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Anisotropic adaptive body-fitted meshes for CFD
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Abstract Mesh adaptation for immersed solid is one of the most challenging topics in computational me-
chanics. In this contribution, we propose a novel anisotropic adaptive body-fitted mesh method in particular
for Computational Fluid Dynamics (CFD) where the boundary layers and the high gradient of a solution at a
fluid-solid interface play a major role. It is characterized by its simplicity to implement, and by its generality
to tackle complex geometries without additional efforts. It combines two successive iterations, knowing that
the order of each one is important. First, a gradient based metric construction uses the gradients of the
level-set of any immersed object to generate an anisotropic well adapted mesh. Since the elements are well
stretched along the interface, and therefore the interface passes through these elements, a second step is
implemented and applied. It is based on R-adaptation and swapping, to provide a sharp anisotropic fitted
mesh. The proposed test cases, with and without a CFD solution, show the flexibility and the accuracy of
the proposed automated h- and r- adaption framework designed for immersed methods.

Keywords Body-fitted mesh · Anisotropic adaptation · Immersed methods · Level-set function ·
R-adaptation · Swapping · FSI · CFD

1 Introduction

The development of efficient methods to simulate multi-components systems is among engineering challenges
and still a need for industrials, especially in the case of fluid-structure interaction or conjugate heat trans-
fer. In recent years, there has been an increasing interest in studying numerically a variety of engineering
applications that involve such couplings between fluid and solid domains [38, 40, 41].

Classically, coupling techniques consist of dividing the global domain into several local subdomains over
each of which a local model (equation to be solved) can be analyzed independently. The global solution
can then be constructed by suitably piecing together local solutions from individually modeled subdomains
[1, 10]. A body-fitted mesh is generally required for such simulations and its construction may be limited due
either to the needed computational costs or to the complexity of the treated geometries. Alternatively, the
development of immersed or embedded methods is becoming a subject of intense research mainly because of
their relative simplicity and computational efficiency for simulating complex geometries [8, 9, 29]. Indeed,
there is no constraint for the mesh generation, different approaches are proposed to enforce strongly or weakly
the boundary conditions at the fluid-solid interface [2, 35, 34, 5, 6], and finally several clever techniques such
as penalty or enrichment methods can be used to ensure continuity and to increase accuracy at the interface
[4, 3, 7, 28, 38, 30, 37]. One common main challenge related to the development of these methods is in fact
that elements at the interface are cut in such a way that a fraction of them remains inside the solid domain,
and the other in the fluid domain, and consequently the question how to impose a boundary condition at
the interface, or the search for a penalty approach, or the need for interface enrichment become justified.
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Authors of [5, 6] working on the Shifted Boundary Method (SBM) describe very well this issue and propose
to shift numerically the boundary conditions to fit the interface to preserve optimal convergence rates of
the numerical solution. The method was it successfully applied to a Poisson and a Stokes problems. The
SBM modifies the governing equations of the problem by weakly imposing the Dirichlet boundary conditions
on a surrogate boundary using a Taylor expansion formulation. Using Nitsche’s method, a penalty term is
introduced to the equations to be solved.

The Ghost Cell Method [4], introduce the forcing term into the governing equations after discretization;
the forcing term is extracted directly from the numerical solution. The governing equations are discretized
on a computational grid, resulting in a set of discretized equations. The forcing term is then applied for cell
points close to the immersed boundary to account for it.

However, this same challenge becomes even more intense when dealing with not only complex geometries,
but also complex physical simulations or real-life simulations when for instance boundary layers are needed
for turbulent flows. In this case, the need and the use of anisotropic mesh adaptation become desirable and
justified.

In this work, we propose a new approach that leverages interface resolution/accuracy strategy and tackles
both challenges: first, the desired local geometry resolution of a body-fitted mesh, thus eliminating the
issue of a cut element, and second the needed numerical accuracy at the interface obtained by anisotropic
unstructured mesh accounting for real-life practical applications.

Indeed, the proposed anisotropic adaptive body-fitted mesh approach is characterized first by its sim-
plicity to implement, and by its robustness and generality to tackle complex geometries and physics without
additional efforts. The algorithm is automatic, hence, it doesn’t require any interference from the user and
can start from any initial mesh. It is also adaptive evolving dynamically with both the interface and the
computed solution fields. And finally, the approach combines both the advantages of anisotropic mesh, with
its flexibility to capture the curvature of any complex geometry and is needed for high gradients and complex
physics such as high Reynolds number, as well as the body-fitted mesh giving a sharp interface.

The anisotropic adaptive body-fitted combines two successive iterations knowing that the order of each
step is important. First, a gradient based metric construction uses the gradients of the levelset of any
immersed object to generate an anisotropic well adapted mesh [32, 33, 31, 14, 27]. Since the elements are
well stretched along the interface, and therefore the interface passes through these elements, a second step
is implemented and applied. It is based on R-adaptation and swapping, to provide a sharp anisotropic fitted
mesh. Knowing also that the metric map can also be constructed using the gradient of any field such as the
velocity, temperature, etc. [10, 11], we can then solve and capture the solution more accurately in the entire
domain as well as on the immersed solid with a sharp and precise interface. Therefore, we propose several
test cases, with and without a CFD solution, to illustrate the flexibility and the accuracy of the proposed
automated h- and r- adaption framework designed for immersed methods.

This paper is organized as follows. First, the Immersed Method is recalled in section 2 with a description
of the computation of the signed distance function. In section 3, the anisotropic mesh generation is explained
in details, followed by the geometrical adaptation developed and the algorithms allowing its implementation
in order to create an anisotropic fitted mesh for immersed geometries (Section 4). Section 5 describes
the developed variational multiscale solver, and section 6 presents 2D test cases illustrating the procedure.
Finally, section 7 is dedicated to conclusions and perspectives.

2 The Immersed Method

The Immersed Method consists of solving a multi-component system using a monolithic formulation based
on a level-set approach without any need for a forcing model. This method relies on the use of an anisotropic
mesh to adapt the interface between the two components [1, 11]. The general principle of this technique is
as follows:

1. The immersed geometry is described by a signed distance function φ(level-set function).

2. The physical properties of each domain are unified.
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2.1 Level-set Function

A level-set or signed distance function φ of an interface Γ is used to determine the position of the interface
of the immersed body. The immersed interface is useful because of its relative simplicity and computational
efficiency compared with the body-fitted. For any point xp in the domain, the level-set function corresponds
to the shortest distance to the interface Γ. This is achieved by determining the elements with the minimum
surface distance, which is the shortest distance value from the surface to xp with |d| = mine=1(|de|).
In order to find the minimum distance |de| in each element a bounding box check is done. It determines if
their exists another candidate element closer to fxp based on the current |d|. If xp is outside of the bounding
box then the current minimum |d| remains however if it lies inside it, a projected volume is done.
The general idea of projected volume check consists of determining whether xp lies inside or outside the
projected volume of an element:

– if xp is inside, then |de| is taken as the shortest distance between xp and the plane defined by the element
face normal |ne|. The condition where this is satisfied is: (x1p ·n3 6 0)∩ (x2p ·n1 6 0)∩ (x3p ·n2 6 0),
where xij = xj − xi and n1,n2 and n3 are the edge normals.

– If xp lies outside the projected volume of the element, each edge of the triangle is examined to get the
shortest distance to any of the line segments |de|.

Finally, the level-set function φ = |d| xpc·ne

|xpc·ne| , where xpc · ne will be positive inside the immersed geometry

Ωsolid and negative in the rest of domain [12]:{
φ(x) = d(x,Γ) for x ∈ Ωsolid

φ(x) = −d(x,Γ) for x /∈ Ωsolid
(1)

The interface of the immersed object is determined by the zero-value of φ (Figure 1).
Further details on how to compute the signed distance function can be found in [20, 23, 36, 39].

Figure 1: A level set function (in red) for a circle separating two domains.

In order to decrease the computational time cost needed to compute all |de|, a hierarchical representation
of the surface mesh is done [20, 21, 22]. A box tree is created by dividing the domain into levels of small
boxes where the lowest level contains the entire mesh. Children boxes are recursively created by packing the
elements of the mesh and determining the parent box that contains elements of the immersed interface or
surface elements. Hence, the distance between xp and a box Ci is evaluated before computing the distance
between xp and the children of Ci or its elements.

2.2 Unified Physical Properties

In order to account for the physical properties of the two subdomains, the Mixing law is used, along with a
smoothed Heaviside function applied over a narrow band ε. This allows to achieve a better continuity at the
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interface for the fluid-solid mixture and treat the two materials as one composite domain:

H(x) =


1 for φ(x) > ε

1
2 (1 + φ(x)

ε + 1
π sin(πφ(x)

ε )) for |φ(x)| ≤ ε

0 for φ(x) < −ε
(2)

ρ = ρfluidH(φ(x)) + ρsolid(1−H(φ(x)) (3)

µ = µfluidH(φ(x)) + µsolid(1−H(φ(x)) (4)

where ρfluid, µfluid, ρsolid and µsolid are the densities and dynamic viscosity of the fluid and solid,
respectively.

Through these two steps, the Immersed Method describes the immersed geometry using the level-set
method and applies the physical and thermodynamic properties on either side of the immersed interface.
However as seen in Figure 1, the interface of the immersed geometry intersects the elements of the mesh.

3 Anisotropic Mesh adaptation

Anisotropic mesh adaptation is a powerful method that not only increases the quality of the mesh and the
accuracy of the numerical solution but also reduces significantly their CPU time. The domain discretization is
accomplished following the size and directional constraints, hence, mesh elements are concentrated in regions
with high gradients and large discontinuities allowing their capture with higher accuracy. The anisotropic
mesh algorithm allows also to control the number of nodes and to get the smallest error possible, therefore
the algorithm is designed to build the mesh, compute the numerical solution and evaluate an estimation of
the interpolation error. To obtain the optimal metric, an edge based error estimator and a gradient recovery
procedure are defined. The mesh is then generated according to the new metric field [33, 27].

3.1 Edge-based error estimation

Let uh be a P1 finite element approximation obtained by applying the Lagrange interpolation operator Π
to a function u ∈ C2(Ω) and x =

{
xi ∈ Rd, i = 1, ...N

}
the set of vertices in the mesh. For each node i of

the mesh, let Ui = u(xi) = uh(xi) and Γ(i) the set of vertices connected to xi by a common edge xij such
in Figure 2, such that xij = xj − xi and U ij = U j − U i.

Figure 2: The set of nodes connected to xi, and the common edge xij joining the nodes i and j.

The gradient ∇uh · xij on the edge xij is continuous, therefore we can write

U j = U i +∇uh · xij (5)

which leads to

∇uh · xij = U j − U i (6)
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From [27], the error estimator can be defined as:

‖ ∇uh · xij −∇u(xi) · xij ‖≤ max
y∈|xi,xj |

| xij ·Hu(y) · xij | (7)

with Hu the Hessian of u. At the node xi, the gradient gi of uh can be written as:

∇gh · xij = gj − gi (8)

Hence, the projection of the Hessian based on the gradient at the extremities of the edge is:

(∇gh · xij) · xij = (gj − gi) · xij (9)

(Hu · xij) · xij = gij · xij (10)

with gij = gj − gi. From [27], it can be shown that | gij · xij | gives a second order accurate approximation
of the second derivative of u along the edge xij . The error along the edges can then be defined as:

eij =| gij · xij | (11)

Equation 11 is the exact interpolation error along the edge and allows the evaluation of the global L1 error.
However, the interpolation error can only be evaluated when the gradient at the vertices is known and
continuous on the nodes, thus a recovery method needs to be considered.

3.2 Gradient recovery procedure

The gradient recovery operator is defined by a local optimization problem:

Gi = argmin
G

 ∑
j∈Γ(i)

| (G−∇uh) · xij |2
 (12)

where Gi is the recovered gradient. Let Xi be the length distribution tensor at node i defined as:

Xi =
1

| Γ(i) |

 ∑
j∈Γ(i)

xij ⊗ xij
 (13)

The recovered gradient Gi can then be expressed in terms of the length distribution tensor as follows:

Gi = (Xi)−1
∑
j∈Γ(i)

U ijxij (14)

and finally, the estimated error eij is written as:

eij = Gij .xij (15)

3.3 Metric generation

In order to link the error variation to the changes in the length of the edges, a stretching factor sij is
introduced. However, it’s insufficient to only enlarge the edge if the error is too small or to reduce it or
break it if it is too large, the neighborhood of the node must be taken into account: a metric is thus the best
averaging representation. It is defined as follows:

M̃ i = (X̃i)−1 (16)
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where

X̃i =
1

| Γ(i) |

 ∑
j∈Γ(i)

sij ⊗ sij
 (17)

The stretching factor sij of the edge ij is chosen so that the total number of nodes in the mesh is kept fixed
and is defined as

sij =

(
eij
e(N)

)
(18)

where e(N) the total error.

3.4 Mesh adaptation

3.4.1 Criteria

In a multi-component application, the interface between the solid and the liquid need to be modeled accu-
rately. Hence, the mesh should be adapted to several variables, like the velocity and the level-set function.
The most common way is to define a metric for each variable and combine them using metric intersection
operation. However, in this work, this operation is simplified and one metric is used to account for the
changes in all variables. Equation 11 is extended to consider all sources of error defined in vector v(xi):

v(xi) =

{
V i

| V i |
,
| V i |

maxj | V j |
,

φ

max(φ)

}
(19)

Note that since all fields are normalized, the variations of all the variables are taken into account.

Figure 3: A Level-set function computed on an isotropic (left) and anisotropic (right) meshes.

Figure 3 compares the interface captured by an isotropic and anisotropic mesh for the same immersed
geometry. Applying the anisotropic mesh adaptation on the level-set function, the elements surrounding
the interface are stretched along its direction and hence define it more precisely. However, the interface
remains intersect with the elements of the mesh. To capture accurately capture the interface and create an
anisotropic body-fitted mesh, a new geometrical adaptation method is proposed.

3.4.2 Advantages

Since CFD and fluid flow problems use complex geometries, high resolution CAD models (or STL) require to
be treated. The use of immersed geometries and how they are expressed on the interface depends on the end
use and the level of geometric information needed at the interface. Many accurate interface description using
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high-order polynomial representations [43] or level set functions [44, 45] have been used. The mathematical
structure of the governing equations being solved frequently influences the augmentation of discrete operators
employing immersed interfaces, which are divided into incompressible [46] or compressible formulations
[47, 48]. Some methods, like the ghost fluid method, often requires one or more of the following steps:

1. inserting local nodes at the interface

2. increasing the size of the discrete stencils near the interface

3. adding nodes in the solid region in the vicinity of the interface to enforce local boundary conditions

Other methods rely on transforming the background mesh to conform to the boundary by using a closest point
projection to parameterize the immersed boundary over a collection of nearby edges [42], or on augmenting
the level-set function via an iterative procedure to then reconstruct the cut cell elements using Lagrangian
polynomials [23].

Since the first step of the proposed method is to apply an anisotropic mesh adaptation, the mesh is
locally refined according to the level-set function that describes the geometry without resorting to the re-
construction or correction of the interface from a CAD model. The anisotropic mesh adaptation gives the
flexibility to adapt to the immersed geometry and to construct the stretched elements in the direction of the
interface allowing to smoothly track the curve of the geometry. Unlike isotropic elements, the smoothness
of the immersed interface and it’s detection can be done with a relatively low number of elements as can be
seen in Table 1.

The metric map allows an adaptation on the level-set function as well as the solution of the problem
as mentioned in section 3.4.1, the boundary layer is then well constructed taking onto account the flow
physics. The Dirichlet boundary conditions can then be strongly imposed on the interface just like classical
body-fitted meshes.

4 Anisotropic Adaptive Fitted Mesh

Creating a body-fitted mesh for an immersed geometry is a challenge. In this section, the general principle
of the new adaptation technique, allowing the capture of the boundary between the two components, is
described. It’s based on capturing the interface following a geometrical adaptation. Geometry based
adaptation consists of modifying the elements of the mesh:

� by relocating mesh nodes to some regions of interest to better capture the physical and mechanical
properties desired - this is known as R-adaptation (Section 4.1),

� by introducing new nodes in the region of interest hence creating new elements which requires remesh-
ing. The introduced nodes are the intersection points between two nodes i and j, and are computed
by linear interpolation using the following equation:

X ij = X i − (X i −X j) φ(X i)
φ(X i)− φ(X j)

(20)

� by conserving the number of elements but inducing a change in the overall topology of the mesh like
in edge-swapping or edge-flipping [15] (Section 4.1).

4.1 Geometric Adaptation for a fitted mesh

The steps of the proposed technique are illustrated in the diagram of figure 4. Algorithm 1 summarizes the
overall technique and the details are explained below (Algorithms 2 to 4).
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Figure 4: Scheme for applying the Geometric Adaptation.

Algorithm 1 Geometric Adaptation for a fitted mesh

1: Apply anisotropic adaptation on the level-set.
2: Flag the cut elements where φiφj < 0 with i and j nodes of an edge
3: for each flagged element do
4: Move the node with the minimum distance
5: Compute couples with one fitted node
6: for each couple do
7: Apply Edge Swapping keeping in mind the orientation of the elements

• Adapting
After generating an isotropic mesh for the immersed geometry, an anisotropic mesh adaptation is applied

to the level-set using the metric map described in equation (16). On a narrow band region in the vicinity
of the interface, extremely anisotropic elements stretched along the boundary are formed. The anisotropic
refinement allows us to follow the geometric shape of the immersed geometry hence describing its curvatures,
angles, direction, etc. (Figures 5).

Figure 5: Anisotropic adaptation for 2D geometries.

• Flagging
Since the immersed geometry is described using the level-set method, the interface Γ separates the domain
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(a) (b)

Figure 6: Zoom on the interfaces of a cylinder and a rectangle highlighting the cut elements.

Ω into two subdomains: a positive one and a negative one [38]. Therefore, the interface elements or the cut
elements are detected by looping over their edges. The product of the signed distance value at each node
(i, j) of a cut edge results in a negative value allowing the detection of the cut elements (Algorithm 2 and
figure 7).

Algorithm 2 Flagging

1: for each edge (ij) do
2: Compute φi and φj
3: if φiφj < 0 then
4: flag = 1 . Highlighting the cut element
5: else
6: flag = 0

7: flag(i), i ∈ {1, . . . , N} N: # of nodes

Figure 7: The flagged elements cut by the interface.

• Inserting & Fitting

B R-adaptation
R-adaption is based on relocating the nodes by maintaining the same number of degrees of freedom and

element connectivity. It’s applied here only on the cut elements, as a consequence, the computational cost
remains low.

The general strategy consists of moving specific nodes of the mesh. For each cut element, the distance
from each node to the interface is analyzed via the level-set function: the node having the minimum distance
vmi

is then marked. Since the interface cuts the facets of the mesh: the intersection points are then defined
as a virtual nodes vf such as f = 0, 1, ....nf with nf the number of cut facets.
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Figure 8: R-adaptation operation for two 2D cut elements applied on node vi.

The objective is to move the marked node vmi
along its associated facet f with minimum effort. Since

vmi can be associated to multiple virtual nodes, a set of associated virtual nodes is created and analyzed
for each vmi . From this set, vf is chosen as the virtual node having the smallest distance dvmi

vf
, then the

coordinates Xmi
of vmi

are updated as follows:

Xmi = Xvf (21)

with Xvf the coordinates of the chosen virtual node associated to vmf
.

Algorithm 3 R-adaptation

1: for the nodes of a cut element do
2: Mark the node having minimum distance

3: for each marked node do
4: Determine the needed virtual node vf of the associated facet f and the interface
5: Xinew = Xvf

6: X (i), i ∈ {1, . . . , n} n: # of marked nodes in cut elements

To prevent mesh degeneration or inverted elements, care must be taken. Hence, constraints on the number
of nodes marked are applied: each cut element should have at least one node marked and no element has all
of its nodes marked. And each vf can be associated to only one real marked node vm0 .

B Edge Swapping
The R-adaptation algorithm allows the movement of the nodes’ cut elements to capture the interface.

To ensure a fitted mesh, algorithm 3 is coupled with a local mesh optimization algorithm. This algorithm
is based on a simple topology change method: Edge swapping. Edge swapping not only avoids expensive
remeshing but preserves the quality and integrity of the mesh. This operation conserves the number of
elements and the number of edges. In 2D, this local optimization is a simple topological operation consisting
of swapping or flipping a common edge shared by two elements (forming a pair or a couple) (Figure 9).
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Figure 9: Edge swapping operation in 2D.

Since edge-swapping alters the topology of the mesh, a careful evaluation of the global connectivity of
the mesh needs to be done to ensure that the orientation of the elements is preserved [13]. Therefore, the
edge swapping algorithm can be decomposed into three main parts:

1. Pairing the elements

2. Swapping

3. Fixing the orientation

Algorithm 4 Edge swapping

1: Loop over the cut elements
2: Flag the elements with only one node on the interface
3: Loop over the newly flagged elements
4: if two elements have a common edge then
5: Form a couple . Pairing the elements

6: for each couple do
7: Determine the common edge
8: Swap the edge . Edge-Swapping
9: for each element do

10: Calculate the signed volume V
11: while V < 0 do
12: Reorder the nodes indices . Fixing the orientation

(a) (b)

Figure 10: Zoom on the fitted interface for a cylinder and a rectangle.
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Figure 11: Comparison between the initial and final fitted geometry.

The geometric adaptation can be used to solve multi-component systems with complex geometries, CFD
problems and Fluid-Solid Interaction applications. Before presenting some examples and numerical applica-
tions in section 6, we describe in section 5 the numerical resolution of the Navier-Stokes equations.

5 Numerical resolution of the Navier-Stokes equations

Let Ω ⊂ Rd, with d the space dimension, and dΩ its boundary. We consider the following velocity u -
pressure p formulation of the Navier-Stokes equations for unsteady incompressible flows:{

ρ(∂tu + u · ∇u)−∇ · σ = f
∇ · u = 0

(22)

where ρ is the density, f the body force vector per unity density and σ the stress tensor such as:

σ = 2µε(u)− pId (23)

with µ the dynamic viscosity, Id the identity tensor, and ε the strain-rate tensor defined as:

ε(u) =
1

2
(∇u +∇uT ) (24)

To prevent spurious oscillations resulting from the convection-dominated regimes and solve the pressure
instability problem, a variational multiscale method for the Navier– Stokes equations is used [25, 26, 18].
The weak formulation of (22)-(23) with velocity space V ⊂ [H1(Ω)]d and pressure space Q = {q ∈ L2(Ω) :∫

Ω
q = 0} consists in finding (u, p) ∈ V ×Q such that:{

((ρ(∂tu + u · ∇u)),w) + (2µε(u) : ε(w))− (p,∇ ·w) = (f ,w), ∀w ∈ V
(∇ · u, q) = 0, ∀q ∈ Ω

(25)

with (.,.) the L2 inner product over Ω.
Let τh be an admissible mesh constructed as a triangulation of Ω, and Vh and Qh the finite dimensional

spaces approximations of the function spaces V and Q, respectively. To ensure the stability of (25), the
choice of Vh and Qh must fulfill a compatibility condition [16].

In this work, P1/P1 element with a Variational Multiscale method (VMS) [17] is used to ensure the
stablization. All unknowns are divided into a coarse and a fine component. The fine scales are solved in an
approximate manner and modeled in function of the residual based terms. Their effect is then transferred
into the large scale equations. The coarse and fine components of the velocity and pressure fields are:

u = uh + u′ (26)

p = ph + p′ (27)
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as well as their respective weight functions:

w = wh + w′ (28)

q = qh + q′ (29)

The enriched function spaces are defined as V = Vh ⊕ V ′, V0 = Vh,0 ⊕ V ′and Q = Qh ⊕ Q′. Therefore,
the resulting finite element approximation of the time-dependent Navier–Stokes problem consists in finding
(u, p) inV ×Q such that:

(ρ(∂t(uh + u′) + (uh + u′) · ∇(uh + u′)), (wh + w′))
+(2µε(uh + u′) : ε((wh + w′)))− ((ph + p′),∇ · (wh + w′))

= (f , (wh + w′)), ∀w ∈ V0

(∇ · (uh + u′), (qh + q′)) = 0, ∀q ∈ Q

(30)

The stabilized formulation is then derived from equation (30) by forming fine and large scale problems. The
fine-scale problem is defined on element interiors, and u′ and p’ are written in terms of the time-dependent
large-scale variables using consistently derived residual-based terms.Then, u′ and p’ are directly replaced
into the large-scale problem, which gives rise to additional terms in the Finite Element formulation, tuned
by a local stabilizing parameter. These terms are responsible for the enhanced stability compared to the
standard Galerkin formulation. Finally, the coarse-scale equations can be computed: (ρ(∂t(uh + uh · ∇uh),wh)− (τ1Rm, ρuh · ∇wh) + (2µε(uh) : ε(wh))

−(ph,∇ ·wh)− (τ2Rc,∇ ·wh) = (f ,wh), ∀wh ∈ Vh0

(∇ · uh, qh)− (τ1Rm,∇qh) = 0, ∀qh ∈ Qh
(31)

with Rm and Rc are pieciewise constant momentum and continuity residuals:

Rm = ρ(∂tuh + uh · ∇uh)−∇ph (32)

Rc = −∇uh (33)

and τ1 and τ2 are piecewise defined stabilization parameters adopted from [24]. More details about the
formulation of VMS can be found in [18].

6 Numerical tests

The geometric adaptation algorithm is applied first on a set of geometries to show the accurate and precise
capture of the interface and then benchmark problems are explored. The objective of exploring these cases
is to understand the impact and importance of an immersed fitted interface.

6.1 Anisotropic Fitted mesh for immersed 2D objects

In order to confirm the results, the global adaptive framework was implemented successfully on simple
geometries (Figures 5 - 11) as well as the geometry of a rabbit (Figures 12-14) with different curvatures.
First, an anisotropic adaptation, implemented on the level-set function of the immersed geometry, is applied.
The use of anisotropic elements is an essential component to accurately trace the different changes in the
geometry due to the flexibility of such elements (Figure 12).
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Figure 12: Anisotropic adaptation on the geometry of a 2D rabbit.

Figure 13: Zoom on the interface highlighting the cut elements

Then the immersed-fitting adaptation was applied to the elements in the vicinity of the level-set, repre-
sented in red in figures 13 and 14. The R-adaptation relocates the marked nodes to get them closer to the
interface, and then edge-swapping is applied to ensure a body-fitted mesh.

Figure 14: Zoom on the fitted interface.
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Figure 15: Comparison between the initial and the final fitted mesh of a 2D rabbit.

Figure 16: Comparison between Isotropic (left) and Immersed-Fitted mesh (right).

Figures 15 and 16 show the flexibility and versatility the fitting algorithm. Moreover, the flow over four
circular cylinders at various Reynolds numbers (Figure 17) was studied. Using the method presented, an
anisotropic fitted mesh was successfully created on all four cylinders independent on the flow’s turbulence.

Figure 17: Immersed Fitted mesh for 4 circular cylinders and zoom on the interface.

6.2 Flow over a Circular Cylinder

We consider the flow over a circular cylinder, also studied by Main et al. in [6], at Reynolds number Re = 100
over which the Navier-Stokes equations for incompressible flow are solved using the Variational Multiscale
Method.

The velocity inlet of the flow is set to U = 1 and the top and bottom of the domain are set to be traction
free. On the outlet, a free Newman boundary condition is imposed. The Drag coefficient is calculated using
the following equation:

CD =
2Fd
DρU2

(34)
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where Fd is the drag force.
Table 1 compares the drag coefficient obtained for three types of meshes:

1. Isotropic initial mesh

2. Anisotropic mesh

3. Immersed-fitted mesh

The immersed-fitted mesh was obtained by implementing the algorithm defined in Section 4 by applying an
anisotropic adaptation near the interface and using the Immersed Method described in section 2.

(a) (b)

Figure 18: Solution for flow past a cylinder for Re = 100 using an isotropic mesh (left) and an immersed-
fitted anisotropic mesh (right) at t = 100s.

Figure 19: Anisotropic mesh adaptation for both the velocity and the level-set fields (left), zoom on the
sharp immersed-fitted interface (right).

Table 1: Drag Coefficient CD computed for the 3 cases for Re=100 with N being the number of elements
used.

N CD % Error

Reference 352 590 1.34 -

Isotropic mesh 156 163 1.413 5.45%
Anisotropic mesh 10 000 1.316 1.77%
Immersed-Fitted mesh 10 000 1.334 0.44%
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The results obtained (table 1 and graph 20) confirm that using the Immersed Fitted mesh adaptation
yields to better results with a minimum error in CD equal to 0.44%. Figure 20 shows a time history of the
drag coefficient for Re = 100, for the three cases studied.

It is important to note from table 1 that the anisotropic adaptation allows to significantly reduce the
number of elements used in order to solve the Navier-Stokes equations, compared to the use of isotropic
mesh: only 10 000 elements were needed compared to 156 163 elements in the case of isotropic refinement
and more than 350 000 elements in [6]. Also, the computational time to calculate the results using the
anisotropic or the immersed-fitted mesh is significantly lower than the time needed to solve the problem
using an isotropic mesh.

Figure 20: Evolution in time for the drag coefficient.

6.3 Flow over a Square Cylinder

We consider next a flow over a square cylinder for Re=100 presented in [19]. The computational domain
consists of a square cylinder placed normal to a free stream in an infinite domain. A uniform velocity is set
on the inlet U = 1 and no slip conditions are applied to the boundary of the immersed square.
Such a geometry was tested because its corners and sharp angles can be a challenge. The algorithm of
section 4 was successfully applied to the geometry without any modifications and was able to capture the
sharp edges. Table 2 compares the drag coefficient obtained for the three types of meshes: the Immersed
fitted mesh shows the best results.

Table 2: Drag Coefficient CD computed for the 3 cases for a square cylinder at Re=100.

CD % Error

Reference [19] 1.461 -

Isotropic mesh 1.524 4.312%
Anisotropic mesh 1.429 2.173%
Immersed-Fitted mesh 1.433 1.926%
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(a) t = 25s (b) t = 100s

Figure 21: Solution for flow past a square cylinder for Re = 100 for an immersed-fitted anisotropic mesh
(bottom) at t = 25s an t = 100s.

Figure 22: Anisotropic mesh adaptation for both the velocity and the level-set fields (left), zoom on the
sharp immersed-fitted interface (right).

6.4 Complex geometry with high Reynolds number flow

To go further, we consider the flow over a complex geometry, a 2D representation of a F1 car. The objective
of this example is to show the performance of immersed-fitted meshing. Indeed, combined with flow solvers
it allows to easily and accurately deal with complex fluid-structure interaction problems. Taking a closer
look at the mesh near the interfaces, we can detect the good orientation of the anisotropic elements as well
as the accurate precision with the conform interface. The velocity field and the mesh obtained are shown
in Figures 23 and 24. Taking a closer look at the mesh in Figure 25, we can see how the interface not only
follows the curvatures of the immersed geometry but also captures accurately its interface.
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(a) t = 2.5s (b) t = 5s

(c) t = 10s (d) t = 20s

(e) t = 35s (f) t = 50s

Figure 23: Velocity profile past an immersed 2D car.
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(a) t = 0s (b) t = 5s

(c) t = 10s (d) t = 20s

(e) t = 35s (f) t = 50s

Figure 24: Anisotropic mesh adaptation for both the velocity and the level-set of the immersed 2D car fields.

Figure 25: Zoom on the sharp immersed-fitted interface of the 2D car.
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6.5 Conjugate Heat transfer application

We now consider a heat transfer application where a heated solid is immersed in a cooling cavity (Figure 26.
A Cartesian coordinate system is used with origin at the center of mass of the solid that has a rectangular
shape of height h and an aspect ratio of 2 : 1, initially at temperature Ts. The solid is fixed at the center of
a cavity of height H and aspect ratio 4:1, whose wall are isothermal and a fixed temperature Tw. Cooled air
at Tc is pumped into the enclosure from two intlets located at the top of the cavity, at a velocity Vi. Two
outlets for the hot air are located at the sidewalls of the cavity. Table 3 gives the numerical parameters used
all expressed in SI units, and the temperature in Celsius. Using the immersed-fitted algorithm coupled with
flow and heat transfer solvers, the level-set function, the velocity and the temperature are used as multi-
components criteria in order to adapt the mesh on the interface of the immersed geometry as well as the
solution of the equations solved. This can be illustrated in Figure 30a showing how the mesh is conform to
the interface. The corresponding adapted mesh colored by the temperature distribution in Figure 30b shows
how the numerical framework can capture accurately all boundary layers and shear regions via stretched
elements. Figures 27 to 30 are a clear example on how the immersed-fitted algorithm evolves dynamically
with the problem at hand: starting with a coarse mesh, the mesh progresses towards an anisotropic refined
one without any intervention from the user. The problem is then solved simultaneously in the domain
capturing the vortices formed and in the solid tracking its cooling evolution.

Figure 26: Schematic of the 2D forced convection set-up.

Table 3: Numerical parameters used in the 2D forced convection problem, with ρ the fluid density, µ the
dynamic viscosity, λ the thermal conductivity, and cp specific heat.

H h ei eo Vi Tw Tc Ts µ ρ λ cp

1 0.2 0.2 0.2 1 10 10 150 0.001 1 0.5 1000 Fluid
1000 100 15 300 Solid
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(a) t = 1s (b) t = 150s

Figure 27: Velocity profiles inside the cavity.

(a) t = 0s (b) t = 35s

(c) t = 70s (d) t = 150s

Figure 28: Temperature distribution inside the cavity.

(a) t = 0s (b) t = 150s

Figure 29: Coarse initial mesh (left) and the obtained anisotropic adapted one on both the velocity, temper-
ature and the solid level-set (right) at t = 150s.
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(a) (b)

Figure 30: Zoom on the sharp immersed-fitted interface of the 2D solid.

7 Conclusion

A new method is presented to create a fitted anisotropic mesh for immersed geometries. The algorithm
consists on applying two main steps after isolating the cut elements: first an R-adaptation is applied to the
nodes closest to the interface and then edge-swapping is applied to the remaining cut elements. This is a
purely geometrical adaptation that creates a body-fitted mesh without altering the number of vertices nor
elements. Combined with the anisotropic properties, not only any complex geometry can be captured but
also the large gradients on the interface for any flow problem can be handled. Several 2D test cases with and
without flow problems are presented and show the versatility of the method dealing with different geometries
as well as its efficiency when computing the flow properties with minimum error. The algorithm presented
in this work can be applied in parallel and extended to 3D applications. The extension to 3D applications
present three main challenges: building a dynamic data structure to parallelize the implementation of the
algorithm, updating the sparsity pattern specially during swapping since we’re now dealing with faces rather
than edges, and finally the main challenge is the 3D swapping. The R-adapation algorithm is followed by the
swapping adaptation, here, we talk about 3D splitting rather than edge permutation: three cases of cut cells
are then presented and have to be dealt with:one, two or three intersection points between the immersed
surface and the elements of the mesh. This is an ongoing work that will allow to study more precisely 3D
multi-component systems and their interactions.
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