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Abstract

The ball hypergraph of a graph G is the family of balls of all possible centers and radii in G.
Balls in a subfamily are k-wise intersecting if the intersection of any k balls in the subfamily is
always nonempty. The Helly number of a ball hypergraph is the least integer k greater than one
such that every subfamily of k-wise intersecting balls has a nonempty common intersection. A
graph is k-Helly (or Helly, if k = 2) if its ball hypergraph has Helly number at most k. We prove
that a central vertex and all the medians in an n-vertex m-edge Helly graph can be computed
w.h.p. in Õ(m

√
n) time. Both results extend to a broader setting where we assign a nonnegative

cost to the vertices. For any fixed k, we also present an Õ(m
√
kn)-time randomized algorithm

for radius computation within k-Helly graphs. If we relax the definition of Helly number (for
what is sometimes called an “almost Helly-type” property in the literature), then our approach
leads to an approximation algorithm for computing the radius with an additive one-sided error
of at most some constant.

Keywords: Radius and Median computations; Helly graphs; Graph algorithms.

1 Introduction

For any undefined graph terminology, see [11, 27, 42]. All graphs considered are simple (i.e.,
they have no loops and no multiple edges), connected and with unit-length edges. We study the
complexity of computing several distance parameters within some increasing hierarchy of graph
classes. Specifically, let G = (V,E) be an undirected graph. The distance between two vertices u
and v, denoted by dist(u, v), is equal to the minimum number of edges on a uv-path in G. The
eccentricity of a vertex v is defined as e(v) = maxu∈V dist(u, v). The total distance of a vertex v is
defined as TD(v) =

∑
u∈V dist(u, v). We focus on two fundamental facility location problems:

• The Center problem asks for a vertex v such that e(v) is minimized (a.k.a., central vertex).

• The Median problem asks for a vertex v such that TD(v) is minimized (a.k.a., median).

Facility location problems are about finding optimal locations, w.r.t. some distance and cost
criteria, for opening new facilities such as schools or hospitals. Due to their practical relevance,
such problems have been widely studied in mathematical programming, both on metric spaces and
graphs. However, our motivation for studying these two problems also comes from their importance
in the fine-grained complexity study of polynomial-time solvable problems. Indeed, we observe that
both the Center and Median problems can be solved in O(n2) time, if we are given the distance
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matrix of the graph. Computing the distance matrix, or equivalently solving the All-Pairs Shortest-
Paths problem (APSP), can be done in O(nm) time, or in O(nω+ϵ) time, for every positive ϵ, where
ω < 2.273 denotes the square matrix multiplication exponent [51]. If we further assume the input
graph to be sparse (or of arbitrary density, but assuming ω = 2), then this is in O(n2+o(1)) time,
which is optimal. By our previous observation, these quadratic-time upper bounds also apply to the
Center and Median problems. However, for a long time it was open whether these upper bounds
are asymptotically tight. In 2016, Abboud et al. proved that it was indeed the case if we assume the
so-called “Hitting Set Conjecture”, that implies the Orthogonal Vectors Conjecture [1]. Specifically,
their conjecture implies that for any ε > 0, neither the Center nor the Median problems can be
solved in O(n2−ε) time on n-vertex Õ(n)-edge graphs. In particular, this rules out the existence
of an Õ(namb)-time algorithm, for every positive a, b such that a + b < 2. We stress that this
conditional lower bound also holds for radius computation (i.e., the seemingly weaker problem of
computing the minimum eccentricity, but not necessarily a corresponding central vertex).

We follow a long line of work in Algorithmic Graph Theory, that consists in improving the com-
plexity of distance problems on some special graph classes. Some of these prior works have con-
sidered center and/or median computations in linear time on subclasses of bounded treewidth
graphs [39, 41], bounded clique-width graphs [26, 33, 34], planar graphs [22, 38, 39] and chordal
graphs [25, 28, 52, 47]. For general chordal graphs, we can compute a central vertex in linear
time [20, 21]. More recently, almost linear-time algorithms for the Center and Median problems
on general graphs of bounded treewidth were presented in [1, 14, 16]. Subquadratic-time algorithms
for these problems on general planar graphs were presented in [15, 40]. It is worth mentioning that
all the aforementioned graph classes are characterized by forbidden induced subgraphs or forbidden
minors, that is unlike the graph classes considered in the present work.

The ball of center v and radius r is the set N r[v] = {u ∈ V | dist(u, v) ≤ r}. The ball hypergraph
of G, denoted by B(G), is the family of the balls of all possible centers and radii in G. That is,
B(G) = {N r[v] | v ∈ V, r ≥ 0}. Several interesting graph classes can be defined via the properties
of their ball hypergraphs. For instance, the dually chordal graphs are exactly the graphs of which
the ball hypergraph is a dual hypertree [13]. There exists a linear-time algorithm for computing
the radius of a dually chordal graph [12]. More recently, we proved in [37], with co-authors, that
there exists a parameterized subquadratic-time algorithm for computing the radius, within all the
graph classes whose ball hypergraphs have VC-dimension upper bounded by a constant. As a
particular case, we got a truly subquadratic-time algorithm for radius computation within all the
proper minor-closed classes of graphs. This work makes a new step toward finding a more general
property of ball hypergraphs that we could still exploit for a fast radius computation.

Specifically, balls in a subfamily are k-wise intersecting if the intersection of any k balls in the
subfamily is always nonempty. A graph is k-Helly if every sub-family of k-wise intersecting balls
has a nonempty common intersection. The 2-Helly graphs have already received some attention
in the literature, under the different names of Helly graphs (that we use in this paper), disk-Helly
graphs [8] or absolute retracts [6]. We refer to Fig. 1 for an example of Helly graph. Notably,
the interval graphs, the strongly chordal graphs and the dually chordal graphs are all subclasses of
the Helly graphs [13]. In fact, a celebrated result in Metric Graph Theory is that every graph is
an isometric (distance preserving) subgraph of some Helly graph [35, 43]. Therefore, unlike most
of the special graph classes studied in the literature, the class of Helly graphs cannot be defined
via a set of forbidden patterns such as (induced) subgraphs, minors or bounded expansion. Note
that in general, a bounded VC-dimension does not imply a bounded Helly number, but it does
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imply a slightly weaker fractional Helly property [46]. We refer to the survey [4], that has devoted
a full section to the properties of Helly graphs. See also [5, 6, 7, 8, 19, 28, 29, 30, 36, 48, 49] for
other properties, and, e.g., [6, 28, 45] for improved polynomial-time recognition algorithms for the
Helly graphs. For k ≥ 3, we stress that we can decide in nO(k) time whether an n-vertex graph
is k-Helly, that is polynomial for every fixed k; indeed, a graph is k-Helly if and only if for every
(k+1)-subset S of vertices, the balls intersecting S in at least k vertices have a nonempty common
intersection [10]. The running times of these recognition algorithms are superquadratic, but we do
not need to execute them before we can apply our own algorithms in this paper.
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Figure 1: A Helly graph (left) and its ball hypergraph (right). The balls N0[vi], for every i such
that 0 ≤ i ≤ 7 (reduced to a single vertex), and the ball containing all vertices are not represented.

Recently, with Dragan, we initiated the fine-grained complexity study of polynomial-time solvable
distance problems within Helly graphs [36]. Specifically, we proved that the radius of an n-vertex
m-edge Helly graph can be computed w.h.p. in Õ(m

√
n) time. Our result followed from a known

reduction to the computation of a diametral pair, i.e., a pair of vertices whose distance in the
graph is maximum. Indeed, for a Helly graph of diameter D, the radius is exactly ⌈D/2⌉ [28].
Unfortunately, we failed in also computing a central vertex with this approach.

Our Contributions

Helly graphs. We further refine the framework in [36], in order to solve theCenter andMedian
problems in truly subquadratic time within the Helly graphs.

• Our first result in this paper is an algorithm for computing a central vertex in a Helly graph,
that runs in Õ(m

√
n) time w.h.p. (Theorem 1). For that, we use the nice property that

the eccentricity function of a Helly graph is unimodal: every local minimum is a global
minimum [28]. The latter suggests the following natural local search strategy in order to
compute a central vertex: start from some vertex with a hopefully small eccentricity, then
repeatedly find a neighbour with a better eccentricity until a local minimum is found. Obvious
drawbacks to this approach are: the time needed for each step of the local search, and the
total number of steps. In order to overcome the first issue, we use and further refine some
“gated” properties of the sets of small diameter in a Helly graph. We handle the second
issue with a classical random sampling technique, that allows us to find, amongst Õ(

√
n)
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candidates, a start vertex which ensures a sufficiently small (sublinear) total number of steps.
For other recent applications of this sampling technique to distance problems, see [2, 50].

• Our second main result is a similar algorithm for computing the median in a Helly graph,
that also runs in Õ(m

√
n) time w.h.p. (Theorem 2). Indeed, since the total distance function

of a Helly graph is also unimodal [5], we can use the same local search strategy as before
in order to compute a median. For a Helly graph, the subset of all medians is a clique [5].
By using this nice structural property, we can compute all the medians in one more step of
the local search. We note that very recently, a similar local search algorithm was presented
in [9] in order to compute all the medians in linear time within median graphs. The authors
in [9] achieved a better running time than ours by exploiting the special properties of median
graphs. In particular, they derived, after some linear-time preprocessing, a constant-time
algorithm for comparing the total distances of two adjacent vertices in a median graph.

Our approach still works for a more general version of the Center and Median problems:
where we assign costs to the vertices. We stress that in [36], we used different properties of
unimodal functions in order to compute a diametral pair. In a follow-up paper [31], based on the
techniques developed here and in [36], we proved that we can also compute the center of a Helly
graph in truly subquadratic time (i.e., the set of all its central vertices). Note that for a Helly
graph, computing the center is equivalent to computing all the eccentricities [28].

k-Helly graphs. Our third main result in the paper is a randomized algorithm for computing
the radius of a k-Helly graph, which runs w.h.p. in Õ(m

√
kn) time (Theorem 3). In particular, our

result implies that the hard instances for radius computation must have a quasi linear Helly number.
Furthermore, if we relax the Helly property, as described next, then we obtain an approximation
algorithm for computing the radius. Specifically, let us call a graph (k, α)-Helly if every family of
k-wise intersecting balls has a nonempty common intersection when we increase the radius of each
ball by α. For the special case k = 2, this relaxed property has been studied under the names of
Helly-gap [32] or coarse Helly property [17]. Our algorithm outputs the radius with some additive
one-sided error in O(α).

Closest to our work on the k-Helly graphs is a very general framework by Amenta [3]. Namely,
she proved that on set families of constant Helly number, deciding whether these sets have a
nonempty common intersection could be rephrased, under some mild conditions, as a so-called
Generalized Linear Program (GLP) with a bounded combinatorial dimension. The GLP’s are a
broad generalization of linear programming, for which the prototypical problem is the computation
of a central point in Euclidean spaces of bounded dimension. If a GLP has a bounded combinatorial
dimension, then we can solve it in randomized linear time, by using Clarkson’s algorithm [24].
However, the latter relies on two primitives, namely basis computation and violation testing. We
do not know how to implement these two basic operations in constant time, nor even in sublinear
time, for the special case of graphs. Therefore, we could not use Amenta’s framework in order
to prove our results directly, although we stayed close to the spirit of the latter. Our algorithm
requires k to be given, and it fails in also computing a central vertex. Roughly, this is because
we fail in satisfying another technical condition from Amenta’s framework, namely the so-called
“Unique Minimum Condition”. We left open whether, for any fixed integer k ≥ 3, a central vertex
can be computed in truly subquadratic time within the k-Helly graphs.
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2 Facility Location problems on Helly graphs

In what follows, let c : V → R+ be a cost assignment to the vertices of some graph G = (V,E). We
define the c-eccentricity and the total c-distance of a vertex v as ec(v) = maxu∈V c(u) · dist(u, v)
and TDc(v) =

∑
u∈V c(u) · dist(u, v), respectively. The main results of this section are truly

subquadratic algorithms, for the Center and Median problems, respectively, on Helly graphs
(Theorems 1 and 2). More generally, for any function c that assigns nonnegative costs to the
vertices, we can compute a vertex minimizing its c-eccentricity, resp. all vertices minimizing their
total c-distance. For that, we first need to introduce several intermediate results on Helly graphs
and unimodal functions.

Unimodal functions. Let G = (V,E) be a graph. In what follows, we denote by N(v) the set
of neighbours of a vertex v. Furthermore, let f : V → R+. A local minimum for f is a vertex v
such that, for every u ∈ N(v), we have f(u) ≥ f(v). If furthermore f(v) = minw∈V f(w), then v
is a global minimum for f . We denote by argmin (f) the set of all the global minima. Finally, we
recall that f is called unimodal if every local minimum is also a global minimum.

Lemma 1 (Chapter 2 in [28]). If G = (V,E) is a Helly graph, then for any nonnegative cost
function c, the function ec : V → R+ that maps every vertex v to its c-eccentricity is unimodal.

Lemma 2 (Corollary 5.1 in [5]). If G = (V,E) is a Helly graph, then for any nonnegative cost
function c, the function TDc : V → R+ that maps every vertex v to its total c-distance is unimodal.
Moreover, the subset of all medians of G is a clique.

Throughout the paper, by a random subset U(p) we mean a vertex subset in which every vertex
was added independently at random with probability p. We say that a path P = [v0, v1, . . . , vℓ]
is f -monotone if we have f(vi) > f(vi+1) for every i with 0 ≤ i < ℓ. Our starting point for this
section is the following observation:

Lemma 3. Let G = (V,E) be a graph and f : V → R+ be unimodal. Being given a random
subset U(p), if u is any vertex that minimizes f(u) within U(p), then w.h.p. every f -monotone
path between u and argmin (f) has length at most in Õ(p−1).

Proof. For every vertex v we fix a longest f -monotone path Pv between v and argmin (f). This
choice is independent of U(p). Let Vp be the set of vertices v such that |E(Pv)| > 1 + 2p−1 log n.
Let Ep be the event that there exists a vertex v of Vp such that (V (Pv) \ {v})∩U(p) = ∅. We have:

Pr[Ep] ≤
∑
v∈Vp

Pr[(V (Pv) \ {v}) ∩ U(p) = ∅] =
∑
v∈Vp

(1− p)|V (Pv)|−1

≤
∑
v∈Vp

(1− p)
2 logn

p ≤
∑
v∈Vp

n−2 ≤ n−1.

Now, let us assume the existence of some vertex u minimizing f(u) within U(p) such that the
length of Pu is larger than 1+2p−1 log n. By minimality of f(u) we have (V (Pu) \ {u})∩U(p) = ∅.
Then, the probability for such a vertex u to exists is at most Pr[Ep], that is at most 1/n.
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Figure 2: For S = N [v], vertex x has two gates x∗a, x
∗
b and one pseudo-gate u5. Vertex y has a gate

y∗ in S but no pseudo-gate. Vertex z has no gate in S.

Gates and Pseudo-gates. Given a graph G and a vertex v, we recall that the ball of center v
and radius r is denoted by N r[v]. For any vertex subset S we define dist(v, S) = mins∈S dist(v, s).
The metric projection of v on S is defined as Proj(v, S) = {s ∈ S | dist(v, s) = dist(v, S)}. The
(weak) diameter of a set S is equal to diam(S) = maxx,y∈S dist(x, y). The following notions of
gates (Def. 1) and pseudo-gates (Def. 2) are an important cornerstone of our algorithmic approach
in the paper (see also Fig. 2):

Definition 1. For every vertex v not in a subset S, a gate of v in S is any vertex v∗ ∈ N(S) that
is on a shortest vx-path for every vertex x in Proj(v, S). Formally, v∗ ∈ Ndist(v,S)−1[v]∩

⋂
{N(x) |

x ∈ Proj(v, S)}.
We denote by gS(v) an arbitrary gate of vertex v in S, if there exists at least one such vertex,

or simply by g(v) if S is clear from the context.

A vertex may have no gate, one gate, or many gates in S. In particular, a necessary condition
for a vertex v to have a gate in S is that the weak diameter of its metric projection on S is at
most two. This condition is not sufficient. For instance, in an odd cycle of length at least five, if
v denotes an arbitrary vertex and the subset S contains the two furthest vertices from v, that are
adjacent, then Proj(v, S) = S whereas there is no common neighbour to both vertices in S.

The notion of gate can be traced back to early works in [44] on chordal graphs, from which it
was deduced in [18] that in the special case where S is a clique in a chordal graph every vertex v not
in S has a gate. This nice property was later used in [20] for the design of a linear-time algorithm
for computing a central vertex in a chordal graph. Roughly, being given a clique S and a gate g(v)
for every vertex v not in S, after some linear-time preprocessing we may compute the eccentricities
and the total distances of every vertex s in S simply by enumerating the gates in their respective
neighbourhoods N(s). For that, we use that for every vertex v not in S, dist(v, s) = dist(v, S)
if and only if s ∈ Proj(v, S), that is if and only if g(v) ∈ N(s). Otherwise, since S is a clique,
dist(v, s) = dist(v, S) + 1. We use a similar approach in Lemma 7 below. However, since we need
to consider neighbourhoods, not necessarily cliques, we need the additional concept of pseudo-gate.
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Definition 2. For every vertex v not in a subset S, a pseudo-gate of v in S is any vertex v′ ∈ N [S]
such that dist(v, v′) ≤ dist(v, S), Ndist(v,S)+1[v] ∩ S ⊆ N [v′], and v′ is either equal or adjacent to
some gate gS(v).

We denote by pgS(v) an arbitrary pseudo-gate of vertex v in S, if there exists at least one such
vertex, or simply by pg(v) if S is clear from the context.

In particular, a pseudo-gate may only exist if v has a gate in S. However, a vertex may have a
gate and no pseudo-gate. For instance, let S0 be an arbitrary subset in a graph G0 and let G be
obtained from G0 by adding for every vertex s in S0 a degree-one vertex s′ only adjacent to s. Let
S = {s, s′ | s ∈ S0}. If a vertex v /∈ S has a gate in S0, then it is also a gate in S. However, if
|Proj(v, S)| > 1, then v has no pseudo-gate because Ndist(v,S)+1[v] contains all degree-one vertices
s′ ∈ S \ S0 that are adjacent to Proj(v, S). Note that we allow a pseudo-gate to be either in S or
in N(S), whereas a gate can only be in N(S).

The concept of pseudo-gate was first introduced in [36] where it was proved that every vertex
has a pseudo-gate if the weak diameter of S is at most two and the graph G is C4-free Helly. To
better understand the role played by pseudo-gates in our algorithm, let us consider a subset S,
a vertex v /∈ S, and a vertex s ∈ S \ Proj(v, S). If moreover S is a clique, then we know that
dist(v, s) = dist(v, S) + 1. However, if S is a neighbourhood, then we only know that dist(v, s) ∈
{dist(v, S)+1, dist(v, S)+2}. We can use a pseudo-gate of v, if any, in order to determine dist(v, s).

Being given a Helly graph G, and a subset S of weak diameter at most two, we use in our
Lemma 7 below that every vertex v /∈ S has both a gate and a pseudo-gate in S. The existence of
a gate was first proved in [36], namely:

Lemma 4 (Lemma 10 in [36]). Let G be a Helly graph and S be a subset of weak diameter at most
two. Then, every vertex v /∈ S has a gate in S.

The existence of a pseudo-gate was only proved in [36] for the C4-free Helly graphs. We now
generalize [36, Lemma 19] to all the Helly graphs.

Lemma 5. Let G be a Helly graph and let S be a subset of weak diameter at most two. Then,
every vertex v /∈ S has a pseudo-gate in S.

Proof. For convenience, let us write dist(v, S) = r−1. Let F = {N r−1[v]}∪{N [x] | x ∈ S∩N r[v]}.
Since the balls in F pairwise intersect, by the Helly property there exists a vertex v′ ∈ N r−1[v] ∩⋂
{N [x] | x ∈ S ∩ N r[v]}. We prove in what follows that vertex v′ is a pseudo-gate of vertex

v in S. First, dist(v, v′) ≤ dist(v, S) because v′ ∈ N r−1[v] and dist(v, S) = r − 1. Second,
Ndist(v,S)+1[v]∩S ⊆ N [v′] because dist(v, S) + 1 = r and v′ ∈

⋂
{N [x] | x ∈ S ∩N r[v]}. It remains

to prove the existence of a gate v∗ of vertex v such that v∗ ∈ N [v′]. For that, consider the subfamily
F ′ = {N r−2[v], N [v′]} ∪ {N [z] | z ∈ Proj(v, S)}. We claim that the balls in F ′ pairwise intersect.
Indeed, since we have v′ ∈ N r−1[v] and r − 1 > 0, we get N r−2[v] ∩ N [v′] ̸= ∅. In the same way,
for every vertex z in Proj(v, S), N r−2[v] ∩ N [z] ̸= ∅ because dist(v, z) = dist(v, S) = r − 1. For
every vertex z in Proj(v, S), we also have v′ ∈ N [z] because z ∈ S ∩ N r[v] and by construction
v′ ∈

⋂
{N [x] | x ∈ S ∩ N r[v]}. In particular, N [v′] ∩ N [z] ̸= ∅. Finally, for all vertices z and z′

in Proj(v, S), N [z] ∩ N [z′] ̸= ∅ because dist(z, z′) ≤ diam(S) ≤ 2. So, by the Helly property,
there exists a vertex v∗ ∈ N r−2[v] ∩ {N [z] | z ∈ Proj(v, S) ∪ {v′}}. By construction, v∗ ∈ N [v′].
Furthermore, for every vertex z of Proj(v, S), vertex v∗ must be on a shortest vz-path because
we have v∗ ∈ N r−2[v] ∩ N [z] and dist(v, z) = r − 1. Then, v∗ ∈ Ndist(v,S)−1[v] ∩

⋂
{N(z) | z ∈

Proj(v, S)}. Therefore, v∗ is a gate of vertex v.
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As first observed in [20] (see also Remark 1 in [36]), for every subset S in an arbitrary graph
G, we can compute in linear time a gate gS(v) for all vertices v /∈ S for which such a vertex exists.
We can also compute in linear time a pseudo-gate pgS(v) for all vertices v /∈ S for which such a
vertex exists (see Remark 3 in [36]). For completeness of the paper, we present in what follows a
linear-time algorithm for both computations. In what follows, if P denotes a subset of N×N, then
we call a pair (a, b) lexicographically maximum within P if for every other pair (a′, b′) of P, either
a′ < a, or a′ = a and b′ ≤ b.

Lemma 6 (Section 3 in [20], Remarks 1 and 3 in [36]). Let S be an arbitrary nonempty subset in
some graph G = (V,E). In total O(m) time, we can map every vertex v /∈ S to vertices v∗, v′ such
that (|N(v∗) ∩ S|, |N [v′] ∩ S|) is lexicographically maximum within the set of all vertex pairs u,w
such that u ∈ Ndist(v,S)−1[v], w ∈ N [u]. Furthermore, two properties hold:

1. if v has a gate in S, then v∗ is a gate of v;

2. if v has a pseudo-gate in S, then v′ is a pseudo-gate of v.

Proof. Let G′
S be obtained from G\S by adding a fresh new vertex xS and the edges xSv for every

vertex v ∈ NG(S). We run a BFS on G′
S starting from xS . It can be done in O(m) time. In doing

so, we compute dist(v, S) for every vertex v /∈ S. We also compute, in total O(m) time, the values
dS(v) = |N [v]∩S| for every vertex v ∈ N [S]. Then, we consider the vertices v /∈ S sequentially, by
nondecreasing distance to S.

• Case dist(v, S) = 1. We set v∗ = v and we pick a vertex v′ maximizing dS(v
′) within N [v].

• Case dist(v, S) > 1. Let y1, y2, . . . , yt denote all the neighbours of v that are at distance
dist(v, S) − 1 to S. We denote by y∗i , y

′
i, for every i such that 1 ≤ i ≤ t, the pair of

vertices to which we mapped vertex yi. We pick a pair (v∗, v′) ∈ {(y∗1, y′1), . . . , (y∗t , y′t)} so
that (dS(v

∗), dS(v
′)) is lexicographically maximum.

In both cases, we only need to scan N [v] at most twice, that can be done in O(|N [v]|) time.
Therefore, the total running time is in O(m).

We prove the correctness of the algorithm for all vertices v /∈ S by induction on dist(v, S).
This is straightforward if dist(v, S) = 1. Thus, from now on we assume that dist(v, S) > 1.
Let (u,w) be a pair of vertices such that u ∈ Ndist(v,S)−1[v], w ∈ N [u] and (dS(u), dS(w)) is
lexicographically maximized. In order to prove that the algorithm is correct for vertex v, it suf-
fices to prove that dS(u) = dS(v

∗) and dS(w) = dS(v
′). By the induction hypothesis we have

y∗1, y
∗
2, . . . , y

∗
t ∈ Ndist(v,S)−1[v] ∩N(S). Therefore, we have dS(u) ≥ max1≤i≤t dS(y

∗
i ). We also have

dS(w) ≥ dS(y
′
i) for any i such that 1 ≤ i ≤ t and dS(u) = dS(y

∗
i ). Furthermore, by maximality

of dS(u) we must have u ∈ N(S). In particular, there exists a vertex x such that x ∈ Proj(v, S)
and u is on a shortest vx-path. Such a shortest path must contain yi, for some i such that
1 ≤ i ≤ t, thus implying by the induction hypothesis dS(y

∗
i ) ≥ dS(u). Then, dS(y

∗
i ) = dS(u), and

so, dS(y
′
i) = dS(w). As a result,

dS(u) = max
1≤i≤t

dS(y
∗
i ) = dS(v

∗),

and in the same way

dS(w) = max{dS(y′i) | 1 ≤ i ≤ t and dS(y
∗
i ) = dS(v

∗)} = dS(v
′),
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thus proving correctness of the algorithm for vertex v.
Finally, let us consider the two vertices v∗, v′ that are mapped to some arbitrary vertex v. Let

us assume that vertex v has a gate u in S. By the maximality of dS(v
∗) within Ndist(v,S)−1[v],

dS(v
∗) ≥ dS(u) = |Proj(v, S)|. Since in addition, every vertex of N(v∗) ∩ S is in Proj(v, S), we

obtain that Proj(v, S) ⊆ N(v∗). Then, v∗ is a gate of v. In the same way, let us assume that vertex
v has a pseudo-gate in S. In particular, vertex v also has a gate in S. Then, vertex v∗ is a gate of
vertex v in S. Since vertex v∗ is in N [v′], dist(v, v′) ≤ dist(v, v∗) + 1 = dist(v, S). Let w be some
pseudo-gate of vertex v in S, and let u be some gate of vertex v in S such that u ∈ N [w]. We have
that dS(u) = dS(v

∗) because both vertices u, v∗ are gates of vertex v in S. Then, dS(v
′) ≥ dS(w)

because (dS(v
∗), dS(v

′)) is lexicographically maximized. Furthermore, N [w] ∩ S ⊆ Ndist(v,S)+1[v],
and in the same way N [v′] ∩ S ⊆ Ndist(v,S)+1[v], because w, v′ ∈ Ndist(v,S)[v]. Then, N [w] ∩ S =
Ndist(v,S)+1[v]∩S because w is a pseudo-gate of v in S. It implies that N [v′]∩S = Ndist(v,S)+1[v]∩S
because dS(v

′) ≥ dS(w). Therefore, v
′ is a pseudo-gate of vertex v in S.

Let 1[·] be the Kronecker symbol (equal to 1 if the predicate in brackets is true, and to 0
otherwise). By combining Lemmata 4 and 5, we are now ready to prove our main technical lemma.

Lemma 7. Let G = (V,E) be a Helly graph, equipped with a nonnegative cost function c. For any
fixed choice of a vertex v and a vertex subset A, we can compute the following three values for every
neighbour u ∈ N(v), in total O(m) time:

• q+(u, v,A) =
∑

w∈A c(w) · 1[dist(u,w) > dist(v, w)];

• q=(u, v,A) =
∑

w∈A c(w) · 1[dist(u,w) = dist(v, w)];

• q−(u, v,A) =
∑

w∈A c(w) · 1[dist(u,w) < dist(v, w)].

Proof. Let S = N [v]. By Lemma 4, every vertex w /∈ S has a gate. Furthermore, by Lemma 6
we can compute a fixed gate g(w) for every vertex w /∈ S, in total O(m) time. For every vertex
z ∈ N(S), let α(z) =

∑
w∈A\S c(w) · 1[g(w) = z]. Let u ∈ S be an arbitrary neighbour of vertex v.

Clearly, u is the only vertex w ∈ S such that dist(u,w) < dist(v, w). For every vertex w not in S,
we claim that we have dist(u,w) < dist(v, w) if and only if g(w) ∈ N(u). Indeed, let us first assume
that g(w) ∈ N(u). Since g(w) is a gate of w in N(v), we have dist(w, g(w)) = dist(w,N(v))− 1 =
dist(w, v)− 2. As a result, dist(w, u) ≤ dist(w, g(w)) + dist(g(w), u) ≤ dist(w, v)− 1. Conversely,
we now assume that dist(u,w) < dist(v, w). Since u and v are adjacent, dist(w, u) = dist(w, v)−1.
It implies that u ∈ Proj(w,N(v)). As a result, u and g(w) are adjacent, thus proving our claim.
Therefore, for every neighbour u ∈ N(v), we have:

q−(u, v,A) =
∑
w∈A

c(w) · 1[dist(u,w) < dist(v, w)]

=
∑

w∈A∩S
c(w) · 1[dist(u,w) < dist(v, w)] +

∑
w∈A\S

c(w) · 1[dist(u,w) < dist(v, w)]

= c(u) · 1[u ∈ A] +
∑

w∈A\S

c(w) · 1[g(w) ∈ N(u)]

= c(u) · 1[u ∈ A] +
∑

z∈N(S)∩N(u)

∑
w∈A\S

c(w) · 1[g(w) = z]

= c(u) · 1[u ∈ A] +
∑

z∈N(S)∩N(u)

α(z).
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Being given the values α(z) for every vertex z ∈ N(S) (precomputed at the beginning of the
algorithm), we can compute q−(u, v,A) in O(|N(u)|) time for every neighbour u ∈ N(v).

In the same way, by Lemma 5, every vertex w /∈ S has a pseudo-gate. By Lemma 6 we can also
compute a fixed pseudo-gate pg(w) for every vertex w /∈ S, in total O(m) time. For every vertex
z ∈ N [S], let β(z) =

∑
w∈A\S c(w) · 1[pg(w) = z]. Let w be an arbitrary vertex and let u ∈ S be a

neighbour of v. If w ∈ S, then we have dist(u,w) ≤ dist(v, w) if and only if w ∈ N [u] \ {v}. From
now on, we assume that w is not in S. We claim that we have dist(u,w) ≤ dist(v, w) if and only if
pg(w) ∈ N [u]. Indeed, let us first consider the case where pg(w) ∈ N [u]. We have dist(w, pg(w)) ≤
dist(w, S) = dist(w, v) − 1. Therefore, dist(w, u) ≤ dist(w, pg(w)) + 1 ≤ dist(w, v). Conversely,
we now consider the case where dist(u,w) ≤ dist(v, w). We have dist(u,w) ≤ dist(v, w) = r, with
r = dist(w, S) + 1. In particular, u ∈ N r[w] ∩ S. It implies that u ∈ N [pg(w)], or equivalently
pg(w) ∈ N [u], thus proving our claim. We obtain that for every neighbour u ∈ N(v):

q−(u, v,A) + q=(u, v,A) =
∑
w∈A

c(w) · 1[dist(u,w) ≤ dist(v, w)]

=
∑

u′∈S∩A
c(u′) · 1[dist(u, u′) ≤ dist(v, u′)] +

∑
w∈A\S

c(w) · 1[dist(u,w) ≤ dist(v, w)]

=
∑

u′∈N(v)∩N [u]∩A

c(u′) +
∑

w∈A\S

c(w) · 1[pg(w) ∈ N [u]]

=
∑

u′∈N(v)∩N [u]∩A

c(u′) +
∑

z∈N [S]∩N [u]

∑
w∈A\S

c(w) · 1[pg(w) = z]

=
∑

u′∈N(v)∩N [u]∩A

c(u′) +
∑

z∈N [S]∩N [u]

β(z).

For every neighbour u ∈ N(v), being given q−(u, v,A) and the values β(z) for every vertex z ∈ N [S],
we can compute q=(u, v,A) in O(|N(u)|) time.

Finally, q+(u, v,A) =
∑

w∈A c(w)− q−(u, v,A)− q=(u, v,A).

Main Results.

Theorem 1. If G is a Helly graph then, for any nonnegative cost function c, w.h.p., we can compute
a central vertex in Õ(m

√
n) time.

Proof. Set p = n− 1
2 , and let U(p) be a corresponding random subset. We observe that the expected

cardinality of U(p) equals pn =
√
n. By Chernoff bounds,

Pr[|U(p)| > 2
√
n] ≤ e−

√
n
3 .

In particular, the subset U(p) has cardinality Õ(
√
n) w.h.p., and thus we assume from now on

that it is indeed the case. We compute the c-eccentricity for every vertex of U(p), that takes
O(m|U(p)|) = Õ(m

√
n) time if we run a BFS starting from every vertex of U(p). Then, let u ∈ U(p)

be of minimum c-eccentricity. At each step of the algorithm, we search for a neighbour v of the
current vertex u such that ec(v) < ec(u). If no such neighbour exists then, u is a local minimum
for the eccentricity function, and so, by Lemma 1, this vertex u is central. Otherwise, we set u = v
and then we continue the algorithm for at least one more step. All the vertices u considered during
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the algorithm induce an eccentricity-monotone path. By Lemma 1, the eccentricity function of G
is unimodal. Therefore, by Lemma 3 the total number of steps is upper bounded w.h.p. by Õ(

√
n).

We can implement each step of this local search algorithm in O(m) time, as follows. First
we observe that for every vertex u and any neighbour v ∈ N(u), for every vertex w we have
|dist(v, w) − dist(u,w)| ≤ 1. Let A = {w ∈ V | c(w) · dist(u,w) = ec(u)} and let B = {w ∈
V | c(w) · (dist(u,w) + 1) ≥ ec(u)}. We have ec(v) < ec(u) if and only if the following two
conditions hold: (i) q+(v, u,A) = q=(v, u,A) = 0, and (ii) q+(v, u,B) = 0. Therefore, by
applying Lemma 7 twice, we can decide in O(m) time whether there exists a neighbour v ∈ N(u)
such that ec(v) < ec(u), and if so, compute such a neighbour within the same amount of time.

Theorem 2. If G is a Helly graph then, for any nonnegative cost function c, w.h.p., we can compute
all the medians in Õ(m

√
n) time.

Proof. First, we compute one median. Since by Lemma 2, the total c-distance function of a Helly
graph is unimodal, we can do a local search algorithm, similar to the one presented in the proof
of Theorem 1 but on a different unimodal function. However, we need to explain how we can
implement each step of this algorithm in O(m) time. For that, let u ∈ V be fixed and let v ∈ N(u)
be an arbitrary neighbour. Again, recall that for every vertex w we have |dist(v, w)−dist(u,w)| ≤ 1.
Then, we have

TDc(u)− TDc(v) =
∑
w∈V

c(w) · dist(u,w)−
∑
w∈V

c(w) · dist(v, w)

=
∑
w∈V

c(w) · (dist(u,w)− dist(v, w))

=
∑
w∈V

c(w) · 1 · 1[dist(u,w) > dist(v, w)]

+
∑
w∈V

c(w) · 0 · 1[dist(u,w) = dist(v, w)]

+
∑
w∈V

c(w) · (−1) · 1[dist(u,w) < dist(v, w)]

=
∑
w∈V

c(w) · 1[dist(u,w) > dist(v, w)]−
∑
w∈V

c(w) · 1[dist(u,w) < dist(v, w)]

= q−(v, u, V )− q+(v, u, V ).

Therefore, by applying Lemma 7 once, we can decide in O(m) time whether there exists a neighbour
v ∈ N(u) such that TDc(v) < TDc(u), and if so, compute such a neighbour within the same amount
of time. – In fact, we can even compute a vertex v that minimizes TDc(v) within N(u). However,
it is not clear whether there is a way to exploit this for a faster algorithm. –

Finally, let u ∈ V be a median. Again by using Lemma 7, in O(m) time we can compute all
the neighbours v ∈ N(u) such that TDc(u) = TDc(v). Since the subset of all medians of a Helly
graph induces a complete subgraph (Lemma 2), we computed doing so all the medians.

3 Radius computation within k-Helly graphs

Recall that in [36], we proved that the radius of a Helly graph can be computed w.h.p. in Õ(m
√
n)

time. In this last section, we generalize this result to the k-Helly graphs. The radius of a graph G
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is denoted in what follows by rad(G) = minv e(v).

Theorem 3. If G is a k-Helly graph, then there is an algorithm that runs in Õ(m
√
kn) time w.h.p.,

and computes rad(G).

Theorem 3 follows from a more general result, that we state next. Recall that we call a graph
(k, α)-Helly if, for every family of k-wise intersecting balls N r1 [v1], N

r2 [v2], . . . , N
rs [vs], there exists

a vertex x such that for every i with 1 ≤ i ≤ s, dist(x, vi) ≤ ri + α. Note that in particular, the
(k, 0)-Helly graphs are exactly the k-Helly graphs. It is also known that the chordal graphs are
(2,O(1))-Helly, and more generally the k-hyperbolic graphs are (2,O(k))-Helly [23].

Theorem 4. If G is a (k, α)-Helly graph then there is an algorithm that runs in Õ(m
√
kn) time

w.h.p., and computes some value r such that rad(G)−α ≤ r ≤ rad(G) (hereafter called an additive
+α-approximation of rad(G)).

We observe that Theorem 3 is an easy corollary of Theorem 4. The remainder of this section
is devoted to the proof of Theorem 4. For that, we need the following lemma, that is based on the
same random sampling technique as for Lemma 3.

Lemma 8 (Lemma 2 in [36]). Let G = (V,E) be a graph, let r be a positive integer and let ε ∈ (0; 1).
There is an algorithm that computes a set D⟨G; r; ε⟩ such that the following two properties hold for
every vertex v:

• if e(v) ≤ r then v ∈ D⟨G; r; ε⟩;

• conversely, if v ∈ D⟨G; r; ε⟩ then w.h.p. |N r[v]| ≥ (1− ε) · n.

Furthermore, w.h.p. the algorithm runs in O(m log n/ε) time.

Equipped with Lemma 8, we are now ready to prove the following decision version of Theorem 4:

Lemma 9. Let G = (V,E) be a (k, α)-Helly graph, and let r be a positive integer. There is an
algorithm that runs in Õ(m

√
kn) time w.h.p., and satisfies the following two properties:

• If the algorithm rejects, then rad(G) > r;

• If the algorithm accepts, then rad(G) ≤ r + α.

We prove next that by a classical dichotomic argument, Lemma 9 is equivalent to Theorem 4.
Note that in order to prove Theorem 4, it suffices to prove that it is implied by Lemma 9. The
converse is proved only for the sake of completeness.

We start proving that Theorem 4 implies Lemma 9. Let r be an arbitrary positive integer, and
let r′ be the output of Theorem 4. We can design a simple algorithm that accepts if and only if
r ≤ r′ + α. Indeed, recall that rad(G) − α ≤ r′ ≤ rad(G). Therefore, if r ≤ r′ + α then we have
r ≤ rad(G) + α, and conversely if r > r′ + α then we have r > rad(G).

We now present an algorithm in order to prove Theorem 4, assuming Lemma 9. More specifically,
at any step i ≥ 0 of the algorithm we maintain a range [rmi; rui] so that [rmi; rui] ∩ [rad(G) −
α; rad(G)] ̸= ∅ (initially, rm0 = 1 and ru0 = n−1). While rmi ̸= rui, we pick ri = ⌊(rmi + rui)/2⌋
and we apply Lemma 9. There are two cases:

12



• If rad(G) > ri, then we set rmi+1 = ri + 1 and rui+1 = rui. We claim that in this situation,
we still have [rmi+1; rui+1] ∩ [rad(G) − α; rad(G)] ̸= ∅. Indeed, if it were not the case, then
since we assume that rad(G) ≥ ri+1 = rmi+1, we should have that rad(G)−α > rui+1 = rui,
thus contradicting that we were having [rmi; rui]∩ [rad(G)−α; rad(G)] ̸= ∅ at the prior step
of the algorithm.

• Otherwise, rad(G) ≤ ri + α. In this situation, we set rmi+1 = rmi, rui+1 = ri and we
claim that we still have [rmi+1; rui+1] ∩ [rad(G)− α; rad(G)] ̸= ∅. Indeed, if it were not the
case, then since we assume that rad(G) ≤ ri + α = rui+1 + α, or equivalently rad(G)− α ≤
rui+1 we should have that rad(G) < rmi+1 = rmi, thus contradicting that we were having
[rmi; rui] ∩ [rad(G)− α; rad(G)] ̸= ∅ at the prior step of the algorithm.

Overall, we can only call Lemma 9 O(log n) times before the algorithm stops.

Proof of Lemma 9. We first describe the algorithm, before proving its correctness and then ana-
lyzing its running time. Let ε > 0 to be fixed later in the proof. We proceed as follows:

• We compute a set C0 = D⟨G; r; ε⟩ such as in Lemma 8. Such a set C0 can be computed
w.h.p. in O(m log n/ε) time. Furthermore, if C0 = ∅, then rad(G) > r, and we reject.

• Then, for i = 1 . . . , k, we select an arbitrary vertex vi−1 ∈ Ci−1 and we compute N r[vi−1].
It takes linear time. If e(vi−1) ≤ r, then rad(G) ≤ r, and we accept. Otherwise, let Si =
V \N r[vi−1]. We compute Ci = Ci−1 ∩

⋂
{N r[si] | si ∈ Si}. It can be done in O(|Si|m) time

if we run a BFS on every vertex of Si. By construction, vi−1 ∈ C0. Therefore by Lemma 8,
|Si| ≤ εn w.h.p., and so, w.h.p. the computation of Ci takes O(mnε) time. Furthermore, if
Ci = ∅, then we reject.

• Finally, if Ck ̸= ∅, then we accept.

In order to prove correctness of this algorithm, let us first discuss the case where it ends during
the for loop. If we select some vertex vi−1 such that e(vi−1) ≤ r, then clearly rad(G) ≤ r. Therefore,
we only need to discuss the subcase where Ci = ∅ for some i. For every j such that 0 ≤ j ≤ i,
we claim that Cj must contain all vertices of eccentricity at most r (if any). We prove it by
induction. For j = 0, the result follows from Lemma 8. Thus, from now on, we assume that j > 0
and that the claim holds for j − 1. Every vertex of eccentricity at most r must be contained in⋂
{N r[sj ] | sj ∈ Sj}, and therefore by the induction hypothesis it must be contained in Cj . As

a result, we proved that all vertices of eccentricity at most r are contained in Ci. Since we here
assume that Ci = ∅, we obtain that rad(G) > r.

From this point on, we focus on the last step of the algorithm. Specifically, we claim that if
Ck ̸= ∅, then rad(G) ≤ r+α. Suppose by contradiction that rad(G) > r+α. Since we assume G to
be (k, α)-Helly, there exists a k-subset A such that

⋂
{N r[a] | a ∈ A} = ∅. Clearly, we cannot have

A ⊆ N r[vi−1], for any i such that 1 ≤ i ≤ k. Furthermore by construction the sets S1, S2, . . . , Sk are
pairwise disjoint. Therefore, for every i such that 1 ≤ i ≤ k, |A∩Si| = 1. However, by construction
we also have Ck = C0 ∩

⋂
{Nk[s] | s ∈

⋃k
i=1 Si}. Therefore, ∅ ̸= Ck ⊆

⋂
{N r[a] | a ∈ A} = ∅, a

contradiction.

Overall, the total running time is inO(m log n/ε+kmnε). This is optimized when ε = Θ(
√
log n/(kn)),

and then the running time is in O(m
√
kn log n).
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