeddings are jointly learned using the embedded topic
model (ETM) (Dieng et al., 2020).

1.1. Main contributions

The GETM that we propose has the following key-features:

• a document similarity-based GCN (DS-GCN) encoding approach is
presented to address the semantic information loss that occurs when
considering documents as node attributes and using the convolution
operation;

• a latent position-based decoder is employed to preserve the graph topol-
ogy and to reconstruct the graph adjacency matrix more accurately;
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• another ETM-based decoder is proposed to combine topic modeling and
word embeddings for more e�cient reconstruction of the document-
term matrix;

• a joint optimization is carried out for both document embedding and
graph topology learning based on a variational auto-encoder (VAE)
(Kingma and Welling, 2014b) architecture;

• an end-to-end node clustering approach is performed by estimating the
posterior probabilities for cluster memberships. Thus, the inference
procedure can automatically assign each node to its group without
using any additional out-of-the-box clustering algorithms.

1.2. Organization of the paper

In Section 2, we review two traditional strategies that served as the foun-
dation for our new architecture and point out the key limit in GCNs with an
introductory example. Then, the generative model behind GETM is intro-
duced in Section 3. A variational inference strategy and a joint optimization
algorithm are discussed in Section 4, highlighting the novel structure of DS-
GCN. Numerical experiments are reported in Section 5, which emphasize the
main features of our methodology and validate its ability in exploiting both
the graph topology and topic modeling, as well as performing node clustering
in simulated networks. An application on a real-world network Cora-enrich is
presented in Section 6. Finally, Section 7 provides some concluding remarks
and future work.

2. Background

In this section, we briefly review two classical methods: the graph convo-
lutional network (GCN) (Kipf and Welling, 2016a) and the embedded topic
model (ETM) (Dieng et al., 2020), which serve as the basis of our new archi-
tecture in GETM. We also point out a key limit in GCNs, which motivates
us to propose a new graph neural network structure.

Graph convolutional network. On the one hand, graph convolutional net-
works (GCNs) aim at learning latent representations of nodes of the graph
by iteratively aggregating feature information from its neighbors. A multi-
layer GCN can be defined with the following layer-wise propagation rule

H
(l+1) = �(D̂� 1

2 ÂD̂
� 1

2H
(l)
Ŵ

(l)), (1)

4



where Â = A + IN is the adjacency matrix of the undirected graph G with
N nodes and IN is the N ⇥ N identity matrix in RN representing self-
connections. Moreover, D̂ denotes the degree matrix such that D̂ii =

P
j Âij

and D̂ij = 0 if i 6= j. Ŵ (l) is the learnable weight matrix of l-th layer. Then,
�(·) denotes an activation function such as ReLU or Sigmoid. H

(l) denotes
the learned representation in layer l, and H

(0) = X at the top layer accounts
for node feature matrix X. The node attributes in this case might be any
node characteristics or some textual information. It is not, however, intended
primarily for text analysis in networks.

An introductory example. In order to illustrate the rationale behind our ap-
proach, we begin with a straightforward introductory example in which the
network has three nodes, each node representing a document. In addition,
suppose that the documents use words from a vocabulary of size 5 words, di-
vided into two topics. Such a data set could be characterized by the following
matrices

Â =

0

@
1 1 0
1 1 0
0 0 1

1

A , W =

0

@
1 1 0 0 0
0 0 0 1 1
0 1 1 0 0

1

A ,

where Â shows two connection structures: the first two nodes/documents
strongly interact (for instance they might have one or more authors in com-
mon) and the third node is disconnected. Moreover, there are two groups of
texts in W : the first and the third documents use similar words while words
used by the second document completely di↵er. Therefore, when considering
both the network topology and the text information, it is natural to conclude
that there are three distinct clusters in this instance. The first layer in GCN
is obtained as

ÃH
(0) =

0

@
0.5 0.5 0 0.5 0.5
0.5 0.5 0 0.5 0.5
0 1 1 0 0

1

A , with D̂ =

0

@
2 0 0
0 2 0
0 0 1

1

A ,

where Ã = D̂
� 1

2 ÂD̂
� 1

2 , H(0) = W and D̂ is the diagonal matrix. As it can
be seen, this operation ignores the semantic content of texts and only retains
the network structure. As a result, it is unable to cluster the first and the
second node into two di↵erent groups.
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Embedded topic model. On the other hand, the embedded topic model (ETM)
is a document generative model that combines topic modeling and word em-
beddings. In ETM, each document from a corpus {w1, · · · , wD} is gener-
ated in terms of T latent topics, with each topic t = {1, · · · , T} represented
by a latent embedding ↵t 2 RL in the word semantic space. Each word
v 2 {1, · · · , V } in the vocabulary is then embedded in the same space through
a latent word embedding ⇢v, and ⇢ denotes a L⇥V word embedding matrix.
Besides, for the d-th document, the topic proportions ✓d are assumed to be
drawn from a logistic-normal distribution

�d ⇠ N (0, IT ), ✓d = softmax(�d). (2)

In addition, �t = (�tv)v is a vector of V probabilities where �tv represents
the probability that word v occurs in topic t, obtained as

�t = softmax(⇢>↵t), with
VX

v=1

�tv = 1, 8t. (3)

A matrix � with T rows and V columns is then constructed by stacking the
vectors �t as row vectors. The likelihood of the word m 2 {1, ...Md} in the
d-th document is then given by

p(wdm|�d,↵, ⇢) =
TX

t=1

✓dt�twdm
. (4)

ETM has demonstrated good performance in learning meaningful word and
topic patterns. Nevertheless, it only considers the content of documents and
is unable to model the possible connection structure between the documents.

3. The graph embedded topic model

In our proposed GETM, we combine the representations learned by a doc-
ument similarity-based GCN and the document analysis capability of ETM
to obtain a joint embedding that takes both the graph topology and docu-
ment semantics into account, and to further perform an end-to-end clustering
of the nodes.
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3.1. Notations

In this work, each network is modeled as an undirected, unweighted, graph
G with N nodes. We introduce an N ⇥N adjacency matrix A to encode the
network topology, where Aij = 1 if there is a link between node i and node j,
0 otherwise. In addition, each node is associated with a specific document.
We introduce a corpus of N documents with a vocabulary that contains V

unique terms. For clarity, we set the number of documents denoted by D

in ETM to D = N (the number of nodes) since each node is assumed to
be associated with a single document. W is a document-term matrix where
each vector Wi, i 2 {1, · · · , N} encodes the document of node i containing
a collection of Mi words. Wiv, where v 2 {1, · · · , V }; counts the number of
times that the vocable v in the dictionary appears in the i-th document.

We aim at learning latent, joint, node/document embeddings Z in a lower
dimension P . Then, using this learned embedding Z, our goal is to convert
it into a graph embedding in dimension F and a document embedding in
dimension T , which allow us to in turn reconstruct the graph adjacency and
the document-term matrices, as well as to partition the nodes of the network
into K clusters. We emphasize that GETM is capable of simultaneously
performing node clustering and embedding construction.

3.2. Generative model

The generative process for GETM is now detailed. First, each node is
assumed to be assigned to a cluster via a random variable ci encoding its
cluster membership

ci
i.i.d⇠ M(1, ⇡), with ⇡ 2 [0, 1]K ,

KX

k=1

⇡k = 1. (5)

Then, conditionally to its cluster membership, a latent, joint embedding zi

is generated as

zi|(cik = 1) ⇠ N (µk, �
2
kIP ), with �

2
k 2 R+⇤ and µk 2 RP

, (6)

independently for each node i = {1, · · · , N}.
Based on this joint embedding, a graph topology embedding is generated

as
⌘i = h

(G)
◆ (zi), (7)
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ci cj

zi zj

⌘i ⌘j�i �j

Wi Wj

⇡

µk, �
2

k

Aij ⌧↵, ⇢

Figure 1: Graphical representation of GETM (variational parameters are not included).

where h(G)
◆ (·) is a neural network with parameters ◆ to map the P -dimensional

vector zi into dimension F .
Next, the probability of a connection between nodes i and j is modeled

by a distance function between two graph topology embeddings

Aij = 1|⌘i, ⌘j ⇠ B(f⌧ (⌘i, ⌘j)), (8)

with
f⌧ (⌘i, ⌘j) = �(⌧ � ||⌘i � ⌘j||2), (9)

where �(·) denotes a logistic sigmoid function. Here f⌧ (·) can be seen as
the graph decoder parametrized by ⌧ , which encodes the prior probability to
connect.

Similarly, a document embedding is assumed to be generated based on zi

�i = h
(T )
⌫ (zi), (10)

where h(T )
⌫ (·) is a neural network with parameter ⌫ to map the P -dimensional

vector zi into dimension T . The topic proportions of each document i are
then obtained as

✓i = softmax(�i). (11)

Finally, each document is assumed to be drawn from

Wi|✓i ⇠ M(Mi; ✓
>
i �), with � = softmax(↵>

⇢). (12)
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As in ETM, ↵ is a topic embedding representing topics in an L-dimensional
space and ⇢ is a L ⇥ V word embedding matrix obtained typically via
word2vec (Mikolov et al., 2013) or any other word embedding approach.
Moreover, the product ✓>� can be viewed as a document decoder to map the
topic and word embeddings into a reconstructed document-term matrix. A
graphical representation of the generative model described so far can be seen
in Figure 1.

4. Inference and estimation

In this section, we detail the developed variational inference and the op-
timization algorithm, and introduce the proposed document similarity-based
graph convolutional network (DS-GCN).

4.1. Variational inference

Before getting into the details of the inference, we first denote by ⇥ =
{⇡, (µk, �

2
k)k, ◆, ⌫, ⌧,↵, ⇢} the set of the model parameters introduced so far. A

natural procedure would consist in maximizing the integrated log-likelihood
of the observed data A and W with respect to ⇥

log p(A,W |⇥) = log

Z

Z

X

C

p(A,W,Z,C|⇥)dZ. (13)

Unfortunately, Eq. (13) is not tractable and we rely on a variational
approach to approximate it

log p(A,W |⇥) = L(q(Z,C);⇥) +DKL(q(Z,C)||p(Z,C|A,⇥)), (14)

where DKL denotes the Kullback-Leibler divergence between the true and
approximate posterior distributions of (Z,C) given the data and model pa-
rameters. Then, in order to deal with a tractable family of distributions,
q(Z,C) is assumed to fully factorize (mean-field assumption)

q(Z,C) = q(Z)q(C) =
NY

i=1

q(zi)q(ci). (15)

Moreover, to benefit from the representational learning capabilities of
graph neural networks, we use a two-layer DS-GCN to encode the graph
adjacency matrix and the document-term matrix into a joint embedding

q(zi|A,W ) = N (zi;µi, �
2
i IP ), (16)
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where µi : RN⇥N 7! RN⇥P (respectively �
2
i : RN⇥N 7! R+⇤) is the function

mapping the normalized adjacency matrix Ã = D̂
� 1

2 ÂD̂
� 1

2 into the matrix
of variational means (and standard deviations), parametrized by a two-layer
DS-GCN defined as g� :

H
(1) = �(Ã� (W̃W̃

>)Ŵ (0)),

H
(2) = Ã� (H(1)

H
(1)>)Ŵ (1)

,

where W̃ is the normalized document-term matrix, obtained via W̃ = W
|W | .

Ŵ
(·) are learnable weight matrices and �(·) denotes a ReLU activation func-

tion. Here g� can be seen as the encoder that transforms two input matrices
into latent, joint embeddings. The details of our proposal for such a structure
are described in the following.

Finally, a standard assumption is made for variational cluster probabili-
ties

q(C) =
NY

i=1

M(ci; 1, �i), with
KX

k=1

�ik = 1, (17)

where �ik represents the variational probability that node i is in cluster k.

Details of DS-GCN. In contrast to standard GCNs, we here assume a new
GNN architecture named DS-GCN, with the following per-layer propagation
rule

H
(l+1) = �(Ã� (H(l)

H
(l)>)Ŵ (l)), (18)

where Ã = D̂
� 1

2 ÂD̂
� 1

2 , �(·) denotes the ReLU activation, and � is an
element-wise multiplication. H(l) encodes the learned representation in layer
l, with H

(0) = W̃ the normalized document-term matrix, and Ŵ
(l) is the

learnable weight matrix of the l-th layer. Returning to the illustration ex-
ample in Section 2, we have in the top layer

Ã� (W̃W̃
>) =

0

@
0.5 0 0
0 0.5 0
0 0 1

1

A ,

where the dot product W̃W̃
> is proportional to the cosine similarities be-

tween documents, typically used in data analysis. The product Ã� (W̃W̃
>)

both accounts for the graph topology and document similarities. As a re-
sult, GETM is able to detect three clusters, as expected. Experiments are
conducted in Section 5 to show the validity of DS-GCN.
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Figure 2: Model architecture of GTEM.

Model architecture. From a deep learning view, the model architecture of
GETM can be seen in Figure 2. GETM takes the graph adjacency matrix A

and the document-term matrix W as model inputs. Through the DS-GCN

encoder g�, we obtain a combined embedding Z containing information about
both graph topology and latent topics. Then, a latent position-based graph

decoder f⌧ is developed to map the joint embedding into a reconstructed
graph matrix, and another document decoder ✓

>
� is used to rebuild the

document-term matrix. Additionally, by including latent cluster variables
C, we are also able to explicitly optimize and eventually output a matrix �̂

that represents the clustering probabilities, and, as a result, achieve end-to-
end clustering.

4.2. Optimization

In this part, we focus on maximizing the evidence lower bound (ELBO)

L(q(Z,C);⇥) =

Z

Z

X

C

q(Z,C) log
p(A,W,Z,C|⇥)dZ

q(Z,C) (19)

with respect to the model parameters ⇥ and the variational parameters.
Thanks to Equations (15)-(16)-(17), the ELBO denoted by L can be further
developed as

L =

Z

Z

X

C

q(Z,C) log
p(A,W |Z, ◆, ⌫, ⌧,↵, ⇢)p(Z|C, µk, �

2
k)p(C|⇡)dZ

q(Z,C)

=
X

i 6=j

Eq(Z|A,W ) [log p(A|◆, ⌧, ⌘i, ⌘j)] +
NX

i=1

MiX

m=1

Eq(Z|A,W ) [log p(Wim|⌫, �i,↵, ⇢)]

11



+ E

log

p(Z|C, µk, �
2
k)

q(Z|A,W )

�
+ E


log

p(C|⇡)
q(C)

�

=
X

i 6=j

Eq(Z|A,W ) [log p(A|◆, ⌧, ⌘i, ⌘j)] +
NX

i=1

MiX

m=1

Eq(Z|A,W ) [log p(Wim|⌫, �i,↵, ⇢)]

�
NX

i=1

KX

k=1

�ikDKL(N (µi, �
2
i IP )||N (µk, �

2
kIP )) +

NX

i=1

KX

k=1

�ik log(
⇡k

�ik
).

(20)

The first term of the ELBO calculates the di↵erence between the recon-
structed and original graph adjacency matrices. The second term accounts
for the reconstruction error between the document-term matrices of the in-
put and output. The third term considers the Kullback-Leibler divergence
(denoted by DKL(·)) between the approximate posterior distribution of node
i, obtained with the encoder, and the prior distribution of component k.
Finally, the last term takes into consideration the clustering probabilities.

On the one hand, an explicit optimization of the ELBO with respect to
the parameters �ik, ⇡k, µk and �k can be performed via Proposition 1.

Proposition 1. The following variational updates can be obtained (all proofs

are given in Appendix A)

�̂ik =
⇡ke�Dik

KL

KP
l=1

⇡le�Dil
KL

, (21)

where D
ik
KL = 1

2

⇢
log

(�2
k)

P

(�̃2
�(Ã)i)P

� P +
�̃2
�(Ã)i

�2
k

+ 1
�2
k
||µk � µ̃�(Ã)i||2

�
.

Then

⇡̂k =
NX

i=1

�ik/N, (22)

µ̂k =
NX

i=1

µ̃�(Ã)i�ik/
NX

i=1

�ik, (23)
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and

�̂
2
k =

NP
i=1

�ik(P�
2
�(Ã)i + ||µk � µ̃�(Ã)i||2)

P

NP
i=1

�ik

. (24)

On the other hand, the implicit optimization of the encoder param-
eter �, the two neural networks parameters ◆ and ⌫, the graph decoder
parameter ⌧ as well as the document decoder parameters ↵ and ⇢, is au-
tomatically performed via stochastic gradient descent. In this work, the
implicit optimization is implemented using the Adam optimizer (Kingma
and Ba, 2014). We also point out that during the estimation, a reparam-
eterization trick as in Kingma and Welling (2014a) is used for the terms
Eq(Z|A,W )[log p(A|◆, ⌧, ⌘i, ⌘j)] and Eq(Z|A,W )[log p(Wim|⌫, �i,↵, ⇢)].

5. Numerical experiments

This section aims at testing the e↵ectiveness of GETM, including a DS-
GCN encoder, a latent position-based graph decoder and a ETM-based doc-
ument decoder, on three types of synthetic networks, and to demonstrate the
validity of the estimation algorithm proposed in the previous section.

5.1. Simulation setup

We first generate three di↵erent types of synthetic networks, each of which
having three groups of nodes. The connections between nodes are obtained
by a stochastic block model (SBM, Nowicki and Snijders, 2001). Each node
in the network is then associated with a document, where each word is picked
at random from three articles from BBC news, denoted by D1, D2 and D3,
respectively. The first document discusses the birth of Princess Charlotte.
The second text is about black holes in astrophysics. The last article focuses
on UK politics. Three scenarios are described in detail as follows, with an
illustration provided in Figure 3.

• Scenario A simulates a graph according to SBM, where edges between
two nodes are drawn from independent Bernoulli distributions

Aij|(ZikZjl = 1) ⇠ B(⇧kl),
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Figure 3: Three scenarios to simulate synthetic networks.

with Zik being 1 if node i is in cluster k, 0 otherwise. The connection
probabilities are defined as

⇧ =

0

@
0.8 0.8 0.2
0.8 0.8 0.2
0.2 0.2 0.2

1

A ,

where each entry ⇧kl denotes the probability that a node in group k and
a node in group l connect. Thus, the third group has low inter and intra
connection probabilities and di↵ers from the other two groups, which
are more likely to connect. Additionally, we assign a document to each
node and the words used in the three document groups are randomly
extracted from text D1, D2 and D3, respectively (see Figure 3). If
we solely analyze the network topology structure, the first two groups
are likely to be clustered together. However, if we look at the text
information that each node in this network is concerned with, the actual
number of clusters is three.

• In Scenario B, networks are also simulated according to SBM, with
connection probabilities given by

⇧ =

0

@
0.8 0.2 0.2
0.2 0.8 0.2
0.2 0.2 0.8

1

A ,

corresponding to a clear community structure. It is simple to detect
three clusters by just considering the network topology. However, group
1 and group 3 adopt words from D1, whereas words in group 2 are
extracted from D2 (see Figure 3). Therefore, there are two clusters if
we only take the document information into account.
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• Scenario C has the same connection probabilities as in scenario A and
the texts assignments are the same as in scenario B. In this situation,
focusing solely on the graph topology or the textual data would lead
to the discovery of two clusters, whereas the actual group numbers is
three when the two types of information are considered simultaneously.

5.2. Benchmark study

We now aim at benchmarking the clustering performance of GETM with
the following competitors in the three simulated scenarios.

• ETM (Dieng et al., 2020) is a document generative model that combines
traditional topic models with word embeddings and is intended only for
textual data.

• SBM (Nowicki and Snijders, 2001) is a widely used generative model in
network analysis for clustering of nodes and is designed for graph data
only.

• VGAE (Kipf and Welling, 2016b) encodes the adjacency matrix and the
node/document feature matrix by a GCN, and adopts an inner-product
decoder for graph reconstruction.

• AM-GCN (Wang et al., 2020) is a GCN-based method which performs
graph convolution both accounting for the network topology and the
node features space.

For each scenario, we randomly generated 15 networks with 900 nodes, 3
clusters, and calculated the averaged adjusted rand index (ARI, Hubert and
Arabie, 1985) for node clustering comparisons. The results are reported in
Table 1.

As can be observed, ETM showed excellent results in Scenario A due to
the fact that each group is associated with a distinct topic. However, in
Scenario B and C, only two types of documents are considered, ETM has a
poor ARI since it cannot exploit the connectivity between nodes/documents.
SBM only achieved great results in Scenario B, which contains three groups
in the graph topological structure. However, SBM failed to detect three
clusters in Scenario A and C since it cannot exploit the textual interaction.
VGAE treats text data as node attributes to perform clustering. Due to the
constraints in fusing the graph topology and the word semantics in GCN,
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Table 1: Experimental clustering results on 3 simulated scenarios.

Scenario A Scenario B Scenario C

ETM 1.000±0.00 0.552±0.02 0.540±0.02

SBM 0.630±0.05 1.000±0.00 0.608±0.05

VGAE 0.459±0.00 0.773±0.07 0.460±0.00

AM-GCN 1.000±0.00 0.892±0.03 0.961±0.02

GETM 0.990±0.01 1.000±0.00 0.998±0.00

VGAE shows the worst performance in all situations. AM-GCN constructs
a k-nearest neighbor graph based on the node feature matrix to capture the
underlying document semantics. As a result, AM-GCN was able to identify
three clusters in di↵erent scenarios. Nevertheless, its performance in Scenario
B was unsatisfactory in comparison to Scenario A and C. Finally, GETM
consistently displayed strong clustering performance with high ARI values
in all situations, which demonstrates its capability in both representation
learning and node clustering.

5.3. A more detailed example

We now focus on Scenario C, which is the primary emphasis of this work.
In the initial configuration, both the graph topology structure and topic
subjects are divided into two categories, making it di�cult to find the actual
number of clusters.

We first run GETM on a synthetic network with 900 nodes, generated
according to Scenario C, and then visualize the learned joint embeddings,
graph embeddings and document embeddings, respectively. After training
for 600 epochs, we plot the reconstruction loss for graph and text, the total
loss (negative ELBO), and display the evolution of the ARI during training
(Figure 4). All types of loss have converged and the ARI value (equal to 1.0)
highlights the clustering capability of GETM as well.
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Figure 4: The training loss for graph and texts reconstruction, the overall loss and the

evolution of ARI during training.

Then, we visualize the latent embeddings learned by GETM. First, Fig-
ure 5 displays the combined embeddings Z using PCA. Three groups with
distinct colors can be distinguished by GETM, which demonstrates the abil-
ity of DS-GCN to exploit the network topology and the textual information.
Then, regarding the graph topological embeddings ⌘ in Figure 6, two groups
with di↵erent topologies are well preserved. As we can see, there are two
clusters with a high probability of intra connections (positions are relatively
closed) and one cluster is separated, which is coherent with our initial config-
uration. In addition, two latent topics are successfully detected based on the
document embeddings ✓, as shown in Figure 7. One document cluster is far
away, whereas the other two clusters are very close, recovering the simulation
setup in Scenario C.
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Figure 5: PCA visualisation of the joint embedding Z (P = 128) in Scenario C. Each

cluster is represented by a distinct color. Three black points are the estimated cluster

centers µk.

Figure 6: PCA visualisation of ⌘ (F = 128) in Scenario C. The green group is far away,

whereas the orange and blue groups are relatively close, showing two di↵erent topologies.
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Figure 7: PCA visualisation of ✓ (T = 16) in Scenario C. The blue group is far away,

whereas the green and orange groups are relatively close, showing two di↵erent topics.

Table 2: Top-10 words obtained from two topics.

Topic 1 ”princess” ”charlotte” ”birth” ”queen” ”duchess”
”duke” ”cambridge” ”granddaughter” ”great” ”palace”

Topic 2 ”hole” ”black” ”see” ”gravity” ”light”
”one” ”event” ”horizon” ”around” ”disc”

Moreover, we also illustrate the top-10 words selected from two topics in
Table 2. As we can see, words associated with the first topic are related to
the birth of Princess Charlotte, and vocables in the second topic are about
black holes in astrophysics, which recovers the simulation setup for texts.

To conclude, all previous results indicate that GETM is capable of learn-
ing representations and performing node clustering in heterogeneous infor-
mation networks.
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5.4. Model selection

A key element of an unsupervised learning technique such as GETM
is to be able to automatically determine the number of clusters (K). We
highlight here the ability of our methodology to auto-penalize the ELBO
for selecting the number of groups appropriately, which is made possible
by the self-regularization ability of variational auto-encoders, also reported
in Kingma et al. (2016); Dai et al. (2017).

Number of clusters. Letting the number of clusters vary from 2 to 7, Figure 8
illustrates how the training loss (negative ELBO) can be used to estimate
the number of clusters. In this experiment, for each value of the number of
clusters, we generated five synthetic networks from Scenario C and trained
GETM with the latent, joint embedding dimension P = 16, the graph embed-
ding dimension F = 16 as well, and the dimension of document embedding
equal to the number of topics T = 2. It can be seen that when K = 3, the
training loss (negative ELBO) is minimal, thus recovering the actual value
of K for the simulation setting.

Figure 8: Averaged training loss (negative ELBO) with di↵erent number of clusters on

30 synthetic networks in Scenario C. GETM was able to estimate K = 3 by displaying a

clear minimum of the negative ELBO.

Dimension for latent topics. We further evaluated the model selection ability
with di↵erent number of latent topics. In this experiment, we generated five
synthetic networks from Scenario C and trained GETM with the latent, joint
embedding dimension P of 128, the graph embedding dimension F of 128,
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and the document embedding dimension T of {2, 16, 128}, respectively. In
Table 3, we examine the training loss (negative ELBO) for various number of
clusters K 2 {1, · · · , 6}. The capacity of GETM to choose the proper cluster
numbers is highlighted by the fact that the minimal training loss (negative
ELBO) is discovered when K = 3, with varying dimensions of latent topics.

Table 3: Averaged training loss (negative ELBO) with di↵erent number of clusters and

latent topic dimension in Scenario C.

K=2 K=3 K=4 K=5 K=6

T=2 1048.11 1028.74 1038.37 1037.69 1037.17

T=16 1040.65 1026.58 1027.36 1027.66 1028.89

T=128 1027.88 1026.60 1028.44 1027.27 1028.14

6. Application on real-world network

In this section, GETM is fitted on a text-rich citation network Cora-
enrich1 as an illustration of its practical use. The original Cora2 dataset con-
tains 2,708 scientific publications classified in seven categories: case based, ge-
netic algorithms, neural networks, probabilistic methods, reinforcement learn-

ing, rule learning and theory. It consists of 5,429 links and 1,433 vocabulary.
Each publication is described by a 0/1-valued word vector indicating the
absence/presence of the corresponding word from a dictionary. Recently,
Ganguly and Pudi (2017) enriched the text information by collecting the
titles, abstracts and all sentences from a paper containing citations, which
leads to 25,955 vocables in Cora-enrich network. This dataset shares the
same papers, categories and citation relationships with Cora.

Most related works (Pan et al., 2018; Mehta et al., 2019; Jin et al., 2021;
Yu et al., 2021) assume that the number of clusters is equal to the num-
ber of classes used in supervised node classification tasks, whereas we argue
that the class labels (thematic categories) might not be in a one-to-one rela-
tion with the detected clusters in unsupervised node clustering. Instead, an
appropriate cluster number should be obtained through model selection.

1
http://zhang18f.myweb.cs.uwindsor.ca/datasets/

2
https://relational.fit.cvut.cz/dataset/CORA
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Figure 9: Training loss (negative ELBO) with di↵erent number of clusters on Cora-enrich.

GETM estimates K = 6 by clearly showing the minimum of the negative ELBO.

6.1. Model selection

As the model selection ability of GETM is demonstrated in Section 5.4,
GETM is also fitted to the Cora-enrich network for di↵erent numbers of
clusters, ranging between 4 and 10, with fixed dimensions (P, F, T = 128)
for three latent spaces. The evolution of the training loss (negative ELBO)
with various cluster numbers is shown in Figure 9. The reported result is
the lowest value obtained after running GETM 10 times for each cluster
number. Finally, the estimated number of clusters is K = 6 by displaying a
clear minimum of the negative ELBO.

Confusion matrix. We also plot the confusion matrix between six estimated
cluster partitions and seven thematic categories to investigate the fusion or
dispersion between multiple classes, as shown in Figure 10. As we can see,
the majority of publications on reinforcement learning (T3), rule learning
(T5) and genetic algorithms (T6) are extracted into clusters C3, C5 and C1,
respectively. The two clusters C2 and C6 constitute the primary division
between articles about neural networks (T7). Theoretical publications (T4)
are mainly grouped into C4 and C5 clusters. Case based papers (T2) are
separated into clusters C3 and C5. The articles that address probabilistic
approaches (T1) are divided into the clusters C2, C3, C4, and C5.

22



Figure 10: Confusion matrix between six estimated clusters and seven thematic categories

(T1: probabilistic methods, T2: case based, T3: reinforcement learning, T4: theory, T5:
rule learning, T6: genetic algorithms, T7: neural networks).

Based on these results, we stress that the number of clusters cannot be
determined solely based on the number of the thematic classes. Conversely,
when selecting the number of clusters via model selection, we are able to
discover interesting new similarities between the nodes of a graph.

6.2. Visualisation and analysis

We further visualize the latent embeddings discovered by GETM in Fig-
ure 11. The standard network visualization tool gplot within the sna library
in R is used. Six clusters are represented in distinct colors with a layout
using a variant of Fruchterman and Reingold force-directed placement algo-
rithm by default. It can be seen that, GETM was able to detect di↵erent
communities on Cora-enrich, where nodes from various clusters are gathered.
Moreover, Figure 12 shows the paper distributions in six groups when seven
thematic categories are taken into account.

• The Grp 1 in red, in particular, collects the majority of publications
on genetic algorithms. It makes sense because genetic techniques is a
specialized topic of research that is distinct from other themes. Since
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Grp 1
Grp 2
Grp 3
Grp 4
Grp 5
Grp 6

Figure 11: Visualization of Cora-enrich. Six clusters are represented in distinct colors.

many neural network models are constructed using probabilistic prin-
ciples and it is common for them to strengthen proposed models based
on theory background.

• Grp 2 in green extracts many publications from neural networks, prob-
abilistic approaches, and some theoretical articles. This is expected
given that theory papers or probabilistic methods can serve as the
foundation for neural network models.

• Because many reinforcement learning models are created for a par-
ticular case study and may rely on some probabilistic basis, the Grp 3
(blue) includes practically almost all of the reinforcement learning pub-
lications, a significant number of case-based articles, and some proba-
bilistic methods.

• Similarly, a number of probabilistic or neural network-based models are
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Figure 12: Partitions taking into account thematics in each cluster on Cora-enrich (PM:

probabilistic methods, CB: case based, RL1: reinforcement learning, Th: theory, RL2: rule
learning, GA: genetic algorithms, NN: neural networks).

gathered specifically in the Grp 4 (pink) together with the majority of
theory articles.

• Since rule learning can be used in a variety of domains, Grp 5 in yellow
contains the majority of rule learning publications along with many
other types of papers.

• Finally, the Grp 6 in black captures the other neural network publica-
tions that are solely informatics-related.

Additionally, we also visualize the graph topological embedding and an-
alyze the link connections between nodes. Figure 13 illustrates the latent
embedding ⌘ of graph topology. As we can see, there is a small commu-
nity of nodes in Grp 1 (red) that are exclusively interconnected, these could
represent publications on specific genetic algorithms. The relationships for
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the other groups are not very evident from this figure, so we go further into
them by computing the community memberships quantitatively for each clus-
ter (number of links within each cluster). The results are reported in Table 4.
It is clear that all of the diagonal values are quite large, highlighting the com-
munity structure: nodes are more likely to interact within their communities.

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Figure 13: Visualization of the graph topology embedding ⌘.
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Table 4: Number of links within each cluster.

Grp

Grp
1 2 3 4 5 6

1 1794 207 393 74 111 218

2 207 1032 79 106 117 119

3 393 79 1480 7 114 51

4 74 106 7 568 46 0

5 111 117 114 46 1312 29

6 218 119 51 0 29 1030

We close this section emphasizing once more that, in unsupervised prob-
lems, we cannot determine the number of clusters solely based on the number
of the classes that are used in supervised tasks. These classes are simply
assigned based on the article thematics, without taking into account the ci-
tation relationships. Conversely, when selecting the number of clusters via
model selection (that VAEs seem to perform intrinsically), we are able to dis-
cover interesting new similarities between the nodes of a graph by combining
the graph topology structure with latent thematics in textual information.

7. Conclusion

In this work, we propose the document similarity-based graph convolu-
tional network (DS-GCN) to account for both the network topology structure
as well as word and topic semantics from the textual information. Then, two
di↵erent decoding networks are introduced to reconstruct both the graph ad-
jacency matrix and the document-term matrix. In addition, an end-to-end
node clustering is performed using the graph embedded topic model (GETM)
by estimating the posterior probabilities for cluster memberships. Numerical
experiments on simulated scenarios demonstrate that GETM is capable of
learning representations in heterogeneous information network. Moreover,
the performance of GETM in node clustering is highlighted by the bench-
mark study with other competitors based on three di↵erent simulations. We
further conduct a model selection to test the ability of our methodology to
auto-penalize the ELBO for choosing the number of clusters appropriately.
Finally, an unsupervised network analysis is conducted on the Cora-enrich

27



network to emphasize the model selection ability and the interest to discover
hidden patterns behind the thematics.

Here we considered networks that include mixed-type information, but
each node and link have the same kind of properties and relationships. For
instance, each node is associated with a textual document and links are
all undirected and unweighted. For future works, we could deal with more
complex real-world networks, including nodes with various characteristics.
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Appendix A. Derivatives of the ELBO

Proof. Detailed derivations are obtained as follows. In order to take into

account the equality constraint
KP
k=1

�ik = 1, 8k, we introduce the Lagrange

multipliers �i

L̃ := L�
NX

i=1

�i

 
KX

k=1

�ik � 1

!
,

then, we derive L̃ according to �ik and set the derivative equal to zero

@L̃
@�ik

= log ⇡k � log �ik �
�ik

�ik
�D

ik
KL � �i = 0,

thus, we have

log �ik = log ⇡k � 1�D
ik
KL � �i,

�ik = e(log ⇡k�1�Dik
KL��i) =

e(log ⇡k�Dik
KL)

e(1+�i)
.

(A.1)

By using the constraint on
KP
k=1

�ik, we get

KX
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�ik =
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e(log ⇡k�Dik
KL)
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= 1

log
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After putting �i into Eq. (A.1)
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Finally, we obtain

�̂ik =
⇡ke�Dik

KL

KP
l=1

⇡le�Dil
KL

. (A.2)

Similarly, since
KP
k=1

⇡k = 1, 8k, we introduce another Lagrange multiplier,

say ⇣

L̃ := L� ⇣

 
KX
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⇡k � 1

!
,

then, we derive L̃ according to ⇡k and impose the derivative equal to zero
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next, we use the equality constraint to find the value of ⇣
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and finally, we have

⇡̂k =
NX

i=1

�ik/N. (A.3)

Last, we need to calculate the derivatives of the lower bound with respect
to µk and �

2
k. We start by deriving L̃ according to µk
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then, we obtain
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µ̃�(Ã)i�ik,

µ̂k =

NP
i=1

µ̃�(Ã)i�ik
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and finally for �2
k, we have
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Appendix B. Implementation details and computation time

In GETM, the DS-GCN encoder g� has 512 neurons in the first hidden
layer and 128 neurons in the second hidden layer, respectively, equipped with
a Relu activation for the first layer. The neural networks h

(G)
◆ and h

(T )
⌫ are

one-layer linear networks with 128 and 16 neurons, respectively. The graph
decoder f⌧ is a one-layer neural network, following with a sigmoid function,
which maps the latent graph topology embeddings ⌘ into a reconstructed
graph. The document decoder ✓>� maps the topic and word embeddings in
dimension L = 300 into a reconstructed document-term matrix.
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Adam optimizer is used to update network weights. On the simulated
networks, the learning rate for the graph part is 5e�3, and 0.02 for the doc-
ument part. On the Cora-enrich network, the learning rate for two parts are
5e�3, and 0.01, respectively.

The computation time on the simulated network with 900 nodes, 558
(Scenario B and C) or 721 words (Scenario A) is about 0.03s/epoch, for a
total of 9.18s for 300 epochs on a GeForce RTX 2070 GPU. On the same
GPU, training on the citation network Cora-enrich with 2,708 nodes and
25,955 words takes about 0.10s/epoch and a total of 28.50s for 300 epochs.

For more details, our code is available in: https://github.com/ldggggg/
GraphETM. In this paper, SBM is implemented by sparsebm package in
Python, ETM, VGAE and AM-GCN are conducted using the available Python
code in github: https://github.com/lffloyd/embedded-topic-model, https:
//github.com/DaehanKim/vgae_pytorch and https://github.com/zhumeiqiBUPT/
AM-GCN, respectively.
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