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RATIONALITY OF NORMAL FORMS OF ISOTROPY STRATA OF A

REPRESENTATION OF A COMPACT LIE GROUP

P. AZZI, R. DESMORAT, J. GRIVAUX, AND B. KOLEV

Abstract. In this article we study the isotropy stratification of a linear representation V of
a compact Lie group G. We prove that the closed isotropy strata are real algebraic manifolds
and that for each isotropy subgroup H , every rational invariant of the induced representation
(V H , N(H)) can be obtained as the restriction of a global invariant of (V,G), where N(H) is
the normalizer of H and V H is the fixed point set of H .
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1. Introduction

It was observed in [2], on an example from solid mechanics, that the coefficients of the nor-
mal form for some orbit types (also called isotropy classes or symmetry classes in mechanics)
of a tensorial representation (V,SO(3)) could be expressed rationally using some polynomial
invariants of (V,SO(3)). Let us start by giving an example of what we mean by this assertion.
Consider the natural representation of the rotation group SO(3,R) on the vector space H

2(R3)
of traceless symmetric 3× 3 matrices with real coefficients

ρ(g)A = gAg−1, A ∈ H
2(R3), g ∈ SO(3,R).

For this representation, there are exactly three orbit types corresponding to the symmetry groups
D2 (three distinct eigenvalues, generic case), O(2) (two distinct eigenvalues) and SO(3) (only
one eigenvalue). A normal form for the second orbit type represented by the symmetry group
O(2) is provided by the linear subspace

V O(2) =
{
A ∈ H

2(R3); gAg−1 = A, ∀g ∈ O(2)
}
= {diag(−λ,−λ, 2λ); λ ∈ R} .
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Then, on the dense open subset λ 6= 0 of (H2(R3))O(2), one has λ =
I3
I2
, where I2 = trA2 and

I3 = trA3 are a generating set of the invariant algebra

R[H2(R3)]SO(3,R).

More generally, consider a linear representation ρ : G → GL(V ) of a compact Lie group G
on a real vector space V . Given an orbit type represented by a symmetry group H ⊂ G, each
orbit of this type intersects the fix point set V H , which may be considered as a normal form
for these orbits. The normalizer N(H) of H in G stabilizes the linear subspace V H and ρ
induces a faithful representation of N(H)/H on V H . It was conjectured, after the observations
in [2], that every polynomial invariant of this representation is indeed the restriction on V H

of a rational invariant of the initial representation ρ of G. In a subsequent paper [33], it was
moreover conjectured that the closed strata of any real linear representation V of a compact
Lie group were moreover real algebraic subset of V . In this paper, we will prove the following
theorem:

Theorem 1.1. Let ρ : G → GL(V ) be a linear representation of compact Lie group G on a real
vector space V , let H be an isotropy group of ρ, let N(H) be the normalizer of H in G, and let
V H be the fixed locus of H.

(1) Every rational invariant of the induced representation (V H , N(H)) is the restriction of
an invariant of (V,G) which is rationally defined on V H . In other words, the restriction
map R[V ] → R[V H ] induces a morphism

S : R(V )G 99K R(V H)N(H),

which is surjective when restricted to its domain of definition.
(2) The closed stratum Σ[H] is a closed real algebraic subset of V .

Related results can be found in the literature but under different hypotheses. In almost all
papers, the problem is considered in the complex case and for generic orbit types. The most
classical result fitting in this framework is Chevalley’s restriction theorem that corresponds to
a connected semisimple complex Lie group acting by the adjoint action on its Lie algebra g.
More generally, Luna in [29] and then Luna and Richardson in [30, theorem 4.2] proved that,
for a linear action of a reductive group G on an affine variety V (hence in particular for a
vector space), the restriction map K[V H ] → K[V ] maps K[V ]G isomorphically onto K[V H ]Γ

when K is an algebraically closed field, and H is the generic isotropy, and Γ = N(H)/H (see
also [29],[36]). Further results can be found in [15, 21, 31, 34] where the same isomorphism is
proved on the fields of invariants of (V,G) and (V (H), N(H)) (that is K(V )G ≃ K(V H)Γ) under
the hypothesis that K is an algebraically closed field. To illustrate our theorem we provide below
some explicit examples.

Example 1.2. We start with the real version of Chevalley’s restriction theorem. If G is a con-
nected compact Lie group, all maximal tori are conjugate (see [8, Chap. IV Thm 1.6]) and they
are maximal abelian subgroups. Let r denote the rank of G, which is the dimension of any
maximal torus T in G. Recall that an element x of g is regular if the closure of the 1-parameter
subgroup of G generated by x is a maximal torus in G. Regular points form a dense open subset
greg of g, and for any x in greg, Gx is the centralizer of the maximal torus of G containing the
1-parameter subgroup generated by x, which is the torus itself. Hence, if T is a maximal torus,
if W = N(T )/T is the corresponding Weil group, and if t is the Lie algebra of T , there is an
isomorphism R[V ]G ≃ R[t]W (see [8, Chap. VI Prop. 2.1]). Our result implies a weak form of
this statement, namely the same isomorphism at the level of fields of invariants.

Example 1.3. For the standard representation of the symmetric group S3 on V = R
3, there are

three isotropy classes [1], [S2], [S3]. The invariant algebra R[R3]S3 is generated by the three
elementary symmetric functions σ1, σ2 and σ3. The fixed point set V S2 is the plane x = y and
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N(S2) = S2. Hence, R[V
S2 ]N(S2) = R[x, y] and we have

x =
σ1σ2 − 9σ3
2σ2

1 − 6σ2
and z =

σ3
1 − 4σ1σ2 + 9σ3

σ2
1 − 3σ2

·

Example 1.4. Here, we provide an example where N(H)/H is not trivial. We consider the
representation of the rotation group SO(3,R) on the vector space V = H

4(R3) of harmonic
symmetric tensors of order 4 (or homogeneous harmonic polynomials in three variables of degree
four). It is known, see [14, 16], that there are eight orbit types, and among them the symmetry

class [D2], where D2 is the dihedral group of order 2. The invariant algebra R[H4(R3)]SO(3,R) is
generated by 9 polynomials Jk which have been obtained in [3] (see also [2]). The normalizer
N(D2) is the octahedral group O and Γ = N(D2)/D2 ≃ S3. The fixed point set V D2 is the
three-dimensional vector space spanned by the harmonic polynomials





p1 = −z4 + 6y2z2 − y4,

p2 = −z4 + 6x2z2 − x4,

p3 = −y4 + 6x2y2 − x4.

In this basis, the action of the monodromy group Γ ≃ S3 is just the standard action of the
permutation group S3 on the triple (λ1, λ2, λ3) and the invariant algebra R[V D2 ]S3 is generated
by the elementary symmetric polynomials (σ1, σ2, σ3) in the λi. It was shown in [2] that σ1, σ2
and σ3 can be expressed rationally in terms of the Jk by




σ1 = −
9
(
3J7 − 3J2 J5 + 3J3 J4 − J2

2 J3
)

2
(
6J6 − 9J2 J4 − 20J3

2 + 3J2
3
) ,

σ2 =
4

7
σ1

2 −
1

14
J2,

σ3 =
1

24
J3 +

1

7
σ1

3 −
1

56
σ1 J2.

Outline. The article is organized as follows. In section 2, we recall basic material on repre-
sentations of compact Lie groups and invariant theory. In section 3, we recall an explicit linear
model for the complexification of a compact Lie group and provide several useful results on the
complexification of a real continuous representation of a compact Lie groups. Besides, we prove
one key technical tool, namely that for compact group, normalizers commute with complexifi-
cation. The section 4 is devoted to the proof of theorem 1.1. In addition, two appendices are
provided. In Appendix A, we recall some results about Lie groups, real analytic functions, and
totally real manifolds. Finally, in Appendix B, we provide for the reader’s convenience a proof
of the Principal Orbit Theorem in the linear case.

2. Preliminaries

2.1. Linear representations of compact Lie groups. Let G be a compact (real) Lie group
and let ρ : G → GL(V ) be a continuous linear representation of G on a finite dimensional vector
space V . It is well-known that ρ is real-analytic (see corollary A.2). In particular, we will be
able to apply all the tools of differential topology concerning smooth action of Lie groups on
manifolds. We write g · v := ρ(g)v to lighten the notation.

For any vector v in V , we denote by G ·v its orbit under G. The quotient set V/G of V under
the action of G is the orbit space of V .

The isotropy subgroup (or symmetry group) of a vector v in V is defined by

Gv := {g ∈ G; g · v = v} .

It is a closed subgroup of G, hence a Lie subgroup of G. The orbit G · v is a smooth compact
submanifold of V , which is diffeomorphic to the homogeneous space G/Gv .

Two vectors in the same orbit have conjugate symmetry groups. Indeed,

∀v ∈ V, ∀g ∈ G, Gg·v = g Gv g−1.
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Of course, the converse is false but we say that v1 and v2 are in the same isotropy class (or have
the same orbit type in the terminology of [1]) if their symmetry groups are conjugate in G, that
is if there exists g ∈ G such that

Gv2 = g Gv1g
−1.

Given a closed subgroup H of G, we say that the conjugacy class [H] of H in G is an isotropy
class (or an orbit type) if there exists a vector v such that [H] = [Gv].

The finiteness of isotropy classes for a continuous action of a compact Lie group on a compact
manifold was initially conjectured by Montgomery and solved in [13, 32] (in the case of a smooth
action it is way more easy, see also [4, Chapter VII] and [38, Theorem 5.11]). This implies the
finiteness of isotropy classes for a linear representation of a compact Lie group: we can see it by
extending a representation on V to an action on the projective compactification P(V ⊕ R), or
on the sphere S(V ) if we take an invariant inner product.

Given a compact Lie group G, the inclusion relation on the set of closed subgroups induces
a partial order on the set of their conjugacy classes [7, 1], called by some authors containment
relation [9]. It is defined as follows:

[H1] � [H2], if H1 is conjugate to a subgroup of H2.

To understand the geometry of conjugacy classes, a very useful notion is that of a slice. We
recall here the general definition, but in our setting not all properties are necessary (see 2.2).

Definition 2.1. For any v in V , a local slice of the G-action at v is an embedded disc S ⊂ V
passing through v such that:

• S is transverse to the orbit G · v.
• S is stable under Gv.
• If s1, s2 are two points in S and there exists g in G with g · s1 = s2, then g belongs to
Gv . In particular, Gs ⊂ Gv for each point s ∈ S.

• G · S is an open neighborhood of the orbit G · v.

Remark 2.2. We have furthermore the following properties.

• Given a slice S, the open G-stable neighborhood G · S is diffeomorphic to the quotient
G ×Gv S, and after linearizing the action of Gv on S, G · S is locally diffeomorphic to
G×Gv Nv where Nv is the normal space of the orbit at v (viewed as a representation of
the isotropy group Gv).

• Slices exist in general for proper actions of Lie groups on manifolds [10, Theorem 2.3.1],
and in particular for actions of compact Lie groups. However, for linear representations
of compact Lie groups, it is possible to produce slices easily (see lemma B.3 below).

• In our settings, where G is compact, the two last properties are automatic (of course up
to shrinking S) as soon as the two first ones are granted.

• The last property can be made slightly stronger: up to shrinking S, we can even assume
that the orbit map from G× S to V is a submersion, in particular it is an open map.

The existence of slices has the following corollary.

Corollary 2.3. Let v in V . Then there exists a neighborhood U of v such that for all w in U ,
[Gw] � [Gv ].

Proof. Let S be a slice at v. If w ∈ G · S then w is in the orbit of a point w′ in S. It follows
that Gw′ ⊂ Gv , so [Gw] = [Gw′ ] � [Gv]. �

Definition 2.4. A vector v ∈ V (or its orbit) is called principal if there exists a neighborhood
U of v such that for all w in U , [Gw] = [Gv ]. Equivalently, v is principal if it has locally minimal
isotropy.

Remark 2.5.

• By definition, the set of principal points is open.
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• The definition of principal points is not totally standard. Some authors, like [1, section
6] have adopted another definition: A vector v ∈ V is principal if there exists a neigh-
borhood U of v such that for all w in U , [Gv ] � [Gw]. Anyway, for a compact Lie group
representation, the two definitions are equivalent.

Let us denote by π the canonical projection from V to V/G. The principal orbit type theorem
can be stated (in the case of linear representations) as follows (see [7, Theorem 3.1], [1, section
VI], [10, Theorem 2.8.5]).

Theorem 2.6 (Principal orbit type theorem). For any open subset Ω of V such that π(Ω) is
connected, the set UΩ of principal points in Ω is open, dense in Ω, and π(UΩ) is connected.

For the interested reader, we present a proof in Appendix B. It follows from this result that
there is a unique minimal orbit type.

Definition 2.7. Let G be a compact Lie group acting linearly on V and H be an isotropy
subgroup.

• The fixed locus V H is defined by

V H := {v ∈ V ; h · v = v for all h ∈ H} ,

it is the vector subspace of elements of V fixed by H.

• The open fixed locus
◦
V H is the subset of V H defined by

◦
V H :=

{
v ∈ V H ; Gv = H

}
.

• The stratum Σ[H] is defined by

Σ[H] := {v ∈ V ; [Gv ] = [H]} .

It is the set of vectors in V having isotropy class [H] and it is the orbit of
◦
V H .

• The closed stratum

Σ[H] =
{
v ∈ V ; gHg−1 ⊂ Gv, for some g ∈ G

}

consists of vectors V having isotropy at least [H]. It is the orbit of V H .

Remark 2.8.

• The terminology we use here is not totally standard, but it varies according to different
authors (for instance, what we call stratum is called orbit bundle in [38]).

• The fixed locus V H is defined for arbitrary closed subgroups of G (not only isotropy
subgroups) but we will generally avoid to do so.

• The terminology “closed stratum” and the corresponding notation will be justified by
corollary 2.11. The same holds for the opened fixed locus.

• The partial order relation on isotropy classes induces a (reverse) partial order relation
on the strata.

[H1] � [H2] ⇐⇒ Σ[H2] � Σ[H1]

The normalizer of H is

N(H) :=
{
g ∈ G | gHg−1 = H

}
.

It is the maximal subgroup of G in which H is a normal subgroup. We have the following result
(see [2], [16]):

Lemma 2.9. For each closed subgroup H of G, V H is N(H)-stable. Moreover, if H = Gv0 is
the isotropy group of some point v0 ∈ V , then N(H) =

{
g ∈ G; g · V H ⊂ V H

}
.

Proof. Let v in V H . Then, for any g in N(H) and any h in H, we have

h · (g · v) = g · (g−1hg) · v = (gh′) · v = g · v.
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If moreover H = Gv0 , and g ∈ G is such that g · V H ⊂ V H , then, g · v0 is in V H and thus
H ⊂ gHg−1, because Gg·v0 = gGv0g

−1. Since H is compact, H = gHg−1 by [38, Proposition
3.7] and g belongs to N(H), which ends the proof. �

The linear representation ρ : G → GL(V ) induces, by restriction, a linear representation of
N(H) on V H

ρN(H) : N(H) −→ GL(V H).

This induced representation is however not faithful in general but, when H is an isotropy group,
its kernel is exactly H and we get a faithful linear representation

ρΓH : ΓH −→ GL(V H),

where ΓH := N(H)/H is called the monodromy group in [2]. Note that, in that case, two vectors
v1, v2 in V H ∩ Σ[H] are in the same G-orbit if and only if they are in the same ΓH -orbit.

Proposition 2.10. Let H be an isotropy subgroup. Then
◦
V H is open and dense in V H , more

precisely it contains a Zariski dense open subset of V H .

Proof. Let x be in
◦
V H . Then thanks to corollary 2.3 there exists a neighborhood U of x such

that for y in U , [Gy] � [H]. If y in U ∩ V H , [H] � [Gy] � [H] so [Gy] = [H]. This means that
H ⊂ Gy = gHg−1 for some g in G so by [38, Proposition 3.7] again, Gy = H. This proves that
◦
V H is open. The second part is difficult and will be proven later on (see corollary 3.17). �

Corollary 2.11. Σ[H] is the closure of Σ[H].

Proof. First we prove that Σ[H] is closed. If vn is a sequence in Σ[H] that converges to v then

there exists elements gn in G such that gnHg−1
n ⊂ Gvn . After extracting a subsequence, we can

assume that gn converges to an element g in G. Then gHg−1 ⊂ Gv so v belongs to Σ[H]. Now,

let v be in Σ[H]. By definition, there exists g in G such that g−1 · v belongs to V H . Thanks to

proposition 2.10, g−1 · v is the limit of a sequence of elements in
◦
V H . �

For a compact Lie group representation (V, ρ), the partition into (non empty) isotropy strata

V = Σ[H0] ∪ · · · ∪ Σ[Hn]

is called its isotropy stratification or orbit type stratification. It can be shown that it is a real
stratification, and even a Whitney stratification (see [10, §2.7 and Theorem 2.7.4]).

Example 2.12. Consider, for instance, the representation of the rotation group G = SO(3) on
V = S2

R
3. Then there are exactly three orbit types

[D2] � [O(2)] � [SO(3)],

where [D2] is the principal orbit type. In that case, V D2 , the subspace of diagonal matrices,
intersects all the orbits but since N(D2) is the octahedral group O and the monodromy ΓD2 is
isomorphic to the symmetric group S3, the set V

D2 is not (formally speaking) a slice, but it can
be seen as a slice with finite monodromy.

2.2. Invariant theory and orbits. In the material we will present, we will constantly deal
with two types of groups:

Compact Lie groups: they admit automatically a faithful representation [8, Theorem
III.4.1], and thanks to Weyl’s unitary trick, this representation can be chosen unitary.
Besides, every continuous finite-dimensional representation of G is fully irreducible, i.e.
splits as a direct sum of irreducible representations.

Complex reductive groups: they are complex Lie groups admitting a faithful complex
analytic representations and such that every finite-dimensional analytic representation
splits as a direct sum of irreducible representations.
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It turns out that both type of groups are closely linked through the process of complexi-
fication, which will be detailed in 3.1. More precisely, complex reductive groups are exactly
complexifications of compact Lie groups [25, Theorem 4.31]. The idea behind this link is that
Weyl’s unitary trick allows to prove that a complex Lie group is reductive as soon as it contains
a Zariski dense compact subgroup (see for instance [24, Lemma 6.2.7]). Lastly, if G ⊂ GLn(C)
is reductive, then, G is automatically an algebraic subgroup of GL(n,C) [25, Theorem 5.11].

Let G be a real (resp. complex) Lie group, and let K = R (resp. K = C). The linear action
of G on a K-vector space V extends naturally to the polynomial algebra K[V ] via the formula

(g · p)(v) := p(g−1 · v)

for every polynomial p ∈ K[V ] and every vector v ∈ V . The set of all polynomials that are
invariants under the action of G is a subalgebra of K[V ] denoted by K[V ]G and called the
invariant algebra of V .

The foundational result of invariant theory, due initially to Hilbert [20] in the case of the
action of GL(n,C) on Symd

C
n, runs as follows.

Theorem 2.13. [19, Theorem X.5.6], [24, Theorem 6.3.1] Let G be a compact (resp. complex
reductive) Lie group, let K = R (resp. K = C), let V be a finite dimensional K-vector space,
and let ρ : G → GL(V ) be a continuous (resp. analytic) representation of G. Then, the invari-
ant algebra K[V ]G is finitely generated. This means that there exists a finite set of invariant
polynomials p1, . . . , pN such that

K[V ]G = K[p1, . . . , pN ].

Remark 2.14. Although this theorem is stated most of the time for complex reductive groups
(or even reductive groups over an algebraically closed field of characteristic zero), the proof in
the compact case works in the same way since it relies only on the Noetherianity of K[V ] and
the existence of a Reynolds operator (which is simply in this case obtained by averaging on the
group).

It is clear that any invariant is constant on G-orbits. The geometry of orbits can be understood
via the invariants, but the situation is different for the real and the complex cases.

K = R, G compact:

• The G-orbits are compact and smooth.
• The invariants separate the G-orbits. In other terms, given two vectors v1, v2 ∈ V
belonging to different G-orbits, it is always possible to find a function p ∈ R[V ]G

such that p(v1) 6= p(v2) (see [1, Appendix C]).
• The orbit space V/G can be described as a semialgebraic subset of RN . Indeed, if
{p1, . . . , pN} denotes a generating set for R[V ]G, then the mapping

P : v 7→
(
p1(v), p2(v), . . . , pN (v)

)

induces an homeomorphism between V/G and P (V ) ⊂ R
N which is a semialgebraic

subset of RN .
K = C, G reductive:

• The G-orbits are constructible 1, and their closure are the same for the usual or for
the Zariski topology.

• Two Zariski-closed G-stable sets of V can be separated by invariants.
• Each G-orbit is adherent to a unique closed G-orbit.
• The complex scheme V/G = specC[V ]G parameterizes closed G-orbits.

In the same way one defines the algebra of polynomial invariants K[V ]G, one can define the
invariant field K(V )G of rational invariants, which is a subfield of the field K(V ) of all rational
functions on V . Note that this field is always finitely generated since it is contained in the
finitely generated field K(V ) (see for instance [23]).

1A set is constructible if it is Zariski open in its Zariski closure.
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Following Popov and Vinberg [34], we say that a rational invariant f separates the orbits
O1 and O2 if it is defined at points of both orbits and assumes different values at these points.
A subset F of K(V )G separates the orbits O1 and O2 if it contains an element that separates
these orbits. Finally, we say that a subset F of K(V )G separates orbits in general position if
there exists a nonempty Zariski open subset U ⊂ V such that F separates the orbits of any two
inequivalent points of U .

Theorem 2.15. [34, Lem. 2.1] Let G be a reductive complex group and ρ : G → GL(V ) a
complex representation of G. If a finite set F ⊂ C(V )G separates orbits in general position, then
it generates the field C(V )G.

Remark 2.16.

• The converse of theorem 2.15 is also true (see [34, Theorem 2.3]) and is originally due
to Rosenlicht [35].

• Theorem 2.15 is wrong in the real setting. Consider the real representation of the
trivial group G = {e} on the real space V = R. Then the invariant field is given by
R(V )G = R(x). The polynomial p(x) = x3 separates all the orbits but is not a generator
of R(V )G.

2.3. The algebraic case. The geometry of the linear action of a compact Lie group (or more
generally the action of a Lie group on a manifold) has been investigated in the framework of
algebraic geometry. The theory is delicate, we will present a quick overview of the situation
as well as results that we need. The setting is as follows: let G be a complex reductive group
acting algebraically on an complex affine algebraic variety (the theory works for any closed field
of characteristic zero, but we will use it essentially in the complex case). The aim is to provide
a local model for the action near an orbit of G. The most simple example happens when the
action is free. If we pursue the analogy with differential geometry, we would expect a local
trivialisation near the orbit. However, the following example shows that it is not possible to
expect such a result in the Zariski topology.

Example 2.17. Let us consider the group µn of n-th roots of unity, acting naturally on C
∗. In

this case, the space of orbits is also isomorphic by C
∗, the quotient map π being given by z 7→ zn.

We see that it is impossible to trivialize π in the Zariski topology on the base. Indeed, a Zariski
open subset of C∗ is simply obtained by removing a finite number of points, and the projection
remains nontrivial on any such open subset.

The problem comes from the fact that a smooth and surjective morphism between algebraic
varieties does not always have a section in the Zariski topology. However, it has a section in the
etale topology [18, 17.16.3 (ii)]. Concretely this means the following: if ϕ : X → Y is smooth and
surjective, then for any y in Y there is a neighborhood Uy of y and an etale morphism ϕ : V → Uy

such that the pull-back morphism f̃ : V ×Uy X → V has a section. For the interested reader,
let us mention that the problem of trivializing principal G-bundles in the Zariski topology was
studied in depth by Grothendieck in [17]: in fact he proved that for a given algebraic group
G, then all etale locally trivial principal G-bundles are Zariski locally trivial if and only if G is
affine, connected, and without torsion [17, Theorem 3].

Let us provide a very interesting example, due to Richardson, that illustrates another difficulty
related to the topology of the orbits.

Example 2.18. [28, Remark 4◦ page 98] Let us consider the natural action of SL(2,C) on the
set V3 of cubic binary forms, i.e., homogeneous complex polynomials of degree 3 in two complex
variables. Now, P(V3) is isomorphic to S3 P1, the isomorphism being induced by the map which
assigns to a cubic binary form its (unordered) three roots. The action of SL(2,C) is the natural
action of PGL(2,C) on triplets of points in P

1 after quotienting by ±1. Hence there are only 3
possible projective orbits: [w3], [zw2] and [z(w− z)w], whose respective stabilizers in PGL(2,C)
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are

PGL(2,C)[w3] =

{(
a b
0 1

)
, a ∈ C

∗, b ∈ C

}
,

PGL(2,C)[zw2] =

{(
a 0
0 1

)
, a ∈ C

∗

}

PGL(2,C)[z(1−z)w] =

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
−1 1
0 1

)
,

(
0 1
−1 1

)
,

(
1 0
1 −1

)
,

(
1 −1
1 0

)}
.

We can now look at the pre-images of these stabilizers in SL(2,C). They act by characters
on binary forms. More precisely, for ε in {−1,+1}, if we denote by γ ⋆ f , the right action of
γ ∈ SL(2,C) on f ∈ V3, given by (γ ⋆ f)(ξ) = f(γ · ξ), where ξ = (z, w), we get

(
α β
0 1/α

)
⋆ w3 =

w3

α3
,

(
α 0
0 1/α

)
⋆ zw2 =

zw2

α

iε

(
0 1
1 0

)
⋆ z(w − z)w = −iεz(w − z), iε

(
−1 1
0 1

)
⋆ z(w − z)w = −iεz(w − z)

ε

(
0 1
−1 1

)
⋆ z(w − z)w = −εz(w − z)w, iε

(
1 0
1 −1

)
⋆ z(w − z)w = iεz(w − z)w

ε

(
1 −1
1 0

)
⋆ z(w − z)w = −εz(w − z)w.

Hence we have 4 orbit types:

• The orbit of 0 has stabilizer SL(2,C).
• The orbit of w3 has stabilizer C⋊ Z/3Z.
• The orbit of zw2 has trivial isotropy.
• The orbit of z(w − z)w has isotropy

{(
1 0
0 1

)
,

(
0 −1
1 −1

)
,

(
−1 1
−1 0

)}
≃ Z/3Z.

Now, the set U of binary forms which have three distinct roots is a Zariski open subset of V3

defined by the nonvanishing of the discriminant. It is dense, and all points in U have isotropy
Z/3Z. However, SL(2;C)zw2 is trivial. Hence the generic orbit has isotropy Z/3Z, but another
orbit type has trivial stabilizer. This example shows that we cannot expect corollary 2.3 to be
true in whole generality in the algebraic setting.

In the preceding example, the reason why this problem occurs is that the orbit of zw2 is
not closed. In the case of a closed orbit, Luna’s slice theorem gives a good description of the
situation.

Theorem 2.19. [28] Let G be a reductive group acting on an affine algebraic variety X. Let x
be a point of X and assume that the orbit G · x is closed in X. Then there exists an etale slice
at x, that is an affine subvariety V of X passing through x satisfying the following properties:

• V is Gx-stable
• The natural G-morphism ϕ : G×Gx V → U is etale, and its image U is an affine neigh-
borhood of the orbit G · x.

Using this theorem, Luna was able to recover results that were holding in the case of compact
Lie group actions, like finiteness of orbit types. The result that will be of crucial importance for
us is the algebraic version of corollary 2.3.

Corollary 2.20. [28, Remark 4◦ pp. 98] Let G be a reductive group acting on an affine algebraic
variety X. Let x be a point of X and assume that the orbit G · x is closed in X. Then there
exists a Zariski open neighborhood of x such that for any y in X, Gy is conjugate to a subgroup
of Gx.
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3. Complexification

3.1. Complexification of a compact Lie group. The complexification of a real Lie group is
formally defined as the solution of a universal problem, which always exists and is unique up to
a complex analytic isomorphism ([6, Chapter 3]).

If G is compact, it is possible to define GC as follows (see [8, III.8]): let A be the algebra of
representative functions on G, that is functions that generate a finite-dimensional representation
inside C0(A,R). Tannaka-Krein duality [8, III.7] guarantees that G identifies with real characters
of A, that is every character of A is of the form f → f(g) for g in G. Then GC is defined as the
complex characters of AC.

Example 3.1. If G = U(1), A is the algebra of trigonometric polynomials R[cos(θ), sin(θ)]. Its
complexification is the algebra C[cos(θ), sin(θ)]. Given a complex polynomial P (cos θ, sin θ), we

can associate the Laurent Polynomial P
(
z+1/z

2 , z−1/z
2i

)
. In this way we see that

C[cos(θ), sin(θ)] ≃ C[z, 1/z],

since every Laurent polynomial is uniquely determined by its restriction on U(1). Hence, the
complex characters of C[cos(θ), sin(θ)] are exactly the points of C∗.

There is an explicit way to describe this complexification, which is pretty useful to understand
more precisely the geometry of GC. To achieve this, we use the fact that every compact Lie
group admits a faithful representation [8, Thm. III.4.1], and thanks to Weyl’s unitary trick,
it admits a faithful unitary representation. Before going further, let us recall some elementary
facts of linear algebra.

Lemma 3.2.

(1) Polar decomposition: if P(n) denotes the set of hermitian positive definite matrices, then
the product map

U(n)× P(n)
∼
−→ GL(n,C)

is a diffeomorphism.
(2) If ι denotes the Cartan involution M → (M∗)−1 of GL(n,C), then for any M in

GL(m,C) with polar decomposition gh, h2 = ι(M)−1M .
(3) U(n) = {M ∈ GL(n,C), ι(M) = M} and P(n) = {M ∈ GL(n,C), ι(M) = M−1}.
(4) The map Z → eiZ from u(n) to P(n) is a diffeomorphism, where u(n) = Lie(U(n)) is

the Lie algebra of skew-hermitian matrices.

This being done, the complexification of a compact Lie group can be described as follows.

Proposition 3.3. [8, Prop. III.8.3] Let G ⊂ U(n) be a compact Lie group and let g be its Lie
algebra. Then

GC =
{
geiZ ; g ∈ G and Z ∈ g

}

In particular, GC is diffeomorphic to G× g.

Remark 3.4. This result might be surprising at first glance because it is not clear at all that the
right hand side is a group. Let us briefly explain by hand why it is the case. Given g1e

iZ1 and
g2e

iZ2 , where g1, g2 ∈ G and Z1, Z2 ∈ g, we have

eiZ1g2 = g2Ad(g
−1
2 )eiZ1 = g2e

iAd(g−1

2
)(Z1) = g2e

iZ3 ,

where Z3 ∈ g. We get thus g1e
iZ1g2e

iZ2 = g1g2e
iZ2eiZ3 . Writing

eiZ2eiZ3 = geiZ ,

with g ∈ U(n) and Z ∈ u(n), we have thanks to lemma 3.2 (2),

e2iZ = ι(eiZ2eiZ3)−1eiZ2eiZ3 = eiZ3e2iZ2eiZ3 .

Consider now the real analytic function

ϕ : g× g → u(n), (Z2, Z3) 7→
1

2i
log(eiZ3e2iZ2eiZ3).
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By applying lemma A.1 two times, we get that ϕ(Z2, Z3) ∈ gC for sufficiently small Z2, Z3 and
by corollary A.5, we conclude that for all Z2, Z3 in g, ϕ(Z2, Z3) ∈ gC ∩ u(n) = g. Hence this
proves that for all Z2, Z3 in g, Z is in g.

We can apply again the same trick: consider the real analytic map

Ψ: g× g → U(n), (Z2, Z3) 7→ eiZ2eiZ3e−iϕ(Z2,Z3).

For Z2, Z3 close to 0, log Ψ takes values in gC ∩ u(n) = g, so Ψ takes values in G. As G is a
closed real analytic submanifold of U(n) by corollary A.2, we deduce using again corollary A.5
that for all Z2, Z3 in g, Ψ(Z2, Z3) ∈ G. Since Ψ(Z2, Z3) = g, we deduce that g belongs to G and
we are done.

Remark 3.5. The group G is a closed subgroup of GL(n;C), and it is straightforward to check
that Lie(GC) = g+ ig = gC since u(n) is totally real in gl(n;C). Hence Lie(GC) carries a natural
complex structure for which the bracket is complex linear. It defines on GC a complex Lie group
structure for which the exponential map is a local biholomorphism around 0. Besides, G is
totally real in GC.

We have an even stronger property :

Proposition 3.6. The complexified group GC is an affine algebraic subvariety of GL(n,C).

Proof. This is [8, Prop. III.8.2], the key point being the fact that the algebra of representative
functions on G is finitely generated. �

Corollary 3.7. If G is a compact Lie group, then G is analytically Zariski dense in GC.

Proof. The group G is a totally real analytic submanifold of GC. Hence, thanks to corollary A.2,
the Zariski closure of G in GC is the union of connected components of GC that contain G. By
Proposition 3.3, this union is GC itself. �

Corollary 3.8. Let G be a compact Lie group, and assume that GC acts holomorphically on a

(non-necessarily finite dimensional) complex vector space W . Then WGC

= WG.

Proof. For w in WG, let us consider a linear form u on W . Let φ : GC → C given by φ(g) =
u(g · w − w). Then φ is holomorphic and φ vanishes on G. Thanks to corollary 3.7, φ vanishes
on GC. This means that for all g in GC, all linear forms take the same values on w and g ·w, so
g · w = w. Hence w is fixed by GC. �

Finally, let us prove that GC satisfies a universal property (which is more general than [8,
Proposition III.8.6] which concerns only linear representations).

Proposition 3.9. Let G be a compact Lie group, GC its complexification, and φ : G → GC the
natural morphism. For any complex Lie group H and any morphism f : G → H of Lie groups,
there exists a unique homomorphism F : GC → H of complex Lie groups such that f = F ◦ φ.

G
f

//

φ
��

H

GC

F

>>
⑤
⑤
⑤
⑤
⑤
⑤
⑤

Proof. We use the notation of proposition 3.3. Let σ denote the differential of f at the origin and
let σC : gC → h be its complexification. We define a map F : GC → H by F (geiZ) = f(g)eiσ(Z).

First we claim that F is holomorphic. By Lie’s third theorem (see [37, §II.8, Thm 1]), the

morphism σC can be uniquely integrated to a local holomorphic group morphism F̃ : GC
99K H

defined in a neighborhood of the identity, whose differential at the identity element is σC. Hence,

F̃|G integrates σ, so F̃|G = f . Hence, for g close to the identity and Z close to 0, we get

F̃ (geiZ) = F̃ (g)F̃ (eiZ) = f(g)eσ
C(iZ) = f(g)eiσ(Z) = F (geiZ),
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so F = F̃ near the identity. It follows that F is holomorphic near the identity. Since F is real
analytic, F is holomorphic on (GC)e. Since for g in G and ℓ in GC, F (gℓ) = f(g)F (ℓ), it follows
that F is holomorphic on GC. Lastly, F|G = f is a group morphism on G, so by corollary 3.7,
applied two times, F is a group morphism. �

3.2. Complexification of a real representation. Let ρ : G → GL(V ) be a real continuous
representation of a compact Lie group G. By proposition 3.9, there exists a unique analytic
extension

ρC : GC → GL(V C)

of ρ. This complexified representation enjoys some very specific properties that we will list
below.

Proposition 3.10. If we see GC as an affine algebraic group (via proposition 3.6), then ρC is
an algebraic map.

Proof. This is proved in [8, Proposition III.8.6]. �

Remark 3.11. The link between compacity and algebraicity is a beautiful result that relies on the
Peter-Weyl theorem and on the finiteness of the algebra of representative functions. Outside of
this context, such results become immediately wrong. For instance, C and C

× are both complex
affine algebraic groups, but exp: C → C

× is a holomorphic Lie group morphism that is no longer
algebraic. This comes from the fact that C is not reductive.

Proposition 3.12. Given (G,V ), there exists a GC-stable and nonempty Zariski open subset
U of V C such that all orbits of points in U are closed.

Proof. Since G is compact, we can endow V with an inner product. Hence we have a chain of
maps

G
ρ
−→ O(n) ⊂ U(n) ⊂ GL(n;C)

Thanks to proposition 3.3, it is possible to check that O(n)C = O(n;C) so we get that ρC takes
values in O(n;C). Hence the action preserves a symmetric nondegenerate complex bilinear form,
and the result follows from [27]. �

Lemma 3.13. For any v in V , (GC)v = (Gv)
C.

Proof. By corollary 3.7, Gv is Zariski dense in (Gv)
C so (Gv)

C fixes v for the complexified
representation. This yields the inclusion (Gv)

C ⊂ (GC)v.
For the converse implication, we argue as in the proof of proposition 3.12. Let us denote by

dρ the differential of the G-action at the origin. Let ℓ = geiZ be an element of (GC)v. Then ι(ℓ)
belongs to (GC)v too, so e2iZ = ι(ℓ)−1ℓ belongs to (GC)v . It means that exp(2i dρ(Z)) · v = v.
Now 2i dρ(Z) is a complex hermitian endomorphism of V , so it is diagonalizable with real
eigenvalues. It follows that dρ(Z)(ℓ) = 0, so Z belongs to Lie(Gv). Hence, e

iZ fixes v so g fixes
v too. It follows that g belongs to Gv, which proves that ℓ belongs to (Gv)

C. �

Proposition 3.14. For any v in V , GC · v is closed.

Proof. It follows directly from [11, Lemma 2.2] since G is compact. �

Remark 3.15. For the reader’s convenience, we can provide a sketch of the proof of the above
proposition. It relies heavily on the beautiful theory of Kempf and Ness [22]. Let us fix an inner
product on V such that G acts by orthogonal transformations, and extend it to an hermitian
product on V C. The moment map µ : V C → g∗ is given by

µ(v)(ξ) =
1

2i
〈ξ · v|v〉

This definition makes sense because ξ belongs to u(V C) so it is skew-hermitian. Then Kempf-
Ness theorem states that an orbit GC · v is closed if and only GC · v ∩ µ−1(0) 6= ∅ (see for
instance [26, Theorem 4]). However, since G acts by orthogonal transformations, the moment
map µ vanishes on V . The result follows.
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Proposition 3.16. For any isotropy H, the complex open fixed locus in (V C)H
C

contains a
nonempty Zariski open set.

Proof. Let v be a vector in V such that Gv = H. Thanks to proposition 3.14, GC · v is closed,
and thanks to corollary 2.20, there exists a Zariski open set U containing x such that for any

w in U , Gw is conjugate to a subgroup of Gv. Let us now look at Ũ = U ∩ (V C)H
C

, which is a

nonempty Zariski open subset of (V C)H
C

. Then for w in Ũ , (GC)w is conjugate to a subgroup
of HC so there exists g in GC such that

HC ⊂ (GC)w ⊂ g−1HCg.

It follows from lemma A.3 that g normalizes HC, which implies that (GC)w = HC. �

Corollary 3.17. For any isotropy H, the open fixed locus
◦
V H contains a nonempty (real)

Zariski open set.

Proof. Thanks to corollary 3.8 we have (V H)C = (V C)H = (V C)H
C

. Then the result follows
from proposition 3.16 and corollary A.7. �

We can also compare real and complex orbits. This result won’t be strictly necessary in the
sequel but it can help to understand the geometry of the situation.

Proposition 3.18. For any vector v in V , (GC · v) ∩ V = G · v.

Proof. One inclusion is obvious. For the other inclusion, let H be the isotropy of v. Thanks
to lemma 3.13, the orbit GC · v is isomorphic to GC/HC. Let ι denotes the Cartan involution
on GC. Assume that ℓ · v is real for some element ℓ in GC. Then ι(ℓ) · v = ℓ · v = v so ι(ℓ)−1ℓ
belongs to HC. If ℓ = geiZ , then e2iZ belongs to HC. It implies that Z is in h, so eiZ is in HC.
Hence ℓ · v = g · v. �

Remark 3.19. The result [5, Proposition 2.3] predicts in our case that the intersection of a
complex orbit with real points is a finite union of real orbits. Hence this result is weaker, but
holds for more general groups.

Example 3.20. Let us give an example where this intersection is strictly bigger than the real
orbit. For this we take again Example 2.18, but with the action of GL(2;C) instead of SL(2;C)
acting on the vector space of degree 3 binary forms. Then the GL(2,R)-orbit of z(w − z)w
consists of all binary forms of degree 3 with real coefficients and 3 distinct roots. However, real
binary forms that are in the GL(2,C)-orbit of z(w − z)w consist of real binary forms with 3
distinct roots (not necessarily real). This locus is a union of two GL(2;R) orbits: the orbit of
z(w − z)w and the orbit of z(z2 + w2). There is no contradiction with the result we proved,
because GL(2,R) is not compact. As a matter of fact, GL(2,R) is the split real form of GL(2,C)
and not the compact one, which is U(2).

Finally, we go back to the algebra of invariants.

Lemma 3.21. The three complex algebras (R[V ]G)C, C[V C]G and C[V C]G
C

are naturally iso-
morphic.

Proof. We have R[V ]C ≃ C[V C]. Then the result follows from corollary 3.8. �

Corollary 3.22. If {J1, . . . , JN} is a set of generators for R[V ]G, then, it is also a generating

set for C[V C]G
C

.

3.3. Complexification of normalizers. The aim of this section is to prove that the complexi-
fication of the normalizer of a compact subgroup of a compact Lie group is naturally isomorphic
to the normalizer of the corresponding complexified subgroup (proposition 3.26). This result is
in accordance with Luna’s result [30, Lemma 1.1]. In the following three lemmas, G denotes a
compact Lie group acting on a vector space V and H is a Lie subgroup of G. We denote by GC

and HC their respective complexifications.
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Lemma 3.23. Let H be a closed subgroup of a Lie group G and let Γ be a set of representatives
in H of the finite group H/He, where He is the identity component of H. Then,

Lie(N(H)) = N(h) ∩ {X ∈ g, ∀γ ∈ Γ, Ad(γ)(X) −X ∈ h} .

Proof. Let X ∈ Lie(N(H)) then for all real t, etX is in N(H). Let Y ∈ h, then esY is in H and
therefore Ad(etX )(esY ) is in H. Taking the derivatives with respect to s and then to t, we get
Ad(X)(Y ) ∈ h which implies that X ∈ N(h). Now, let γ be in Γ. Then Ad(etX)(γ) belongs to
the connected component Heγ of H containing γ. Consequently, etXγe−tXγ−1 ∈ H. Deriving
at t = 0 we get that X −Ad(γ)(X) is in h.

Conversely, let X ∈ N(h) ∩ {X ∈ g, ∀γ ∈ Γ, Ad(γ)(X) −X ∈ h}, and let Y be in h. Then,

etXesY e−tX = Ad(etX)(esY ) = esAd(etX)(Y ) = es exp(tad(X))(Y ) ∈ H.

It follows that etXHee−tX ⊂ He. We must now deal with the other connected components. Let
γ be in Γ. Then

etXγe−tXγ−1 = etX Ad(γ)(e−tX ) = etXe−Ad(γ)(tX) = etXet(X−Ad(γ)(X))−tX .

Set Y = X − Ad(γ)(X), then, by assumption, Y ∈ h and tY − tX = −Ad(γ)(X) ∈ h. By
applying Baker-Campbell-Hausdorff formula (lemma A.1) on etXγe−tXγ−1 = etXetY−tX , we get
that etXγe−tXγ−1 = etZ where Z is an iteration of Lie brackets in terms of X and Y hence
Z ∈ h. Therefore, we have

etX (γesY )e−tX = (etXγe−tX)γ−1

︸ ︷︷ ︸
∈H

γ (etXesY e−tX)︸ ︷︷ ︸
∈He

∈ H.

Consequently, etX normalizes H, which implies that X belongs to Lie(N(H)). �

Lemma 3.24. Let h be a Lie subalgebra of u(n), Z ∈ h, B ∈ N(h) and A ∈ u(n).

If e2iA = eiBeiZeiB then A−B ∈ h.

Proof. Consider the following real analytic function

f : u(n)×N(h) → u(n), (Z,B) 7→
1

i
ln(eiBeiZeiB)− 2B.

Note that f is well-defined because eiBeiZeiB is an element of P(n), thanks to lemma 3.2 (2).
Indeed,

ι(eiBeiZeiB) = e−iBe−iZe−iB = (eiBeiZeiB)−1.

Then, we can take its logarithm in u(n) thanks to lemma 3.2 (3). Next, we apply Baker-
Campbell-Hausdorff formula (lemma A.1) two times on eiBeiZeiB and we deduce that f(B,Z)
is in h for B and Z sufficiently close to zero. Thanks to corollary A.5, this is valid everywhere
since f is real analytic. Hence A−B belongs to h. �

Finally, we need the following classical result.

Lemma 3.25. Let u be a diagonalizable endomorphism of a vector space V with real eigenvalues.
If W ⊂ V is stable by exp(u), then W is stable by u.

Proof. Let λ1, . . . , λk be the distinct eigenvalues of u, and let P be a polynomial such that for
any i, P (eλi) = λi. Then P (exp(u)) = u, since this equality can be checked on a basis of
eigenvectors of u. The result follows directly. �

Proposition 3.26. We have

NGC(HC) = (NG(H))C.

Proof. If g is in NG(H), then, gHg−1 ⊂ H ⊂ HC. Consider the holomorphic application

Cg : H
C → GC/HC, h 7→ ghg−1.
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Then, Cg vanishes on H, and thanks to corollary 3.7, Cg vanishes on HC. The same argument
applies for g−1 so g normalizes HC in GC. Hence NG(H) ⊂ NGC(HC) and by theorem 3.3 we
get

(NG(H))C ⊂ NGC(HC).

Let us prove the reverse inclusion. Let g be in NGC(HC). By theorem 3.3, we can write g = keiX

with k in G and X in g. We need to prove that k (resp. X) belongs to N(H) (resp. Lie(N(H)).
We have ι(g) = ke−iX . To prove that X ∈ Lie(N(H)), we use the description of Lie(N(H))
given in lemma 3.23.

On one hand, thanks to lemma 3.2 (2), we have e2iX = ι(g)−1g. Besides, the normalizer
of HC is stable under the Cartan involution ι, and hence e2iX normalizes HC. This implies
that Ad(e2iX )(hC) = hC, where h is the Lie algebra of H. Now Ad(e2iX) = exp(2iad(X)).
Since X is in u(n), 2iad(X) is diagonalizable with real eigenvalues. Thanks to lemma 3.25,
ad(X)(hC) ⊂ hC. Consequently, X ∈ N(hC). Since X is in u(n), X belongs to N(h).

On the other hand, let γ in Γ. Then e2iXγe−2iX ∈ HC since e2iX ∈ N(HC). Now we calculate
ι(e2iXγe−2iX)−1(e2iXγe−2iX) which on one side gives e2iZ with Z ∈ h and on the other side, we
have

ι(e2iXγe−2iX)−1(e2iXγe−2iX) = (e−2iXγe2iX)−1(e2iXγe−2iX)

= e−2iX Ad(γ−1)(e4iX)e−2iX

= e−2iXe4iAd(γ−1)(X)e−2iX .

Therefore, combining the two equalities together, we get

e2iZ = e−2iXe4iAd(γ−1)(X)e−2iX

that is
e4iAd(γ−1)(X) = e2iXe2iZe2iX .

Applying lemma 3.24 with A = 2Ad(γ−1)(X) ∈ u(n) and B = 2X ∈ N(h), we have finally
Ad(γ−1)(X) −X ∈ h, so X −Ad(γ)(X) ∈ h. This proves that X belongs to Lie(N(H)).

Now, both eiX and keiX normalize HC and so does k ∈ N(HC). We have kHCk−1 = HC so

H = HC ∩U(n) = kHCk−1 ∩U(n) = k(HC ∩U(n))k−1 = kHk−1

so k belongs to NG(H). �

4. Proof of the main theorem

The main idea to prove theorem 1.1 is issued from the following erroneous proof. Let
{J1, . . . , JN} be a generating set for the invariant algebra R[V ]G. Then this set is a sepa-
rating set for (V,G) (see the discussion after remark 2.14). For 1 ≤ k ≤ N , let jk denote the
restriction of Jk to V H . The inclusion V H →֒ V induces the morphism

R[V ]G → R[V H ]N(H), {J1, . . . , JN} 7→ {j1, . . . , jN} .

Then, the set {j1, . . . , jN} is separating for (V H , N(H)). If theorem 2.15 was true for a real

representation, we could conclude that F is a generating set for the invariant field R(V H)N(H)

and this would achieve the proof. Unfortunately this is false. However, this argument can me
modified to become a real proof.

Proof of theorem 1.1. Let {J1, . . . , JN} be a generating set for the invariant algebra R[V ]G. Then
{J1, . . . , JN} separates the orbits of (V,G). Let jk be the restriction of Jk on V H , then, the jk
separate the orbits of V H ∩ Σ[H].

Let W = (V C)H
C

. Thanks to proposition 3.16, there exists a nonempty Zariski open set U1

of W such that for any w in U1, G
C
w = HC. Let K = NG(H). The group K acts on W , and

thanks to proposition 3.12, there exists a nonempty Zariski open subset U2 of W such that all
KC-orbits of elements of U2 are closed in W . Let U = U1 ∩ U2, then, U is also a nonempty
Zariski open set in W .
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We claim that {j1, . . . , jN} separates KC-orbits of elements in U . To prove this, let w1 and
w2 be two elements in U that are not in the same KC-orbit. Assume that w2 and w1 are in the
same GC-orbit. If gw1 = w2 for some g in GC, then HC = gHCg−1 and g belongs to NGC(HC).
Thanks to proposition 3.26, g is in KC, which gives a contradiction. Hence GCw1 ∩GCw2 = ∅.

The KC-orbits of w1 and w2 are closed because w1 and w2 belong to U2. Besides, thanks to
proposition 3.26, KC = NGC(HC). It follows from [29, Corollary 1] that the GC-orbits of w1

and w2 are also closed. Since these orbitsts are constructible, they are Zariski closed (and also
GC-stable). Thanks to corollary 3.22, they can be separated by the Jk. This proves our claim.

By Popov & Vinberg’s theorem 2.15, the jk generate the field (C(W ))K
C

. It follows that the
map

(C(V C))G
C

99K (C(W ))K
C

is surjective. It remains to go back to real fields of invariants. Thanks to corollary 3.8, we have
a diagram

(C(V C))G
C

// (C(W ))K
C

(C(V C))G // (C(W ))K

Moreover, C(V C) = R(V )⊗R C and C(W ) = C((V H)C) = R(V H)⊗R C. Hence the map

(R(V ))G 99K (R(V H))NG(H)

is also surjective because every real rational invariant is in the image of a complex rational
invariant, and therefore it is also the image of its real part.

We now prove the algebraicity of strata. Thanks to proposition 3.16, there exists a Zariski

subset U in (V C)H
C

which is contained in the open fixed locus. Let X denotes the GC orbit of
U in V C, then by Chevalley’s theorem X is constructible in V C, so its topological closure is the
same as its Zariski closure.

Let us first prove that X ∩ V lies in ΣH . If v is in X ∩ V , then there exists ℓ in GC such that
ℓ · v belongs to U . This implies GC

ℓ·v = HC, and therefore ℓGC
v ℓ−1 = HC. Since GC

v and HC are

stable under the Cartan involution ι, we also have ι(ℓ)GC
v ι(ℓ)−1 = HC. It follows that ι(ℓ)−1.ℓ

normalizes GC
v . If ℓ = geiZ , then ι(ℓ)−1.ℓ = e2iZ and thanks to proposition 3.26, Z is in the Lie

algebra of NG(Gv) so eiZ normalizes GC
v . It follows that

HC = geiZGC
v e

−iZg−1 = g GC
v g−1.

Taking the fixed points under the Cartan involution on both sides, H = g Gv g
−1, which implies

that v lies in the G-orbit of
◦
V H .

Let us now prove that X ∩ V = Σ[H]. The inclusion follows by taking the closure of the
inclusion X ∩ V ⊂ ΣH . For the other inclusion, recall that U is a Zariski open subset of W
and that X is the GC-orbit or U . We have thus U ∩ V H ⊂ X ∩ V and thanks to corollary A.8,
U ∩ V H is a nonempty Zariski subset of V H . Hence, V H ⊂ X ∩ V . Since the right hand side is
G-stable, we get Σ[H] ⊂ X ∩ V .

We can finish the proof as follows: X is Zariski open in X , so X ∩ V is Zariski open in the
algebraic set X ∩ V . Therefore, X ∩ V is also an algebraic set, which is the union of a finite
number of irreducible components of X ∩ V . �

Remark 4.1.

• In the first part of the proof, we made crucial use of Luna’s criterion for closedness of
orbits [29, Corollary 1]. For an easy proof of this theorem using Kempf-Ness theory,
see [26].

• The natural candidate for Σ[H] should be X ∩ V . However, we don’t know if X ∩ V is

irreducible in full generality. Hence the best result we could get is that Σ[H] is one of its
irreducible components.
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Appendix A. Lie groups and real analytic structures

In this appendix, we recall a few results we need about Lie groups, and add some folklore
results on real analytic functions and real analytic manifolds.

We now focus on Lie groups, and recall the following classic formula.

Lemma A.1 (Baker-Campbell-Hausdorff formula). [12, §3.4] Let G be Lie group and g its Lie
algebra. Consider X,Y ∈ g. Then the solution Z ∈ g of eXeY = eZ is a formal series in iterated
commutators of X and Y

Z = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]−

1

12
[Y, [X,Y ]] + · · · ,

where “· · · ” indicates terms involving higher commutators of X and Y . If X and Y are suffi-
ciently small elements of the Lie algebra g, the series is convergent.

This formula implies that the multiplication of G in exponential coordinates near the neutral
element is real analytic. From this, one deduces immediately the following result.

Corollary A.2. Let G be a Lie group. Then G has a natural real analytic structure such that:

• The multiplication map is globally real-analytic
• For any g in G the map Lg ◦exp in a neighborhood of 0 defines a local real analytic chart
near g.

Besides, if H is a Lie subgroup of G, then H is a real analytic submanifold of G. More generally,
any continuous morphism between compact Lie groups is real analytic.

Lastly, let us state the following lemma, which is the differentiable version of [38, Proposition
3.7].

Lemma A.3. Let L be a Lie group with a finite number of connected components, K be a closed
subgroup of L, and assume that there exists ℓ in L such that ℓKℓ−1 ⊂ K. Then, ℓ normalizes
K.

Proof. The automorphism Ad(ℓ) stabilizes k, so it is an automorphism of k. Therefore Ad(ℓ−1)
stabilizes k so ℓ−1Keℓ ⊂ Ke.

Let K/Ke be the set of connected components of K. Then K/Ke is a finite group and Ad(ℓ)
induces an action on K/Ke. Let k be a representative of an element of K/Ke which is in the
kernel of Ad(ℓ). Then ℓkℓ−1 belongs to Ke so k = ℓ−1(ℓγℓ−1)ℓ ∈ Ke, which means that the
class of k is 0 in K/Ke. Hence Ad(ℓ) is injective, and since K/Ke is finite, Ad(ℓ) is a bijection.
This implies that for any k in K there exists an element of the form ℓk′ℓ−1 in the connected
component of k. This means that there exists k′′ in Ke such that ℓk′ℓ−1 = k′′k so we get
ℓ−1kℓ = ℓ−1

(
(k′′)−1ℓk′ℓ−1

)
ℓ =

(
ℓ−1(k′′)−1ℓ

)
k′ ∈ K. �

We now recall a folklore results on propagation of local real analytic identities.

Lemma A.4. Let n be a positive integer, let V be an open and connected subset of Rn, and
f : V → R a real analytic function. If there exists v ∈ V such that f = 0 on a neighborhood of
v then f = 0 on V .

Proof. Let S be the set of points x in U such that all partial derivatives of f vanish at x. This set
is closed, but since f is real analytic it is also open. Since v ∈ S, S is nonempty so S = V . �

Corollary A.5. Let n be a positive integer, and assume to be given the following data:

• V is an open and connected subset of Rn,
• Z is a real analytic manifold,
• Y is a (closed) real-analytic submanifold of Z,
• f : V → Z is an analytic function.

Assume that there exists a point v in V and a neighborhood Uv of v in V such that f(Uv) ⊂ Y .
Then f(V ) ⊂ Y .
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Proof. Let W be the subset of points x in V such that there exists a neighborhood Ux of x in
V such that f(Ux) ⊂ Y . By definition, W is open. Let x be a point in W ∩ V . As Y is closed,
f(x) ∈ Y . Let ϕ : Uy → R

m be a real analytic chart on a neighborhood Uy of y in Z, such that
Uy ∩ Y is given by the equations ϕ1 = · · · = ϕr = 0, and let Ux be a connected neighborhood
of x in V such that f(Ux) ⊂ Uy. Then, for 1 ≤ i, ϕi ◦ f is a real analytic function on Ux that

vanishes on an open subset of Ux (since x ∈ W ). By lemma A.4, for 1 ≤ i ≤ r, ϕi ◦ f vanishes
in Ux, which means that f(Ux) ⊂ Y , so x ∈ W . It follows that W ∩ V = W , which means that
W is closed in V . Since V is connected, W = V and in particular f(V ) ⊂ Y . �

We end this appendix with some classical results on totally real submanifolds. Let X be a
complex manifold. A real submanifold S of X is totally real if for any s in S, TsS is a totally
real subspace of TsX, which means that TsS ∩ iTsS = {0}.

Lemma A.6. Assume that S is a totally real submanifold of a complex manifold that is moreover
real analytic. Then, around each point s of S, there exists an holomorphic chart ϕ : Us → C

n,
where Us is a neighborhood of s, such that ϕ(Us ∩ S) = ϕ(Us) ∩ R

k.

Proof. Let f : Rk → S be a real analytic parametrization of S defined in a neighborhood of 0
such that f(0) = s. We can complexify f to a map F → C

k. Now, for each point z in C
k near

0, dF0(u + iv) = df0(u) + idf0(v). Since TsS is totally real, we see that dF0 is injective and
has rank k. It follows that F parameterizes a complex manifold of X containing S. The result
follows. �

Corollary A.7. Let X be a complex manifold and S be a totally real and real analytic subman-
ifold of X of maximal dimension. Then the analytic Zariski closure of S is the union of the
connected components of X which intersect S.

Proof. It is enough to deal with the case where X is connected. Let Z be a complex analytic set
containing S. For any point s in S, let Z ′ be an irreducible component of Z containing s and
let us write locally Z ′ =

⋂r
i=1{fi = 0} around s. According to lemma A.6, we can write locally

the inclusion of S in Z around s as the inclusion of RN in C
N near 0. Then, fi|RN = 0. Since

for any multi-index I = {i1, . . . , iN} we have

∂If

∂zI
(0) =

∂If

∂xI
(0) = 0,

we see that fi = 0, so Z ′ contains a neighborhood of s in X. Hence Z ′ = X. �

Corollary A.8. Let V be a real vector space of finite dimension. If U is a nonempty Zariski
open set in V C, then U ∩ V is a nonempty Zariski open set in V .

Proof. Let Z be the complement of U in V C. Then Z is a closed analytic subset of V C. Assume
that U ∩ V = ∅. Then Z contains V , so it contains its Zariski closure. Thanks to corollary A.7,
Z = V C so U = ∅ and we get a contradiction. Hence U ∩ V 6= ∅ and the result follows. �

Appendix B. Proof of the principal orbit theorem in the linear case

In this appendix, we provide for the reader’s convenience a proof of theorem 2.6 for the linear
case, which combines the ideas of the proofs presented in [10] and [38].

We first need a topological lemma, which allows to propagate connexity.

Lemma B.1. Let X be a connected topological space, U a dense subset of X, and assume than
for any point x in X, there exists a neighborhood Ux of x such that U ∩ Ux is connected. Then
U is connected.

Proof. Assume that U can we written as the disjoint union of two nonempty open sets U1 and
U2. Since U is dense, X = U1 ∪ U2 and since X is connected, U1 ∩ U2 6= ∅. Let x in U1 ∩ U2.
Let Ux be a neighborhood of x such that U ∩Ux is connected. Then U ∩Ux is the disjoint union
of U1∩Ux and U2∩Ux. However these two open sets are non empty, and we get a contradiction.
Hence U is connected. �
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Remark B.2. This lemma can be better visualized in term of sheaf theory, let j : U →֒ X denote
the inclusion, and let us consider the morphism of sheaves ∆: ZX → j∗ZU . Then the two
hypotheses can be translated as follows:

• U is dense in X if and only if ∆ is a monomorphism.
• The second property is granted if and only if there exists a covering (Ui)i∈I of U such
that ∆Ui

is an isomorphism.

We claim that these two properties imply that ∆X is also an isomorphism. Indeed, the injectivity
is straightforward and for the surjectivity, we argue as follows: if s is a global section of j∗ZU

on X, then for all i, we can write s|Ui
= ∆Ui

(ti), and therefore ∆Ui∩Uj
(ti − tj) = 0. Since ∆ is

a monomorphism, the (ti)
′s glue together to a global section t of ZX such that ∆X(t) = s.

To conclude, we write

H0(U,ZU ) = H0(X, j∗ZU ) ≃ H0(X,ZX) ≃ Z,

and therefore U is connected.

Now we explain how to construct linear slices explicitly.

Lemma B.3. Assume that G acts by orthogonal transformations on V . For any v in V , let Ev

be the tangent space of the orbit G · v at v. Then, E⊥
v is a linear subspace of V , stable by Gv,

and meets all G-orbits in V . Besides, a neighborhood of v in E⊥
v is a local slice of the G-action

at v.

Proof. The Lie algebra g of G acts on V , besides this action is given by a morphism from g to
o(V ). The tangent space of G · v at v is given by

Ev = {X · v,X ∈ g}

Since X acts by an element of o(V ), (X · v|v) = 0 so v is orthogonal to Ev. Besides, if g is in
Gv, w is in E⊥

v and X is in g, we have

(g · w|X · v) = (w|g−1 · (X · v)) = (w|Ad(g−1)(X) · v) = 0

so g · w belongs to E⊥
v . Hence E⊥

v is stable by Gv .
Let O be an orbit in V , and assume that w is the point of O that minimizes the distance to

v. Then w is a critical point for the function g 7→ ‖g−1 · w − v‖2 = ‖g · v − w‖2, which means
that for all X in g, (X · v|v − w) = 0. Since v belongs to E⊥

v , so does w. �

Proof of theorem 2.6, linear case. We argue by induction on the dimension on V . The case
V = {0} is obvious. We now separate two different situations.

Case 1: the representation ρ : g → o(V ) is trivial. Then, the representation itself is trivial
on the neutral component of G, which means that G factors to a representation of the finite
group G/Ge. Let Γ be the image of the representation, it is a finite group acting faithfully on
V . Principal points are exactly the complement of the finite union of the fixed loci V γ for γ in
Γ \ {e}. It is open and dense, we denote it by U . Let us now partition Γ \ {e} as Γ1 ∪ Γ2 where

Γ1 = {γ ∈ Γ, codimV γ = 1} , and Γ2 = {γ ∈ Γ, codimV γ ≥ 2} .

Let us write Γ1 = {γ1, . . . , γp}, Γ2 = {γp+1, . . . , γp+q}, and let us define inductively open subsets
(Ωi)1≤i≤p+q of V as follows: Ω0 = Ω and Ωi = Ωi−1 ∩ (V γi)c. Then, each Ωi is dense in Ωi−1.
Besides, for any v in Ωi−1 ∩ V γi , if B is a small ball centered in v, then we separate two cases.

• If 1 ≤ i ≤ p, then B ∩ (V γi)c is connected.
• If p + 1 ≤ i ≤ p + q, B ∩ (V γi)c is not connected because V γi is an hyperplane, but
γi has order 2 in Γ. Hence γi swaps the two connected components of B ∩ (V γi)c, so
π(B ∩ (V γi)c) is connected.

Hence it follows by induction using lemma B.1 that all π(Ωk) are connected. In particular, since
Ωp+q = UΩ = U ∩ Ω, π(UΩ) is connected.

Case 2: the representation ρ : g → o(V ) is not trivial. Let

W = {v ∈ V such that ∀X ∈ g,X · v = 0}



20 P. AZZI, R. DESMORAT, J. GRIVAUX, AND B. KOLEV

be the kernel of the representation ρ. Then, by hypothesis, W is a proper vector subspace of V .
First we claim that W has codimension at least 2. Indeed, if W has codimension 1, then

the line W⊥ is stable by the action of Ge. Since orthogonal transformations of a line are ±1,
the action of Ge is trivial on this line, which implies that W = V and gives a contradiction. It
follows from this that π(Ω ∩W c) is connected.

Next we claim that points of W are not principal. Indeed, if w is in W , Gw contains the
identity component Ge of G. If w was principal, then for any w′ close to w, the same property
would hold for Gw′ . This would imply that w′ is in W , so W would have nonempty interior.
Hence we can replace Ω by Ω ∩ W⊥ without changing the conclusions, that is assume that
Ω ∩W = ∅.

If v is in Ω, thanks to lemma B.3, we can apply the induction hypothesis with the action of
Gv on E⊥

v which has smaller dimension. Let us consider a small Gv-stable open ball B centered
at v in E⊥

v . If the radius is small enough, B is a local slice of the G-action at v. Let P be the
set of principal points in B. By induction, since B is open and connected in E⊥

v , P is open and
dense in B, and P/Gv is connected.

Let us now remark that since B is a local slice, for any v′ in B, (Gv)v′ = G′
v . It follows that

P consists of principal points of B, but also of V . This proves that v is in the closure of UΩ, so
UΩ is dense in Ω.

Since B is a local slice, we can assume, up to shrinking B, that the action map G× B → V
is an open map. Hence, Uv = G.P is an open subset of principal points in V , and furthermore
Uv/G = P/Gv is connected.

We can now conclude by applying lemma B.1 to the pair (π(UΩ), π(Ω)). For v in Ω, we can
consider the neighborhood G ·B of v in V . Then UΩ ∩G ·B = Uv so π(UΩ)∩ π(G ·B) = P/Gv

is connected. Hence π(UΩ) is connected. �
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Sorbonne Université, Institut de Mathématiques de Jussieu-Paris Rive Gauche, 4 place Jussieu,

75005, Paris, France

Email address: perla.azzi@ens-paris-saclay.fr
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