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Introduction

In order to study fluid flows, one may rely on experimental methods, such as PIV (Particle Image Velocimetry) or PTV (Particle Tracking Velocimetry), whose spatial and temporal resolutions may be limited. Instead, numerical methods may be employed. However, their accuracy may be affected by uncertainties in the inputs of the simulations, such as initial and boundary conditions. To remedy this, data assimilation can be used to combine experimental and numerical methods to overcome their inherent limitations and thus better predict fluid flows. Data assimilation methods can be separated into two distinct categories : variational or sequential methods. Concerning the variational methods, a cost function is minimized through a gradient-based descent method, relying on the adjoint of the CFD model. Reaching convergence typically requires numerous calls to the direct and adjoint CFD solvers. In sequential methods such as the Kalman filter, the covariance of the state has to be calculated and advanced in time, which may be very costly if the state is of high order. Combining experimental and numerical data is thus numerically expensive and especially if there are a lot of degrees of freedom as in CFD. Therefore, several data assimilation methodologies are developed towards reduced order models. The objective in this paper is to develop a methodology that can be implemented easily with any CFD code. Therefore interest was focused on sequential methods and in particular methods derived from the Kalman Filter.

Our approach was oriented towards Dynamic mode Decomposition (DMD), which has the particularity of giving a linear approximation of the propagation model of the state at a reduced rank, as it can easily be used to work with reduced order model. Indeed, several studies have been conducted to combine Kalman Filters and DMD in order to build a reduced-order model in which the DMD can be used for the dynamics such as Fahti, [START_REF] Mojtaba | Timeresolved denoising using model order reduction, dynamic mode decomposition, and kalman filter and smoother[END_REF] Tsolovikos 9 and Iungo [START_REF] Iungo | Data-driven reduced order model for prediction of wind turbine wakes[END_REF] for example. Note that it can also be used in variational data assimilation methods as did Tissot [START_REF] Tissot | Model reduction using dynamic mode decomposition[END_REF] with a 4DVAR methodology. DMD provides spatio-temporal modes that each evolve at a particular frequency. Thus it is possible to propagate a reduced order state very easily on those modes and the computation time is drastically reduced. The reduce order space defined by the DMD modes is then dynamically relevant to serve as a model in a data assimilation framework.

When computing the DMD, an error is made on the linearisation of the model, but this can be controled by the order of the DMD model and thus the number of modes chosen. The error we are interested in correcting with data assimilation is rather due to the parameters uncertainty of this same model. Indeed the state is constrained on the space estimate defined by the DMD modes and if the model parameters are unknown, the DMD modes will not span the subspace of the solution we try to recover. There will therefore remain a residual error that can not be corrected even if one augment the order of the decomposition.

In order to deal with this problem, we propose to use a catalogue of DMD modes constructed using snapshots from different simulation parameters to build a reduced-order space for data assimilation. This procedure will be refered to as the Catalogue Kalman Filter (CKF) if it is used with the Kalman Filter or the Catalogue Ensemble Kalman Fitler (CEnKF) if it is used with the Ensemble Kalman filter. Refined DMD can be built using the CKF which will yield to updated modes and associated frequencies. A final filter is then computed based on the newly updated modes. The proposed approach is similar to that of Tsolovikos 9 but he considers independant filters and combine them to obtain the filtered state. The combination weights are constructed from the probability of belonging to each of the models which are assumed to evolve over time. Whereas in our approach, we have a single time-stable model that operates on a reduced state.

In this work, the DMD algorithm will first be presented. This leads to how it can be used in the case of a reduced-order data assimilation method. Our approach is then introduced with which we try to remedy to the errors induced by the parameter uncertainty on the DMD model. Finally, this new methodology is tested with the study of a 2D flow around a circular cylinder and its wake.

Methodology

DMD

The Dynamic Mode Decomposition was initially developed by Schmid [START_REF] Peter | Dynamic mode decomposition of numerical and experimental data[END_REF] and it was used as a data-driven method in order to extract dynamically relevant features in flow fields. The algorithm used here to compute the modes is refered as the "exact" DMD. [START_REF] Tu | On dynamic mode decomposition: Theory and applications[END_REF] Let's have a set of m pair of snapshots {x(t k ), x(t k+1 )} m k=1 and in each pair the snapshots are separated by a constant time step δt = t k+1t k . Let X and X ′ be the matrices containing respectively all the first and second elements of the m snapshots pairs

X = [x(t 1 )x(t 2 ) • • • x(t m )] (1a) 
X ′ = [x(t 2 )x(t 3 ) • • • x(t m+1 )] . ( 1b 
)
Then the DMD consists in determining the matrix A that gives the best linear approximation X ′ ≈ AX. If the state is of high dimension, A can first be projected onto the leading r Proper Orthogonal Decomposition (POD) modes U r as detailled by Tu. [START_REF] Tu | On dynamic mode decomposition: Theory and applications[END_REF] In order to calculate the propagation matrix, a Singular value Decomposition (SVD) is done on X : X = UΣV * where * denotes the complex conjugate transpose and U is the matrix containing the POD modes.

It is then possible to truncate the rank of the matrix X to a value r by selecting the first r columns of U and V :

X ≈ U r ΣV r * . Then A = X ′ X † = X ′ VΣ -1 U * ≈ X ′ V r Σ -1 r U * r (2)
with X † the Moore-Penrose pseudo inverse of the matrix X.

The DMD modes are then obtained by calculating the eigenvectors of this matrix A. Moreover, the time evolution of the DMD modes are determined by the phase of the eigenvalues of A and thus each mode oscillate at a single frequency and can be propagated really easily.

Contrary to the POD modes which are typically ordered by decreasing energy, there exist different ways to arrange DMD modes. In this paper, the modes are ordered as described by Kou 5 to take into account the temporal evolution of their amplitude until the time t K using a parameter I j for the mode φ j , with α j being the projection of the first snapshot on this mode:

I j = K i =1 |α j λ j i -1 | φ j F δt (3) 
The DMD modes calculated are composed of complex conjugate pairs apart from the first mode (corresponding to the mean flow) which is real and thus of null frequency.

Real parts of the vorticity of DMD modes of a flow around a circular cylinder at Reynolds number 100 are represented on the figures 1a,1b and 1c. This case will be presented with more details later in the paper. 

Reduced-Order Kalman Filtering

Let's take x k the state at the time t k that follows the linear model obtained from the DMD matrix :

x k+1 = Ax k (4)
with k ≥ 0 and x 0 the initial condition. With Φ the DMD modes and Λ the diagonal matrix of DMD eigenvalues :

AΦ = ΦΛ (5) 
which can lead to the reduced-order state :

xk = Φ † x k (6)
The propagation equation in the reduced-order state leads to

xk+1 = Λ xk (7) 
which is very easily computed as it is a diagonal linear model of low order. Therefore, methods derived from the Kalman filter can easily be implemented here. The observation equation with y k the vectors containing the observation points and H the observation operator can be defined by: y k = Hx k (8) with H linear in the case of the Kalman filter. It can then be shown that the Kalman filter in high dimension using the propagation operation (4) and the observation equation ( 8) is equivalent to the reduced-order Kalman filter with the propagation equation ( 7) and an observation equation :

y k = HΦ xk = H xk (9) 
H is the observation operator that maps the reduced-order state to the observations.

Test Case: EnKF on DMD subspace

The test case consists of studying the flow around a 2D circular cylinder and its wake. The reference flow, which will be called "truth" in the rest of this paper, is generated at a given Reynolds number, which will be specified later, using a Numerical Simulation on the finite element solver FreeFem++. The cylinder diameter is set to D = 1, the time step d t = 0.01 and the freestream velocity to 1 by selecting the kinematic viscosity to be equal to 1/Re. Moreover, 111 velocity measurements are extracted from this simulation and are perturbed using a white noise of variance 1e -4, as it can be seen on the figure 2 for the mesh and the observations points, and are used for the data assimilation. The number of degrees of freedom in the simulation is around 50000, including P2 elements for the two velocity components and P1 elements for the pressure. We suppose that there is an uncertain parameter in our simulation which is the Reynolds number. Therefore two simulations are done with a Reynolds number close to the Truth : 98 and 102. Each simulation will create a set of snapshots that we use in our DMD algorithm to calculate an approximate forecast model. The objective of the filter is thus to correct the two models that we obtain. The data assimilation method used in this paper is the Ensemble Kalman Filter 1 (EnKF). The difference between this filter and the standard Kalman Fitler is that the covariances are not explicitly calculated but are approximated by an ensemble of N states :

E f ,a = x f ,a (1) 
, ..., x f ,a (N) (10) where the the superscripts denotes what is obtained after the two steps of the filter : the forecast step f and the analysis step a . The forecast step is therefore done on multiple states at the same time.

The decompositions are calculated by taking 400 snapshots separated each by δt = 0.1 which leads to over 50 snapshots per period of vortex shedding, as the Strouhal number of the flow is approximately 0.16 at Reynolds numbers around 100. As detailed previously, the DMD modes can be calculated by projecting the propagation matrix A on the r dominant POD modes and the figure 3 presents the energy left after selecting the first POD modes in our case. This shows that by selecting 19 modes, almost no energy is left and the remaining POD modes have energies that are on similar levels. On the POD basis, r DMD modes are calculated which leads to our case to 19 DMD modes per simulation. An odd number of DMD modes per Reynolds number allows to have pairs of complex conjugate modes and the mean flow (which corresponds to the first DMD mode).

Concerning the data assimilation, observations are taken into account every δt = 0.1 so it matches the forecast step done by the DMD. In order to generate the initial states for the EnKF, the statistics of the reduced-order states of the snapshots are calculated and then N = 19 random samples are drawn using a Gaussian distribution for each simulation.

Contrary to what was done by Hirsh, [START_REF] Hirsh | Centering data improves the dynamic mode decomposition[END_REF] the choice was made here to not substract the mean of the snapshots before calculating the DMD because the mean flow (represented by the first DMD mode) have to be re-estimated in our case.

The EnKF are performed using the Python library DAPPER Version 0.9.6 6 during a total time of T = 150 to include a lot of vortex Shedding periods and several multiplicative inflation parameters (which increase the ensemble variance) were tested. As the coefficients on the DMD space are complex, a choice was made to separate real and imaginary parts and have therefore a state that is twice bigger. This does not impact a lot the calculation time as the reduced-order space is already very small. DMD modes are finally computed from the estimated states that have just been calculated in order to be compared to the modes obtained directly from the Truth. This allows to see if the modes and their frequencies can be estimated as well.

Results for EnKF on DMD subspace

The true state Reynolds number is set to 100 and therefore a 2% error is made on this Reynolds number when the DMD are calculated.

In order to study the assimilation errors more precisely, the vorticity fields at 3 different time steps (t = 0, t = 75 and t = 150) of the truth are first presented on the figures 4a, 4b and 4c. The difference between the vorticity Figure 3: Energy left after the selection of POD modes fields for all the cases described above and the Truth are then plotted at these time steps. At t = 0, the error maps are similar for the different cases because the initial fields are close to the mean flow. The vorticity errors for the time steps t=75 and t=150 are on the same order of magnitude when the assimilation is performed on the subspace defined by a single Reynolds number. Indeed, in the figures 4f and 4i, the errors are concentrated around the cylinder and in its wake and small spatial structures are visible. In order to measure precisely the performance of the two filters, several parameters are evaluated. The error between the ensemble mean of the estimated state x k and the Truth x t k is calculated at each time k step using :

E k = x k -x t k x t k (11)
This error is first calculated for the case in which the state is only propagated using the DMD models and without taking into account the measurements. However, the initial state is the true state and the error is thus null at the start. This can be seen in the figure 5. The error is increasing in time with both models (one at Reynolds 98 and one at Reynolds 102). This motivates the use of data assimilation to correct those models. In the same figure, errors resulting from the use of both filters are also plotted. A multiplicative inflation parameter of 1.02 is used for both EnKF and it can be seen that the state error is relatively constant at approximately 0.3%. The measurements then helped to correct the state as the forecast was done with an inaccurate model. 6. It can first be seen that the model error introduced by the linearisation in the DMD algorithm can be neglected here as it is still really low at t = 150. Then the error on the prediction of the true state after the assimilation in case the Reynolds number is inaccurate can still be massively improved (by over one order of magnitude in the case of Reynolds 98).

This leads to further investigation to determine what is the cause of such a difference in this error. In order to do this, the attention is given to the DMD modes calculated and their frequencies. One idea was to see if they are corrected and therefore the DMD algorithm was used on the newly assimilated states obtained after the EnKF for the Reynolds 98 and 102.

The figure 7a represents the relative error in frequency of the DMD modes compared to the true state's ones. This shows that after an assimilation, the true frequencies can be corrected. However, as it can be seen in the figure 7b that represents the norm of the error on the DMD modes, the modes themselves are not corrected and at higher modes, the error is more important with the updated DMD modes. Thus only the dynamics of the modes are corrected but not the spatial structures. This will be described in more details in the next section.

Errors of the filter on the DMD subspace

As the objective is to assimilate data that can come from PIV/PTV measurements, a DMD can first be constructed from a numerical simulation. However, the parameters to input in this simulation are not known and the uncertainty leads to errors in the DMD model. The first idea developed above was to filter with an approximate model due to the parameters uncertainties and to improve the model by computing a DMD on the filtered states. However, this does not work as the state will be constrained in the subspace spanned by the DMD modes. Indeed, for the forecast step of the Ensemble Kalman Filter, as it can be seen in the equation ( 4), the state will stay in the DMD modes subspace. Concerning the analysis step where states are corrected using the perturbed observations Y k+1 , the observation matrix H k+1 and the Kalman gain K k+1 calculated at the time step k + 1:

E a k+1 = E f k+1 + K k+1 Y k+1 -H k+1 E f k+1 (12)
with the Kalman gain defined as

K k+1 = X f k+1 X f k+1 T H T k+1 H k+1 X f k+1 X f k+1 T H T k+1 + Y ′ k+1 Y ′ k+1 T -1 (13a) X f ,a = 1 N -1 x f ,a (1) -x f ,a , ..., x f ,a (N) -x f ,a (13b) 
Y ′ = 1 N -1 y (1) -ȳ, ..., y (N) -ȳ (13c)
X f is the ensemble anomaly matrix and Y ′ the observation ensemble anomaly matrix. Therefore, if the states are in the DMD subspace, X f will be also in the DMD subspace and then E a k+1 will be in the subspace spanned by the DMD modes. Thus, the modes can not be corrected during the assimilation procedure. The same applies for the standard Kalman filter.

In order to solve this problem that arises when the DMD is used during the assimilation, the idea is to use multiple decompositions at the same time, each obtained from different parameters. Tsolovikos 9 used a bank of DMD in order to perform multiple Kalman Filters simultaneously on the same observations. Each Kalman Filter was done on a DMD subspace and thus with a different forecast model and the final state was calculated using the likelihood of each model. The purpose of this filter is to track model evolution over time.

In our approach the objective is also to overcome the fact that the state is constrained on a single DMD subspace but our model does not evolve with time. We built a catalogue of different DMD and used that catalogue to create a single subspace spanned by all the mode calculated. This creates an augmented subspace that better approximates the true state. For example, if Φ 1 and Φ 2 are two sets of DMD modes that have been calculated using two different sets of snapshots {X 1 ,X ′ 1 } and {X 2 ,X ′ 2 }

A 1 = X ′ 1 X † 1 and A 2 = X ′ 2 X † 2 (14) A 1 Φ 1 = Φ 1 Λ 1 and A 2 Φ 2 = Φ 2 Λ 2 ( 15 
)
the space will be spanned by the columns of the matrix

Φ t ot = [Φ 1 Φ 2 ]
. By projecting the state onto this augmented subspace x = Φ † t ot x (16)

x is composed of coefficients that are each associated with a DMD mode of the augmented subspace. The reducedorder approach can still be applied here as the temporal evolutions of all the modes are still known and the data assimilation algorithm does not need any modification. This methodology can be generalized to more than two models without any problem.

In the next section, this approach is tested on a numerical test case where the observations are numerically obtained and catalogue of DMD is used for data assimilation on a reduced-order space.

Results for the DMD Catalogue EnKF

The same test case and geometry will be used in this section to compare the results of our approach using a catalogue of DMD with the ones obtained from a single DMD. The catalogue will consist of the DMD modes obtained from the Reynolds number 98 and 102. As it was described before, 19 modes are generated for each Reynolds number and thus the catalogue is composed of 38 modes (two corresponding to the mean flow and 18 pairs of complex conjugate modes). The CEnKF will be performed on 38 ensemble members as 19 will be generated from the DMD at Reynolds 98 and 19 others from the DMD at Reynolds 102. The true Reynolds number will first be set at 100 in order to be compared what we obtain to the previous results. Then, the true state will be calculated for a Reynolds number of 105 which is outside the catalogue in order to test further this methodology.

Truth at Reynolds 100

For a true state computed at a Reynolds number of 100, the vorticity fields obtained at time steps t = 0, t = 75 and t = 150 are plotted. As it can be seen in the figure 8c at t = 150, the improvement obtained with the CEnKF, with a multiplicative inflation parameter of 1.01, compared to using a single DMD subspace (see figure 4f) can be seen. The spatial structures one could identify before are not as clearly defined with the CEnKF. A DMD update is then made on the last 400 assimilated states and another EnKF is computed in this new reduced-order space. This filter is performed using the same condition as before the update : 38 ensemble members are used and 37 modes are calculated (before the update there were 38 modes in which 2 corresponded to the mean flow and were not in a complex conjugate pair). The results obtained from this filter are also visible in the figure 8. The augmented subspace helps to better recover the true state even if the forecast model does not correspond exactly to the Truth's. The spatial structures of the errors are less significant (about one order of magnitude less) than the one obtained on a single subspace and the modes update after the assimilation seems also to have improved the vorticity field a little (see figure 8f).

In order to measure the performance of our filter, the same error as the one described in (11) is used. The errors obtained with single Reynolds number DMD subspace presented in the figure 5 are plotted in the figure 9 with the addition of the CEnKF and the EnKF performed on the subspace spanned by the updated DMD modes. The error is one order of magnitude less important than when the EnKF was performed on a single DMD subspace. The true state is then better recovered and this result can be confirmed by looking at the DMD modes obtained after the modes update. By computing the EnKF on an augmented basis, the estimated state is not constrained anymore on the subspace spanned by DMD modes calculated from a single Reynolds number. Therefore, it is possible to re-estimate the DMD modes of the Truth and their frequencies by computing a DMD on the assimilated states. The figure 10a shows the relative error between the frequency of the DMD modes and the ones of the Truth. Thus after the assimilation, the frequencies of the DMD modes are re-estimated as the error is at least divided by three on the first 7 pairs of modes. The first mode is not plotted as it is the mean flow of null frequency.

Concerning the modes in themselves, the first four pairs are corrected but the least significant ones are not (modes are ordered using the criterion defined by Kou 5 ) and it does not affect the state as it can be seen in the figure 8f. This is a lot better than the results obtained when the modes were updated from an EnKF calculated for a single Reynolds number. The augmented subspace generated by the catalogue of different DMD can then better recover the spatial structures of the true state's flow.

If the new modes obtained from this update are used to perform a new reduced-order EnKF, the error (11) will stay in the same order of magnitude as before the update as it can be seen in the figure 9. The same test methodology as in the previous section is applied here as well. Several cases are studied. Firstly, the true Reynolds number is 105 and the catalogue Reynolds number are still 98 and 102. This means that the true Reynolds Number and the Strouhal number of the flow are no longer in the interval defined by the catalogue. The extrapolation capabilities of our approach are therefore tested in this experiment.

As it was done first when the true Reynolds number was 100, each DMD in the catalogue was tested individually on a reduced-order EnKF on a subspace spanned by 19 modes. 19 initial members were calculated and a multiplicative inflation parameter was set to 1.05. In addition to this, the methodology developed in this paper was used to compute a reduced-order EnKF with the same number of ensemble members and the same number of modes as we had in the case of the true Reynolds number 100.

To study the performance of our methodology, vorticity fields around the cylinder and in its wake are plotted in the figure 11. The vorticity fields obtained from a CFD simulation for the true Reynolds number 105 are plotted on the figures 11a, 11b and 11c respectively at time steps t = 0, t = 75 and t = 150. If the EnKF is performed on the subspace spanned by DMD modes obtained only from snapshots at Reynolds number 102, the errors in the vorticity field are quite significant as it can be seen in the figure 11i at time step t = 150 as spatial structures are identifiable around the cylinder and just downstream of it. This can be due to errors on DMD modes because of the difference simulation parameters.

However, using our methodology, the errors are drastically reduced (see figure 11l) at t = 150 thanks to the augmented subspace. Moreover, with an update on the DMD modes as it has been done with a true Reynolds number of 100, it can be seen that the errors on the vorticity field are even less visible (see figure 11o) and the field is smoother.

It can be seen in the figure 12 that our approach can recover very well the Truth even if the true Reynolds number is outside the catalogue. Moreover, the error obtained after an EnKF on the Reynolds 102 subspace is smaller than the one on the Reynolds 98 subspace which is what could be expected. The error made by using the catalogue is again about an order of magnitude smaller than the one done on a subspace spanned by the modes obtained from a unique Reynolds number. Moreover,in the results presented in the figure 12, the error (11) after the update is of the same order of magnitude than the one obtained with the CEnKF but it is smoother.

The figure 13a represents the relative error of the frequency of each DMD mode compared to the one obtained from the truth. The figure 13b shows the norm of the difference between a DMD mode and the corresponding one obtained from the truth. Three different cases are presented : one in which the modes are obtained from snapshots calculated from a Reynolds number 98, one in which the DMD modes are obtained from snapshots calculated at Reynolds number 102 and a last one where the modes are calculated from the last estimated states using the CEnKF. As it can be seen, the frequencies are very well recovered for the first 7 pairs of complex conjugate modes so the CEnKF allowed to correct the temporal dynamics of the modes. Concerning the modes in themselves, there are also corrected which tends to signify that the data assimilation using a DMD catalogue allowed to also correct the spatial structures of the modes. This is clearly visible if we take a look at the figures 14a, 14b and 14c that show the difference between the and the estimated state in our approach respectively. In that last case, the difference between the true state mode and the one obtained from our methodology is a lot smaller than the others which illustrates how our approach helps to build a better subspace to represent the truth.

Conclusion

This paper presents a reduced-order data assimilation methodology that combines DMD and EnKF thanks to a catalogue that builds an augmented subspace, when the simulation parameters are unknown. This Catalogue EnKF better recovers the true state compared to a reduced-order EnKF done on DMD modes obtained from a single simulation parameter. Indeed, in the CEnKF the modes themselves and their frequencies can be recovered as the space spanned by the catalogue modes have better chance to include the truth. This approach also has extrapolation capabilities as one of the true state parameter was set outside the catalogue and the true state was still accurately estimated.

The next step could then be, from the parameters used to create the catalogue, to re-estimate the true state parameters using this methodology. This will allow to predict even more precisely the true state as a simulation could then be done using the right parameters. Another idea is to improve this methodology by designing a proce- 
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 2 Figure 2: 2D cylinder and the measurement points: (a) full mesh, (b) zoom on the cylinder and its wake, the location of velocity measurements is indicated as red dots.
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 4 Figure 4: Vorticity fields of the Truth at Reynolds 100 ((a),(b) and (c)) and the differences of the assimilation vorticity fields for the different examples compared to the Truth at 3 different time steps
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 5 Figure 5: Temporal evolution of error E t between the estimated state and the Truth at Reynolds 100 for 2 different reduced-order EnKF at Reynolds 98 and 102 and between the propagated state with one of the DMD model and the Truth at Reynolds 100 without assimilating the measurements
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 6 Figure 6: Temporal evolution of error E t between the estimated state and the Truth at Reynolds 100 for 2 different reduced-order EnKF at Reynolds 98 and 100 and between the propagated state with one of the DMD model and the Truth at Reynolds 100 without assimilating the measurements
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 8 Figure 8: Differences of the assimilation vorticity fields for the CEnKF and after an update compared to the Truth at 3 different time steps
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 9 Figure 9: Temporal evolution of error E t between the estimated state and the Truth at Reynolds 100 for 4 different reduced-order EnKF

Figure 10 4. 2

 102 Figure 10

  Figure 11: Vorticity fields of the Truth at Reynolds 105 ((a),(b) and (c)) and the differences of the assimilation vorticity fields for the different examples compared to the Truth at 3 different time steps
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 1214 Figure 12: Temporal evolution of the error between the estimated state and the Truth at Reynolds 105 for 4 different reduced-order EnKF