Guillaume Ducoffe 
  
Distance problems within Helly graphs and k-Helly graphs

Keywords: Radius and Median computations, Helly graphs, Graph algorithms

The ball hypergraph of a graph G is the family of balls of all possible centers and radii in G. Balls in a subfamily are k-wise intersecting if the intersection of any k balls in the subfamily is always nonempty. The Helly number of a ball hypergraph is the least integer k greater than one such that every subfamily of k-wise intersecting balls has a nonempty common intersection. A graph is k-Helly (or Helly, if k = 2) if its ball hypergraph has Helly number at most k. We prove that a central vertex and all the medians in an n-vertex m-edge Helly graph can be computed w.h.p. in Õ(m √ n) time. Both results extend to a broader setting where we assign a nonnegative cost to the vertices. For any fixed k, we also present an Õ(m √ kn)-time randomized algorithm for radius computation within k-Helly graphs. If we relax the definition of Helly number (for what is sometimes called an "almost Helly-type" property in the literature), then our approach leads to an approximation algorithm for computing the radius with an additive one-sided error of at most some constant.

Introduction

For any undefined graph terminology, see [START_REF] Bondy | Graph theory[END_REF][START_REF] Diestel | Graph Theory[END_REF][START_REF] Golumbic | Algorithmic graph theory and perfect graphs[END_REF]. All graphs considered are simple (i.e., they have no loops and no multiple edges), connected and with unit-length edges. We study the complexity of computing several distance parameters within some increasing hierarchy of graph classes. Specifically, let G = (V, E) be an undirected graph. The distance between two vertices u and v, denoted by dist(u, v), is equal to the minimum number of edges on a uv-path in G. The eccentricity of a vertex v is defined as e(v) = max u∈V dist(u, v). The total distance of a vertex v is defined as T D(v) = u∈V dist(u, v). We focus on two fundamental facility location problems:

• The Center problem asks for a vertex v such that e(v) is minimized (a.k.a., central vertex).

• The Median problem asks for a vertex v such that T D(v) is minimized (a.k.a., median).

Facility location problems are about finding optimal locations, w.r.t. some distance and cost criteria, for opening new facilities such as schools or hospitals. Due to their practical relevance, such problems have been widely studied in mathematical programming, both on metric spaces and graphs. However, our motivation for studying these two problems also comes from their importance in the fine-grained complexity study of polynomial-time solvable problems. Indeed, we observe that both the Center and Median problems can be solved in O(n 2 ) time, if we are given the distance matrix of the graph. Computing the distance matrix, or equivalently solving the All-Pairs Shortest-Paths problem (APSP), can be done in O(nm) time, or in O(n ω+ϵ ) time, for every positive ϵ, where ω < 2.273 denotes the square matrix multiplication exponent [START_REF] Seidel | On the all-pairs-shortest-path problem[END_REF]. If we further assume the input graph to be sparse (or of arbitrary density, but assuming ω = 2), then this is in O(n 2+o (1) ) time, which is optimal. By our previous observation, these quadratic-time upper bounds also apply to the Center and Median problems. However, for a long time it was open whether these upper bounds are asymptotically tight. In 2016, Abboud et al. proved that it was indeed the case if we assume the so-called "Hitting Set Conjecture", that implies the Orthogonal Vectors Conjecture [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs[END_REF]. Specifically, their conjecture implies that for any ε > 0, neither the Center nor the Median problems can be solved in O(n 2-ε ) time on n-vertex Õ(n)-edge graphs. In particular, this rules out the existence of an Õ(n a m b )-time algorithm, for every positive a, b such that a + b < 2. We stress that this conditional lower bound also holds for radius computation (i.e., the seemingly weaker problem of computing the minimum eccentricity, but not necessarily a corresponding central vertex).

We follow a long line of work in Algorithmic Graph Theory, that consists in improving the complexity of distance problems on some special graph classes. Some of these prior works have considered center and/or median computations in linear time on subclasses of bounded treewidth graphs [START_REF] Farley | Computation of the center and diameter of outerplanar graphs[END_REF][START_REF] Goldman | Optimal center location in simple networks[END_REF], bounded clique-width graphs [START_REF] Coudert | Fully polynomial FPT algorithms for some classes of bounded clique-width graphs[END_REF][START_REF] Dragan | LexBFS-orderings of distance-hereditary graphs with application to the diametral pair problem[END_REF][START_REF] Dragan | LexBFS-orderings and powers of graphs[END_REF], planar graphs [START_REF] Chepoi | Center and diameter problems in plane triangulations and quadrangulations[END_REF][START_REF] Eppstein | Diameter and treewidth in minor-closed graph families[END_REF][START_REF] Farley | Computation of the center and diameter of outerplanar graphs[END_REF] and chordal graphs [START_REF] Corneil | Diameter determination on restricted graph families[END_REF][START_REF] Dragan | Centers of graphs and the Helly property[END_REF][START_REF] Viennot | Fast Diameter Computation within Split Graphs[END_REF][START_REF] Olariu | A simple linear-time algorithm for computing the center of an interval graph[END_REF]. For general chordal graphs, we can compute a central vertex in linear time [START_REF] Chepoi | A linear-time algorithm for finding a central vertex of a chordal graph[END_REF][START_REF] Chepoi | Finding a central vertex in an HHD-free graph[END_REF]. More recently, almost linear-time algorithms for the Center and Median problems on general graphs of bounded treewidth were presented in [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs[END_REF][START_REF] Bringmann | Multivariate analysis of orthogonal range searching and graph distances[END_REF]16]. Subquadratic-time algorithms for these problems on general planar graphs were presented in [START_REF] Cabello | Subquadratic algorithms for the diameter and the sum of pairwise distances in planar graphs[END_REF][START_REF] Gawrychowski | Voronoi diagrams on planar graphs, and computing the diameter in deterministic Õ(n 5/3 ) time[END_REF]. It is worth mentioning that all the aforementioned graph classes are characterized by forbidden induced subgraphs or forbidden minors, that is unlike the graph classes considered in the present work.

The ball of center v and radius r is the set

N r [v] = {u ∈ V | dist(u, v) ≤ r}.
The ball hypergraph of G, denoted by B(G), is the family of the balls of all possible centers and radii in G. That is,

B(G) = {N r [v] | v ∈ V, r ≥ 0}.
Several interesting graph classes can be defined via the properties of their ball hypergraphs. For instance, the dually chordal graphs are exactly the graphs of which the ball hypergraph is a dual hypertree [START_REF] Brandstädt | Dually chordal graphs[END_REF]. There exists a linear-time algorithm for computing the radius of a dually chordal graph [START_REF] Brandstädt | The algorithmic use of hypertree structure and maximum neighbourhood orderings[END_REF]. More recently, we proved in [START_REF] Ducoffe | Diameter computation on H-minor free graphs and graphs of bounded (distance) VC-dimension[END_REF], with co-authors, that there exists a parameterized subquadratic-time algorithm for computing the radius, within all the graph classes whose ball hypergraphs have VC-dimension upper bounded by a constant. As a particular case, we got a truly subquadratic-time algorithm for radius computation within all the proper minor-closed classes of graphs. This work makes a new step toward finding a more general property of ball hypergraphs that we could still exploit for a fast radius computation.

Specifically, balls in a subfamily are k-wise intersecting if the intersection of any k balls in the subfamily is always nonempty. A graph is k-Helly if every sub-family of k-wise intersecting balls has a nonempty common intersection. The 2-Helly graphs have already received some attention in the literature, under the different names of Helly graphs (that we use in this paper), disk-Helly graphs [START_REF] Bandelt | Clique graphs and Helly graphs[END_REF] or absolute retracts [START_REF] Bandelt | Dismantling absolute retracts of reflexive graphs[END_REF]. We refer to Fig. 1 for an example of Helly graph. Notably, the interval graphs, the strongly chordal graphs and the dually chordal graphs are all subclasses of the Helly graphs [START_REF] Brandstädt | Dually chordal graphs[END_REF]. In fact, a celebrated result in Metric Graph Theory is that every graph is an isometric (distance preserving) subgraph of some Helly graph [START_REF] Dress | Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces[END_REF][START_REF] Isbell | Six theorems about injective metric spaces[END_REF]. Therefore, unlike most of the special graph classes studied in the literature, the class of Helly graphs cannot be defined via a set of forbidden patterns such as (induced) subgraphs, minors or bounded expansion. Note that in general, a bounded VC-dimension does not imply a bounded Helly number, but it does imply a slightly weaker fractional Helly property [START_REF] Matousek | Bounded VC-dimension implies a fractional Helly theorem[END_REF]. We refer to the survey [START_REF] Bandelt | Metric graph theory and geometry: a survey[END_REF], that has devoted a full section to the properties of Helly graphs. See also [START_REF] Bandelt | Graphs with connected medians[END_REF][START_REF] Bandelt | Dismantling absolute retracts of reflexive graphs[END_REF][START_REF] Bandelt | A Radon theorem for Helly graphs[END_REF][START_REF] Bandelt | Clique graphs and Helly graphs[END_REF][START_REF] Chastand | On constructible graphs, infinite bridged graphs and weakly cop-win graphs[END_REF][START_REF] Dragan | Centers of graphs and the Helly property[END_REF][START_REF] Dragan | Domination in quadrangle-free Helly graphs[END_REF][START_REF] Dragan | r-dominating cliques in graphs with hypertree structure[END_REF][START_REF] Ducoffe | A story of diameter, radius, and (almost) helly property[END_REF]48,[START_REF] Polat | On constructible graphs, locally Helly graphs, and convexity[END_REF] for other properties, and, e.g., [START_REF] Bandelt | Dismantling absolute retracts of reflexive graphs[END_REF][START_REF] Dragan | Centers of graphs and the Helly property[END_REF][START_REF] Lin | Faster recognition of clique-Helly and hereditary clique-Helly graphs[END_REF] for improved polynomial-time recognition algorithms for the Helly graphs. For k ≥ 3, we stress that we can decide in n O(k) time whether an n-vertex graph is k-Helly, that is polynomial for every fixed k; indeed, a graph is k-Helly if and only if for every (k + 1)-subset S of vertices, the balls intersecting S in at least k vertices have a nonempty common intersection [START_REF] Berge | Graphs and hypergraphs[END_REF]. The running times of these recognition algorithms are superquadratic, but we do not need to execute them before we can apply our own algorithms in this paper. 

N 1 [v1] N 1 [v2] N 1 [v3] = N 2 [v2] N 1 [v4] = N 2 [v5] N 1 [v5] N 1 [v6] N 1 [v7] (b) B(G)
Figure 1: A Helly graph (left) and its ball hypergraph (right). The balls N 0 [v i ], for every i such that 0 ≤ i ≤ 7 (reduced to a single vertex), and the ball containing all vertices are not represented.

Recently, with Dragan, we initiated the fine-grained complexity study of polynomial-time solvable distance problems within Helly graphs [START_REF] Ducoffe | A story of diameter, radius, and (almost) helly property[END_REF]. Specifically, we proved that the radius of an n-vertex m-edge Helly graph can be computed w.h.p. in Õ(m √ n) time. Our result followed from a known reduction to the computation of a diametral pair, i.e., a pair of vertices whose distance in the graph is maximum. Indeed, for a Helly graph of diameter D, the radius is exactly ⌈D/2⌉ [START_REF] Dragan | Centers of graphs and the Helly property[END_REF]. Unfortunately, we failed in also computing a central vertex with this approach.

Our Contributions

Helly graphs. We further refine the framework in [START_REF] Ducoffe | A story of diameter, radius, and (almost) helly property[END_REF], in order to solve the Center and Median problems in truly subquadratic time within the Helly graphs.

• Our first result in this paper is an algorithm for computing a central vertex in a Helly graph, that runs in Õ(m √ n) time w.h.p. (Theorem 1). For that, we use the nice property that the eccentricity function of a Helly graph is unimodal: every local minimum is a global minimum [START_REF] Dragan | Centers of graphs and the Helly property[END_REF]. The latter suggests the following natural local search strategy in order to compute a central vertex: start from some vertex with a hopefully small eccentricity, then repeatedly find a neighbour with a better eccentricity until a local minimum is found. Obvious drawbacks to this approach are: the time needed for each step of the local search, and the total number of steps. In order to overcome the first issue, we use and further refine some "gated" properties of the sets of small diameter in a Helly graph. We handle the second issue with a classical random sampling technique, that allows us to find, amongst Õ( √ n) candidates, a start vertex which ensures a sufficiently small (sublinear) total number of steps.

For other recent applications of this sampling technique to distance problems, see [START_REF] Aingworth | Fast estimation of diameter and shortest paths (without matrix multiplication)[END_REF][START_REF] Roditty | Fast approximation algorithms for the diameter and radius of sparse graphs[END_REF].

• Our second main result is a similar algorithm for computing the median in a Helly graph, that also runs in Õ(m √ n) time w.h.p. (Theorem 2). Indeed, since the total distance function of a Helly graph is also unimodal [START_REF] Bandelt | Graphs with connected medians[END_REF], we can use the same local search strategy as before in order to compute a median. For a Helly graph, the subset of all medians is a clique [START_REF] Bandelt | Graphs with connected medians[END_REF]. By using this nice structural property, we can compute all the medians in one more step of the local search. We note that very recently, a similar local search algorithm was presented in [START_REF] Bénéteau | Medians in median graphs and their cube complexes in linear time[END_REF] in order to compute all the medians in linear time within median graphs. The authors in [START_REF] Bénéteau | Medians in median graphs and their cube complexes in linear time[END_REF] achieved a better running time than ours by exploiting the special properties of median graphs. In particular, they derived, after some linear-time preprocessing, a constant-time algorithm for comparing the total distances of two adjacent vertices in a median graph.

Our approach still works for a more general version of the Center and Median problems: where we assign costs to the vertices. We stress that in [START_REF] Ducoffe | A story of diameter, radius, and (almost) helly property[END_REF], we used different properties of unimodal functions in order to compute a diametral pair. In a follow-up paper [START_REF] Dragan | Fast deterministic algorithms for computing all eccentricities in (hyperbolic) Helly graphs[END_REF], based on the techniques developed here and in [START_REF] Ducoffe | A story of diameter, radius, and (almost) helly property[END_REF], we proved that we can also compute the center of a Helly graph in truly subquadratic time (i.e., the set of all its central vertices). Note that for a Helly graph, computing the center is equivalent to computing all the eccentricities [START_REF] Dragan | Centers of graphs and the Helly property[END_REF].

k-Helly graphs. Our third main result in the paper is a randomized algorithm for computing the radius of a k-Helly graph, which runs w.h.p. in Õ(m √ kn) time (Theorem 3). In particular, our result implies that the hard instances for radius computation must have a quasi linear Helly number. Furthermore, if we relax the Helly property, as described next, then we obtain an approximation algorithm for computing the radius. Specifically, let us call a graph (k, α)-Helly if every family of k-wise intersecting balls has a nonempty common intersection when we increase the radius of each ball by α. For the special case k = 2, this relaxed property has been studied under the names of Helly-gap [START_REF] Dragan | of a graph and vertex eccentricities[END_REF] or coarse Helly property [START_REF] Chalopin | Helly groups[END_REF]. Our algorithm outputs the radius with some additive one-sided error in O(α).

Closest to our work on the k-Helly graphs is a very general framework by Amenta [START_REF] Amenta | Helly-type theorems and generalized linear programming[END_REF]. Namely, she proved that on set families of constant Helly number, deciding whether these sets have a nonempty common intersection could be rephrased, under some mild conditions, as a so-called Generalized Linear Program (GLP) with a bounded combinatorial dimension. The GLP's are a broad generalization of linear programming, for which the prototypical problem is the computation of a central point in Euclidean spaces of bounded dimension. If a GLP has a bounded combinatorial dimension, then we can solve it in randomized linear time, by using Clarkson's algorithm [START_REF] Clarkson | Las Vegas algorithms for linear and integer programming when the dimension is small[END_REF]. However, the latter relies on two primitives, namely basis computation and violation testing. We do not know how to implement these two basic operations in constant time, nor even in sublinear time, for the special case of graphs. Therefore, we could not use Amenta's framework in order to prove our results directly, although we stayed close to the spirit of the latter. Our algorithm requires k to be given, and it fails in also computing a central vertex. Roughly, this is because we fail in satisfying another technical condition from Amenta's framework, namely the so-called "Unique Minimum Condition". We left open whether, for any fixed integer k ≥ 3, a central vertex can be computed in truly subquadratic time within the k-Helly graphs.

Facility Location problems on Helly graphs

In what follows, let c : V → R + be a cost assignment to the vertices of some graph G = (V, E). We define the c-eccentricity and the total c-distance of a vertex v as e c (v

) = max u∈V c(u) • dist(u, v) and T D c (v) = u∈V c(u) • dist(u, v)
, respectively. The main results of this section are truly subquadratic algorithms, for the Center and Median problems, respectively, on Helly graphs (Theorems 1 and 2). More generally, for any function c that assigns nonnegative costs to the vertices, we can compute a vertex minimizing its c-eccentricity, resp. all vertices minimizing their total c-distance. For that, we first need to introduce several intermediate results on Helly graphs and unimodal functions.

Unimodal functions. Let G = (V, E) be a graph. In what follows, we denote by N (v) the set of neighbours of a vertex v. Furthermore, let f :

V → R + . A local minimum for f is a vertex v such that, for every u ∈ N (v), we have f (u) ≥ f (v). If furthermore f (v) = min w∈V f (w),
then v is a global minimum for f . We denote by arg min (f ) the set of all the global minima. Finally, we recall that f is called unimodal if every local minimum is also a global minimum.

Lemma 1 (Chapter 2 in [START_REF] Dragan | Centers of graphs and the Helly property[END_REF]). If G = (V, E) is a Helly graph, then for any nonnegative cost function c, the function e c : V → R + that maps every vertex v to its c-eccentricity is unimodal.

Lemma 2 (Corollary 5.1 in [START_REF] Bandelt | Graphs with connected medians[END_REF]). If G = (V, E) is a Helly graph, then for any nonnegative cost function c, the function T D c : V → R + that maps every vertex v to its total c-distance is unimodal. Moreover, the subset of all medians of G is a clique.

Throughout the paper, by a random subset U (p) we mean a vertex subset in which every vertex was added independently at random with probability p. We say that a path

P = [v 0 , v 1 , . . . , v ℓ ] is f -monotone if we have f (v i ) > f (v i+1
) for every i with 0 ≤ i < ℓ. Our starting point for this section is the following observation: Lemma 3. Let G = (V, E) be a graph and f : V → R + be unimodal. Being given a random subset U (p), if u is any vertex that minimizes f (u) within U (p), then w.h.p. every f -monotone path between u and arg min (f ) has length at most in Õ(p -1 ).

Proof. For every vertex v we fix a longest f -monotone path P v between v and arg min (f ). This choice is independent of U (p). Let V p be the set of vertices v such that |E(P v )| > 1 + 2p -1 log n. Let E p be the event that there exists a vertex v of V p such that (V (P v ) \ {v}) ∩ U (p) = ∅. We have:

Pr[E p ] ≤ v∈Vp Pr[(V (P v ) \ {v}) ∩ U (p) = ∅] = v∈Vp (1 -p) |V (Pv)|-1 ≤ v∈Vp (1 -p) 2 log n p ≤ v∈Vp n -2 ≤ n -1 .
Now, let us assume the existence of some vertex u minimizing f (u) within U (p) such that the length of P u is larger than 1 + 2p -1 log n. By minimality of f (u) we have (V (P u ) \ {u}) ∩ U (p) = ∅. Then, the probability for such a vertex u to exists is at most Pr[E p ], that is at most 1/n. Gates and Pseudo-gates. Given a graph G and a vertex v, we recall that the ball of center v and radius r is denoted by N r [v]. For any vertex subset S we define dist(v, S) = min s∈S dist(v, s). The metric projection of v on S is defined as P roj(v, S) = {s ∈ S | dist(v, s) = dist(v, S)}. The (weak) diameter of a set S is equal to diam(S) = max x,y∈S dist(x, y). The following notions of gates (Def. 1) and pseudo-gates (Def. 2) are an important cornerstone of our algorithmic approach in the paper (see also Fig. 2): Definition 1. For every vertex v not in a subset S, a gate of v in S is any vertex v * ∈ N (S) that is on a shortest vx-path for every vertex x in P roj(v, S). Formally,

v * ∈ N dist(v,S)-1 [v] ∩ {N (x) | x ∈ P roj(v, S)}.
We denote by g S (v) an arbitrary gate of vertex v in S, if there exists at least one such vertex, or simply by g(v) if S is clear from the context.

A vertex may have no gate, one gate, or many gates in S. In particular, a necessary condition for a vertex v to have a gate in S is that the weak diameter of its metric projection on S is at most two. This condition is not sufficient. For instance, in an odd cycle of length at least five, if v denotes an arbitrary vertex and the subset S contains the two furthest vertices from v, that are adjacent, then P roj(v, S) = S whereas there is no common neighbour to both vertices in S.

The notion of gate can be traced back to early works in [START_REF] Laskar | On chordal graphs[END_REF] on chordal graphs, from which it was deduced in [START_REF] Chang | The k-domination and k-stability problems on sun-free chordal graphs[END_REF] that in the special case where S is a clique in a chordal graph every vertex v not in S has a gate. This nice property was later used in [START_REF] Chepoi | A linear-time algorithm for finding a central vertex of a chordal graph[END_REF] for the design of a linear-time algorithm for computing a central vertex in a chordal graph. Roughly, being given a clique S and a gate g(v) for every vertex v not in S, after some linear-time preprocessing we may compute the eccentricities and the total distances of every vertex s in S simply by enumerating the gates in their respective neighbourhoods N (s). For that, we use that for every vertex v not in S, dist(v, s) = dist(v, S) if and only if s ∈ P roj(v, S), that is if and only if g(v) ∈ N (s). Otherwise, since S is a clique, dist(v, s) = dist(v, S) + 1. We use a similar approach in Lemma 7 below. However, since we need to consider neighbourhoods, not necessarily cliques, we need the additional concept of pseudo-gate. Definition 2. For every vertex v not in a subset S, a pseudo-gate of v in S is any vertex

v ′ ∈ N [S] such that dist(v, v ′ ) ≤ dist(v, S), N dist(v,S)+1 [v] ∩ S ⊆ N [v ′ ]
, and v ′ is either equal or adjacent to some gate g S (v).

We denote by pg S (v) an arbitrary pseudo-gate of vertex v in S, if there exists at least one such vertex, or simply by pg(v) if S is clear from the context.

In particular, a pseudo-gate may only exist if v has a gate in S. However, a vertex may have a gate and no pseudo-gate. For instance, let S 0 be an arbitrary subset in a graph G 0 and let G be obtained from G 0 by adding for every vertex s in S 0 a degree-one vertex s ′ only adjacent to s.

Let S = {s, s ′ | s ∈ S 0 }. If a vertex v /
∈ S has a gate in S 0 , then it is also a gate in S. However, if |P roj(v, S)| > 1, then v has no pseudo-gate because N dist(v,S)+1 [v] contains all degree-one vertices s ′ ∈ S \ S 0 that are adjacent to P roj(v, S). Note that we allow a pseudo-gate to be either in S or in N (S), whereas a gate can only be in N (S).

The concept of pseudo-gate was first introduced in [START_REF] Ducoffe | A story of diameter, radius, and (almost) helly property[END_REF] where it was proved that every vertex has a pseudo-gate if the weak diameter of S is at most two and the graph G is C 4 -free Helly. To better understand the role played by pseudo-gates in our algorithm, let us consider a subset S, a vertex v / ∈ S, and a vertex s ∈ S \ P roj(v, S). If moreover S is a clique, then we know that dist(v, s) = dist(v, S) + 1. However, if S is a neighbourhood, then we only know that dist(v, s) ∈ {dist(v, S)+1, dist(v, S)+2}. We can use a pseudo-gate of v, if any, in order to determine dist(v, s).

Being given a Helly graph G, and a subset S of weak diameter at most two, we use in our Lemma 7 below that every vertex v / ∈ S has both a gate and a pseudo-gate in S. The existence of a gate was first proved in [START_REF] Ducoffe | A story of diameter, radius, and (almost) helly property[END_REF], namely: Lemma 4 (Lemma 10 in [START_REF] Ducoffe | A story of diameter, radius, and (almost) helly property[END_REF]). Let G be a Helly graph and S be a subset of weak diameter at most two. Then, every vertex v / ∈ S has a gate in S.

The existence of a pseudo-gate was only proved in [START_REF] Ducoffe | A story of diameter, radius, and (almost) helly property[END_REF] for the C 4 -free Helly graphs. We now generalize [START_REF] Ducoffe | A story of diameter, radius, and (almost) helly property[END_REF]Lemma 19] to all the Helly graphs.

Lemma 5. Let G be a Helly graph and let S be a subset of weak diameter at most two. Then, every vertex v / ∈ S has a pseudo-gate in S.

Proof. For convenience, let us write dist(v, S) = r -

1. Let F = {N r-1 [v]} ∪ {N [x] | x ∈ S ∩ N r [v]}.
Since the balls in F pairwise intersect, by the Helly property there exists a vertex

v ′ ∈ N r-1 [v] ∩ {N [x] | x ∈ S ∩ N r [v]}. We prove in what follows that vertex v ′ is a pseudo-gate of vertex v in S. First, dist(v, v ′ ) ≤ dist(v, S) because v ′ ∈ N r-1 [v] and dist(v, S) = r -1. Second, N dist(v,S)+1 [v] ∩ S ⊆ N [v ′ ] because dist(v, S) + 1 = r and v ′ ∈ {N [x] | x ∈ S ∩ N r [v]}. It remains to prove the existence of a gate v * of vertex v such that v * ∈ N [v ′ ].
For that, consider the subfamily

F ′ = {N r-2 [v], N [v ′ ]} ∪ {N [z] | z ∈ P roj(v, S)}. We claim that the balls in F ′ pairwise intersect. Indeed, since we have v ′ ∈ N r-1 [v] and r -1 > 0, we get N r-2 [v] ∩ N [v ′ ] ̸ = ∅.
In the same way, for every vertex

z in P roj(v, S), N r-2 [v] ∩ N [z] ̸ = ∅ because dist(v, z) = dist(v, S) = r -1. For every vertex z in P roj(v, S), we also have v ′ ∈ N [z] because z ∈ S ∩ N r [v] and by construction v ′ ∈ {N [x] | x ∈ S ∩ N r [v]}. In particular, N [v ′ ] ∩ N [z] ̸ = ∅. Finally, for all vertices z and z ′ in P roj(v, S), N [z] ∩ N [z ′ ] ̸ = ∅ because dist(z, z ′ ) ≤ diam(S) ≤ 2.

So, by the Helly property, there exists a vertex

v * ∈ N r-2 [v] ∩ {N [z] | z ∈ P roj(v, S) ∪ {v ′ }}. By construction, v * ∈ N [v ′ ].
Furthermore, for every vertex z of P roj(v, S), vertex v * must be on a shortest vz-path because we have

v * ∈ N r-2 [v] ∩ N [z] and dist(v, z) = r -1. Then, v * ∈ N dist(v,S)-1 [v] ∩ {N (z) | z ∈ P roj(v, S)}. Therefore, v * is a gate of vertex v.
As first observed in [START_REF] Chepoi | A linear-time algorithm for finding a central vertex of a chordal graph[END_REF] (see Remark 1 in [START_REF] Ducoffe | A story of diameter, radius, and (almost) helly property[END_REF]), for every subset S in an arbitrary graph G, we can compute in linear time a gate g S (v) for all vertices v / ∈ S for which such a vertex exists. We can also compute in linear time a pseudo-gate pg S (v) for all vertices v / ∈ S for which such a vertex exists (see Remark 3 in [START_REF] Ducoffe | A story of diameter, radius, and (almost) helly property[END_REF]). For completeness of the paper, we present in what follows a linear-time algorithm for both computations. In what follows, if P denotes a subset of N × N, then we call a pair (a, b) lexicographically maximum within P if for every other pair (a ′ , b ′ ) of P, either a ′ < a, or a ′ = a and b ′ ≤ b.

Lemma 6 (Section 3 in [START_REF] Chepoi | A linear-time algorithm for finding a central vertex of a chordal graph[END_REF], Remarks 1 and 3 in [START_REF] Ducoffe | A story of diameter, radius, and (almost) helly property[END_REF]). Let S be an arbitrary nonempty subset in some graph G = (V, E). In total O(m) time, we can map every vertex v /

∈ S to vertices v * , v ′ such that (|N (v * ) ∩ S|, |N [v ′ ] ∩ S|) is lexicographically maximum within the set of all vertex pairs u, w such that u ∈ N dist(v,S)-1 [v], w ∈ N [u]. Furthermore, two properties hold: 1. if v has a gate in S, then v * is a gate of v; 2. if v has a pseudo-gate in S, then v ′ is a pseudo-gate of v.
Proof. Let G ′ S be obtained from G \ S by adding a fresh new vertex x S and the edges x S v for every vertex v ∈ N G (S). We run a BFS on G ′ S starting from x S . It can be done in O(m) time. In doing so, we compute dist(v, S) for every vertex v / ∈ S. We also compute, in total O(m) time, the values

d S (v) = |N [v] ∩ S| for every vertex v ∈ N [S]
. Then, we consider the vertices v / ∈ S sequentially, by nondecreasing distance to S.

• Case dist(v, S) = 1. We set v * = v and we pick a vertex v ′ maximizing d S (v ′ ) within N [v].
• Case dist(v, S) > 1. Let y 1 , y 2 , . . . , y t denote all the neighbours of v that are at distance dist(v, S) -1 to S. We denote by y * i , y ′ i , for every i such that 1 ≤ i ≤ t, the pair of vertices to which we mapped vertex y i . We pick a pair (v * , v ′ ) ∈ {(y * 1 , y ′ 1 ), . . . , (y * t , y ′ t )} so that (d S (v * ), d S (v ′ )) is lexicographically maximum.

In both cases, we only need to scan N [v] at most twice, that can be done in O(|N [v]|) time. Therefore, the total running time is in O(m).

We prove the correctness of the algorithm for all vertices v / ∈ S by induction on dist(v, S). This is straightforward if dist(v, S) = 1. Thus, from now on we assume that dist(v, S) > 1. Let (u, w) be a pair of vertices such that u ∈ N dist(v,S)-1 [v], w ∈ N [u] and (d S (u), d S (w)) is lexicographically maximized. In order to prove that the algorithm is correct for vertex v, it suffices to prove that d S (u) = d S (v * ) and d S (w) = d S (v ′ ). By the induction hypothesis we have

y * 1 , y * 2 , . . . , y * t ∈ N dist(v,S)-1 [v] ∩ N (S). Therefore, we have d S (u) ≥ max 1≤i≤t d S (y * i ). We also have d S (w) ≥ d S (y ′ i ) for any i such that 1 ≤ i ≤ t and d S (u) = d S (y * i ).
Furthermore, by maximality of d S (u) we must have u ∈ N (S). In particular, there exists a vertex x such that x ∈ P roj(v, S) and u is on a shortest vx-path. Such a shortest path must contain y i , for some i such that 1 ≤ i ≤ t, thus implying by the induction hypothesis d S (y * i ) ≥ d S (u). Then, d S (y * i ) = d S (u), and so, d S (y ′ i ) = d S (w). As a result,

d S (u) = max 1≤i≤t d S (y * i ) = d S (v * ),
and in the same way

d S (w) = max{d S (y ′ i ) | 1 ≤ i ≤ t and d S (y * i ) = d S (v * )} = d S (v ′ ),
proving correctness of the algorithm for vertex v. Finally, let us consider the two vertices v * , v ′ that are mapped to some arbitrary vertex v. Let us assume that vertex v has a gate u in S. By the maximality of d S (v * ) within

N dist(v,S)-1 [v], d S (v * ) ≥ d S (u) = |P roj(v, S)|.
Since in addition, every vertex of N (v * ) ∩ S is in P roj(v, S), we obtain that P roj(v, S) ⊆ N (v * ). Then, v * is a gate of v. In the same way, let us assume that vertex v has a pseudo-gate in S. In particular, vertex v also has a gate in S.

Then, vertex v * is a gate of vertex v in S. Since vertex v * is in N [v ′ ], dist(v, v ′ ) ≤ dist(v, v * ) + 1 = dist(v, S
). Let w be some pseudo-gate of vertex v in S, and let u be some gate of vertex v in S such that u

∈ N [w]. We have that d S (u) = d S (v * ) because both vertices u, v * are gates of vertex v in S. Then, d S (v ′ ) ≥ d S (w) because (d S (v * ), d S (v ′ )) is lexicographically maximized. Furthermore, N [w] ∩ S ⊆ N dist(v,S)+1 [v],
and in the same way

N [v ′ ] ∩ S ⊆ N dist(v,S)+1 [v], because w, v ′ ∈ N dist(v,S) [v]. Then, N [w] ∩ S = N dist(v,S)+1 [v]∩S because w is a pseudo-gate of v in S. It implies that N [v ′ ]∩S = N dist(v,S)+1 [v]∩S because d S (v ′ ) ≥ d S (w). Therefore, v ′ is a pseudo-gate of vertex v in S.
Let 1[•] be the Kronecker symbol (equal to 1 if the predicate in brackets is true, and to 0 otherwise). By combining Lemmata 4 and 5, we are now ready to prove our main technical lemma.

Lemma 7. Let G = (V, E) be a Helly graph, equipped with a nonnegative cost function c. For any fixed choice of a vertex v and a vertex subset A, we can compute the following three values for every neighbour u ∈ N (v), in total O(m) time:

• q + (u, v, A) = w∈A c(w) • 1[dist(u, w) > dist(v, w)]; • q = (u, v, A) = w∈A c(w) • 1[dist(u, w) = dist(v, w)]; • q -(u, v, A) = w∈A c(w) • 1[dist(u, w) < dist(v, w)]. Proof. Let S = N [v]
. By Lemma 4, every vertex w / ∈ S has a gate. Furthermore, by Lemma 6 we can compute a fixed gate g(w) for every vertex w / ∈ S, in total O(m) time. For every vertex z ∈ N (S), let α(z) = w∈A\S c(w) • 1[g(w) = z]. Let u ∈ S be an arbitrary neighbour of vertex v. Clearly, u is the only vertex w ∈ S such that dist(u, w) < dist(v, w). For every vertex w not in S, we claim that we have dist(u, w) < dist(v, w) if and only if g(w) ∈ N (u). Indeed, let us first assume that g(w) ∈ N (u). Since g(w) is a gate of w in N (v), we have dist(w, g(w)) = dist(w, N (v)) -1 = dist(w, v) -2. As a result, dist(w, u) ≤ dist(w, g(w)) + dist(g(w), u) ≤ dist(w, v) -1. Conversely, we now assume that dist(u, w) < dist(v, w). Since u and v are adjacent, dist(w, u) = dist(w, v) -1. It implies that u ∈ P roj(w, N (v)). As a result, u and g(w) are adjacent, thus proving our claim. Therefore, for every neighbour u ∈ N (v), we have:

q -(u, v, A) = w∈A c(w) • 1[dist(u, w) < dist(v, w)] = w∈A∩S c(w) • 1[dist(u, w) < dist(v, w)] + w∈A\S c(w) • 1[dist(u, w) < dist(v, w)] = c(u) • 1[u ∈ A] + w∈A\S c(w) • 1[g(w) ∈ N (u)] = c(u) • 1[u ∈ A] + z∈N (S)∩N (u) w∈A\S c(w) • 1[g(w) = z] = c(u) • 1[u ∈ A] + z∈N (S)∩N (u) α(z).
Being given the values α(z) for vertex z ∈ N (S) (precomputed at the beginning of the algorithm), we can compute q -(u, v, A) in O(|N (u)|) time for every neighbour u ∈ N (v).

In the same way, by Lemma 5, every vertex w / ∈ S has a pseudo-gate. By Lemma 6 we can also compute a fixed pseudo-gate pg(w) for every vertex w / ∈ S, in total O(m) time. For every vertex z ∈ N [S], let β(z) = w∈A\S c(w) • 1[pg(w) = z]. Let w be an arbitrary vertex and let u ∈ S be a neighbour of v. If w ∈ S, then we have dist(u, w) ≤ dist(v, w) if and only if w ∈ N [u] \ {v}. From now on, we assume that w is not in S. We claim that we have dist(u, w) ≤ dist(v, w) if and only if pg(w) ∈ N [u]. Indeed, let us first consider the case where pg(w) ∈ N [u]. We have dist(w, pg(w)) ≤ dist(w, S) = dist(w, v) -1. Therefore, dist(w, u) ≤ dist(w, pg(w)) + 1 ≤ dist(w, v). Conversely, we now consider the case where dist(u, w) ≤ dist(v, w). We have dist(u, w) ≤ dist(v, w) = r, with r = dist(w, S) + 1. In particular, u ∈ N r [w] ∩ S. It implies that u ∈ N [pg(w)], or equivalently pg(w) ∈ N [u], thus proving our claim. We obtain that for every neighbour u ∈ N (v):

q -(u, v, A) + q = (u, v, A) = w∈A c(w) • 1[dist(u, w) ≤ dist(v, w)] = u ′ ∈S∩A c(u ′ ) • 1[dist(u, u ′ ) ≤ dist(v, u ′ )] + w∈A\S c(w) • 1[dist(u, w) ≤ dist(v, w)] = u ′ ∈N (v)∩N [u]∩A c(u ′ ) + w∈A\S c(w) • 1[pg(w) ∈ N [u]] = u ′ ∈N (v)∩N [u]∩A c(u ′ ) + z∈N [S]∩N [u] w∈A\S c(w) • 1[pg(w) = z] = u ′ ∈N (v)∩N [u]∩A c(u ′ ) + z∈N [S]∩N [u] β(z).
For every neighbour u ∈ N (v), being given q -(u, v, A) and the values β(z) for every vertex z ∈ N [S], we can compute q = (u, v, A) in O(|N (u)|) time.

Finally, q + (u, v, A) = w∈A c(w) -q -(u, v, A) -q = (u, v, A).

Main Results.

Theorem 1. If G is a Helly graph then, for any nonnegative cost function c, w.h.p., we can compute a central vertex in Õ(m √ n) time.

Proof. Set p = n -1 2 , and let U (p) be a corresponding random subset. We observe that the expected cardinality of U (p) equals pn = √ n. By Chernoff bounds,

Pr[|U (p)| > 2 √ n] ≤ e - √ n 3 .
In particular, the subset U (p) has cardinality Õ( √ n) w.h.p., and thus we assume from now on that it is indeed the case. We compute the c-eccentricity for every vertex of U (p), that takes O(m|U (p)|) = Õ(m √ n) time if we run a BFS starting from every vertex of U (p). Then, let u ∈ U (p) be of minimum c-eccentricity. At each step of the algorithm, we search for a neighbour v of the current vertex u such that e c (v) < e c (u). If no such neighbour exists then, u is a local minimum for the eccentricity function, and so, by Lemma 1, this vertex u is central. Otherwise, we set u = v and then we continue the algorithm for at least one more step. All the vertices u considered during algorithm induce an eccentricity-monotone path. By Lemma 1, the eccentricity function of G is unimodal. Therefore, by Lemma 3 the total number of steps is upper bounded w.h.p. by Õ( √ n). We can implement each step of this local search algorithm in O(m) time, as follows. First we observe that for every vertex u and any neighbour v ∈ N (u), for every vertex w we have

|dist(v, w) -dist(u, w)| ≤ 1. Let A = {w ∈ V | c(w) • dist(u, w) = e c (u)} and let B = {w ∈ V | c(w) • (dist(u, w) + 1) ≥ e c (u)}.
We have e c (v) < e c (u) if and only if the following two conditions hold: (i) q + (v, u, A) = q = (v, u, A) = 0, and (ii) q + (v, u, B) = 0. Therefore, by applying Lemma 7 twice, we can decide in O(m) time whether there exists a neighbour v ∈ N (u) such that e c (v) < e c (u), and if so, compute such a neighbour within the same amount of time.

Theorem 2. If G is a Helly graph then, for any nonnegative cost function c, w.h.p., we can compute all the medians in Õ(m √ n) time.

Proof. First, we compute one median. Since by Lemma 2, the total c-distance function of a Helly graph is unimodal, we can do a local search algorithm, similar to the one presented in the proof of Theorem 1 but on a different unimodal function. However, we need to explain how we can implement each step of this algorithm in O(m) time. For that, let u ∈ V be fixed and let v ∈ N (u) be an arbitrary neighbour. Again, recall that for every vertex w we have |dist(v, w)-dist(u, w)| ≤ 1. Then, we have

T D c (u) -T D c (v) = w∈V c(w) • dist(u, w) - w∈V c(w) • dist(v, w) = w∈V c(w) • (dist(u, w) -dist(v, w)) = w∈V c(w) • 1 • 1[dist(u, w) > dist(v, w)] + w∈V c(w) • 0 • 1[dist(u, w) = dist(v, w)] + w∈V c(w) • (-1) • 1[dist(u, w) < dist(v, w)] = w∈V c(w) • 1[dist(u, w) > dist(v, w)] - w∈V c(w) • 1[dist(u, w) < dist(v, w)] = q -(v, u, V ) -q + (v, u, V ).
Therefore, by applying Lemma 7 once, we can decide in O(m) time whether there exists a neighbour v ∈ N (u) such that T D c (v) < T D c (u), and if so, compute such a neighbour within the same amount of time. -In fact, we can even compute a vertex v that minimizes T D c (v) within N (u). However, it is not clear whether there is a way to exploit this for a faster algorithm. -Finally, let u ∈ V be a median. Again by using Lemma 7, in O(m) time we can compute all the neighbours v ∈ N (u) such that T D c (u) = T D c (v). Since the subset of all medians of a Helly graph induces a complete subgraph (Lemma 2), we computed doing so all the medians.

Radius computation within k-Helly graphs

Recall that in [START_REF] Ducoffe | A story of diameter, radius, and (almost) helly property[END_REF], we proved that the radius of a Helly graph can be computed w.h.p. in Õ(m √ n) time. In this last section, we generalize this result to the k-Helly graphs. The radius of a graph G If rad(G) > r i , then we set rm i+1 = r i + 1 and ru i+1 = ru i . We claim that in this situation, we still have [rm i+1 ; ru i+1 ] ∩ [rad(G) -α; rad(G)] ̸ = ∅. Indeed, if it were not the case, then since we assume that rad(G) ≥ r i +1 = rm i+1 , we should have that rad(G)-α > ru i+1 = ru i , thus contradicting that we were having [rm i ; ru i ] ∩ [rad(G) -α; rad(G)] ̸ = ∅ at the prior step of the algorithm.

• Otherwise, rad(G) ≤ r i + α. In this situation, we set rm i+1 = rm i , ru i+1 = r i and we claim that we still have [rm i+1 ; ru i+1 ] ∩ [rad(G) -α; rad(G)] ̸ = ∅. Indeed, if it were not the case, then since we assume that rad(G) ≤ r i + α = ru i+1 + α, or equivalently rad(G) -α ≤ ru i+1 we should have that rad(G) < rm i+1 = rm i , thus contradicting that we were having [rm i ; ru i ] ∩ [rad(G) -α; rad(G)] ̸ = ∅ at the prior step of the algorithm.

Overall, we can only call Lemma 9 O(log n) times before the algorithm stops.

Proof of Lemma 9. We first describe the algorithm, before proving its correctness and then analyzing its running time. Let ε > 0 to be fixed later in the proof. We proceed as follows:

• We compute a set C 0 = D⟨G; r; ε⟩ such as in Lemma 8. Such a set C 0 can be computed w.h.p. in O(m log n/ε) time. Furthermore, if C 0 = ∅, then rad(G) > r, and we reject.

• Then, for i = 1 . . . , k, we select an arbitrary vertex v i-1 ∈ C i-1 and we compute N r [v i-1 ]. It takes linear time. If e(v i-1 ) ≤ r, then rad(G) ≤ r, and we accept. Otherwise, let • Finally, if C k ̸ = ∅, then we accept.

S i = V \ N r [v i-1 ]. We compute C i = C i-1 ∩ {N r [s i ] | s i ∈ S i }.
In order to prove correctness of this algorithm, let us first discuss the case where it ends during the for loop. If we select some vertex v i-1 such that e(v i-1 ) ≤ r, then clearly rad(G) ≤ r. Therefore, we only need to discuss the subcase where C i = ∅ for some i. For every j such that 0 ≤ j ≤ i, we claim that C j must contain all vertices of eccentricity at most r (if any). We prove it by induction. For j = 0, the result follows from Lemma 8. Thus, from now on, we assume that j > 0 and that the claim holds for j -1. Every vertex of eccentricity at most r must be contained in {N r [s j ] | s j ∈ S j }, and therefore by the induction hypothesis it must be contained in C j . As a result, we proved that all vertices of eccentricity at most r are contained in C i . Since we here assume that C i = ∅, we obtain that rad(G) > r.

From this point on, we focus on the last step of the algorithm. Specifically, we claim that if C k ̸ = ∅, then rad(G) ≤ r + α. Suppose by contradiction that rad(G) > r + α. Since we assume G to be (k, α)-Helly, there exists a k-subset A such that {N r [a] | a ∈ A} = ∅. Clearly, we cannot have A ⊆ N r [v i-1 ], for any i such that 1 ≤ i ≤ k. Furthermore by construction the sets S 1 , S 2 , . . . , S k are pairwise disjoint. Therefore, for every i such that 1 ≤ i ≤ k, |A ∩ S i | = 1. However, by construction we also have

C k = C 0 ∩ {N k [s] | s ∈ k i=1 S i }. Therefore, ∅ ̸ = C k ⊆ {N r [a] | a ∈ A} = ∅, a contradiction.
Overall, the total running time is in O(m log n/ε+kmnε). This is optimized when ε = Θ( log n/(kn)), and then the running time is in O(m √ kn log n).

Figure 2 :

 2 Figure 2: For S = N [v], vertex x has two gates x * a , x * b and one pseudo-gate u 5 . Vertex y has a gate y * in S but no pseudo-gate. Vertex z has no gate in S.

  It can be done in O(|S i |m) time if we run a BFS on every vertex of S i . By construction, v i-1 ∈ C 0 . Therefore by Lemma 8, |S i | ≤ εn w.h.p., and so, w.h.p. the computation of C i takes O(mnε) time. Furthermore, if C i = ∅, then we reject.

Acknowledgements. We thank the anonymous reviewers their valuable feedback. This work was supported by a grant of the Ministry of Research, Innovation and Digitalization, CCCDI -UEFISCDI, project number PN-III-P2-2.1-PED-2021-2142, within PNCDI III.

is denoted in what follows by = min v e(v). Theorem 3. If G is a k-Helly graph, then there is an algorithm that runs in Õ(m √ kn) time w.h.p., and computes rad(G).

Theorem 3 follows from a more general result, that we state next. Recall that we call a graph (k, α)-Helly if, for every family of k-wise intersecting balls

, there exists a vertex x such that for every i with 1 ≤ i ≤ s, dist(x, v i ) ≤ r i + α. Note that in particular, the (k, 0)-Helly graphs are exactly the k-Helly graphs. It is also known that the chordal graphs are (2, O(1))-Helly, and more generally the k-hyperbolic graphs are (2, O(k))-Helly [START_REF] Chepoi | Packing and covering δ-hyperbolic spaces by balls[END_REF].

Theorem 4. If G is a (k, α)-Helly graph then there is an algorithm that runs in Õ(m √ kn) time w.h.p., and computes some value r such that rad(G) -α ≤ r ≤ rad(G) (hereafter called an additive +α-approximation of rad(G)).

We observe that Theorem 3 is an easy corollary of Theorem 4. The remainder of this section is devoted to the proof of Theorem 4. For that, we need the following lemma, that is based on the same random sampling technique as for Lemma 3.

Lemma 8 (Lemma 2 in [START_REF] Ducoffe | A story of diameter, radius, and (almost) helly property[END_REF]). Let G = (V, E) be a graph, let r be a positive integer and let ε ∈ (0; 1). There is an algorithm that computes a set D⟨G; r; ε⟩ such that the following two properties hold for every vertex v:

Furthermore, w.h.p. the algorithm runs in O(m log n/ε) time.

Equipped with Lemma 8, we are now ready to prove the following decision version of Theorem 4: Lemma 9. Let G = (V, E) be a (k, α)-Helly graph, and let r be a positive integer. There is an algorithm that runs in Õ(m √ kn) time w.h.p., and satisfies the following two properties:

• If the algorithm rejects, then rad(G) > r;

• If the algorithm accepts, then rad(G) ≤ r + α.

We prove next that by a classical dichotomic argument, Lemma 9 is equivalent to Theorem 4. Note that in order to prove Theorem 4, it suffices to prove that it is implied by Lemma 9. The converse is proved only for the sake of completeness.

We start proving that Theorem 4 implies Lemma 9. Let r be an arbitrary positive integer, and let r ′ be the output of Theorem 4. We can design a simple algorithm that accepts if and only if r ≤ r ′ + α. Indeed, recall that rad(G) -α ≤ r ′ ≤ rad(G). Therefore, if r ≤ r ′ + α then we have r ≤ rad(G) + α, and conversely if r > r ′ + α then we have r > rad(G).

We now present an algorithm in order to prove Theorem 4, assuming Lemma 9. More specifically, at any step i ≥ 0 of the algorithm we maintain a range [rm i ; ru i ] so that [rm i ; ru i ] ∩ [rad(G)α; rad(G)] ̸ = ∅ (initially, rm 0 = 1 and ru 0 = n -1). While rm i ̸ = ru i , we pick r i = ⌊(rm i + ru i )/2⌋ and we apply Lemma 9. There are two cases: