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Abstract. Symbolic execution is a program analysis technique commonly
utilized to determine whether programs violate properties and, in case viola-
tions are found, to generate inputs that can trigger them. Used in the context
of security properties such as noninterference, symbolic execution is precise
when looking for counter-example pairs of traces when insecure information
flows are found, however it is sound only up to a bound thus it does not allow
to prove the correctness of programs with executions beyond the given bound.
By contrast, abstract interpretation-based static analysis guarantees sound-
ness but generally lacks the ability to provide counter-example pairs of traces.
In this paper, we propose to weave both to obtain the best of two worlds.
We demonstrate this with a series of static analyses, including a static anal-
ysis called RedSoundRSE aimed at verifying noninterference. RedSoundRSE
provides both semantically sound results and the ability to derive counter-
example pairs of traces up to a bound. It relies on a combination of symbolic
execution and abstract domains inspired by the well known notion of reduced
product. We formalize RedSoundRSE and prove its soundness as well as its
relative precision up to a bound. We also provide a prototype implementation
of RedSoundRSE and evaluate it on a sample of challenging examples.

1 Introduction

Security properties are notoriously hard to verify. In particular, many security prop-
erties are not single-execution properties but hyperproperties [13] (also referred to
as relational properties), which means that refuting them sometimes requires several
executions traces to be provided as a counter-example. In particular, noninterfer-
ence [26] states that high clearance information should not impact the observation
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SE [9]

RSE [32]

SoundSE(Sec. 4)

SoundRSE(Sec. 6)

RedSoundSE(Sec. 5)

RedSoundRSE(Sec. 7)

Single trace analyses:

Relational analyses:

Sound analyses:

Reduced product

and sound analyses:

(⇀s) (⇀s×A)

(⇀sr) (⇀sr×D)

Fig. 1. Relation between different SE analyses. SE [9] is conventional symbolic execution and
RSE [32, 34] is its extension to relational properties. Except for RSE with invariants [23], SE
and RSE are unsound in general. The rest of the analyses are sound and are our contributions:
SoundSE and SoundRSE do not use abstract interpretation whereas RedSoundSE and
RedSoundRSE can be combined with different abstract domains. A red dashed line represents
a dependency: a relational analysis depends on a single trace analysis. A blue dashed line
represents an enhancement of the analysis.

of low clearance users in any execution of the program. It has been the subject of
many verification method proposals and tools (e.g. [36, 7, 37, 24, 38, 8, 23, 4, 33]).

Symbolic execution [9, 31] (SE) is typically used to find property violations, and
can be applied for policies like noninterference provided some adaptation for relational
properties. SE boils down to an execution where variables initially hold symbolic values
and get updated with expressions of these symbolic values whereas conditions are evalu-
ated into symbolic path guards. The analysis involves an external tool such as an SMT
solver that prunes infeasible paths and attempts to discharge verification conditions on
remaining ones. SE attempts to exhaustively cover all executions paths, which is fea-
sible only up to a bound and quickly turns out costly in presence of unbounded loops.

Conventional SE does not over-approximate executions after a fixed bound of iter-
ations. This implies that soundness is lost when the program exceeds the exploration
bound. Soundness ensures that, when the analysis concludes that the property of
interest holds, the concrete semantics of the analyzed program is guaranteed to satisfy
it. Since there is no over-approximation, when the property is violated by traces
shorter than the exploration bound, tools like SMT solvers can provide instances for
the symbolic values and enable the reconstruction of counter-example traces. This is
of particular importance to security in order to confirm security violations. We refer
to such counter-examples as refutation models.

The adaptation of SE to handle relational properties [32, 34] requires to track sev-
eral traces instead of just one. In the following, we will call this adaptation relational
symbolic execution (or RSE). Previous work [23] has shown how to combine RSE
with loop invariants, provided by the developer, in order to recover soundness at the
cost of annotations and loss of precision when invariants are not strong enough.

Abstract interpretation based static analyses [14] (AI) rely on an abstraction
defined as a logical approximation relation between concrete behaviors and abstract
predicates and produce sound over-approximations of program semantics at the cost
of completeness. However, the over-approximation entails that the analysis may fail
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to conclude positively even when analyzing correct programs. Moreover, most static
analysis implementations lack the ability to synthesize counter-example traces.

In this paper, we formalize a combined analysis technique, which aims at bringing
together advantages of both symbolic execution and abstract interpretation, in a
security setup. We first show how to over-approximate SE in order to keep sound-
ness, and call this analysis SoundSE (see Figure 1). We use SoundSE to show the
combination for conventional SE and different abstract domains, calling the resulting
analyses RedSoundSE. Our analysis for relational properties is called RedSoundRSE
and targets noninterference. It borrows path exploration from relational symbolic
execution, parameterized by RedSoundSE, and relies on abstract interpretation based
static analysis to report a sound result for all programs. Abstraction enables the
early pruning of infeasible paths and the computation of sound over-approximations
for program behaviors when the exploration bound is exhausted. To achieve this,
RedSoundRSE automatically injects loop invariants computed by abstract domains
into a relational store. Not only dependence analysis results can be used to fill security
related information where the symbolic execution cannot explore paths fully but
also (e.g., numerical) state abstraction information allows to improve the symbolic
information extracted from the dependency analysis. Moreover, our analysis allows
switching between different abstractions, and tuning specific settings, e.g., loop unroll
depth (depth up to which SE is kept precise), which allows the user to change the
balance between cost and precision. To summarize, we propose symbolic execution
based verification methods that are sound and precise, providing refutation models
up to a bound. Our contributions, illustrated in Figure 1, are the following:

1. SoundSE and RedSoundSE: We define a sound SE analysis, and we integrate
numerical abstract domains into it to prune reachable paths. As a result, we make
SE [9] sound while keeping the ability of the analysis to find counter-examples.

2. SoundRSE and RedSoundRSE: We define a sound relational SE, and we combine it
with dependence analysis [4] to enhance the precision of the latter while preserving
soundness.

3. We prototype RedSoundRSE together with RedSoundSE in OCaml and show,
using a series of challenging examples, that it is able to both soundly decide
noninterference for secure programs and synthesize counter-examples of a size
up to a given bound for insecure ones.

The structure of the paper is as follows. Section 2 defines a basic language and the
noninterference notion used throughout the rest of the paper. Section 3 provides
an overview on already defined analyses and highlights the main principles of Red-
SoundRSE. Section 4 defines SoundSE, a sound single trace symbolic execution that
serves as a basis for RedSoundRSE and Section 5 presents RedSoundSE, a new combi-
nation of SoundSE with state abstraction. Section 6 presents SoundRSE and Section 7
extends it with a dependence abstraction to obtain RedSoundRSE. Section 8 evaluates
our framework on small but challenging examples. Finally, Section 9 discusses related
work and Section 10 concludes. The appendix contains all rules of analyses in the paper.
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2 Language and noninterference security notion

In this section, we introduce the language and security notion for which we formalize
our analyses. We let V and X be the set of values and program variables respectively,
and ⊕, < be binary operators. A boolean expression b is a comparison operator <
applied to two expressions and evaluates to a boolean value B={tt,ff}. A statement
s is either a skip, an assignment, a condition, or a loop. Finally, a command c is a
finite sequence of statements. A program P is a pair (c,L) made of a command c
(the body of the program), and a set of low variables L⊆X, hence publicly observable
(the other variables occurring in the program are high).

e ::= v (v∈V) | x (x∈X) | e⊕e b ::= e<e
s ::= skip | x :=e | if b then c else c | while b do c c ::= s | s;c

Semantics. Given a program (c,L), a state is a pair (c,µ), where c is a command
and µ is a function from X to V, namely a store. In particular, a state of the form
(skip,µ) is final. We write M and S for the set of stores and states respectively. We
use [x 7→ x,y 7→ y,...] to explicitly enumerate a store’s contents, where x,y,... are
concrete values. Let (→)⊆S×S denote the small step operational semantics (which
is standard) and →∗ be its reflexive transitive closure.

Noninterference. Let =L be the set equality of stores restricted to low variables in
L. In the rest of the paper, we focus on termination-insensitive noninterference:

Definition 1 (Termination-insensitive noninterference). A program (c,L) is
termination-insensitive noninterferent, written as NIT.I

P , if and only if, for all stores
µ0,µ1,µ

′
0,µ

′
1∈M, µ0=Lµ1∧(c,µ0)→∗ (skip,µ′

0)∧(c,µ1)→∗ (skip,µ′
1)=⇒µ′

0=Lµ
′
1.

3 Overview

In this section, we demonstrate the principle of the combination of symbolic execution
and abstraction performed by RedSoundRSE so as to overcome the limitation of these
two approaches taken separately. As in the rest of the paper, we focus on noninterfer-
ence (NI), although the same principle would apply to other security properties as well.

Examples. We consider the programs displayed in Figure 2. Essentially, programs
(a) and (b) are secure with respect to the noninterference policy, where priv is high
and all other variables are low, whereas (c) is not secure.

In program 2(a), variable y gets assigned 5 independently of priv, therefore the
program is secure. For Program 2(b), let µ0,µ1 be two stores such that µ0=Lµ1. Since
µ0 and µ1 are low-equal executions cannot take different paths, and the loop will be exe-
cuted the same amount of times. Therefore, the program is secure. Lastly, Program 2(c)
is insecure, meaning that it does not satisfy noninterference. We need to provide a
counter-example consisting of two executions starting from low-equal stores µ0,µ1 such
that the corresponding output stores µ′

0,µ
′
1 are not low-equal.We consider the following
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1 if (priv > 0)

2 y = 5;

3 else

4 y = 5;

(a) Secure pro-
gram

1 while (i < z) {

2 i = i + 1;

3 priv = priv + 5;

4 }

(b) Secure program

1 while (i > priv) {

2 i = i + 1;

3 priv = priv + 2;

4 }

(c) Insecure program

1 if (priv < 0) priv = 0;

2 while (i < 10){

3 i += 1; priv += 2;

4 }

5 if (priv >= 0) y += 1;

6 else y = 0;

(d) A secure program requir-
ing a numerical domain.

Fig. 2. Example programs. All variables are of type int, where variable is priv is secure.

Secure? RSE Dependence analysis RedSoundRSE

Program 2(a) Yes ✓ Secure ✗ False alarm ✓ Secure

Program 2(b) Yes ✗ False alarm ✓ Secure ✓ Secure

Program 2(c) No ✓ Refutation model ✓ Alarm ✓ Refutation model

Table 1. Analysis results compared. Symbol ✓ (resp., ✗ ) denotes a semantically correct
(resp., incorrect) analysis outcome, with either a proof of security, a (possibly false) alarm,
or a refutation model.

stores: µ0=[i 7→0,priv 7→0], and µ1=[i 7→0,priv 7→−1]. Finally, calculated output
stores are such that µ′

0(i)=0≠µ′
1(i)=1, thus the program violates noninterference.

In the next paragraphs we study the result of verification methods for these three
programs.

Verification based on relational symbolic execution. A symbolic store, referred to as ρ,
maps variables to symbolic expressions of the initial values of the variables. To avoid
confusion, we use an italic typewriter font for these symbolic values while program
variables appear in straight typewriter font. For instance, y denotes the initial value
of y. Relational symbolic execution describes pairs of executions using symbolic
conditions over the initial values of variables and pairs of symbolic stores. Symbolic
stores are not enough to abstract executions, since they cannot express constraints.
Constraints are then provided by a symbolic path π that contextualizes the store. A pair
(ρ,π) of a symbolic store and a symbolic path is referred to as a symbolic precise store.

As an example, we consider Program 2(a). Relational symbolic execution uncovers
four pairs of paths depending on the sign of the initial values of priv in both executions.
For instance, one of the diverging paths produces π=(priv 0>0∧priv 1≤0)=⇒
([y0 7→ 5,...],[y1 7→ 5,...]), where y0 and y1 denote the program variable y in both
executions and priv 0,priv 1 the initial symbolic values of priv. This symbolic precise
store shows no information flow to y since any SMT solver can prove y0=y1. The
other three pairs of paths lead to a similar result, thus the program is proved secure.

For Program 2(b), the loop has an unbounded number of iterations, but relational
symbolic execution can only cover finitely many unrollings of the loop. This prevents
RSE to prove that Program 2(b) is secure.
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For Program 2(c), RSE will only explore the loop up to a bound. Assuming the
bound is one (any positive value would prove similar), it can determine that the
program does not satisfy NI by calculating a concrete trace that violates the property.
This counter-example trace is calculated by an SMT solver, for instance i0=i1=0,
priv 0=1 and priv 1=−1 corresponds to the counter-example given previously.

Verification based on dependence abstraction. Many static analyses that work for
noninterference rely on some form of dependence abstraction as formalized in, e.g.,
[4] or [28]. We briefly summarize the abstraction of [4]. We assume an ordered set
of security levels {L,H} and that each value fed into a program via an input variable
is given a security level. A dependency, noted as l⇝x with l∈{L,H}, expresses the
agreement of x in both executions when observing from level l. This analysis, based
on abstract interpretation, is sound.

We now discuss the analysis of some programs in Figure 2. For Program 2(a),
the analysis determines that the assignments are conditioned by the value of priv,
which is initially high. Then, the dependency L⇝y is dropped, indicating that y can
potentially disagree between executions. In Program 2(b), the loop condition is only
influenced by i and z, which are low. Then, the assignment of low variables is not
affected, and i and z remain low, allowing to prove noninterference.

Lastly, Program 2(c) is not secure, and since dependence analysis is sound, the
analysis discards dependency L⇝i based on the illicit flow of information.

Combination of relational symbolic execution and dependence abstraction. As observed
in Table 1, relational symbolic execution fails to handle precisely program 2(b) whereas
dependence abstraction fails to verify program 2(a) and provides no counter-example
for program 2(c). The purpose of RedSoundRSE is to use both techniques in an
alternating manner in order to increase precision and prune branches.

To achieve this, RedSoundRSE borrows from relational symbolic execution the
precise analysis of assignment and condition commands, as well as the unrolled iterates
of loop commands. In particular, the analysis of programs 2(a) and 2(c) is carried out
as shown above. However, when the unrolling bound is reached, dependence analysis
is used as a means to compute in finite time sound information about any number of
further loop iterations. Indeed, when the dependence information proves that a loop
induces no dependency of a given low variable on any high variable, it is possible to
assume the equality of the variable in the symbolic store. This new value may not
be expressed precisely in terms of the initial values, hence it may be approximated
with a fresh symbol. This occurs for variable i in program 2(b).

As seen, RedSoundRSE analyzes the first three examples of Figure 2 precisely.

Refinement of symbolic execution based on state abstraction. Program Figure 2(d),
previously not considered, cannot be proved NI by just using symbolic execution
and dependence analysis. This program is secure since the assignment of i does not
depend on priv, and y is conditioned by priv which is always positive after the loop.

As in Program 2(b), the loop causes the symbolic execution to stop at the unrolling
bound. Dependence information allows to prove that there is no information flow
to i and also that the value of y at line 8 does not depend on priv. However, the
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condition at line 9 depends on priv, thus dependence analysis will not prove that the
assignments at lines 10 and 12 do not leak information. Symbolic execution does not
succeed either as it lacks the ability to reason over the value of priv at the loop exit.

Such information may be computed using a reachability static analysis. In particu-
lar, a classical static analysis based on the abstract domains of intervals [14] computes
ranges for all numeric variables and concludes in this case that priv is positive, hence
only the true branch of the condition may be taken. Integrating non-relational abstract
domains allows the analyzer to increase precision by automatically pruning paths.

This combination of AI and SE is referred to as RedSoundSE, defined in Section 5,
and is later integrated into the final analysis RedSoundRSE.

4 SoundSE: Sound symbolic execution

We now define a type of symbolic execution, named SoundSE, as it serves as a basis
for not only SoundRSE but also RedSoundSE—the product of SoundSE with abstract
domains.

Symbolic execution states. The core principle of symbolic execution is to map program
variables into expressions made of symbolic values that denote the initial value of the
program variables. We let V={x ,y ,...} denote the set of symbolic values and note
for clarity x the symbolic value associated to program variable x (not to be confused
with concrete values). A symbolic store is a function ρ from program variables to
symbolic expressions the set of which is noted E, namely expressions defined like the
programming language expressions using symbolic values instead of program variables.
We write M=P(X→E) for the set of symbolic stores and write [x⇝⟨x ⟩,...] for an
explicitly given symbolic store. To tie properly symbolic stores and concrete stores,
we need to relate symbolic values and concrete values. To this end, we let a valuation
be a function ν :V−→V. Moreover, given a symbolic expression ε, we let JεK be a
partial function that maps a valuation ν to the value obtained when evaluating the
expression obtained by replacing each symbolic value x in e with ν(x ). We can now
express the concretization of symbolic stores:

Definition 2 (Symbolic store concretization). The symbolic store concretization,
γM :M−→P(M×(V→V)), maps a symbolic store to the set of pairs made of a store
and a valuation that realize it, i.e. γM(ρ)={(µ,ν) |∀x∈X,µ(x)=Jρ(x)K(ν)}.

To precisely characterize the outcome of an execution path, a symbolic store is too
abstract. Hence, SE also utilizes a symbolic expression to constrain the store, referred
to as symbolic path, that accounts for the conditions encountered during a path. A
symbolic precise store is a pair κ=(ρ,π) where ρ∈M and π is a symbolic path. We
write K for the set of symbolic precise stores. Their meaning is defined as follows:

Definition 3 (Symbolic precise store concretization). The symbolic precise
store concretization, γK :K−→P(M×(V→V)), is defined by γK(ρ,π)={(µ,ν)∈γM(ρ) |
JπK(ν)=tt}.
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s-assign
(e,ρ)⊢s ε

(x :=e,(ρ,π))⇀s (skip,(ρ[x⇝⟨ε⟩],π))

s-if-t
(b,ρ)⊢sβ π′≜π∧β may(π′)

(if b then c0 else c1,(ρ,π))⇀s (c0,(ρ,π))

s-loop-t
(b,ρ)⊢sβ π′≜π∧β may(π′)

(while b do c,(ρ,π))⇀s (c; while b do c,(ρ,π))

s-loop-f
(b,ρ)⊢sβ π′≜π∧¬β may(π′)

(while b do c,(ρ,π))⇀s (skip,(ρ,π))

Fig. 3. Symbolic execution step relation: a few selected rules

Example 1 (Symbolic precise store). We consider Program 2(a). Symbolic execu-
tion needs to cover two paths corresponding to each of the branches of the con-
dition statement, i.e., depending on the sign of priv . Therefore, symbolic execu-
tion should produce the precise stores (ρ0,priv > 0) and (ρ1,priv ≤ 0), where
ρ0=ρ1=[y⇝⟨5⟩,priv⇝⟨priv ⟩].

Symbolic execution step. The main piece of the symbolic execution algorithm is the
step relation, which closely follows the small step semantics of the programs. We
define it by a transition relation ⇀s between symbolic execution states that are made
of a program command and a symbolic precise store. Before we write down the
analysis ⇀s, we need a few definitions.

First, we define the symbolic evaluation of an expression or condition in a symbolic
store, which produces a symbolic expression. We note (e,ρ)⊢s ε the evaluation of
e into symbolic expression ε in symbolic store ρ. Usually, this evaluation step boils
down to the substitution of the variables in e with the symbolic expressions they are
mapped to in ρ, possibly with some simplifications.

Second, we define the conservative satisfiability test of a symbolic path. This step
is usually performed by an external tool such as an SMT solver, so we do not detail
its internals here. We note that this test may conservatively return as a result that
a symbolic path may be satisfiable. We note may(π) when π may be satisfiable.

We now turn to the rules in Figure 3. Rule s-assign simply updates the symbolic
store with a new symbolic expression for the assigned variable. In rule s-if-t, if the
guard evaluation β is satisfiable, the true branch is accessed and β is added to the
symbolic path. Finally, rules s-loop-t and s-loop-f follow similar principles as rule
s-if-t in the case of loops. We formalize the soundness of execution steps:

Theorem 1 (Soundness of a single symbolic execution step). Let (c,µ) and
(c′,µ′)∈S be two states such that (c,µ)→(c′,µ′), κ∈K a symbolic precise store, and
ν be a valuation such that (µ,ν)∈γK(κ). Then, there exists a symbolic precise store
κ′ such that (µ′,ν)∈γK(κ

′) and (c,κ)⇀s (c
′,κ′).

Sound depth bounded symbolic execution. Clearly, the exhaustive application of the
symbolic execution step relation defined in Figure 3 would not terminate. Therefore,
common symbolic execution tools typically abort the exploration when they reach some
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s-next
(c,κ)⇀s (c

′,κ′) step(c,c′,w)=(tt,w′)

(c,κ,w,b)⇀s (c
′,κ′,w′,b)

s-approx-many
(c,κ)⇀s (c

′,κ′) step(c,c′,w)=(ff,w′) ρ′′=modif(ρ,c)

(c,(ρ,π),w,b)⇀s (skip,(ρ
′′,π),w′,ff)

Fig. 4. SoundSE: Sound bounded symbolic execution step relation

sort of bound on execution lengths. This result is clearly unsound as longer executions
are simply ignored. Alternatively, it is possible to over-approximate the set of precise
stores that may be reachable when the bound is met. We formalize this approach here.

Essentially, symbolic states need to be augmented with two additional pieces of
information, namely a boolean so-called precision flag which states whether symbolic
execution has performed any over-approximation due to exhausting the bound, and
a bound control field, called counter. We define set W as the set of counters, with
a special element w0 ∈ W that denotes the initial counter status with respect to
bound control. To operate over counters, we require a function step which inputs two
commands c, c′, and a counter w. It produces a result of the form (b,w′) where b is a
boolean, and w′ is the next counter. Value b is tt if and only if a step from c to c′ can
be done without exhausting the iteration bounds, and with the new counter w′. If b is
ff, the iteration bound has been reached and the state needs to be over approximated.

To perform the over approximation, a function modif is required. The function
inputs a symbolic store and a command, and returns a new symbolic store ρ′ such that:
– ρ′ maps each program variable that is considered to be “modified” (by a sound

over approximation of the set) in c to a fresh symbolic value;
– ρ′ maps all the other program variables to their image in the original store.

Example 2 (Loop iteration bounding). The most typical way to bound symbolic ex-
ecution limits the number of iteration of each loop to pre-defined number k. Then,
W consists of stacks of integers, w0 is the empty stack, and step adds a zero on top
of the stack when entering a new loop and pops the value on top of the stack when
exiting a loop. More importantly, it increments the value n at the top of the stack
when n≤k and moving to the next iteration (rule s-loop-t); on the other hand,
when n>k, it pops n and returns the ff precision flag.

To ensure termination, W and step should satisfy the following well-foundedness
property: for any infinite sequence of commands (ci)i the infinite sequence (wi)i
defined by step(ci,ci+1,wi)=(tt,wi+1) should be stationary, which we assume here.

Based on these definitions, depth bounded symbolic execution is defined by a transi-
tion relation over 4-tuples made of a command, a symbolic state, an element of W, and
a boolean, referred to as symbolic state. We overload the notation ⇀s for this relation,
which is defined based on the previously defined⇀s. The rules are provided in Figure 4:

– Rule s-next carries out an atomic step of symbolic execution that requires
no over approximation; function step returns the precision flag b and a new counter;

– Rule s-approx-many carries out a global approximation step; indeed, as step
returns ff, the function modif is applied to the symbolic state to over-approximate
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the effect of an arbitrary number of steps of execution of c; alongside with the new
counter state the ff precision is propagated forward.
Under the well-foundedness assumption, exhaustive iteration of the available symbolic
execution rules from any initial symbolic state will terminate and produce finitely
many symbolic states. To express the soundness of this algorithm, we need to account
for the creation of symbolic values by function modif, which means that valuations
also need to be extended. To this end, we note ν⪯ν′ when the domain of valuation
ν is included into that of ν′ and when both ν and ν′ agree on the intersection of
their domains. We now obtain the following soundness statement:

Theorem 2 (Soundness of any sequence of single symbolic execution steps).
Let (c,µ)∈S be a state and µ′ be a store such that (c,µ)→∗ (skip,µ′). Let κ∈K be a
symbolic precise store and ν be a valuation such that (µ,ν)∈γK(κ). Let w∈W be a
counter. Then, there exists a symbolic precise store κ′, a valuation ν′, and a counter
w′∈W such that ν⪯ν′, (µ′,ν′)∈γK(κ

′), and (c,κ,w,b)⇀∗
s (skip,κ

′,w′,b′).

The proof of this theorem follow from Theorem 1 (steps where step returns tt), and
a global induction on the command c when rule s-approx-many applies.

Example 3 (Symbolic execution). For program 2(a), symbolic execution returns the
symbolic stores shown in Example 1. We assume the bounding of Example 2 and
consider program 2(b). Then, symbolic execution generates the symbolic store [z⇝
⟨z ⟩,i⇝ ⟨i ′⟩,priv⇝ ⟨priv ′⟩] with precision flag ff, and where i ′, priv ′ are fresh
symbolic values generated by rule s-approx-many.

Refutation up to a bound. A very desirable feature of symbolic execution is the ability
to produce counter-examples up to a bound. This feature stems from a bounded
refutation result, which states that, when symbolic execution produces a final state
for which the final precision flag is tt, and such that the symbolic path is satisfiable,
then a matching concrete execution can be found. From the final state, the SMT
solver can compute a refutation model.

Theorem 3 (Refutation up to a bound). Let c be a command, κ,κ′ ∈ K be
two precise stores, w,w′∈W, such that (c,κ,w,tt)⇀∗

s (skip,κ
′,w′,tt). Then, for all

(µ′,ν′)∈γK(κ
′), it exists (µ,ν)∈γK(κ) such that (c,µ)→∗ (skip,µ′).

This result follows from the fact that rule s-approx-many is never applied in the
symbolic execution and from an induction on the sequence of s-next steps.

Example 4 (Symbolic execution completeness up to a bound). We consider the cases
discussed in Example 3. Using the bounding of Example 2, the result produced for
program 2(a) is complete whereas that for program 2(b) generates some final symbolic
state with precision flag ff, hence for which Theorem 3 does not apply.

5 RedSoundSE: Sound SE combined with abstract states

We now extend SoundSE with the ability to use the properties inferred by abstract in-
terpretation. This combined symbolic execution is referred to as RedSoundSE, making
reference to the reduced product between SoundSE and an AI based analysis.
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a-assign
a′≜assignx,e(a)

(x :=e,a)⇀A (skip,a
′)

a-if-t
a′≜guardb(a) a′ ≠⊥

(if b then c0 else c1,a)⇀A (c0,a
′)

(a) Abstract execution step selected rules

s-a-next

(c,κ,w,b)⇀s (c
′,κ′,w′,b)

step(c,c′,w)=(tt,w′) (c,a)⇀A (c
′,a′) (κ′′,a′′)≜reduction(κ′,a′)

(c,κ,a,w,b)⇀s×A (c
′,κ′′,a′′,w′,b)

s-a-approx-many

(c,κ)⇀s (c
′,κ′) step(c,c′,w)=(ff,w′)

κ′′=modif(κ,c) a′=JcK♯A(a) (κ′′′,a′′′)≜reduction(κ′′,a′)

(c,(κ,a),w,b)⇀s×A (skip,(κ
′′′,a′′′),w′,ff)

(b) Product of symbolic execution and static analysis

Fig. 5. Abstract execution step and product with symbolic execution

Abstraction of store and static analysis. In the following, we assume that an abstract
domain [14] A describing sets of stores is fixed, together with a concretization function
γA :A−→P(M). We assume the existence of an element ⊥∈A such that γA(⊥)=∅.
Additionally, we require the two following sound abstract post-condition functions
for basic operations. Function J K will be overloaded to replace any variable x for its
mapped value in a store µ(x):

– abstract assignment assignx,e :A−→A is parameterized by a variable x and an
expression e and is such that ∀a∈A, {µ[x 7→JeK(µ)] |µ∈γA(a)}⊆γA(assignx,e(a)).

– abstract condition guardb :A−→A is parameterized by a boolean expression
b and is such that ∀a∈A, {µ∈γA(a) |JbK(µ)=tt}⊆γA(guardb(a)).

Based on these operations, the definition of a sound abstract execution step relation
⇀A is straightforward. We show two rules in Figure 5(a). The rules match those of
→ (Section 2) and are sound with respect to it. In the following, A is assumed to
be a parameter of the analysis. It may consist of any numerical abstraction, such as
the interval abstract domain [14] or the domain of convex polyhedra [16]. Moreover,
the application of standard widening technique [14] allows to define a static analysis

function JcK♯A :A−→A that is sound in the sense that, for all command c and all

abstract state a, {µ′∈M |∃µ∈γA(a),(c,µ)⇀
∗
s (skip,µ

′)}⊆γA(JcK
♯
A(a))

Reduced product of symbolic precise stores and abstract states. Reduced product [15]
aims at expressing precisely conjunctions of constraints expressed in distinct abstract
domains. We let a precise product store be a pair (κ,a)∈K×A. In our case, the
definition needs to be adapted slightly as symbolic execution and abstract domain
A do not abstract exactly the same objects:

Definition 4 (Product domain). The product abstract domain consists of the
set K×A and the concretization function γK×A :K×A−→P(M×(V→V)) defined as
follows: γK×A :(κ,a) 7−→{(µ,ν)∈γM(κ) |µ∈γA(a)}
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In a precise product store (κ,a), the goal is to enhance precision by exchanging informa-
tion between κ and a. This is done through a reduction function, which rewrites an
abstract element with another of equal concretization, but that supports more precise
analysis operations. This implies that (γK×A◦reduction)(κ,a)= γK×A(κ,a). This re-
quires the abstract domain A to support a function constr that maps an abstract state
a to a logical formula over program variables and entailed by a, namely such that, if
µ∈γA(a) then µ satisfies formula constr(a). Some abstract domains—specifically inter-
vals and abstract polyhedra—utilize an internal representation based on conjunction of
constraints, in which case constr is trivial. Then, reduction :K×A−→K×A is defined by:

reduction((ρ,π),a)≜((ρ,π′),a) where π′≜π∧constr(a)[⃗x 7→ρ(⃗x)]

Note that [⃗x 7→ ρ(⃗x)] in the above definition, symbolizes the replacement of each
program variable present in constr(a) into its definition in ρ; this step follows from
the fact that a constrains program variables whereas π constrains valuations. This
general reduction function may be refined into a more precise one, where the resulting
symbolic path is simplified, possibly to the ff formula. Furthermore, this reduction
only modifies the symbolic path π, but it is possible to define a reduction operation
that also rewrites the abstract state a.

Reduced product symbolic execution. The product analysis, namely RedSoundSE, takes
the form of an extension of the symbolic execution function of Figure 4. The new
states are still 4-tuples, but the symbolic precise store component κ is now replaced
with a precise product store (κ,a). The transition relation ⇀s×A between such states
consists of two rules that are shown in Figure 5(b) and that extend those in Figure 4.
In rule s-a-many (applied when exploration bound is met) aside from modif, the
loop is calculated over the abstract state and then the reduction function is applied.

In both cases, the sound reduction operator may be applied. In practice, for the
sake of efficiency, it can be computed and applied in a lazy manner that is, only for
specific steps (typically s-a-many and for branching commands).

Example 5 (Product analysis). For program 2(d), assuming i<10, and then when
exiting the loop, an intervals abstract state will hold two constraints a={i=10; priv≥
2}. Assuming a symbolic precise store κ=(ρ,π) with ρ=[i→i ; priv→priv ], the
abstract constraints can be fitted to a symbolic path π′ as follows: π′≜ π ∧ i =
10 ∧ priv ≥2. A more detailed execution trace is given in Appendix A.

Soundness and refutation property. The RedSoundSE analysis defined in the previous
paragraph satisfies the same soundness (Theorem 2) and refutation (Theorem 3)
properties as standard symbolic execution, so we do not give the theorems again.

6 SoundRSE: Sound relational symbolic execution

As discussed in Section 3, security properties like noninterference require to reason over
pairs of execution traces thus we now set up a sound relational symbolic execution tech-
nique that constructs pairs of executions. This analysis will be regarded as SoundRSE.
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Assumption. To keep notations lighter, we assume in this section and the next that
the bounding counter step function step only affects loops, namely step(c,c′,w)=w
whenever c is not a loop command. Moreover, we do not include the product with
the numerical abstract state (as in Section 5) in the following definitions. Since it can
be added in a seamless manner, we omit it here to keep formal statements lighter.

Precise relational stores. We first define the notions of relational expression, relational
store, and precise relational store.

Definition 5 (Relational and precise relational stores). A relational symbolic
expression is an element defined by the grammar: ε̃ ::= ⟨ε⟩|⟨ε | ε⟩ where ε ranges
over the set E of symbolic expressions. We write E2 for the set of relational symbolic
expressions. A relational symbolic store ρ̃ is a function from variables to relational
symbolic expressions. We let M2 = X → E2 stand for their set. Finally, a precise
relational store κ̃ is a pair (ρ̃,π)∈K2.

Before we define concretizations of M2 and K2, we need to introduce two operations:
– The projections Π0,Π1 map relational symbolic stores into symbolic stores. They

are defined in a pointwise manner, as follows: if ρ̃(x)=⟨ε⟩ thenΠ0(ρ̃)(x)=Π1(ρ̃)(x)=ε
and if ρ̃(x)=⟨ε0 |ε1⟩, then Π0(ρ̃)(x)=ε0 and Π1(ρ̃)(x)=ε1. We overload the Π0,Π1

notation and also apply it to double symbolic expressions: Π0(⟨ε⟩)=Π1(⟨ε⟩)=ε and
if ε̃=⟨ε0 |ε1⟩, then Π0(ε̃)=ε0 and Π1(ε̃)=ε1.

– The pairing Lρ0 |ρ1M of two symbolic stores ρ0 and ρ1 is a relational symbolic
store defined such that, for all variable x,

Lρ0 |ρ1M(x)=
{
⟨ε⟩ if ρ0(x) and ρ1(x) are provably equal to ε∈E
⟨ρ0(x) |ρ1(x)⟩ otherwise

where the notion of “provably equal” may boil down to syntactic equality of symbolic
expressions or involve an external proving tool.
We can now define the concretization functions:

Definition 6 (Concretization functions). The concretization of relational stores
γM2

and concretization of precise relational stores γK2 are defined by:

γM2
: M2 −→ P(M×M×(V→V))
ρ̃ 7−→ {(µ0,µ1,ν) |∀x∈X,∀i∈{0,1},µi(x)=JΠi(ρ̃)(x)K(ν)}

γK2
: K2 −→ P(M×M×(V→V))
(ρ̃,π) 7−→ {(µ0,µ1,ν)∈γM2

(ρ̃) |JπK(ν)=tt}.

Example 6. We consider program 2(a) (SoundSE was discussed in Example 1). To
cover pairs of executions that start with the same value for low variable y but
possibly distinct values for high variable priv, relational symbolic execution should
cover four pairs of paths. These four paths have the same relational symbolic store
[priv⇝ ⟨priv 0 |priv 1⟩,y⇝ ⟨5⟩] and differ only in the symbolic path components.
For instance, when the first execution takes the true branch of the condition and the
second the false branch, the symbolic path is priv 0>0∧priv 1≤0.
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sr-exit
(skip▷◁skip,(ρ̃,π),w,b)⇀sr (skip,(ρ̃,π),w,b)

sr-comp-r
(c1,(Π1(ρ̃),π),w,b)⇀s (c

′
1,(ρ

′
1,π

′),w′,b′)

(skip▷◁c1,(ρ̃,π),w,b)⇀sr (skip▷◁c
′
1,(LΠ0(ρ̃) |ρ′1M,π′),w′,b′)

sr-comp-l
(c0,(Π0(ρ̃),π),w,b)⇀s (c

′
0,(ρ

′
0,π

′),w′,b′)

(c0▷◁c1,(ρ̃,π),w,b)⇀sr (c
′
0▷◁c1,(Lρ

′
0 |Π1(ρ̃)M,π′),w′,b′)

sr-if-tf
(b,ρ̃)⊢sr β̃ π′=π∧Π0(β̃)∧¬Π1(β̃) may(π′)

(if b then c0 else c1,(ρ̃,π),w,b)⇀sr (c0▷◁c1,(ρ̃,π
′),w,b)

sr-approx-many

step(while b do c,(c; while b do c),w)=(ff,w′)

ρ̃′′=modif(ρ̃,c) (b,ρ̃′′)⊢sr ⟨β0,β1⟩ π′≜π∧¬β0∧¬β1

(while b do c,(ρ̃,π),w,b)⇀sr (skip,(ρ̃
′′,π′),w′,ff)

Fig. 6. SoundRSE: a few selected rules of the relational symbolic execution step relation.

Relational symbolic execution algorithm. Since SoundRSE aims at describing pairs
of executions, it should account for the case where the two executions follow different
control flow paths. Thus, a relational symbolic state may consist of a single command
when both executions follow the same path, or two commands when they diverge.
We respectively note these two kinds of states (c,κ̃,w,b) and ((c0▷◁c1); c2,κ̃,w,b); in
the latter, c0 (resp., c1) denotes the control state of the first (resp., second) execution,
which they later meet in c2. The components w and b have the same meaning as in
Section 4. Initial states are of the former sort.

We write ⇀sr for the relational symbolic execution step relation. A representative
selection of the rules are shown in Figure 6. Rule sr-approx-many describes a
case where approximation is performed so as to ensure termination and uses the
straightforward extension of modif to relational symbolic states.

Soundness and refutation property. SoundRSE inherits similar soundness and refutation
properties as SoundSE, as shown in the following theorems.

Theorem 4 (Soundness). Let κ̃∈K2, w∈W, and b∈B. We let (µ0,µ1,ν)∈γK2
(κ̃)

and assume that stores µ′
0,µ

′
1 are such that (c,µ0) →∗ (skip,µ′

0) and (c,µ1) →∗

(skip,µ′
1). Then, there exists κ̃′∈K2, a valuation ν′, and a counter state w′∈W such

that ν⪯ν′, (µ′
0,µ

′
1,ν

′)∈γK(κ̃
′), and (c,κ̃,w,b)⇀∗

sr (skip,κ̃
′,w′,b′).

Theorem 5 (Refutation up to a bound). Let c be a command, κ̃,κ̃′ ∈ K2 be
two precise stores, w,w′∈W, such that (c,κ,w,tt)⇀∗

sr (skip,κ
′,w′,tt). Then, for all

(µ′
0,µ

′
1,ν

′)∈γK2(κ
′), it exists (µ0,µ1,ν)∈γK2(κ) such that (c,µ0)→∗ (skip,µ′

0) and
(c,µ1)→∗ (skip,µ′

1).

SoundRSE-based analysis and noninterference. We now assume a program (c,L), and
show the application of SoundRSE analysis to attempt proving noninterference. The
analysis proceeds according to the following steps:
1. Construction of the initial store ρ̃0 such that, for all variables x present in c,

ρ̃0(x)=⟨x ⟩ (resp., ρ̃0(x)=⟨x0 |x1⟩) if x∈L (resp., x∉L), and where x is a fresh
symbolic value (resp., x0,x1 are fresh symbolic values).
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2. Exhaustive application of semantic rules from initial state (c,(ρ̃0,tt),w0,tt); we
let O stand for the set of final precise relational stores with their precision flags:
O≜{(κ̃,b) |∃w∈W,(c,(ρ̃0,tt),w0,tt)⇀sr (skip,κ̃,w,b)}.

3. Attempt to prove noninterference for each symbolic path in O using an external
tool, such as an SMT solver; more precisely, given ((ρ̃,π),b)∈O,
– if π is not satisfiable, the path is infeasible and can be ignored;
– if it can be proved that for all variables x∈L, there is a unique value, i.e.,

Π0(ρ̃)(x)=Π1(ρ̃)(x), then the program is noninterferent;
– if a valuation ν can be found, such that JπK(ν)=tt (the path is satisfiable),

and there exists a variable x∈L such that JΠ0(ρ̃)(x)K(ν) ≠ JΠ1(ρ̃)(x)K(ν),
and b=tt, then ν provides a counter-example refuting noninterference;

– finally, if b=ff and neither of the above cases occurs, no conclusive answer
can be given for this path.

To summarize, the analyser either proves noninterference (when all paths are either
not satisfiable or noninterferent), or it provides a valuation that refutes noninterference
(when such a valuation can be found for at least one path), or it does not conclude.
When a refutation is found, this refutation actually defines a real attack.

Example 7 (Noninterference). In the case of program 2(a), all paths are low-equal.
The analysis of program 2(c) computes at least one interferent path if the unrolling
bound is set to any strictly positive integer; in that case, a model such as the
one presented in Section 3 can be synthesized by even basic SMT solvers. Finally,
the program of Figure 2(d) can be proved noninterferent with relational symbolic
execution combined with a reduced product with a value abstract domain such as
intervals (Section 5).

7 RedSoundRSE: Product of SoundRSE with Dependence AI

As observed in Section 3 some programs like that of Figure 2(b) can be analyzed more
precisely using conventional dependence analysis than by bounded symbolic execution
(Section 4). In this section, we set up a novel form of product of abstractions, so as
to benefit from this increase in precision. This notion of product is generic and does
not require to fix a specific dependency abstraction. We refer to the final analysis
presented in this section as RedSoundRSE.

Dependence abstraction and static analysis. Although dependence abstractions may
take many forms, they all characterize information flows that can be observed by
comparing pairs of executions. For instance, [4] uses a lattice of security levels and ab-
stract elements map each level to a set of variables. These variables are left unmodified
when the input value of variables of higher levels change. Other works use relational
abstract domains, where relational means that relations are maintained across pairs
of executions. Therefore, we can characterize such analyses with an abstraction of
pairs of stores:

Definition 7 (Dependence abstraction and analysis). A dependence abstrac-
tion is defined by an abstract lattice D from security levels to variables and a con-
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cretization function

γD : D −→ P(M×M)
d 7−→ {(µ0,µ1)∈M×M |µ0=d(L)µ1}

A sound dependency analysis is defined by a function JcK♯D :D→D such that, for all

d∈D, (µ0,µ1)∈γD(d), {(µ′
0,µ

′
1)∈M×M |∀i∈{0,1},(c,µi)→(skip,µ′

i)}⊆γD◦JcK♯D(d).

Example 8 (Standard dependence based abstraction [4]). The abstraction of [4] is an
instance of Definition 7. Let {L,H} be the set of security levels. Assume an initial
abstract state d that captures pairs of concrete stores that are low equal for some
program (c,L). By applying the dependence analysis, if the final dependence state
has a low dependency for each initially low variable, the program is noninterferent.

In practice such information is computed by forward abstract interpretation, using
syntactic dependencies for expressions and conditions, and conservatively assuming
conditions may generate (implicit) flows to any operation that they guard.

We note that Definition 7 accounts not only for dependence abstractions such as
that of [4]. In particular, [22] proposes a semantic patch analysis which can also be
applied to security properties by using a relational abstract domain to relate pairs
of executions; such analyses use an abstraction that also writes as in Definition 7. In
the following, we assume a sound dependence analysis is fixed.

Product of symbolic execution and dependence analysis. We now combine dependence
analysis and symbolic execution. For most statements, SoundRSE rules defined in Fig-
ure 6 introduce no imprecision. The notable exception is the case where the execution
bound is reached as in rule sr-approx-many. Therefore, the principle of the combined
analysis is to replace this imprecise rule with another that uses dependence analysis
results to strengthen relational stores. First, we introduce two operations to transport
information in a sound manner into and from the dependence abstract domain:

Definition 8 (Information translation and dependence abstraction). The
translation from symbolic to dependence is a function τs→D :M2→D that is sound
in the following sense: ∀ρ̃ ∈ M2, ∀(µ0,µ1,ν) ∈ γM2

(ρ̃), (µ0,µ1) ∈ γD ◦ τs→D(ρ̃). The
extraction of dependence information is a function λD→L :D→P(X) that is sound in
the following sense: ∀d∈D,∀(µ0,µ1)∈γD(d),µ0=λD→L(d)µ1

Intuitively, τs→D should compute a dependence abstract domain element that ex-
presses a property implied by the relational symbolic store it is applied to. In the
set-up of Example 8, a straightforward way to achieve that is to map ρ̃ to an element
d that maps L to the set: {x∈X | may(Π0(ρ̃)(x)=Π1(ρ̃)(x))}

When ρ̃(x)=⟨ε⟩, this equality is clearly satisfied; when ρ̃(x)=⟨ε0 |ε1⟩, the equality
ε0=ε1 needs to be discharged by an external tool such as an SMT solver. Similarly,
the function λD→L extracts a set of variables which are proved to remain low by the
its argument. In the setup of Example 8, this boils down to returning d(L).

We now present the combined analysis. The symbolic execution step sr-approx-
many-dep is shown in Figure 7 and replaces rule sr-approx-many (Figure 6). When
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sr-approx-many-dep

step(while b do c,(c; while b do c),w)=(ff,w′)

d=Jwhile b do cK♯D(τs→D(ρ̃)) ρ̃′′=modifD(ρ̃,c,λD→L(d))

(b,ρ̃′′)⊢sr ⟨β0,β1⟩ π′≜π∧¬β0∧¬β1

(while b do c,(ρ̃,π),w,b)⇀sr×D (skip,(ρ̃′′,π′),w′,ff)

Fig. 7. RedSoundRSE: Symbolic execution approximation and product with dependence
information.

the execution bound is reached for a loop statement, it performs the dependence
analysis of the whole loop from the dependence state derived by applying τs→D to the
relational symbolic store. Then, it applies λD→L to derive the set of variables that are
proved to be low by the dependence analysis. Finally, it computes a new relational sym-
bolic store by modifying the variables according to the set of variables determined low:
– if variable x is low based on the λD→L output, modifD synthesizes one fresh

symbolic value xnew and maps it to ⟨xnew⟩;
– if variable x cannot be proved low, modifD synthesizes two fresh symbolic values

xnew0, xnew1 and maps x to ⟨xnew0 |xnew1⟩.

Remark 1 (Reduced product property). We stress the fact that the rule sr-approx-
many-dep may be applied multiple times during the analysis, essentially whenever
a loop statement is analyzed, which is generally many times more than the number
of loop commands in the program due to abstract iterations. Therefore, our analysis
cannot be viewed as a fixed sequence of analyses. Such a decomposition (e.g., where
dependence analysis is ran first and SE second) would be strictly less precise than
our reduced product based approach.

Soundness and refutation properties. Under the assumption that the dependence
analysis and translation operations are sound, so is the combined symbolic execution,
thus Theorem 4 still holds. Moreover, the refutation property of Theorem 5 also holds.

Example 9 (Combined analysis).We consider program 2(b). As discussed in Section 3,
the loop statement may execute unboundedly many times, thus relational symbolic
execution applies rule sr-approx-many-dep. The initial dependence abstract element
computed for the loop by τs→D maps L to {i,z} and H to all variables. The dependence
analysis of the loop returns the same element. Thus, the set of low variables returned
by λD→L is {i,z}, which allows to compute a precise relational symbolic store and to
successfully verify the program is noninterferent.

8 Comparison

In this section we compare our analyses among them as well as with the dependency
analysis of Assaf et al. [4]. To do so, we implemented prototypes of all the analyses. Our
goal is not to evaluate the analyses in large code bases but to assess their differences
based on programs that are small but challenging for typical noninteference analysers.
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1 if (priv > 0)

2 i = 0;

3 else

4 i = 0;

5 while (i < 10) {

6 i += 1;

7 priv += 5;

8 }

(a) Secure

1 i = 0; w = 2;

2 x = 100;

3 while(i < x) {

4 if (x <= 0)

5 w = priv;

6 i += 2;

7 x += 1;

8 }

(b) Secure

1 i = 0;

2 while (i < 3) {

3 y0 = y1;

4 y1 = y2;

5 y2 = priv;

6 i += 1;

7 }

8 y1 = 0; y2 = 0;

(c) Insecure

1 i = 0;

2 while (i < 100) {

3 if (priv > 0)

4 y = 5;

5 i += 1;

6 }

(d) Insecure

Fig. 8. Programs illustrating different properties of the analyzer. Variable priv is high.

Relational Analysis D SoundRSE RedSoundRSE (D)

relational analysis input: None SoundSE RedSoundSE SoundSE RedSoundSE

Program Secure?
Fig. 2(a) Yes ✗ False alarm ✓ Secure ✓ Secure (I,P) ✓ Secure ✓ Secure (I,P)

Fig. 2(b) Yes ✓ Secure ✗ False alarm ✓ Secure (P) ✓ Secure ✓ Secure (I,P)

Fig. 2(d) Yes ✗ False alarm ✗ False alarm ✓ Secure (I,P) ✗ False alarm ✓ Secure (I,P)

Fig. 8(a) Yes ✗ False alarm ✗ False alarm ✗ False alarm ✓ Secure ✓ Secure (I,P)

Fig. 8(b) Yes ✗ False alarm ✗ False alarm ✗ False alarm ✗ False alarm ✓ Secure (I,P)

Fig. 2(c) No ✓ Alarm ✓ Refutation model ✓ Refutation model ✓ Refutation model ✓ Refutation model

Fig. 8(c) No ✓ Alarm ✓ Refutation model ✓ Refutation model ✓ Refutation model ✓ Refutation model

Fig. 8(d) No ✓ Alarm ✓ Alarm ✓ Alarm ✓ Alarm ✓ Alarm

Table 2. Evaluation and comparison of analyses combination. D denotes the dependency
analysis of [4]. Symbol ✓ (resp., ✗ ) denotes a semantically correct (resp., incorrect) analysis
outcome, with either a proof of security, a (possibly false) alarm, or a refutation model. For
RedSoundSE columns, when the analyses succeed to prove NI, we mark the result with I
(resp. P) to indicate that the intervals (resp. polyhedra) domain is being used.

Implementation. We prototype the analyses proposed in this work as well as the
dependency analysis, intervals and convex polyhedra analysis. The prototype is im-
plemented in around 4k lines of OCaml code, using the Apron library [29] for the
numerical domains and the Z3 SMT solver [21]. By defining a shared interface for
SoundSE and RedSoundSE, the implementation of RedSoundRSE is parameterized
by these. An artifact of the implementation has been provided.

Evaluation. We compare the 3 different relational techniques using different single-
trace analyses by evaluating them on a set of challenging examples. Our results are
shown in Table 2. In the following, we split NI programs from non NI ones. For the
latter we look at the refutation capabilities of the analysis.

Comparison of the verification capabilities of different relational analyses. Programs
of Fig. 2 were already explained in Section 3 and our prototype confirmed these
results, which are summarized in Table 2.

In Program 8(a), the first condition renders dependence analysis useless as it will
consider variable i high. This program will also fail to be verified by SoundRSE if
the iteration bound is lower than 10: in this case, i will be assigned a fresh symbolic



Sound Symbolic Execution via Abstract Interpretation 19

value and hence be deemed high. In contrast, RedSoundRSE can determine that the
value of i in the loop does not depend on priv.

Program 8(b) is more convoluted. The analysis requires both numerical and
dependence abstractions in order to prove its NI. The analysis will determine (conser-
vatively) that three variables are modified in the loop: x, i and w. Dependence analysis
can determine that variable i and x are low even if both are modified. However, since
w depends on x, and the exact value of x is unknown, it is not possible to determine
that w is low. By adding a numerical domain, it is easy to track that the value of
x is always positive, which implies that the if statement can never be executed.

Comparison of the refutation capabilities of different relational analyses. Since
SoundRSE and RedSoundRSE unroll loops a bounded number of times, there are
insecure programs for which a refutation model can be found, and programs where
this is not possible. Notice that, to refute a program with a model, it is required that
the symbolic execution did not perform any over approximation, i.e. that the precision
flag is set to false when the analysis finds the violation. Therefore, the results for
insecure programs of SoundRSE are similar to those of the different combinations that
rely on symbolic execution, as reflected on Figure 2. For Program 2(c), a valuation
can be found by doing one iteration: ν(i0)=ν(i1)=1 and ν(priv 0)=0, ν(priv 1)=1.
For Program 8(c), a model can be found if the bound of iterations is set to 4 or
higher. The valuation ν just needs to map variable priv to two different values:
ν(priv 0)≠ν(priv 1). In Program 8(d), for any user-set bound lower than 100 the
execution will have to overapproximate, losing refutation capabilities.

Conclusion of the evaluation. We have evaluated and compared our analyses among
them and with the state-of-the-art on dependency analyses [4] on a set of 8 challenging
examples. Our results show that, in contrast to dependencies [4], analyses inherit the
capacity of providing a refutation model up to a bound from symbolic execution. More-
over, RedSoundRSE instantiated with RedSoundSE is capable of soundly verifying all
the examples, in contrast to all the other compared analyses, as summarized in Table 2.

Limitations. As RedSoundSE is sound and automatic, it necessarily fails to achieve
completeness (by Rice’s Theorem [30, 3]). In return, we provide completeness up to a
bound. Another more subtle limitation is that the numerical abstraction are applied
at the level of the single symbolic execution (RedSoundSE). This means that these
abstractions cannot track down relations between executions, but just local constraints.

9 Related work

Hyperproperties Noninterference was first defined by Goguen and Meseguer [26], and
also generalized to more powerful attacker models under the property name of declas-
sification. We refer the reader to a survey on declassification policies [37] up to 2005.
As discussed in the introduction, noninterference is not a safety property but a safety
hyperproperty [13], a.k.a. hypersafety. Several works in the literature have shown that
hypersafety verification can be reduced to verification of safety properties [7, 20, 39, 13],
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however this reduction is not always efficient in practice [39]. In our work, we do not
reduce noninterference to verification of safety but rather apply relational analyses. We
only show our results using noninterference but the methodology can be easily general-
ized to more relaxed declassification properties, provided sound abstract domains exist.

Symbolic execution. SE is a static analysis technique that was born in the 70s [9, 31]
and that is now deployed in several popular testing tools, such as KLEE [11] and
NASA’s Symbolic PathFinder [35], to name a few. A primary goal and strength of
SE is to find paths leading to counter-examples to generate concrete input values
exercising that path. This is of particular importance to security in order to debug
and confirm the feasibility of an attack when a vulnerability is detected.

Alatawi et al. [2] use AI to enhance the precision of a dynamic symbolic execution
aimed at path coverage. Their approach consists of first doing an analysis of the
program with AI to capture indirect dependences in order to enhance path predicates.
Furthermore, their analysis does not maintain soundness (nor completeness). Mean-
while, our approach continuously alternates between abstract domains and symbolic
execution, keeping soundness and completeness up to a bound. Lastly, Alatawi et al. [2]
do not analyze relational properties such as noninterference but just safety properties.

We focus the rest of the related work on static analysis techniques for relational
security properties: for a broader discussion on symbolic execution we refer the
interested reader to a survey [10] up to 2011 and an illuminating discussion on SE
challenges in practice up to 2013 [12].

Relational symbolic execution. In order to apply SE to security properties such as
noninterference, Milushev et al. [32] propose a form of relational symbolic execu-
tion (RSE) to use KLEE to analyze noninterference by means of a technique called
self-composition [7, 20, 39] to reduce a relational property of a program p to a safety
property of a transformation of p. More recently, Daniel et al. have optimized RSE to be
applicable to binary code to analyze relational properties such as constant time [17] and
speculative constant time [18, 19] and discovered violations of these properties in real-
world cryptographic libraries. All these approaches are based on pure (relational) SE
static techniques and, as such, they are not capable of recovering soundness beyond a
fixed bound as in our case. The closest work to RedSoundRSE is RelSym [23] which sup-
ports interactive refutation, as well as soundness. In order to recover soundness, Chong
et al. [23] propose to use RelSym on manually annotated programs with loop invariants.
Precision of refutation is guaranteed only if the invariants are strong enough, which can-
not be determined by the tool itself. Precision is not guaranteed in any other cases. In
contrast, our invariants are automatically generated via AI and precision of refutation
is always guaranteed up to a bound, which is automatically computed by our tool.

Sound static analyses for hyperproperties As discussed in the introduction, many
sound verification methods have been proposed for relational security properties. We
refer the reader to an excellent survey on this topic [36] up to 2003. After 2003,
several sound (semi-) static verification methods of noninterference-like properties
have been proposed by means of type systems (e.g. [6, 24]), hybrid types, (e.g. [38]),
relational logics (e.g. [1]), model checking (e.g. [27, 5]), and pure AI [4]. We expand
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on the ones based on AI since they are the closest to our work. Giacobazzi and
Mastroeni [25] define abstractions for attacker’s views of program secrets and design
sound automatic program analyses based on AI for sets of executions (in contrast
to relational executions). Assaf et al. [4] are the first to express hyperproperties
entirely within the framework of AI by defining a Galois connection that directly
approximates the hyperproperty of interest. We utilize the abstract domain of Assaf
et al. [4] combined with SE to obtain RedSoundSE. Notice that because the framework
of Assaf et al. [4] relies on incomplete abstraction, their analysis is not capable of
precise refutation nor provide refutations models. To the best of our knowledge, no
previous work has combined abstract domains and SE to achieve soundness.

10 Conclusion

In this work, we propose a series of analyses, summarized in Fig.1, combining SE
and AI. Our analyses are sound, precise, and able to synthesize counter-examples
up to a given bound. We prototype these analyses as well as several AI domains and
a dependency analysis to verify noninterference. Our results, summarized in Table 2,
show that on a set of challenging examples for noninterference, our analysis performs
better than the dependency analysis and is able to preciselyblank and soundly con-
clude on whether programs are noninterferent or not and provide refutation models
up to a bound. Given these encouraging results, we plan to generalize the target
security property and make the analyses scale to other languages as future work.
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A Trace of program 2(d) with RedSoundSE using intervals

This section aims to show the execution of one symbolic trace of program 2(d). Initial
precise store κ will capture the initial low-equality of variables i and y. The abstract
state is a. Changes to the product store are marked in red.

κ=


ρ=[i→⟨i0⟩,y→⟨y0⟩,priv→⟨priv 0⟩]
π=tt

al=[ ]

In line 3, since priv is unconstrained, the semantics can choose either path. Let us
assume that our trace follows rule s-if-t. Then, by line 5 the state is as follows.

κ=


ρ=[i→⟨i0⟩,y→⟨y0⟩,priv→⟨0⟩]
π=priv 0<0

a=[priv=0]

Since this loop has an unbounded amount of iterations, we know that an over ap-
proximation will happen. Let us assume that the iteration bound is 1 (meaning that
the semantics will execute the loop once at most before over approximating), and
that i<10. By executing one full iteration the following symbolic state is reached.

κ=


ρ=[i→⟨i0+1⟩,y→⟨y0⟩,priv→⟨2⟩]
π=i0<10∧priv 0<0

a=[priv=0;i<11]

Since now the limit of iterations is reached, next step is over approximating the loop.
For the example we will next show the state just before the reduction. Notice that
the new constraints in π are the result of negating the guard.

κ=


ρ=[i→⟨i1⟩,y→⟨y0⟩,priv→⟨priv 1⟩]
π=i1≥10∧i0<10∧priv 0<0

a=[priv≥2;i=10]

Because variables i and priv were modified, new symbolic values are assigned. This
generates a big inaccuracy, but abstract states can compensate. By reducing we add
the constraints of a to π.

κ=


ρ=[i→⟨i1⟩,y→⟨y0⟩,priv→⟨priv 1⟩]
π=priv 1≥2∧i1=10∧i1≥10∧i0<10∧priv 0<0

a=[priv≥2;i=10]

Thanks to the reduction, we get information allowing for the low equality of i but
also we get information about priv being positive. Finally, the last if statement will
not be executed.
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B SE step relation

This section shows the full set of rules of SE, the standard not-sound symbolic
execution.

s-assign
(e,ρ)⊢sε

(x :=e,(ρ,π))⇀s (skip,(ρ[x⇝⟨ε⟩],π))

s-seq-exit
(skip; c1,κ)⇀s (c1,κ)

s-seq
(c0,κ)⇀s (c

′
0,κ

′)

(c0; c1,κ)⇀s (c
′
0; c1,κ

′)

s-if-t
(b,ρ)⊢sβ π′≜π∧β may(π′)

(if b then c0 else c1,(ρ,π))⇀s (c0,(ρ,π))

s-if-f
(b,ρ)⊢sβ π′≜π∧¬β may(π′)

(if b then c0 else c1,(ρ,π))⇀s (c1,(ρ,π))

s-loop-t
(b,ρ)⊢sβ π′≜π∧β may(π′)

(while b do c,(ρ,π))⇀s (c; while b do c,(ρ,π))

s-loop-f
(b,ρ)⊢sβ π′≜π∧¬β may(π′)

(while b do c,(ρ,π))⇀s (skip,(ρ,π))

C SoundSE step relation

This section shows the full set of rules of SoundSE by using SE, in Appendix B.

s-next
(c,κ)⇀s (c

′,κ′) step(c,c′,w)=(tt,w′)

(c,κ,w,b)⇀s (c
′,κ′,w′,b)

s-approx-many
(c,κ)⇀s (c

′,κ′) step(c,c′,w)=(ff,w′) ρ′′=modif(ρ,c)

(c,(ρ,π),w,b)⇀s (skip,(ρ
′′,π),w′,ff)
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D Abstract step relation

This section shows the full set of rules of the abstract analysis used in RedSoundSE.

a-assign
a′≜assignx,e(a)

(x :=e,a)⇀A (skip,a
′)

a-if-t
a′≜guardb(a) a′≠⊥

(if b then c0 else c1,a)⇀A (c0,a
′)

a-if-f
a′≜guard¬b(a) a′≠⊥

(if b then c0 else c1,a)⇀A (c0,a
′)

a-seq-exit
(skip; c1,a)⇀A (c1,a)

a-seq
(c0,a)⇀A (c

′
0,a

′)

(c0; c1,a)⇀A (c
′
0; c1,a

′)

a-loop-f
a′≜guard¬b(a) a′≠⊥

(while b do c0,a)⇀A (skip,a
′)

a-loop-t
a′≜guardb(a) a′≠⊥

(while b do c0,a)⇀A (c; while b do c0,a
′)

E RedSoundSE step relation

RedSoundSE is defined by rules of Appendix B, Appendix C and Appendix D.

s-a-next

(c,κ,w,b)⇀s (c
′,κ′,w′,b)

step(c,c′,w)=(tt,w′) (c,a)⇀A (c
′,a′) (κ′′,a′′)≜reduction(κ′,a′)

(c,κ,a,w,b)⇀s×A (c
′,κ′′,a′′,w′,b)

s-a-approx-many

(c,κ)⇀s (c
′,κ′) step(c,c′,w)=(ff,w′)

κ′′=modif(κ,c) a′=JcK♯A(a) (κ′′′,a′′′)≜reduction(κ′′,a′)

(c,(κ,a),w,b)⇀s×A (skip,(κ
′′′,a′′′),w′,ff)
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F RSE and SoundRSE step relations

This section shows the full set of rules for SoundRSE. RSE is a subset of SoundRSE,
by removing rule sr-approx-many, and removing the counter and boolean flag.

sr-assign
(e,ρ̃)⊢sr ε̃

(x :=e,(ρ̃,π),w,b)⇀sr (skip,(ρ̃[x⇝⟨ε̃⟩],π),w,b)

sr-seq-exit
(skip; c1,κ̃)⇀sr (c1,κ̃)

sr-seq
(c0,κ̃)⇀sr (c

′
0,κ̃

′)

(c0; c1,κ̃)⇀sr (c
′
0; c1,κ̃

′)

sr-if-tt
(b,ρ̃)⊢sr β̃ π′=π∧Π0(β̃)∧Π1(β̃) may(π′)

(if b then c0 else c1,(ρ̃,π),w,b)⇀sr (c0,(ρ̃,π
′),w,b)

sr-if-tf
(b,ρ̃)⊢sr β̃ π′=π∧Π0(β̃)∧¬Π1(β̃) may(π′)

(if b then c0 else c1,(ρ̃,π),w,b)⇀sr (c0▷◁c1,(ρ̃,π
′),w,b)

sr-if-ft
(b,ρ̃)⊢sr β̃ π′=π∧¬Π0(β̃)∧Π1(β̃) may(π′)

(if b then c0 else c1,(ρ̃,π),w,b)⇀sr (c1▷◁c0,(ρ̃,π
′),w,b)

sr-if-ff
(b,ρ̃)⊢sr β̃ π′=π∧¬Π0(β̃)∧¬Π1(β̃) may(π′)

(if b then c0 else c1,(ρ̃,π),w,b)⇀sr (c0,(ρ̃,π
′),w,b)

sr-loop-tt

step(c,c′,w)=(tt,w′)

(b,ρ̃)⊢sr β̃ π′=π∧Π0(β̃)∧Π1(β̃) may(π′)

(while b do c0,(ρ̃,π),w,b)⇀sr (c0; while b do c0,(ρ̃,π),w
′,b)

sr-loop-tf

step(c,c′,w)=(tt,w′)

(b,ρ̃)⊢sr β̃ π′=π∧Π0(β̃)∧¬Π1(β̃) may(π′)

(while b do c0,(ρ̃,π),w,b)⇀sr ((c0; while b do c0)▷◁skip,(ρ̃,π
′),w′,b)

sr-loop-ft

step(c,c′,w)=(tt,w′)

(b,ρ̃)⊢sr β̃ π′=π∧¬Π0(β̃)∧Π1(β̃) may(π′)

(while b do c0,(ρ̃,π),w,b)⇀sr (skip▷◁(c0; while b do c0),(ρ̃,π
′),w′,b)

sr-loop-ff

step(c,c′,w)=(tt,w′)

(b,ρ̃)⊢sr β̃ π′=π∧¬Π0(β̃)∧¬Π1(β̃) may(π′)

(while b do c0,(ρ̃,π),w,b)⇀sr (skip,(ρ̃,π
′),w′,b)

sr-exit
(skip▷◁skip,(ρ̃,π),w,b)⇀sr (skip,(ρ̃,π),w,b)

sr-comp-r
(c1,(Π1(ρ̃),π),w,b)⇀s (c

′
1,(ρ

′
1,π

′),w′,b′)

(skip▷◁c1,(ρ̃,π),w,b)⇀sr (skip▷◁c
′
1,(LΠ0(ρ̃) |ρ′1M,π′),w′,b′)

sr-comp-l
(c0,(Π0(ρ̃),π),w,b)⇀s (c

′
0,(ρ

′
0,π

′),w′,b′)

(c0▷◁c1,(ρ̃,π),w,b)⇀sr (c
′
0▷◁c1,(Lρ

′
0 |Π1(ρ̃)M,π′),w′,b′)

sr-approx-many

step(while b do c,(c; while b do c),w)=(ff,w′)

ρ̃′′=modif(ρ̃,c) (b,ρ̃′′)⊢sr ⟨β0,β1⟩ π′≜π∧¬β0∧¬β1
(while b do c,(ρ̃,π),w,b)⇀sr (skip,(ρ̃

′′,π′),w′,ff)
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G RedSoundRSE step relation

RedSoundRSE is defined by rules of Appendix F plus rule sr-approx-many-dep.

sr-approx-many-dep

step(while b do c,(c; while b do c),w)=(ff,w′)

d=Jwhile b do cK♯D(τs→D(ρ̃)) ρ̃′′=modifD(ρ̃,c,λD→L(d))

(b,ρ̃′′)⊢sr ⟨β0,β1⟩ π′≜π∧¬β0∧¬β1
(while b do c,(ρ̃,π),w,b)⇀sr×D (skip,(ρ̃′′,π′),w′,ff)


