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Abstract. We develop a quenched thermodynamic formalism for open random dynami-
cal systems generated by finitely branched, piecewise-monotone mappings of the interval.
The openness refers to the presence of holes in the interval, which terminate trajectories
once they enter; the holes may also be random. Our random driving is generated by an
invertible, ergodic, measure-preserving transformation σ on a probability space (Ω,F ,m).
For each ω ∈ Ω we associate a piecewise-monotone, surjective map Tω : I → I, and a
hole Hω ⊂ [0, 1]; the map Tω, the random potential φω, and the hole Hω generate the
corresponding open transfer operator Lω. The paper is divided into two chapters. In the
first chapter we prove, for a contracting potential, that there exists a unique random prob-
ability measure νω supported on the survivor set Xω,∞ satisfying νσ(ω)(Lωf) = λωνω(f).
Correspondingly, we also prove the existence of a unique (up to scaling and modulo ν)
random family of functions ϕω that satisfy Lωϕω = λωϕσ(ω). Together, these provide
an ergodic random invariant measure µ = νϕ supported on the global survivor set X∞,
while ϕ combined with the random closed conformal measure yields a random absolutely
continuous conditional invariant measure (RACCIM) η supported on [0, 1]. Further, we
prove quasi-compactness of the transfer operator cocycle generated by Lω and exponential
decay of correlations for µ. The escape rates of the random closed conformal measure and
the RACCIM η coincide, and are given by the difference of the expected pressures for the
closed and open random systems. Finally, we prove that the Hausdorff dimension of the
surviving set Xω,∞ is equal to the unique zero of the expected pressure function for almost
every fiber ω ∈ Ω. We provide examples, including a large class of random Lasota-Yorke
maps with holes, for which the above results apply.
In the second chapter of the paper we consider quasi-compact linear operator cocycles
Ln
ω,0 := Lσn−1ω,0 ◦ · · · ◦ Lσω,0 ◦ Lω,0, and their small perturbations Ln

ω,ε. The operators
Lω,0 and Lω,ε need not be transfer operators. We prove an abstract ω-wise first-order
formula for the leading Lyapunov multipliers λω,ε = λω,0 − θω∆ω,ε + o(∆ω,ε), where ∆ω,ε

quantifies the closeness of Lω,ε and Lω,0. We then consider the situation where Ln
ω,0 is a

transfer operator cocycle for a closed random map cocycle Tn
ω and the perturbed transfer

operators Lω,ε are defined by the introduction of small random holes Hω,ε in [0, 1], cre-
ating a random open dynamical system. We obtain a first-order perturbation formula in
this setting, which reads λω,ε = λω,0 − θωµω,0(Hω,ε) + o(µω,0(Hω,ε)), where µω,0 is the
unique equivariant random measure (and equilibrium state) for the original closed ran-
dom dynamics. Our new machinery is then deployed to create a spectral approach for a
quenched extreme value theory that considers random dynamics and random observations.
An extreme value law is derived using the first-order terms θω. Further, in the setting of
random piecewise expanding interval maps, we establish the existence of random equi-
librium states and conditionally invariant measures for random open systems with small
holes via a random perturbative approach, in contrast to the cone-based arguments of the
first chapter. Finally we prove quenched statistical limit theorems for random equilibrium
states arising from contracting potentials. We illustrate all of the above theory with a
variety of examples.
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CHAPTER 0

Introduction

In this paper we develop a quenched thermodynamic formalism for random open dy-
namical systems, and their perturbations. This work may be seen as a successor to [3],
which was devoted to the construction of conformal measures and equilibrium states for
random potentials associated to countably branched random maps of the unit interval. We
now extend such a formalism to the more challenging setting of random open dynamical
systems. A random dynamical system is qualified to be open if it contains holes which
terminate trajectories once they enter.

The current paper is divided into two chapters. In the first chapter, the random holes
are allowed to be large ensuring that the asymptotic dynamics take place on a surviving
set and the objective will be to define equilibrium states and their variational principles.
A key step in this program will be the construction of (random) conditionally invariant
probability measures. Moreover we will give an explicit formula for the escape rate. In
the second chapter, the introduction of small random holes are seen as a perturbation of a
closed transfer operator. We will first develop a perturbation theory for (nonautonomous)
cocycles of transfer operators, which we will then use to study recurrence properties in the
small set with particular attention to extreme value theory. Then we will perturb with the
introduction of small random holes with measure tending to zero.

Summary of Chapter 1. Thermodynamic formalism for random interval maps
with holes

Deterministic closed transitive dynamics T : [0, 1] → [0, 1] with enough expansivity en-
joy a “thermodynamic formalism”: the transfer operator with a sufficiently regular potential
φ has a unique absolutely continuous invariant measure (ACIM) µ, absolutely continuous
with respect to the conformal measure ν. Furthermore, µ arises as an equilibrium state,
i.e. a maximiser of the sum of the integral of the potential φ and the metric entropy h(µ).

Continuing with the deterministic setting, if one introduces a hole H ⊂ [0, 1], the
situation becomes considerably more complicated. In the simplest case where the potential
is the usual geometric potential φ = − log |T ′|, because of the lack of mass conservation,
one expects at best an absolutely continuous conditionally invariant measure (ACCIM) µ,
conditioned according to survival from the infinite past. Absolute continuity is again with
respect to a conformal measure ν, which is supported on the survivor set X∞, the set of
points whose infinite forward trajectories remain in [0, 1]. Early work on the existence of
the ACCIM and exponential convergence of non-equilibrium densities, includes [64, 20].
The paper [53] handles general potentials that are contracting [54] for the closed system,
demonstrating exponential decay for µ. There has been further work on the Lorentz gas
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6 0. INTRODUCTION

and billiards [23, 24], intermittent maps [25, 27], and multimodal maps [26, 28]. In
the setting of diffeomorphisms with SRB measures, following the introduction of a hole,
relations between escape rates and the pressures have been studied in [29].

Looking to the fractal dimension of the surviving set X∞, the machinery of thermody-
namic formalism was first employed by Bowen [13] to find the Hausdorff dimension of the
limit sets of quasi-Fuchsian groups in terms of the pressure function, and then pioneered
in the setting of open dynamical systems in [63].

In the random setting, repeated iteration of a single deterministic map is replaced with
the composition of maps Tω : X → X drawn from a collection {Tω}ω∈Ω. A driving map σ :
Ω → Ω on a probability space (Ω,F ,m) creates a map cocycle T nω := Tσn−1ω ◦ · · · ◦Tσω ◦Tω.
The authors recently developed a complete, quenched thermodynamic formalism for ran-
dom, countably-branched, piecewise monotonic interval maps [3], enabling the treatment
of discontinuous, non-Markov Tω.

The situation of random open dynamics is relatively untouched. For a single piecewise
expanding map T : [0, 1] → [0, 1] with holes Hω randomly chosen in an i.i.d. fashion, [9]
consider escape rates for the annealed (averaged) transfer operator in the small hole limit
(the Lebesgue measure of the Hω goes to zero). In a similar setting, now assuming T to
be Markov and considering non-vanishing holes, [8] show existence of equilibrium states,
again for the annealed transfer operator. For the first time in [41] the authors consider
escape rates for quenched random open interval maps where they are able to show that the
escape rate is bounded above by the Lyapunov exponent of a Perron-Frobenius cocycle.
In [5], the authors consider random, full-branched interval maps with negative Schwarzian
derivative. The maps are allowed to have critical points, but the partition of monotonicity
and holes, made up of finitely many open intervals, are fixed and non-random. In this
setting the existence of a unique invariant random probability measure is proven as well as
a formula for the Hausdorff dimension of the surviving set. In our current setting, we do
not allow the existence of critical points, however our maps may have non-full branches,
and our partitions of monotonicity as well as our holes are allowed to vary randomly from
fiber to fiber.

Sequential systems with holes have been considered in [42], where a cocycle Tω of open
maps is generated by a single ω orbit. The maps (which include the hole) must be chosen
in a small neighborhood of a fixed map (with hole), in contrast to our setting where our
cocycle may include very different maps. Moreover in [42], Lebesgue is used as a reference
measure and the specific potential − log | detDT | is used. The theory is developed for
uniformly expanding maps in higher dimensions and the main goal is to establish the
“conditional memory loss”, a concept analogous to exponential decay of correlations for
closed dynamics.

Other related work includes [2], which considered non-transitive random interval maps
with holes. In [2] we proved a complete thermodynamic formalism for random interval
maps (i) containing sufficiently many full branches and (ii) random potentials satisfying a
strong contracting potential assumption. In the current work we treat maps that contain
no full branches and potentials that satisfy a significantly weaker contracting potential
assumption at the cost of assuming the closed system satisfies a mild covering condition.
This allows us to obtain results for a large class of random Lasota-Yorke maps (Section
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0. INTRODUCTION 7

1.15.2). Furthermore, the current work and that of [2] are complementary, and neither
work generalizes the other.

In Chapter 1 of the present paper, we establish a full, quenched thermodynamic formal-
ism for piecewise monotonic random dynamics with general potentials and general driving—
the random driving σ can be any invertible ergodic process on Ω. We begin with the random
closed dynamics dealt with in [3]: piecewise monotonic interval maps satisfying a random
covering condition; we have no Markovian assumptions, our maps may have discontinuities
and may lack full branches. The number of branches of our maps need not be uniformly
bounded above in ω and our potentials φω need not be uniformly bounded below or above
in ω. To this setting we introduce random holes Hω and formulate sufficient conditions
that guarantee a random conformal measure νω and corresponding equivariant measure µω
supported on the random survivor set Xω,∞, and a random ACCIM ηω supported on Hc

ω.
These augment the notion of a random contracting potential [3] with accumulation rates of
contiguous “bad” intervals (with zero conformal measure), and extend similar constructions
of [53] to the random situation.

To establish the existence of the family of measures (νω)ω∈Ω, we follow the limiting
functional approach of [54, 53] by defining a random functional Λω which is a limit of
ratios of transfer operators and then showing that Λω may be identified with the open
conformal measure νω. This technique improves on the approach of [3], which uses the
Schauder-Tichonov Fixed Point Theorem to prove the existence of νω,0, by eliminating the
extra steps necessary to show that the family (νω)ω∈Ω is measurable with respect to m.
Several steps are needed to achieve the construction of the conformal random measures.
We start in Section 1.4 by giving background material on Birkhoff cone techniques and the
construction of our random cones. In Section 1.5 we develop several random Lasota-Yorke
type inequalities in terms of the variation and the random functional Λω. Section 1.6 sees
the construction of a large measure set of “good” fibers ΩG ⊆ Ω for which we obtain cone in-
variance at a uniform time step, and in Section 1.7 we show that the remaining “bad” fibers
occur infrequently and behave sufficiently well. In Section 1.8 we collect further properties
of the random functional Λ, which are then used in Section 1.9 to construct a large measure
set of fibers ΩF ⊆ Ω for which we obtain cone contraction with a finite diameter image
in a random time step. Using Hilbert metric contraction arguments, Section 1.10 collects
together the fruits of Sections 1.6-1.9 to prove our main technical lemma (Lemma 1.10.1),
which is then used to (i) obtain the existence of a random density ϕ, (ii) prove the exis-
tence of a unique non-atomic random conformal measure ν, and (iii) a random T -invariant
measure µ which is absolutely continuous with respect to ν. All these facts are collected in
our first result (detailed statements can be found in Corollary 1.10.6, Proposition 1.10.8,
Lemma 1.10.9, Lemma 1.10.11, Proposition 1.10.14, Proposition 1.11.5, Lemma 1.11.7, and
Theorem 1.13.2).

Theorem A. Given a random open system (Ω,m, σ,J0, T,B,L0, ν0, ϕ0, Hε) (see Section
0.1.1) satisfying (T1)-(T3), (LIP), (GP), (A1)-(A2), and (Q1)-(Q3) (see Sections 1.1 and
1.3), the following hold.
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8 0. INTRODUCTION

(1) There exists a unique random probability measure ν ∈ PΩ(Ω × I) supported in
X∞ such that

νσ(ω)(Lωf) = λωνω(f),

for each f ∈ BV(I), where

λω := νσ(ω)(Lω1ω).

Furthermore, we have that log λω ∈ L1(m).
(2) There exists a function ϕ ∈ BVΩ(I) such that ν(ϕ) = 1 and for m-a.e. ω ∈ Ω we

have

Lωϕω = λωϕσ(ω).

Moreover, ϕ is unique modulo ν.
(3) The measure µ := ϕν is a T -invariant and ergodic random probability measure

supported in X∞ and the unique relative equilibrium state for the potential φ
satisfying the following variational principle:

EP (φ) = hµ(T ) +

∫
Ω×I

φdµ = sup
η∈PH

T,m(Ω×I)

(
hη(T ) +

∫
Ω×I

φdη

)
.

Furthermore, for each η ∈ PH
T,m(Ω) (the set of all random T -invariant Borel prob-

ability measures supported on Ω× I) different from µ we have that

hη(T ) +

∫
Ω×I

φdη < hµ(T ) +

∫
Ω×I

φdµ.

(4) There exists a random conditionally invariant probability measure η absolutely
continuous with respect to ν0, which is supported on ∪ω∈Ω({ω} × I\Hω), and
whose disintegrations are given by

ηω(f) :=
νω,0

(
1Hc

ω
ϕωf

)
νω,0

(
1Hc

ω
ϕω
)

for all f ∈ BV(I).

We also show that the operator cocycle is quasi-compact.

Theorem B. With the same hypotheses as Theorem A, for each f ∈ BV(I) there
exists a measurable function Ω ∋ ω 7→ D(ω) ∈ (0,∞) and κ ∈ (0, 1) such that for m-a.e.
ω ∈ Ω and all n ∈ N we have

∥ (λnω)
−1 Lnωf − νω(f)ϕσn(ω)∥∞ ≤ D(ω)∥f∥∞κn.

Furthermore, for all A ∈ B we have∣∣νω,0 (T−n
ω (A) |Xω,n

)
− ησn(ω)(A)

∣∣ ≤ D(ω)κn,

and all f ∈ BV ∣∣∣∣∣ηω
(
f |Xω,n

)
ηω (Xω,n)

− µω(f)

∣∣∣∣∣ ≤ D(ω)∥f∥∞κn.
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0. INTRODUCTION 9

For the proof of Theorem B, as well as a more general statement, see Theorem 1.11.2
and Corollary 1.11.8. From quasi-compactness we easily deduce the exponential decay of
correlations for the invariant measure µ.

Theorem C. With the same hypotheses as Theorem A, there exists a measurable
function Ω ∋ ω 7→ C(ω) ∈ (0,∞) such that for every h ∈ BV(I), every f ∈ L1(µ), every
κ ∈ (κ, 1), with κ as in Theorem B, every n ∈ N, and for m-a.e. ω ∈ Ω we have∣∣µω ((fσn(ω) ◦ T nω

)
h
)
− µσn(ω)(fσn(ω))µω(h)

∣∣ ≤ C(ω)∥fσn(ω)∥L1(µσn(ω))∥h∥∞κn.

Theorem C (stated in more detail in Theorem 1.11.3) is proven in Section 1.11. The
presence of holes leads naturally to introduce the notion of fiberwise escape rate R(ρω) of
the measure ρω from the holes; the definition in the random setting in given in 1.12.3. We
will show that the escape rate is constant m-almost everywhere and is given in terms of
the closed and open expected pressures, denoted with EP (φ) for a given potential φ, which
are properly defined in Definition 1.12.1.

Theorem D. With the same hypotheses as Theorem A, for m-a.e. ω ∈ Ω we have that

R(νω,0) = R(ηω) = EP (φ0)− EP (φ) =
∫
Ω

log
λω,0
λω

dm(ω).

Theorem D is proven in Section 1.12. The expected pressure function is further de-
veloped and used to prove a Bowen’s formula type result for the Hausdorff dimension of
the survivor set Xω,∞ for m-a.e. ω ∈ Ω in Section 1.14. This requires us to introduce the
bounded distortion property for a given potential, large images of the map T , and large
images with respect to the hole H; see Section 1.14 for the full definitions of these terms.
We therefore have:

Theorem E. With the same hypotheses as Theorem A, we additionally suppose that∫
Ω

log inf |T ′
ω| dm(ω) > 0

and g0 = 1/|T ′| has bounded distortion. Then there exists a unique h ∈ [0, 1] such that
EP (t) > 0 for all 0 ≤ t < h and EP (t) < 0 for all h < t ≤ 1.

Furthermore, if T has large images and large images with respect to H, then for m-a.e.
ω ∈ Ω

HD(Xω,∞) = h,

where HD(A) denotes the Hausdorff dimension of the set A.

The proof of Theorem E appears in Section 1.14.
In Section 1.15 we apply our general theory to a large class of random β-transformations

with random holes as well as a general random Lasota-Yorke maps with random holes.
In fact, our theory applies to all of the finitely-branched examples discussed in [3] (this
includes maps which are non-uniformly expanding or have contracting branches which
appear infrequently enough that we still maintain on-average expansion) when suitable
conditions are put on the holes Hω. This includes the case where Hω is composed of
finitely many intervals and the number of connected components of Hω is log-integrable
with respect to m.
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10 0. INTRODUCTION

Summary of Chapter 2. Perturbation formulae for quenched random
dynamics with applications to open systems and extreme value theory

The spectral approach to studying deterministic closed dynamical systems T : X → X
on a phase space X, centers on the analysis of a transfer operator L : B(X) → B(X), given
by Lf(y) =

∑
x∈T−1y e

φ(x)f(x), for f in a suitable Banach space B(X) and for suitable
potential function φ : X → R. If the map T is covering and the potential function is
contracting in the sense of [54] (or similarly if supφ < P (T ) as in [31, 30] or if supφ −
inf φ < htop(T ) as in [44, 17]), then one obtains the existence of an equilibrium state µ,
with associated conformal measure ν, with the topological pressure P (T ) and the density
of equilibrium state dµ/dν given by the logarithm of the leading (positive) eigenvalue λ
of L and the corresponding positive eigenfunction h, respectively. The map T exhibits an
exponential decay of correlations with respect to ν and µ.

Keller and Liverani [49] showed that the leading eigenvalue λ and eigenfunction h of L
vary continuously with respect to certain small perturbations of L. One example of such
a perturbation is the introduction of a small hole H ⊂ X. The set of initial conditions
of trajectories that never land in H is the survivor set X∞. For small holes, specialising
to Lasota-Yorke maps of the interval, Liverani and Maume-Dechamps [53] apply the per-
turbation theory of [49] to obtain the existence of a unique conformal measure ν and an
absolutely continuous conditionally invariant measure µ, with density h ∈ BV([0, 1]). The
leading eigenvalue λ is interpretable as an escape rate, and the open system displays an
exponential decay of correlations with respect to ν and µ.

To obtain finer information on the behaviour of λ with respect to perturbation size,
particularly in the situation where the perturbation is not smooth, such as perturbations
arising from the introduction of a hole, one requires some additional control on the pertur-
bation. Keller and Liverani [50] develop abstract conditions on L and its perturbations Lε
to ensure good first-order behaviour with respect to the perturbation size. Following [50],
several authors [35, 38, 59, 16] have used the Keller-Liverani [49] perturbation theory to
obtain similar first-order behaviour of the escape rate with respect to the perturbation size
for open systems in various settings.

This “linear response” of λ is exploited in Keller [48] to develop an elegant spectral
approach to deriving an exponential extreme value law to describe likelihoods of observing
extreme values from evaluating an observation function h : X → R along orbits of T . In
particular, the N → ∞ limiting law of

(0.0.1) ν
({
x ∈ X : h(T j(x)) ≤ zN , j = 0, . . . , N − 1

})
,

where the thresholds zN are chosen so that limN→∞Nµ({x : h(x) > zN}) → t for some
t > 0, is shown to be exponential. The spectral approach of [48] also provides a relatively
explicit expression for the limit of (0.0.1), namely

lim
N→∞

ν
({
x ∈ X : h(T j(x)) ≤ zN , j = 0, . . . , N − 1

})
= exp(−tθ0),

where θ0 is the extremal index.
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0. INTRODUCTION 11

In Chapter 2 we begin with sequential composition of linear operators Lnω,0 := Lσn−1ω,0◦
· · · ◦ Lσω,0 ◦ Lω,0, where σ : Ω → Ω is an invertible map on a configuration set Ω. The
driving σ could also be an ergodic map on a probability space (Ω,F ,m). We then consider
a family of perturbed cocycles Lnω,ε := Lσn−1ω,ε ◦ · · · ◦ Lσω,ε ◦ Lω,ε, where the size of the
perturbation Lω,0 − Lω,ε is quantified by the value ∆ω,ε (Definition 2.1.1). Our first main
result is an abstract quenched formula (Theorem 2.1.2) for the Lyapunov multipliers λω,0
up to first order in the size of the perturbation ∆ω,ε of the operators Lω,0. This quenched
random formula generalizes the main abstract first-order formula in [50] stated in the case
of a single deterministic operator L0.

Theorem F. Suppose that assumptions (P1)-(P9) hold (see Section 2.1). If ∆ω,ε > 0
for all ε > 0 then for m-a.e. ω ∈ Ω:

lim
ε→0

λω,0 − λω,ε
∆ω,ε

= 1−
∞∑
k=0

q̂
(k)
ω,0 =: θω,0.

The existence of a random quenched equilibrium state, conformal measure, escape rates,
and exponential decay of correlations is established in Chapter 1 for relatively large holes,
generalizing the large-hole constructions of [53] for a single deterministic map T to the
random setting with general driving. In contrast, the focus of Chapter 2 is to establish a
random quenched analogue of the results of [53], [50], and [48] discussed above. To this
end, we let Lω,ε be the transfer operator for the open map Tω with a hole Hω,ε introduced
in X, namely Lω,ε(f) = Lω(1X\Hω,εf). Our second collection of main results is a quenched
formula for the derivative of λω,ε with respect to the sample invariant probability measure
of the hole µω,0(Hω,ε) (Theorem 2.3.6), as well as a quenched formula for the derivative of
the fiberwise escape rate Rε(µω,0) with respect to the sample invariant probability measure
of the hole µω,0(Hω,ε) (Corollary 2.3.9).

Corollary G. If (Ω,m, σ,J0, T,B,L0, ν0, ϕ0, Hε) is a random open system (see Section
0.1.1) with µω,0(Hω) > 0 for all ε > 0 and (C1)–(C8) hold (see Section 2.3), then for m-a.e.
ω ∈ Ω:

lim
ε→0

1− λω,ε/λω,0
µω,0(Hω,ε)

= 1−
∞∑
k=0

q̂
(k)
ω,0 =: θω,0(0.0.2)

and

Rε(µω,0) =

∫
Ω

log λω,0 − log λω,ε dm(ω).

In addition, if (2.3.12) holds and the µω,0-measures of the random holes scale with ε ac-
cording to (2.3.13), then for m-a.e. ω ∈ Ω

lim
ε→0

Rε(µω,0)

µω,0(Hω,ε)
=

∫
Ω

θω,0 dm(ω).

To generalize to the random setting the rescaled distribution of the maxima given by
(0.0.1), we now consider the real-valued random observables hω defined on the phase space
X and construct a process hσjω ◦ T jω. We are interested in determining the limiting law of

(0.0.3) µω,0
({
x ∈ X : hσjω(T

j
ω(x)) ≤ zσjω,N , j = 0, . . . , N − 1

})
,
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12 0. INTRODUCTION

where {zσjω,N}0≤j≤N−1 is a collection of real-valued thresholds. The sample probability
measure µω,0 enjoys the equivariance property T ∗

ωµω,0 = µσω,0, however the process hσjω ◦T jω
is not stationary in the probabilistic sense, which makes the theory slightly more difficult.

The first approach to non-stationary extreme value theory (EVT) was given under
convenient assumptions, by Hüsler in [46, 47]. He was able to recover the usual extremal
behaviour seen for i.i.d. or stationary sequences under Leadbetter’s conditions [51], namely
(i) guaranteed mixing properties for the probability measure governing the process and (ii)
that the exceedances should appear scattered through the time period under consideration.
Hüsler’s results can not be applied in the dynamical systems setting because his uniform
bounds on the control of the exceedances are not satisfied for deterministic, random, or
sequential compositions of maps. The first contribution dealing explicitly with extreme
value theory for random and sequential systems is the paper [39]; see also [37] for an
application to point processes. These works were an adaptation of Leadbetter’s conditions
and Hüsler’s approach: let us call them the probabilistic approach to extreme value theory,
to distinguish it from the spectral and perturbative approach used in the current paper.

As in the deterministic case, in order to avoid a degenerate limit distribution, one should
conveniently choose the thresholds zσjω,N . Hüsler proved convergence to the Gumbel’s law
if for some 0 < t <∞ we have convergence of the sum

(0.0.4)
N−1∑
j=0

µω,0
(
hσjω(T

j
ω(x)) > zσjω,N

)
→ t

for m-a.e. ω. In our current framework we will additionally allow the positive number t to
be any positive random variable in L∞(m). The nonstationary theory developed in [39]
for quenched random processes, has the further restrictions that the observation function
is fixed (ω-independent), and the thresholds zN (like the scaling t) are just real numbers,
and requires the obvious restricted equivalent of (0.0.4). In our framework the observation
function hω, the scaling tω, and the thresholds zω,N may all be random (but need not be).
We generalize and simplify the requirement (0.0.4) to

(0.0.5) Nµω,0 (hω(x) > zω,N) = tω + ξω,N ,

where the scaling t may be a random variable t ∈ L∞(m) and the “errors” ξω,N satisfy (i)
limN→∞ ξω,N = 0 a.e., and (ii) |ξω,N | ≤ W <∞ for a.e. ω and all sufficiently large N .

We provide a more detailed discussion of the relationship between the conditions (0.0.4)
and (0.0.5) at the end of Section 2.4.

In summary, we derive a spectral approach for a quenched random extreme value law,
where the dynamics Tω is random, the observation functions hω can be random, the thresh-
olds controlling what is an extreme value can be random, and the scalings of the likelihoods
of observing extreme values can be random, all controlled by general invertible ergodic driv-
ing. Moreover, we obtain a formula for the explicit form of Gumbel law for the extreme
value distribution. This leads to our main extreme value theory result (stated in detail
later as Theorem 2.4.5):

Theorem H. For a random open system (Ω,m, σ,J0, T,B,L0, ν0, ϕ0, Hε) (see Section
0.1.1), assuming (C1’), (C2), (C3), (C4’), (C5’), (C7’), (C8), and (S) (see Sections 2.3 and
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0. INTRODUCTION 13

2.4), for m-a.e. ω ∈ Ω one has

lim
N→∞

νω,0
(
x ∈ X : hσjω(T

j
ω(x)) ≤ zσjω,N , j = 0, . . . , N − 1

)
= lim

N→∞
µω,0

(
x ∈ X : hσjω(T

j
ω(x)) ≤ zσjω,N , j = 0, . . . , N − 1

)
= exp

(
−
∫
Ω

tωθω,0 dm(ω)

)
,

where νω,0 and µω,0 are the random conformal measure and the random invariant measure,
respectively, for our random dynamics, tω is a random scaling function, and θω,0 is an
ω-local extremal index corresponding to the quantity given in Corollary G.

This result generalizes the spectral approach to extreme value theory in [48], for a single
map T , single observation function h, single scaling, and single sequence of thresholds.

Given a family of random holes Hω,N := {Hσjω,εN}j≥0, one can define the first (random)
hitting time to a hole, starting at initial condition x and random configuration ω:

τω,Hω,N
(x) := inf{k ≥ 1, T kω (x) ∈ Hσkω,εN}.

When this family of holes shrink with increasing N according to Condition (S) (see Section
2.4.3), Theorem H provides a description of the statistics of random hitting times, scaled
by the measure of the holes (see Theorem 2.4.7).

Corollary I. For a random open system (Ω,m, σ,J0, T,B,L0, ν0, ϕ0, Hε) (see Section
0.1.1), assume (C1’), (C2), (C3), (C4’), (C5’), (C7’), (C8), and (S) (see Sections 2.3 and
2.4). For m-a.e. ω ∈ Ω one has

(0.0.6) lim
N→∞

µω,0
(
τω,Hω,N

µω,0(Hω,εN ) > tω
)
= exp

(
−
∫
Ω

tωθω,0 dm(ω)

)
.

By assuming some additional uniformity in ω on the maps Tω we use a recent random
perturbative result [22] to obtain a complete quenched thermodynamic formalism. The
following existence result extends Theorem C of [53], which concerned inserting a single
small hole into the phase space of a single deterministic map T , to the situation of random
map cocycles with small random holes with the random process controlled by general
invertible ergodic driving σ.

Theorem J. Suppose that (E1)–(E9) (see Section 2.5) hold for the random open sys-
tem (Ω,m, σ, [0, 1], T,BV([0, 1]),L0, ν0, ϕ0, Hε) (see Section 0.1.1). Then for each ε > 0 suf-
ficiently small there exists a unique random T -invariant probability measure µε = {µω,ε}ω∈Ω
with supp(µω,ε) ⊆ Xω,∞,ε. Furthermore, µε is the unique relative equilibrium state for the
random open system and satisfies a forward and backward exponential decay of correla-
tions. In addition, there exists a random absolutely continuous (with respect to {νω,0}ω∈Ω)
conditionally invariant probability measure ϱε = {ϱω,ε}ω∈Ω with supp(ϱω,ε) ⊆ [0, 1]\Hω,ε

and density function ψω,ε ∈ BV([0, 1]).

For a more explicit statement of Theorem J as well as the relevant assumptions and
definitions see Section 2.5 and Theorem 2.5.12.
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14 0. INTRODUCTION

In Section 2.6 we prove some quenched limit theorems for closed random dynamics.
These limit results are new for more general potentials and their associated equilibrium
states. We use two approaches. The first is based on the perturbative technique developed
in [32], which generalizes the Nagaev-Guivarc’h method to random cocycles. This tech-
nique establishes a relation between a suitable twisted operator cocycle and the distribution
of the random Birkhoff sums. As a consequence, it is possible to get quenched versions of
the large deviation principle, the central limit theorem, and the local central limit theorem.
The second approach invokes the martingale techniques previously used in the quenched
random setting in [33]. We obtain the almost sure invariance principle (ASIP) for the equi-
variant measure µω,0, which also implies the central limit theorem and the law of iterated
logarithms, a general bound for large deviations and a dynamical Borel-Cantelli lemma. In
addition, using the Sprindzuk theorem we are able to obtain a quenched shrinking target
result.

We conclude in Section 2.7 with several explicit examples of Theorems F–J. We start
in Example 2.7.1 with the weight 1/T ′

ω for a family of random maps, random scalings,
and random observations hω with a common extremum location in phase space, which is
a common fixed point of the Tω. The special cases of a fixed map T on the one hand,
and a fixed scaling t on the other, are also considered. The same calculations can be
extended to observation functions with common extrema on a periodic orbit common to all
Tω. Next in Example 2.7.2 we consider the more difficult case where orbits are distributed
according to equilibrium states of a general geometric weight |DTω|−r, using random β-
maps and random observation functions hω with a common extremum at x = 0. Example
2.7.3 investigates a fixed map T with random observation functions hω with extrema in a
shrinking neighbourhood of a fixed point of T , where the neighbourhood lacks the symmetry
of Example 2.7.1. In the last example, Example 2.7.4, we again consider random maps Tω
with random observations hω, but now the maxima of the observations are not related to
fixed or periodic points of Tω.

Though we apply our results to the setting of random interval maps our results apply
equally well to other random settings including random subshifts [11, 56], random distance
expanding maps [57], random polynomial systems [15], random transcendental maps [58].
In addition, Theorem F (as well as (0.0.2) of Corollary G) applies to sequential and semi-
group settings including [4, 62]. See Remark 2.5.13 for a sequential version of Theorem
J.

0.1. Preliminaries on random open systems

In this section we introduce the general setup of random open systems. We begin with
a probability space (Ω,F ,m) and an ergodic, invertible map σ : Ω → Ω which preserves
the measure m, i.e.

m ◦ σ−1 = m.

We will refer to the tuple (Ω,F ,m, σ) as the base dynamical system. For each ω ∈ Ω, let
Jω,0 be a closed subset of a complete metrisable space X such that the map

Ω ∋ ω 7−→ Jω,0
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0.1. PRELIMINARIES ON RANDOM OPEN SYSTEMS 15

is a closed random set, i.e. Jω,0 ⊆ X is closed for each ω ∈ Ω and the map ω 7→ Jω,0 is
measurable (see [21]), and we consider the maps

Tω : Jω,0 → Jσω,0.
By T nω : Jω,0 → Jσnω,0 we mean the n-fold composition

Tσnω ◦ · · · ◦ Tω : Jω,0 → Jσnω,0.

Given a set A ⊆ Jσnω,0 we let

T−n
ω (A) := {x ∈ Jω,0 : T nω (x) ∈ A}

denote the inverse image of A under the map T nω for each ω ∈ Ω and N ≥ 1. Now let

J0 :=
⋃
ω∈Ω

{ω} × Jω,0 ⊆ Ω×X,

and define the induced skew-product map T : J0 → J0 by

T (ω, x) = (σω, Tω(x)).

Let B denote the Borel σ-algebra of X and let F ⊗B be the product σ-algebra on Ω×X.
Throughout the text we denote Lebesgue measure by Leb. We suppose the following:

(M1) The map T : J0 → J0 is measurable with respect to F ⊗ B.

Definition 0.1.1. A measure µ on Ω×X with respect to the product σ-algebra F ⊗B
is said to be random measure relative to m if it has marginal m, i.e. if

µ ◦ π−1
1 = m.

The disintegrations {µω}ω∈Ω of µ with respect to the partition ({ω} ×X)ω∈Ω satisfy the
following properties:

(1) For every B ∈ B, the map Ω ∋ ω 7−→ µω(B) ∈ [0,∞] is measurable,
(2) For m-a.e. ω ∈ Ω, the map B ∋ B 7−→ µω(B) ∈ [0,∞] is a Borel measure.

We say that the random measure µ = {µω}ω∈Ω is a random probability measure if for m-a.e.
ω ∈ Ω the fiber measure µω is a probability measure. Given a set Y = ∪ω∈Ω {ω} × Yω ⊆
Ω × X, we say that the random measure µ = {µω}ω∈Ω is supported in Y if supp(µ) ⊆ Y
and consequently supp(µω) ⊆ Yω for m-a.e. ω ∈ Ω. We let PΩ(Y ) denote the set of all
random probability measures supported in Y . We will frequently denote a random measure
µ by {µω}ω∈Ω.

The following proposition from Crauel [21], shows that a random probability measure
{µω}ω∈Ω on J0 uniquely identifies a probability measure on J0.

Proposition 0.1.2 ([21], Propositions 3.3). If {µω}ω∈Ω ∈ PΩ(J0) is a random proba-
bility measure on J0, then for every bounded measurable function f : J0 → R, the function

Ω ∋ ω 7−→
∫
Jω,0

f(ω, x) dµω(x)
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16 0. INTRODUCTION

is measurable and

F ⊗ B ∋ A 7−→
∫
Ω

∫
Jω,0

1A(ω, x) dµω(x) dm(ω)

defines a probability measure on J0.

For functions f : J0 → R and F : Ω → R we let

Sn,T (fω) :=
n−1∑
j=0

fσj(ω) ◦ T jω and Sn,σ(F ) :=
n−1∑
j=0

F ◦ σj

denote the Birkhoff sums of f and F with respect to T and σ respectively. We will
consider a potential of the form φ0 : J0 → R, and for each n ≥ 1 we consider the weight
g
(n)
0 : J0 → R whose disintegrations are given by

g
(n)
ω,0 := exp(Sn,T (φω,0)) =

n−1∏
j=0

g
(1)

σjω,0
◦ T jω(0.1.1)

for each ω ∈ Ω. We will often denote g(1)ω,0 by gω,0. We assume there exists a family of
Banach spaces {Bω, ∥·∥Bω}ω∈Ω of real-valued functions on each Jω,0 with gω,0 ∈ Bω such
that the fiberwise (Perron-Frobenius) transfer operator Lω,0 : Bω → Bσω given by

Lω,0(f)(x) :=
∑

y∈T−1
ω (x)

f(y)gω,0(y), f ∈ Bω, x ∈ Jσω,0(0.1.2)

is well defined. Using induction we see that iterates Lnω,0 : Bω → Bσnω of the transfer
operator are given by

Lnω,0(f)(x) :=
∑

y∈T−n
ω (x)

f(y)g
(n)
ω,0(y), f ∈ Bω, x ∈ Jσnω,0.

We let B denote the space of functions f : J0 → R such that fω ∈ Bω for each ω ∈ Ω and
we define the global transfer operator L0 : B → B by

(L0f)ω(x) := Lσ−1ω,0fσ−1ω(x)

for f ∈ B and x ∈ Jω,0. We assume the following measurability assumption:

(M2) For every measurable function f ∈ B, the map (ω, x) 7→ (L0f)ω(x) is measurable.

We suppose the following condition on the existence of a closed conformal measure.

(CCM) There exists a random probability measure ν0 = {νω,0}ω∈Ω ∈ PΩ(J0) and mea-
surable functions λ0 : Ω → R\ {0} and ϕ0 : J0 → (0,∞) with ϕ0 ∈ B such that

Lω,0(ϕω,0) = λω,0ϕσω,0 and νσω,0(Lω,0(f)) = λω,0νω,0(f)
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0.1. PRELIMINARIES ON RANDOM OPEN SYSTEMS 17

for all f ∈ Bω where ϕω,0(·) := ϕ0(ω, ·). Furthermore, we suppose that the fiber
measures νω,0 are non-atomic and that λω,0 := νσω,0(Lω,01) with log λω,0 ∈ L1(m).
We then define the random probability measure µ0 on J0 by

µω,0(f) :=

∫
Jω,0

fϕω,0 dνω,0, f ∈ L1(νω,0).(0.1.3)

From the definition, one can easily show that µ0 is T -invariant, that is,∫
Jω,0

f ◦ Tω dµω,0 =
∫
Jσω,0

f dµσω,0, f ∈ L1(µσω,0).(0.1.4)

Remark 0.1.3. Our Assumption (CCM) has been shown to hold in several random set-
tings: random interval maps [3, 2], random subshifts [11, 56], random distance expanding
maps [57], random polynomial systems [15], and random transcendental maps [58].

Definition 0.1.4. We will call the collection (Ω,m, σ,J0, T,B,L0, ν0, ϕ0) a closed ran-
dom dynamical system if the assumptions (M1), (M2), and (CCM) are satisfied.

We are now ready to introduce holes into the closed systems.

0.1.1. Random Open Systems. We let H ⊆ J0 be measurable with respect to
the product σ-algebra F ⊗ B on J0. For each ω ∈ Ω the sets Hω ⊆ Jω,0 are uniquely
determined by the condition that

{ω} ×Hω = H ∩ ({ω} × Jω,0) .(0.1.5)

Equivalently we have

Hω = π2(H ∩ ({ω} × Jω,0)),

where π2 : J0 → Jω,0 is the projection onto the second coordinate. By definition we have
that the sets Hω are νω,0-measurable. Now define

Jω := Jω,0\Hω,

and let

J :=
⋃
ω∈Ω

{ω} × Jω.

Throughout the manuscript, in particular Chapter 1, we denote 1ω := 1Jω . For each
ω ∈ Ω, n ≥ 0 we define

Xω,n : =
{
x ∈ Jω,0 : T jω(x) /∈ Hσjω for all 0 ≤ j ≤ n

}
=

n⋂
j=0

T−j
ω (Jσjω)(0.1.6)

to be the set of points in Jω which survive, i.e. those points whose trajectories do not
land in the holes, for N iterates. We then naturally define

Xω,∞ :=
∞⋂
n=0

Xω,n =
∞⋂
n=0

T−n
ω (Jσnω)(0.1.7)
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18 0. INTRODUCTION

to be the set of points which will never land in a hole under iteration of the maps T nω
for any n ≥ 0. We call Xω,∞ the ω-surviving set. Note that the sets Xω,n and Xω,∞ are
forward invariant satisfying the properties

Tω(Xω,n) ⊆ Xσω,n−1 and Tω(Xω,∞) ⊆ Xσω,∞.(0.1.8)

Now for any 0 ≤ α ≤ ∞ we set

X̂ω,α := 1Xω,α =
α∏
j=0

1J
σjω

◦ T jω.

The global surviving set is defined as

Xα :=
⋃
ω∈Ω

{ω} ×Xω,α

for each 0 ≤ α ≤ ∞. Then X∞ ⊆ J is precisely the set of points that survive under
forward iteration of the skew-product map T . We will assume that the fiberwise survivor
sets are nonempty:

(X) For m-a.e. ω ∈ Ω we have Xω,∞ ̸= ∅.

As an immediate consequence of (X) we have that X∞ ̸= ∅. In fact, (X) together with
the forward invariance of the sets Xω,∞ imply that X∞ is infinite. The following proposition
presents a setting in which the survivor set is nonempty for random piecewise continuous
open dynamics.

Proposition 0.1.5. Suppose that for m-a.e. ω ∈ Ω there exist Vω, Uω,1, . . . , Uω,kω ⊆ Jω
nonempty compact subsets such that for m-a.e. ω ∈ Ω

(1) Tω|Uω ,j is continuous for each 1 ≤ j ≤ kω,
(2) Tω(Uω) ⊇ Vσω, where Uω := ∪kωj=1Uω,j ⊆ Vω for each ω.

Then Xω,∞ ̸= ∅ for m-a.e. ω ∈ Ω and consequently X∞ ̸= ∅. Furthermore, if

m({ω ∈ Ω : kω > 1}) > 0

then for m-a.e. ω ∈ Ω the survivor set Xω,∞ is uncountable.

Proof. For each 1 ≤ j ≤ kω let Tω,j : Uω,j → Jσω,0 denote the continuous map
Tω|Uω,j

, and let Tω,U : Uω → Jσω,0 denote the map Tω|Uω . Since Vσω is compact, for each
1 ≤ j ≤ kω we have that T−1

ω,j (Vσω) is a nonempty compact subset of Uω,j. Given n ≥ 1 let
γ = γ0γ1 . . . γn−1 be an n-length word with 1 ≤ γj ≤ kσjω for each 0 ≤ j ≤ n− 1. Let Γω,n
denote the finite collection of all such words of length n. Then for each n ≥ 1 and each
γ ∈ Γω,n

T−n
ω,γ (Vσnω) := T−1

ω,γ0
◦ · · · ◦ T−1

σn−1ω,γn−1
(Vσnω) ⊆ Uω,γ0

is compact. Furthermore, T−n
ω,γ (Vσnω) forms a decreasing sequence in Uω,γ0 . Hence, we see

that
T−n
ω,U(Vσnω) =

⋃
γ∈Γω,n

T−n
ω,γ (Vσnω)
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0.1. PRELIMINARIES ON RANDOM OPEN SYSTEMS 19

forms a decreasing sequence of compact subsets of Uω. Thus,

Xω,∞ =
∞⋂
n=0

T−n
ω (Vσnω) ⊇

∞⋂
n=0

T−n
ω,U(Vσnω) ̸= ∅

as desired. The final claim follows from the ergodicity of σ, which ensures that for a.e.
ω there are infinitely many j ∈ N such that kσjω > 1, and the usual bijection be-
tween a point in Xω,∞ and an infinite word γ in the fiberwise sequence space Σω :=
{γ = γ1γ2 · · · : 1 ≤ γj ≤ kσjω}. □

Now we define the perturbed operator Lω : Bω → Bσω by

Lω(f) := Lω,0 (f · 1Jω) =
∑

y∈T−1
ω (x)

f(y)1Jωgω,0(y) =
∑

y∈T−1
ω (x)

f(y)gω(y), f ∈ Bω,(0.1.9)

where for each ω ∈ Ω we define gω := gω,01Jω , and, similarly, for each n ∈ N,

g(n)ω :=
n−1∏
j=0

gσjω ◦ T jω.

Note that measurability of H ⊆ J0 and condition (M2) imply that for every f ∈ B the map
(ω, x) 7→ (Lf)ω(x) is also measurable. Iterates of the perturbed operator Lnω : Bω → Bσnω

are given by

Lnω := Lσn−1ω ◦ · · · ◦ Lω,
which, using induction, we may write as

Lnω(f) = Lnω,0
(
f · X̂ω,n−1

)
, f ∈ Bω.(0.1.10)

We denote the normalized transfer operator L̃ω : Bω → Bσω by

L̃ω := λ−1
ω Lω.

We define the sets Dω,n to be the support of Lnσ−n(ω)1σ−n(ω), that is, we set

Dω,n :=
{
x ∈ Jσ−nω,0 : Lnσ−n(ω)1σ−n(ω)(x) ̸= 0

}
.(0.1.11)

Note that, by definition, we have

Dω,n+1 ⊆ Dω,n

for each n ∈ N, and we similarly define

Dω,∞ :=
∞⋂
n=0

Dω,n.

From this moment on we will assume that for m-a.e. ω ∈ Ω we have that

Dω,∞ ̸= ∅.(D)

We let

D̂ω,α := 1Dω,α(0.1.12)

18 Oct 2022 02:26:55 PDT
221018-Vaienti Version 1 - Submitted to Asterisque
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for each 0 ≤ α ≤ ∞. Since Dω,n is the support of Lnσ−n(ω)1σ−n(ω), using the notation of
(0.1.12) we may write

Lnω(f) = D̂σn(ω),nLnω(f).

More generally, we have that, for k > j, Dσk(ω),j is the support of Lj
σk−j(ω)

1, i.e.

Lj
σk−j(ω)

(f) = D̂σk(ω),jLjσk−j(ω)
(f)(0.1.13)

for f ∈ L1(νσk(ω),0). Note that

Dω,n = T nσ−n(ω)(Xσ−n(ω),n−1).(0.1.14)

Finally, we note that since g(n)ω := g
(n)
ω,0|Xω,n−1 , for each n ∈ N we have that

inf g
(n)
ω,0 ≤ inf

Xω,n−1,ε

g(n)ω ≤ ∥g(n)ω ∥∞ ≤ ∥g(n)ω,0∥∞(0.1.15)

and
inf g

(n)
ω,0 ≤ inf

Dσn(ω),∞
Lnω1ω ≤ ∥Lnω1ω∥∞ ≤ ∥Lω,01∥∞.(0.1.16)

Remark 0.1.6. We note that if Tω(Jω) = Jσω,0 for m-a.e. ω, then
Dω,∞ = Jω,0

for m-a.e. ω ∈ Ω.

Definition 0.1.7. We will call a closed random dynamical system (Ω,m, σ,J0, T,B,
L0, ν0, ϕ0) (meaning that (M1), (M2), and (CCM) are satisfied) a random open system if
assumptions (D) and (X) are also satisfied. We let (Ω,m, σ,J0, T,B,L0, ν0, ϕ0, H) denote
the random open system generated by the random maps Tω : Jω,0 → Jσω,0 and random
holes Hω ⊆ Jω,0.
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CHAPTER 1

Thermodynamic formalism for random interval maps with holes

In this first chapter we consider fixed random holes Hω and the main objective will
be to construct a random conformal measure νω and corresponding equivariant measures
µω supported on the random survivor set Xω,∞. The measures µω will be shown to be the
unique relative equilibrium state for the potential φ. We will also get a random absolutely
continuous conditionally invariant measure ηω supported on Hc

ω. Successively we define the
escape rate of the closed conformal measure and show that it equals the difference of the
expected pressures of the closed and open random systems. Finally we establish a Bowen’s
like formula for the Hausdorff dimension of the survivor set for a specific potential.

1.1. Preliminaries of random interval maps with holes

We begin with a base dynamical system (Ω,F ,m, σ), i.e. the map σ : Ω → Ω is
invertible, ergodic, and preserves the measure m. For the remainder of Chapter 1 for each
ω ∈ Ω we take Jω,0 = I to be a compact interval in R, and we consider the map Tω : I → I
such that there exists a finite partition Zω of I such that

Tω : I → I is surjective,(T1)
Tω(Z) is an interval for each Z ∈ Zω,(T2)
Tω|Z is continuous and strictly monotone for each Z ∈ Zω.(T3)

In addition, we will assume that

log#Zω ∈ L1(m).(LIP)

The maps Tω induce the skew product map T : Ω× I → Ω× I given by

T (ω, x) = (σ(ω), Tω(x)).

For each n ∈ N we consider the fiber dynamics of the maps T nω : I → I given by the
compositions

T nω (x) = Tσn−1(ω) ◦ · · · ◦ Tω(x).

We let Z(n)
ω , for n ≥ 2, denote the monotonicity partition of T nω on I which is given by

Z(n)
ω :=

n−1∨
j=0

T−j
ω

(
Zσj(ω)

)
.

Given Z ∈ Z(n)
ω , we denote by

T−n
ω,Z : T nω (Z) −→ Z

21
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22 1. THERMODYNAMIC FORMALISM FOR RANDOM INTERVAL MAPS WITH HOLES

the inverse branch of T nω which takes T nω (x) to x for each x ∈ Z. We will assume that the
partitions Zω are generating, i.e.

∞∨
n=1

Z(n)
ω = B,(GP)

where B = B(I) denotes the Borel σ-algebra of I. Let B(I) denote the set of all bounded
real-valued functions on I and for each f ∈ B(I) and each A ⊆ I let

varA(f) := sup

{
k−1∑
j=0

|f(xj+1)− f(xj)| : x0 < x1 < . . . xk, xj ∈ A for all k ∈ N

}
,

denote the variation of f over A. If A = I we denote var(f) := varI(f). We let

BV(I) := {f ∈ B(I) : var(f) <∞}

denote the set of functions of bounded variation on I. For each ω ∈ Ω we will set the
Banach space Bω = BV(I). Let

∥f∥∞ := sup(|f |) and ∥f∥BV := var(f) + ∥f∥∞
be norms on the respective Banach spaces B(I) and BV(I). Given a function f : Ω×I → R,
by fω : I → I we mean

fω(·) := f(ω, ·).

Definition 1.1.1. We say that a function f : Ω× I → R is random bounded if
(i) fω ∈ B(I) for each ω ∈ Ω,
(ii) for each x ∈ I the function Ω ∋ ω 7→ fω(x) is measurable,
(iii) the function Ω ∋ ω 7→ ∥fω∥∞ is measurable.

Let BΩ(I) denote the collection of all random bounded functions on Ω× I.

Definition 1.1.2. We say that a function f ∈ BΩ(I) is of random bounded variation if
fω ∈ BV(I) for each ω ∈ Ω. We let BVΩ(I), which will take the place of the space B from
Section 0.1, denote the set of all random bounded variation functions.

As in (0.1.2), we define the (closed) transfer operator, Lω,0 : B(I) → B(I), with respect
to the potential φ0 : Ω× I → R by

Lω,0(f)(x) :=
∑

y∈T−1
ω (x)

gω,0(y)f(y); f ∈ B(I), x ∈ I.

For each ω ∈ Ω we let B∗(I) and BV∗(I) denote the respective dual spaces of B(I) and
BV(I). We let L∗

ω,0 : B∗(I) → B∗(I) denote the dual transfer operator.

Definition 1.1.3. We will say that a measurable potential φ0 : Ω×I → R is admissible
if for m-a.e. ω ∈ Ω we have

inf φω,0, supφω,0 ∈ L1(m),(A1)
gω,0 ∈ BV(I).(A2)
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1.1. PRELIMINARIES OF RANDOM INTERVAL MAPS WITH HOLES 23

Remark 1.1.4. Note that if φω,0 ∈ BV(I) for each ω ∈ Ω then (A2) is immediate.
Furthermore, as φω,0 ∈ B(I) we also have that inf g

(n)
ω,0 > 0 for m-a.e. ω ∈ Ω and each

n ∈ N.

As an immediate consequence of (A1) we have that

log inf gω,0, log ∥gω,0∥∞ ∈ L1(m).(1.1.1)

Note that since we can write

g
(n)
ω,0 :=

n−1∏
j=0

gσj(ω),0 ◦ T jω.

for each n ∈ N we must have that g(n)ω,0 ∈ BV(I). Clearly we have that the sequence ∥g(n)ω,0∥∞
is submultiplicative, i.e.

∥g(n+m)
ω,0 ∥∞ ≤ ∥g(n)ω,0∥∞ · ∥g(m)

σn(ω),0∥∞.

Similarly we see that the sequence inf g
(n)
ω,0 is supermultiplicative. Submultiplicativity and

supermultiplicativity of ∥g(n)ω,0∥∞ and inf g
(n)
ω,0 together with (1.1.1) gives that

log ∥g(n)ω,0∥∞, log inf g
(n)
ω,0 ∈ L1(m)(1.1.2)

for each n ∈ N. Our assumptions (T1) and (LIP) combined with (1.1.2) implies that

log ∥Lnω,01∥∞, log inf Lnω,01 ∈ L1(m)(1.1.3)

for each n ∈ N. Note that, in view of (0.1.15)-(0.1.16), (1.1.2) and (1.1.3), imply that

log inf
Xω,n−1

g(n)ω , log ∥g(n)ω ∥∞, log inf
Dσn(ω),n

Lnω1ω, log ∥Lnω,ε1ω∥∞ ∈ L1(m).(1.1.4)

The Birkhoff Ergodic Theorem then implies that the quantities in (0.1.15) and (0.1.16) are
tempered, e.g.

lim
|k|→∞

1

|k|
log inf g

(n)

σk(ω)
= 0

for m-a.e. ω ∈ Ω and each n ∈ N.
In addition to the assumptions (T1)-(T3), (A1), (A2), (GP), and (LIP) above, we note

that in our current setting assumption (M1) implies that
(M) The map T : Ω× I → Ω× I is measurable.

Furthermore, in our current setting our assumption (CCM) translates to the following:
(C) There exists a random probability measure ν0 = {νω,0}ω∈Ω ∈ PΩ(Ω × I) and

measurable functions λ0 : Ω → R\ {0} and ϕ0 : J0 → (0,∞) with ϕ0 ∈ BVΩ(I)
such that

Lω,0(ϕω,0) = λω,0ϕσω,0 and νσω,0(Lω,0(f)) = λω,0νω,0(f)
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24 1. THERMODYNAMIC FORMALISM FOR RANDOM INTERVAL MAPS WITH HOLES

for all f ∈ BV(I). Furthermore, we suppose that the fiber measures νω,0 are
non-atomic and that λω,0 := νσω,0(Lω,01) with log λω,0 ∈ L1(m). The T -invariant
random probability measure µ0 on Ω× I is given by

µω,0(f) :=

∫
I

fϕω,0 dνω,0, f ∈ L1(νω,0).

Remark 1.1.5. Note that (M) together with (A2) implies that for f ∈ BVΩ(I) we have
L0f ∈ BVΩ(I).

Remark 1.1.6. Examples which satisfy the conditions (T1)-(T3), (A1), (A2), (GP),
(LIP), (M), and (C) can be found in [3].

1.1.1. Random Interval Maps with Holes. We now wish to introduce holes into
the class of finite branched random weighted covering systems.

Let H ⊆ Ω× I be measurable with respect to the product σ-algebra F ⊗B on Ω× I.
By definition, i.e. (0.1.5), we have that the sets Hω are νω,0-measurable. Suppose that
0 < ν0(H) < 1, that is we have

0 <

∫
Ω

νω,0(Hω) dm(ω) < 1.

Now define

Iω := I\Hω.

and recall from Section 0.1 that we denote

1ω := 1Iω .

We then let

I := Hc =
⋃
ω∈Ω

{ω} × Iω.

For each ω ∈ Ω and n ≥ 0 we define the ω-surviving setsXω,n andXω,∞ as in (0.1.6)-(0.1.7).
By definition, for each n ∈ N, we have that

Tω(Xω,n) ⊆ Xσ(ω),n−1 and Tω(Xω,∞) ⊆ Xσ(ω),∞.

Note, however, that these survivor sets are, in general, only forward invariant and not
backward invariant. For notational convenience for any 0 ≤ α ≤ ∞ we set

X̂ω,α := 1Xω,α .

For each ω ∈ Ω we let φω = φω,0|Iω , and thus for each n ∈ N this gives

g(n)ω = g
(n)
ω,0|Xω,n−1 = exp (Sn,T (φω)) =

n−1∏
j=0

gσj(ω) ◦ T jω.

Now define the open operator Lω : L1(νω,0) → L1(νσ(ω),0), where ν0 comes from our as-
sumption (C) on the closed system, by

Lω(f) := Lω,0 (f · 1ω) , f ∈ L1(νω,0), x ∈ I.(1.1.5)
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1.2. RANDOM CONDITIONALLY INVARIANT PROBABILITY MEASURES 25

As a consequence of (1.1.5), we have that

Lω1 = Lω1ω.

Iterates of the open operator Lnω : L1(νω,0) → L1(νσn(ω),0) are given by

Lnω := Lσn−1(ω) ◦ · · · ◦ Lω,

which, using induction, we may write in terms of the closed operator Lω,0 as

Lnω(f) = Lnω,0
(
f · X̂ω,n−1

)
, f ∈ L1(νω,0).

1.2. Random conditionally invariant probability measures

In this section we introduce the notion of a random conditionally invariant measure and
give suitable conditions for their existence. As in the previous section, we consider random
interval maps with holes, however we would like to point out that the definitions, results,
and proofs of this section hold in the greater generality of Section 0.1. We begin with the
following definition.

Definition 1.2.1. We say that a random probability measure η ∈ PΩ(Ω × I) is a
random conditionally invariant probability measure (RCIM) if

ηω(T
−n
ω (A) ∩Xω,n) = ησn(ω)(A)ηω(Xω,n)(1.2.1)

for all n ≥ 0, ω ∈ Ω, and all Borel sets A ⊆ I. If a RCIM η is absolutely continuous
with respect to a random probability measure ζ we call η a random absolutely continuous
conditionally invariant probability measure (RACCIM) with respect to ζ.

Straight from the definition of a RCIM we make the following observations.

Observation 1.2.2. Note that if we plug A = Iω = Xω,0 into (1.2.1) with n = 0, we
have that

ηω(Iω) = η2ω(Iω),

which immediately implies that ηω(Iω) id either 0 or 1. If ηω(Hω) = 0 then we have that
ηω is supported in Iω.

Observation 1.2.3. Note that since

T−n
ω (Xσn(ω),m) ∩Xω,n = Xω,n+m

for each n,m ∈ N and ω ∈ Ω we have that if η is a RCIM then

ηω(Xω,n+m) = ηω(Xω,n)ησn(ω)(Xσn(ω),m)

for each n,m ∈ N. In particular, we have that

ηω(Xω,n) =
n−1∏
j=0

ησj(ω)(Xσj(ω),1).
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26 1. THERMODYNAMIC FORMALISM FOR RANDOM INTERVAL MAPS WITH HOLES

In light of Observation 1.2.3, given a RCIM η, for each ω ∈ Ω we let

αω := ηω(Xω,1).

Thus we have

αnω :=
n−1∏
j=0

ασj(ω) = ηω(Xω,n).(1.2.2)

We now prove a useful identity.

Lemma 1.2.4. Given any f, h ∈ BV(I), any ω ∈ Ω, and n ∈ N we have that∫
Iσn(ω)

h · Lnωf dνσn(ω),0 = λnω,0

∫
Xω,n

f · h ◦ T nω dνω,0.

Proof. To prove the identity we calculate the following:∫
Iσn(ω)

h · Lnωf dνσn(ω),0 =

∫
I

h · 1σn(ω) · Lnω,0
(
f · X̂ω,n−1

)
dνσn(ω),0

=

∫
I

Lnω
(
f(h ◦ T nω )(1σn(ω) ◦ T nω ) · X̂ω,n−1

)
dνσn(ω),0

= λnω,0

∫
I

f(h ◦ T nω ) · X̂ω,n dνω,0

= λnω,0

∫
Xω,n

f · h ◦ T nω dνω,0.

□

The following lemma gives a useful characterization of RACCIM (with respect to ν0)
in terms of the transfer operators Lω.

Lemma 1.2.5. Suppose η = 1Ihν0 is a random probability measure on I absolutely
continuous with respect to ν0, whose disintegrations are given by

ηω = 1ωhωνω,0.

Then η is a RACCIM (with respect to ν0) if and only if there exists αω > 0 such that

Lωhω = λω,0αωhσ(ω)(1.2.3)

for each ω ∈ Ω.

Proof. Beginning with the “reverse” direction, we first suppose (1.2.3) holds for all
ω ∈ Ω. Let A ∈ B (Borel σ-algebra). Using Lemma 1.2.4 gives

ηω(T
−n
ω (A) ∩Xω,n) =

∫
Xω,n

(1A ◦ T nω ) · hω dνω,0

= (λnω,0)
−1

∫
Iσn(ω)

1A · Lnωhω dνσn(ω),0

=

∫
Iσn(ω)

1A · αnωhσn(ω) dνσn(ω),0
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1.3. FUNCTIONALS AND PARTITIONS 27

= αnωησn(ω)(A).(1.2.4)

Inserting A = Iσn(ω) into (1.2.4) gives

ηω(T
−n
ω (Iσn(ω)) ∩Xω,n) = αnωησn(ω)(Iσn(ω)).

Observation 1.2.2 implies that ησn(ω)(Iσn(ω)) = 1, and thus

αnω = ηω(T
−n
ω (Iσn(ω)) ∩Xω,n) = ηω(Xω,n),

since T−n
ω (Iσn(ω)) ∩Xω,n = Xω,n. Thus, for A ∈ B we have

ηω(T
−n
ω (A) ∩Xω,n) = ησn(ω)(A)ηω(Xω,n)

as desired.
Now to prove the opposite direction, suppose ηω(1ωhω) is a RACCIM. Then by the

definition of a RCIM there exists αω such that for any A ∈ B we have

ηω(T
−n
ω (A) ∩Xω,n) = αnωησn(ω)(A).

So we calculate

(λnω,0)
−1

∫
Iσn(ω)

1A · Lnωhω dνσn(ω),0 =

∫
Xω,n

(1A ◦ T nω )hω dνω,0 = ηω(T
−n
ω (A) ∩Xω,n)

= αnωησn(ω)(A) = αnω

∫
Iσn(ω)

1A · hσn(ω) dνσn(ω),0.

So we have

Lnωhω = λnω,0α
n
ωhσn(ω),

which completes the proof. □

1.3. Functionals and partitions

In this section we follow [54, 53] and introduce the random functional Λω that we will
later show is equivalent to the conformal measure for the open system. We also introduce
certain refinements of the partition of monotonicity which are used to define “good” and
“bad” intervals and are needed to state our main assumptions on the open system. Following
the statement of our main hypotheses, we state our main results.

We begin by defining the functional Λω : BV(I) → R by

Λω(f) := lim
n→∞

inf
x∈Dσn(ω),n

Lnω(f)(x)
Lnω(1ω)(x)

, f ∈ BV(I).(1.3.1)

We note that this limit exists as the sequence is bounded and increasing. Indeed, we have
that

−∥f∥∞ ≤ inf
x∈Dσn(ω),n

Lnω(f)(x)
Lnω(1ω)(x)

≤ ∥f∥∞,(1.3.2)

and to see that the ratio is increasing we note that

inf
x∈Dσn+1(ω),n+1

Ln+1
ω (f)(x)

Ln+1
ω (1ω)(x)

= inf
x∈Dσn+1(ω),n+1

Lσn(ω)

(
D̂σn(ω),n · Lnω(f)

)
(x)

Ln+1
ω (1ω)(x)
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28 1. THERMODYNAMIC FORMALISM FOR RANDOM INTERVAL MAPS WITH HOLES

= inf
x∈Dσn+1(ω),n+1

Lσn(ω)

(
D̂σn(ω),n · Lnω(1ω) ·

Ln
ω(f)

Ln
ω(1ω)

)
(x)

Ln+1
ω (1ω)(x)

≥ inf
x∈Dσn(ω),n

Lnω(f)(x)
Lnω(1ω)(x)

· inf
x∈Dσn+1(ω),n+1

Lσn(ω)

(
D̂σn(ω),n · Lnω (1ω)

)
(x)

Ln+1
ω (1ω)(x)

= inf
x∈Dσn(ω),n

Lnω(f)(x)
Lnω(1ω)(x)

.(1.3.3)

In particular, (1.3.2) of the above argument gives that
−∥f∥∞ ≤ inf f ≤ Λω(f) ≤ ∥f∥∞.(1.3.4)

Observation 1.3.1. One can easily check that the functional Λω has the following
properties.

(1) Λω(1) = Λω(1ω) = 1.
(2) Λω is continuous with respect to the supremum norm.
(3) f ≥ h implies that Λω(f) ≥ Λω(h).
(4) Λω(cf) = cΛω(f).
(5) Λω(f + h) ≥ Λω(f) + Λω(h).
(6) Λω(f + a) = Λω(f) + a for all a ∈ R.
(7) If A ∩Xω,n = ∅ for some n ∈ N then Λω(1A) = 0.

Furthermore, we note that the homogeneity (4) and super-additivity (5) imply that Λω is
convex. In the sequel, we will show that Λω is in fact linear, and can thus be associated
with a unique probability measure on Iω via the Riesz Representation Theorem.

Remark 1.3.2. Let f ∈ BV(I), then for all x, y ∈ Iω we have
f(x) ≤ f(y) + var(f).

Using property (2) of Λω, together with (1.3.2), implies
f(x) ≤ inf f + var(f) ≤ Λω(f) + var(f) ≤ ∥f∥∞ + var(f).(1.3.5)

We set
ρω := Λσ(ω) (Lω(1ω)) .(1.3.6)

The following propositions concern various estimates of ρω. We begin by setting

ρ(n)ω := inf
x∈Dσn+1(ω),n

Lnσ(ω)(Lω(1ω))(x)
Lnσ(ω)(1σ(ω))(x)

.(1.3.7)

Then, by the definition and (1.3.3), we have that

ρ(n)ω ↗ Λσ(ω)(Lω(1ω)) = ρω(1.3.8)
as n→ ∞.

Remark 1.3.3. Note that (1.3.6) and the definition of Lω together immediately imply
that

inf
Iω
gω ≤ ρω ≤ ∥Lω1ω∥∞,(1.3.9)
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1.3. FUNCTIONALS AND PARTITIONS 29

and similarly, (1.3.7) implies that

inf
Iω
gω ≤ inf

Dσ(ω),1

Lω(1ω) = ρ(0)ω ≤ ρ(n)ω ≤ ∥Lω1ω∥∞ ≤ #Zω∥gω∥∞,(1.3.10)

for all ω ∈ Ω and n ≥ 0. Furthermore, (1.3.9), together with (1.1.4), gives that

log ρω ∈ L1(m).(1.3.11)

The ergodic theorem then implies that

lim
n→∞

1

n
log ρnω =

∫
Ω

log ρω dm(ω),

where

ρnω :=
n−1∏
j=0

ρσj(ω).

Proposition 1.3.4. There exists a measurable and finite m-a.e. function N∞ : Ω →
[1,∞] such that

Dω,n = Dω,∞

for all n ≥ N∞(ω). Furthermore, this implies that

inf
Dω,∞

Lnσ−n(ω)1σ−n(ω) > 0(1.3.12)

for all n ≥ N∞(ω).

Proof. We proceed via contradiction, assuming that there is a sequence (nk)
∞
k=1 in N

such that
Dσnk+1(ω),nk+1 ⊊ Dσnk+1(ω),nk

.

Let xnk
∈ Dσnk+1(ω),nk

\Dσnk+1(ω),nk+1. Then, we have that

ρ(nk)
ω = inf

x∈D
σnk+1(ω),nk

Lnk

σ(ω)(Lω(1ω))(x)
Lnk

σ(ω)(1σ(ω))(x)
≤

Lnk

σ(ω)(Lω(1ω))(xnk
)

Lnk

σ(ω)(1σ(ω))(xnk
)
.

By our choice of xnk
and by the definition (0.1.11), we have that the numerator of the

quantity on the right is zero, while its denominator is strictly positive. As this holds for
each k ∈ N, this implies that ρω = 0 for m-a.e. ω ∈ Ω, which contradicts (1.3.11). Thus,
we are done. □

Remark 1.3.5. Note that our assumption (D), that Dω,∞ ̸= ∅, is satisfied if Tω(Iω) ⊇
Iσ(ω) for m-a.e. ω ∈ Ω. Moreover, this also implies that ρω ≥ infIσ(ω)

Lω1ω > 0. This
occurs, for example if for m-a.e. ω ∈ Ω there exists a full branch, i.e. there exists Z ∈ Zω

with Tω(Z) = I, outside of the hole Hω, in which case we would have that Dω,∞ = I for
m-a.e. ω ∈ Ω.

We now describe various partitions, which depend on the functional Λω, that we will
used to obtain a Lasota-Yorke inequality in Section 1.5. Recall that Z(n)

ω denotes the
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30 1. THERMODYNAMIC FORMALISM FOR RANDOM INTERVAL MAPS WITH HOLES

partition of monotonicity of T nω . Now, for each n ∈ N and ω ∈ Ω we let A (n)
ω be the

collection of all finite partitions of I such that

varAi
(g(n)ω ) ≤ 2∥g(n)ω ∥∞(1.3.13)

for each A = {Ai} ∈ A (n)
ω .

Given A ∈ A (n)
ω , let Ẑ(n)

ω (A) be the coarsest partition amongst all those finer than A
and Z(n)

ω such that all elements of Ẑ(n)
ω (A) are either disjoint from Xω,n−1 or contained in

Xω,n−1. Now, define the following subcollections:

Z(n)
ω,∗ :=

{
Z ∈ Ẑ(n)

ω (A) : Z ⊆ Xω,n−1

}
,(1.3.14)

Z(n)
ω,b :=

{
Z ∈ Ẑ(n)

ω (A) : Z ⊆ Xω,n−1 and Λω(1Z) = 0
}
,(1.3.15)

Z(n)
ω,g :=

{
Z ∈ Ẑ(n)

ω (A) : Z ⊆ Xω,n−1 and Λω(1Z) > 0
}
.(1.3.16)

Remark 1.3.6. Note that in light of (1.3.1) and (1.3.3), for every Z ∈ Z(n)
ω,g we may

define the open covering time Mω(Z) ∈ N to be the least integer such that

inf
x∈D

σMω(Z)(ω),Mω(Z)

LMω(Z)
ω 1Z(x)

LMω(Z)
ω (1ω)(x)

> 0(1.3.17)

which is finite since the ratio in (1.3.17) increases to Λω(1Z) > 0. Conversely, given that
the ratio in (1.3.17) is increasing by (1.3.3) we see that, for Z ∈ Z(n)

ω,∗ , if there exists any
N ∈ N such that

inf
x∈D

σN (ω),N

LNω 1Z(x)
LNω (1ω)(x)

> 0,

then we must have that Λω(1Z) > 0 and equivalently Z ∈ Z(n)
ω,g .

We adapt the following definition from [53].

Definition 1.3.7. We say that two elements W,Z ∈ Z(n)
ω,∗ are contiguous if either W

and Z are contiguous in the usual sense, i.e. they share a boundary point, or if they are
separated by a connected component of ∪n−1

j=0T
−j
ω (Hσj(ω)).

We will consider random open systems that satisfy the following conditions.
(Q1) For each ω ∈ Ω and n ∈ N we let ξ(n)ω denote the maximum number of contiguous

elements of Z(n)
ω,b . We assume

lim
n→∞

1

n
log ∥g(n)ω ∥∞ + lim sup

n→∞

1

n
log ξ(n)ω < lim

n→∞

1

n
log ρnω =

∫
Ω

log ρω dm(ω).

(Q2) We assume that for each n ∈ N we have log ξ
(n)
ω ∈ L1(m).

(Q3) Let

δω,n := min
Z∈Z(n)

ω,g

Λω(1Z).(1.3.18)
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1.4. RANDOM BIRKHOFF CONES AND HILBERT METRICS 31

We assume that, for each n ∈ N, log δω,n ∈ L1(m).

Remark 1.3.8.
(1) Note that since limn→∞

1
n
log ξ

(n)
ω ≥ 0, assumption (Q1) implies that

lim
n→∞

1

n
log ∥g(n)ω ∥∞ < lim

n→∞

1

n
log ρnω.

(2) Since ∥gω∥∞ ≤ ∥gω,0∥∞ and infDσ(ω),∞ Lω1ω ≤ ρω to check (Q1) it suffices to have

lim
n→∞

1

n
log ∥g(n)ω,0∥∞ + lim

n→∞

1

n
log ξ(n)ω < lim

n→∞

1

n
log inf

Dσn(ω),∞
Lnω1ω.

(3) One can use the open covering times defined in (1.3.17) to check (Q3). Indeed,
note that if

N ≥Mω,n := max
{
Mω(Z) : Z ∈ Z(n)

ω,g

}
then we have that

δω,n ≥ min
Z∈Z(n)

ω,g

inf
x∈D

σN (ω),N

LNω 1Z(x)
LNω 1ω(x)

≥ min
Z∈Z(n)

ω,g

infx∈D
σN (ω),N

LNω 1Z(x)

∥LNω 1ω∥∞

≥
infXω,N−1

g
(N)
ω

∥LNω 1ω∥∞

≥
inf g

(N)
ω,0

∥LNω,01∥∞
> 0.

Thus (Q3) holds if log inf g(Mω,n)
ω,0 , log ∥LMω,n

ω,0 1ω∥∞ ∈ L1(m) for each n ∈ N.

Remark 1.3.9. In Section 1.15 we give several alternate hypotheses to our assumptions
(Q1)-(Q3) that are more restrictive, but much simpler to check.

1.4. Random Birkhoff cones and Hilbert metrics

In this section we first recall the theory of convex cones first used by Birkhoff in [10],
and then present the random cones on which our operator Lω will act as a contraction. We
begin with a definition.

Definition 1.4.1. Given a vector space V , we call a subset C ⊆ V a convex cone if C
satisfies the following:

(1) C ∩ −C = ∅,
(2) for all α > 0, αC = C,
(3) C is convex,
(4) for all f, h ∈ C and all αn ∈ R with αn → α as n → ∞, if h − αnf ∈ C for each

n ∈ N, then h− αf ∈ C ∪ {0}.
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Lemma 1.4.2 (Lemma 2.1 [54]). The relation ≤ defined on V by

f ≤ h if and only if h− f ∈ C ∪ {0}
is a partial order satisfying the following:

f ≤ 0 ≤ f =⇒ f = 0,(i)
λ > 0 and f ≥ 0 ⇐⇒ λf ≥ 0,(ii)
f ≤ h ⇐⇒ 0 ≤ h− f,(iii)
for all αn ∈ R with αn → α, αnf ≤ h =⇒ αf ≤ h,(iv)
f ≥ 0 and h ≥ 0 =⇒ f + h ≥ 0.(v)

The Hilbert metric on C is given by the following definition.

Definition 1.4.3. Define a distance Θ(f, h) by

Θ(f, h) := log
β(f, h)

α(f, h)
,

where

α(f, h) := sup {a > 0 : af ≤ h} and β(f, h) := inf {b > 0 : bf ≥ h} .

Note that Θ is a pseudo-metric as two elements in the cone may be at an infinite distance
from each other. Furthermore, Θ is a projective metric because any two proportional
elements must be zero distance from each other. The next theorem, which is due to Birkhoff
[10], shows that every positive linear operator that preserves the cone is a contraction
provided that the diameter of the image is finite.

Theorem 1.4.4 ([10]). Let V1 and V2 be vector spaces with convex cones C1 ⊆ V1 and
C2 ⊆ V2 and a positive linear operator L : V1 → V2 such that L(C1) ⊆ C2. If Θi denotes the
Hilbert metric on the cone Ci and if

∆ = sup
f,h∈C1

Θ2(Lf,Lh),

then

Θ2(Lf,Lh) ≤ tanh

(
∆

4

)
Θ1(f, h)

for all f, h ∈ C1.

Note that it is not clear whether (C,Θ) is complete. The following lemma of [54]
addresses this problem by linking the metric Θ with a suitable norm ∥·∥ on V .

Lemma 1.4.5 ([54], Lemma 2.2). Let ∥·∥ be a norm on V such that for all f, h ∈ V
if −f ≤ h ≤ f , then ∥h∥ ≤ ∥f∥, and let ϱ : C → (0,∞) be a homogeneous and order-
preserving function, which means that for all f, h ∈ C with f ≤ h and all λ > 0 we have

ϱ(λf) = λϱ(f) and ϱ(f) ≤ ϱ(h).

Then, for all f, h ∈ C ϱ(f) = ϱ(h) > 0 implies that

∥f − h∥ ≤
(
eΘ(f,h) − 1

)
min {∥f∥, ∥h∥} .
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Remark 1.4.6. Note that the choice ϱ(·) = ∥·∥ satisfies the hypothesis, however from
this moment on we shall make the choice of ϱ = Λω.

Definition 1.4.7. For each a > 0 and ω ∈ Ω let

Cω,a := {f ∈ BV(I) : f ≥ 0, var(f) ≤ aΛω(f)} .(1.4.1)

To see that this cone is non-empty, we note that the function f + c ∈ Cω,a for f ∈ BV(I)
and c ≥ a−1var(f)− infXω f . We also define the cone

Cω,+ := {f ∈ BV(I) : f ≥ 0} .

Let Θω,a and Θω,+ denote the Hilbert metrics induced on the respective cones Cω,a and
Cω,+. For each ω ∈ Ω, a > 0, and any set Y ⊆ Cω,a we let

diamω,a(Y ) := sup
x,y∈Y

Θω,a(x, y)

and

diamω,+(Y ) := sup
x,y∈Y

Θω,+(x, y)

denote the diameter of Y in the respective cones Cω,a and Cω,+ with respect to the respective
metrics Θω,a and Θω,+. The following lemma collects together the main properties of these
metrics.

Lemma 1.4.8 ([54], Lemmas 4.2, 4.3, 4.5). For f, h ∈ Cω,+ the Θω,+ distance between
f, h is given by

Θω,+(f, h) = log sup
x,y∈Xω

f(y)h(x)

f(x)h(y)
.

If f, h ∈ Cω,a, then

Θω,+(f, h) ≤ Θω,a(f, h),(1.4.2)

and if f ∈ Cω,ηa, for η ∈ (0, 1), we then have

Θω,a(1, f) ≤ log
∥f∥∞ + ηΛω(f)

min {infXω f, (1− η)Λω(f)}
.

1.5. Lasota-Yorke inequalities

The main goal of this section is to prove a Lasota-Yorke type inequality. We adopt the
strategy of [3], where we first prove a less-refined Lasota-Yorke inequality with (random)
coefficients that behave in a difficult manner, and then, using the first inequality, prove a
second inequality with measurable random coefficients and uniform decay on the variation
as in [18].

We now prove a Lasota-Yorke type inequality following the approach of [53] utilizing
the “good” and “bad” interval partitions defined in (1.3.14)-(1.3.16).
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Lemma 1.5.1. For all ω ∈ Ω, all f ∈ BV(I), and all n ∈ N there exist positive,
measurable constants A(n)

ω and B(n)
ω such that

var(Lnωf) ≤ A(n)
ω var(f) +B(n)

ω Λω(|f |),
where

A(n)
ω := (9 + 16ξ(n)ω )∥g(n)ω ∥∞

and

B(n)
ω := 8(2ξ(n)ω + 1)∥g(n)ω ∥∞δ−1

ω,n.

Proof. Since Lnω(f) = Lnω,0(f · X̂ω,n−1), if Z ∈ Ẑ(n)
ω (A)\Z(n)

ω,∗ , then Z ∩ Xω,n−1 = ∅,
and thus, we have Lnω(f1Z) = 0 for each f ∈ BV(I). Thus, considering only intervals Z in
Z(n)
ω,∗ , we are able to write

Lnωf =
∑

Z∈Z(n)
ω,∗

(1Zfg
(n)
ω ) ◦ T−n

ω,Z(1.5.1)

where
T−n
ω,Z : T nω (Iω) → Z

is the inverse branch which takes T nω (x) to x for each x ∈ Z. Now, since
1Z ◦ T−n

ω,Z = 1Tn
ω (Z),

we can rewrite (2.C.3) as

Lnωf =
∑

Z∈Z(n)
ω,∗

1Tn
ω (Z)

(
(fg(n)ω ) ◦ T−n

ω,Z

)
.(1.5.2)

So,

var(Lnωf) ≤
∑

Z∈Z(n)
ω,∗

var
(
1Tn

ω (Z)

(
(fg(n)ω ) ◦ T−n

ω,Z

))
.(1.5.3)

Now for each Z ∈ Z(n)
ω,∗ , using (2.5.10), we have

var
(
1Tn

ω (Z)

(
(fg(n)ω ) ◦ T−n

ω,Z

))
≤ varZ(fg(n)ω ) + 2 sup

Z

∣∣fg(n)ω

∣∣
≤ 3varZ(fg(n)ω ) + 2 inf

Z

∣∣fg(n)ω

∣∣
≤ 3∥g(n)ω ∥∞varZ(f) + 3 sup

Z
|f |varZ(g(n)ω ) + 2∥g(n)ω ∥∞ inf

Z
|f |

≤ 3∥g(n)ω ∥∞varZ(f) + 6∥g(n)ω ∥∞ sup
Z

|f |+ 2∥g(n)ω ∥∞ inf
Z

|f |

≤ 9∥g(n)ω ∥∞varZ(f) + 8∥g(n)ω ∥∞ inf
Z

|f |.(1.5.4)

Now, using (1.5.4), we may further estimate (1.5.3) as

var(Lnωf) ≤
∑

Z∈Z(n)
ω,∗

(
9∥g(n)ω ∥∞varZ(f) + 8∥g(n)ω ∥∞ inf

Z
|f |
)
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≤ 9∥g(n)ω ∥∞var(f) + 8∥g(n)ω ∥∞

 ∑
Z∈Z(n)

ω,g

inf
Z

|f |+
∑

Z∈Z(n)
ω,b

inf
Z

|f |

 .(1.5.5)

In order to investigate each of the two sums in the line above, we first note that as Z(n)
ω,g is

finite then, by definition, there exists a constant δω,n > 0 (defined by (1.3.18)) such that

inf
Z∈Z(n)

ω,g

Λω(1Z) ≥ 2δω,n > 0.

So, we may choose Nω,n ∈ N such that for x ∈ DσNω,n (ω),Nω,n
we have

inf
Z∈Z(n)

ω,g

LNω,n
ω (1Z)(x)

LNω,n
ω (1ω)(x)

≥ δω,n.(1.5.6)

Note that since this ratio is increasing we have that (1.5.6) holds for all Ñ ≥ Nω,n. Then
for each x ∈ DσNω,n (ω),Nω,n

and Z ∈ Z(n)
ω,g we have

LNω,n
ω (|f |1Z)(x) ≥ inf

Z
|f |LNω,n

ω (1Z)(x) ≥ inf
Z

|f |δω,nLNω,n
ω (1ω)(x).

In particular, for each x ∈ DσNω,n (ω),Nω,n
, we see that∑

Z∈Z(n)
ω,g

inf
Z

|f | ≤ δ−1
ω,n

∑
Z∈Z(n)

ω,g

LNω,n
ω (|f |1Z)(x)
LNω,n
ω (1ω)(x)

≤ δ−1
ω,n

LNω,n
ω (|f |)(x)

LNω,n
ω (1ω)(x)

.(1.5.7)

We are now interested in finding appropriate upper bounds for the sum∑
Z∈Z(n)

ω,b

inf
Z

|f |.

However, we must first be able to associate each of the elements of Z(n)
ω,b with one of the

elements of Z(n)
ω,g . To that end, let Z∗ and Z∗ denote the elements of Z(n)

ω,∗ that are the
furthest to the left and the right respectively. Now, enumerate each of the elements of
Z(n)
ω,g , Z1, . . . , Zk (clearly k depends on ω, n, and A), such that Zj+1 is to the right of Zj for

j = 1, . . . , k−1. Given Zj ∈ Z(n)
ω,g (1 ≤ j ≤ k), with Zj ̸= Z∗ let Jω,+(Zj) be the union of all

contiguous elements Z ∈ Z(n)
ω,b which are to the right of Zj and also to the left of Zj+1. In

other words, Jω,+(Zj) is the union of all elements of Z(n)
ω,b between Zj and Zj+1. Similarly,

for Zj ̸= Z∗, we define Jω,−(Zj) be the union of all contiguous elements Z ∈ Z(n)
ω,b which

are to the left of Zj and also to the right of Zj−1. Now, we note that our assumption (Q1)
implies that each Jω,−(Z) and Jω,+(Z) (Z ∈ Z(n)

ω,g) is the union of at most ξnω contiguous
elements of Z(n)

ω,b . For Z ∈ Z(n)
ω,g let

J∗
ω,−(Z) = Z ∪ Jω,−(Z) and J∗

ω,+(Z) = Z ∪ Jω,+(Z).
Then for W ⊆ J∗

ω,−(Z) we have

inf
W

|f | ≤ inf
Z

|f |+ varJ∗
ω,−(Z)(f).(1.5.8)
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We obtain a similar inequality for W ⊆ J∗
ω,+(Z). We now consider the following two cases.

(Case 1:) At least one of the intervals Z∗ and Z∗ is an element of Z(n)
ω,g .

(Case 2:) Neither of the intervals Z∗, Z∗ is an element of Z(n)
ω,g .

If we are in the first case, we assume without loss of generality that Z1 = Z∗, and thus
every element Z ∈ Z(n)

ω,b is contained in exactly one union Jω,+(Zj) for some Zj ∈ Z(n)
ω,g for

some 1 ≤ j ≤ k. If Z1 ̸= Z∗ and instead we have that Zk = Z∗ we could simply replace
Jω,+(Zj) with Jω,−(Zj) in the previous statement. In view of (1.5.8), Case 1 leads to the
conclusion that

∑
Z∈Z(n)

ω,b

inf
Z

|f | ≤ ξ(n)ω

 ∑
Z∈Z(n)

ω,g

inf
Z

|f |+ varJ∗
ω,−(Z)(f)

 .

If we are instead in the second case, then for each Z ∈ Z(n)
ω,b to the left of Zk there is exactly

one Zj, 1 ≤ j ≤ k, such that Z ⊆ Jω,−(Zj). This leaves each of the elements Z ∈ Z(n)
ω,b to

the right of Zk uniquely contained in the union Jω,+(Zk). Thus, Case 2 yields

∑
Z∈Z(n)

ω,b

inf
Z

|f | ≤ ξ(n)ω

inf
Zk

|f |+ varJ∗
ω,+(Zk)(f) +

∑
Z∈Z(n)

ω,g

inf
Z

|f |+ varJ∗
ω,−(Z)(f)


≤ 2ξ(n)ω

var(f) +
∑

Z∈Z(n)
ω,g

inf
Z

|f |

 .

Hence, either case gives that

∑
Z∈Z(n)

ω,b

inf
Z

|f | ≤ 2ξ(n)ω

var(f) +
∑

Z∈Z(n)
ω,g

inf
Z

|f |

 .(1.5.9)

Inserting (1.5.7) and (1.5.9) into (1.5.5) gives

var(Lnωf) ≤ 9∥g(n)ω ∥∞var(f)

+ 8∥g(n)ω ∥∞

2ξ(n)ω

var(f) +
∑

Z∈Z(n)
ω,g

inf
Z

|f |

+ δ−1
ω,n

LNω,n
ω (|f |)(x)

LNω,n
ω (1ω)(x)


≤ (9 + 16ξ(n)ω )∥g(n)ω ∥∞var(f) + 8(2ξ(n)ω + 1)∥g(n)ω ∥∞δ−1

ω,n

LNω,n
ω (|f |)(x)

LNω,n
ω (1ω)(x)

.

In view of (1.3.3), taking the infimum over x ∈ DσNω,n (ω),Nω,n
allows us to replace the ratio

LNω,n
ω (|f |)(x)

LNω,n
ω (1ω)(x)

with Λω(|f |), that is, we have

var(Lnωf) ≤ (9 + 16ξ(n)ω )∥g(n)ω ∥∞var(f) + 8(2ξ(n)ω + 1)∥g(n)ω ∥∞δ−1
ω,nΛω(|f |).
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Setting

A(n)
ω := (9 + 16ξ(n)ω )∥g(n)ω ∥∞ and B(n)

ω := 8(2ξ(n)ω + 1)∥g(n)ω ∥∞δ−1
ω,n(1.5.10)

finishes the proof. □

Remark 1.5.2. As a consequence of Lemma 1.5.1 we have that

Lω (Cω,+) ⊆ Cσ(ω),+,(1.5.11)

and thus Lω is a weak contraction on Cω,+.

Define the random constants

Q(n)
ω :=

A
(n)
ω

ρnω
and K(n)

ω :=
B

(n)
ω

ρnω
.(1.5.12)

In light of our assumption (Q1) on the potential and number of contiguous bad intervals,
we see that Q(n)

ω → 0 exponentially quickly for each ω ∈ Ω.
The following proposition now follows from (1.1.4), (1.3.11), and assumptions (Q2)-

(Q3).

Proposition 1.5.3. For each n ∈ N, log+Q(n)
ω , logK

(n)
ω ∈ L1

m(Ω).

Lemma 1.5.4. For each f ∈ BV(I) and each n, k ∈ N we have

Λσk(ω)

(
Lkωf

)
≥ Λσk(ω)

(
Lkω1ω

)
· Λω(f).(1.5.13)

Furthermore, we have that

ρnω · Λω(f) ≤ Λσn(ω)(Lnωf).(1.5.14)

In particular, this yields

ρnω ≤ Λσn(ω)(Lnω1ω).

Proof. For each f ∈ BV(I) with f ≥ 0, k ∈ N, and x ∈ Dσn+k(ω),n we have

Ln
σk(ω)

(
Lkωf

)
(x)

Ln
σk(ω)

(
1σk(ω)

)
(x)

=
Lkσn(ω) (Lnωf) (x)
Ln
σk(ω)

(
1σk(ω)

)
(x)

=
Lkσn(ω)

(
D̂σn(ω),n · Ln

ωf
Ln
ω1ω

· Lnω1ω
)
(x)

Ln
σk(ω)

(
1σk(ω)

)
(x)

≥
Ln
σk(ω)

(
Lkω1ω

)
(x)

Ln
σk(ω)

(
1σk(ω)

)
(x)

· inf
Dσn(ω),n

Lnω (f)
Lnω (1ω)

.

Taking the infimum over x ∈ Dσn+k(ω),n and letting n→ ∞ gives

Λσk(ω)

(
Lkωf

)
≥ Λσk(ω)

(
Lkω1ω

)
· Λω(f),(1.5.15)

proving the first claim. Now to see the second claim we note that as (1.5.15) holds for all
ω ∈ Ω with k = 1, we must also have

Λσn+1(ω)

(
Lσn(ω)f

)
≥ Λσn+1(ω)

(
Lσn(ω)1σn(ω)

)
· Λσn(ω)(f) = ρσn(ω) · Λσn(ω)(f)(1.5.16)
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for any f ∈ BV(I) and each n ∈ N. Proceeding via induction, using (1.5.15) as the base
case, we now suppose that

Λσn(ω) (Lnωf) ≥ ρnω · Λω(f)(1.5.17)

holds for n ≥ 1. Using (1.5.16) and (1.5.17), we see

Λσn+1(ω)

(
Lσn(ω)(Lnωf)

)
≥ ρσn(ω) · Λσn(ω)(Lnωf)
≥ ρn+1

ω · Λω(f).
Considering f = 1ω proves the final claim, and thus we are done. □

Define the normalized operator Lω : L1(νω,0) → L1(νσ(ω),0) by

L̃ωf := ρ−1
ω Lωf ; f ∈ L1(νω,0).(1.5.18)

In light of Lemma 1.5.4, for each ω ∈ Ω, n ∈ N, and f ∈ BV(I) we have that

Λω(f) ≤ Λσn(ω)

(
L̃nωf

)
.(1.5.19)

Now, considering the normalized operator, we arrive at the following immediate corollary.

Corollary 1.5.5. For all ω ∈ Ω, all f ∈ BV(I), and all n ∈ N we have

var(L̃nωf) ≤ Q(n)
ω var(f) +K(n)

ω Λω(|f |).

Definition 1.5.6. Since Q(n)
ω → 0 exponentially fast by our assumption (Q1), we let

N∗ ∈ N be the minimum integer n ≥ 1 such that

−∞ <

∫
Ω

logQ(n)
ω dm(ω) < 0,(1.5.20)

and we define the number

θ := − 1

N∗

∫
Ω

logQ(N∗)
ω dm(ω).(1.5.21)

Remark 1.5.7. As we are primarily interested in pushing forward in blocks of length
N∗ we are able to weaken two or our main hypotheses. In particular, we may replace (Q2)
and (Q3) with the following:

(Q2’) We have log ξ
(N∗)
ω ∈ L1(m).

(Q3’) We have log δω,N∗ ∈ L1(m), where δω,n is defined by (1.3.18).

In light of Corollary 1.5.5 we may now find an appropriate upper bound for the BV
norm of the normalized transfer operator.

Lemma 1.5.8. There exists a measurable function ω 7→ Lω ∈ (0,∞) with logLω ∈
L1
m(Ω) such that for all f ∈ BV(I) and each 1 ≤ n ≤ N∗ we have

∥L̃nωf∥BV ≤ Lnω

(
var(f) + Λσn(ω)

(
L̃nωf

))
.(1.5.22)

where

Lnω = LωLσ(ω) · · ·Lσn−1(ω) ≥ 6n.
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Proof. Corollary 1.5.5 and (1.5.19) give

∥L̃nωf∥BV = var(L̃nωf) + ∥L̃nωf∥∞ ≤ 2var(L̃nωf) + Λσn(ω)

(
L̃nωf

)
≤ 2

(
Q(n)
ω var(f) +K(n)

ω Λω(|f |)
)
+ Λσn(ω)

(
L̃nωf

)
≤ 2Q(n)

ω var(f) +
(
2K(n)

ω + 1
)
Λσn(ω)

(
L̃nωf

)
.

Now, set

L̃(n)
ω := max

{
6, 2Q(n)

ω , 2K(n)
ω + 1

}
.

Finally, setting

Lω := max
{
L̃(j)
ω : 1 ≤ j ≤ N∗

}
(1.5.23)

and

Lnω :=
n−1∏
j=0

Lσj(ω)

for all n ≥ 1 suffices. The log-integrability of Lnω follows from Proposition 1.5.3. □

We now define the number ζ > 0 by

ζ :=
1

N∗

∫
Ω

logLN∗
ω dm(ω).(1.5.24)

The constants B(n)
ω and K

(n)
ω in the Lasota-Yorke inequalities from Lemma 1.5.1 and

Corollary 1.5.5 grow to infinity with n, making them difficult to use. Furthermore, the rate
of decay of the Q(n)

ω in Corollary 1.5.5 may depend on ω. To remedy these difficulties we
prove another, more useful, Lasota-Yorke inequality in the style of Buzzi [18].

Proposition 1.5.9. For each ε > 0 there exists a measurable, m-a.e. finite function
Cε(ω) > 0 such that for m-a.e. ω ∈ Ω, each f ∈ BV(I), and all n ∈ N we have

var(L̃nσ−n(ω)f) ≤ Cε(ω)e
−(θ−ε)nvar(f) + Cε(ω)Λω(L̃nσ−n(ω)f).

As the proof of Proposition 1.5.9 follows similarly to that of Proposition 4.9 of [3], using
(1.5.19) to obtain Λω(L̃nσ−n(ω)f) rather than Λσ−n(ω)(f), we leave it to the dedicated reader.

1.6. Cone invariance on good fibers

In this section we follow Buzzi’s approach [18], and describe the good behavior across
a large measure set of fibers. In particular, we will show that, for sufficiently many iterates
R∗, the normalized transfer operator L̃R∗

ω uniformly contracts the cone Cω,a on “good” fibers
ω for cone parameters a > 0 sufficiently large. Recall that the numbers θ and ζ are given
by

θ := − 1

N∗

∫
Ω

logQ(N∗)
ω dm(ω) > 0 and ζ :=

1

N∗

∫
Ω

logLN∗
ω dm(ω) > 0.
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40 1. THERMODYNAMIC FORMALISM FOR RANDOM INTERVAL MAPS WITH HOLES

Note that Lemma 1.5.8 and the ergodic theorem imply that

log 6 ≤ ζ = lim
n→∞

1

nN∗

n−1∑
k=0

logLN∗
σkN∗ (ω)

.(1.6.1)

The following definition is adapted from [18, Definition 2.4].

Definition 1.6.1. We will say that ω is a good fiber with respect to the numbers ε, a,
B∗, and Ra = qaN∗ if the following hold:

B∗qae
− θ

2
Ra ≤ 1

3
,(G1)

1

Ra

Ra/N∗−1∑
k=0

logLN∗
σkN∗ (ω)

∈ [ζ − ε, ζ + ε].(G2)

Now, we denote

ε0 := min

{
1,
θ

2

}
.(1.6.2)

The following lemma describes the prevalence of the good fibers as well as how to find
them.

Lemma 1.6.2. Given ε < ε0 and a > 0, there exist parameters B∗ and Ra (both of which
depend on ε) such that there is a set ΩG ⊆ Ω of good fibers ω with m(ΩG) ≥ 1− ε/4.

Proof. We begin by letting

Ω1 = Ω1(B∗) := {ω ∈ Ω : Cε(ω) ≤ B∗} ,(1.6.3)

where Cε(ω) > 0 is the m-a.e. finite measurable constant coming from Proposition 1.5.9.
Choose B∗ sufficiently large such that m(Ω1) ≥ 1− ε/8. Noting that ε < θ/2 by (1.6.2), we
set R0 = q0N∗ and choose q0 sufficiently large such that

B∗q0e
−(θ−ε)R0 ≤ B∗q0e

− θ
2
R0 ≤ 1

3
.

Now let q1 ≥ q0 and define the set

Ω2 = Ω2(q1) := {ω ∈ Ω : (G2) holds for the value R1 = q1N∗} .
Now choose qa ≥ q1 such that m(Ω2(qa)) ≥ 1− ε/8. Set Ra := qaN∗. Set

ΩG := Ω2 ∩ σ−Ra(Ω1).(1.6.4)

Then ΩG is the set of all ω ∈ Ω which are good with respect to the numbers B∗ and Ra,
and m(ΩG) ≥ 1− ε/4. □

In what follows, given a value B∗, we will consider cone parameters

a ≥ a0 := 6B∗(1.6.5)

and we set

q∗ = qa0 and R∗ := Ra0 = q∗N∗.(1.6.6)
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Note that (G1) together with Proposition 1.5.9 implies that, for ε < ε0 and ω ∈ ΩG, we
have

var(L̃R∗
ω f) ≤ B∗e

−(θ−ε)R∗var(f) +B∗ΛσR∗ (ω)(L̃R∗
ω f)

≤ B∗q∗e
− θ

2
R∗var(f) +B∗ΛσR∗ (ω)(L̃R∗

ω f)

≤ 1

3
var(f) +B∗ΛσR∗ (ω)(L̃R∗

ω f).(1.6.7)

The next lemma shows that the normalized operator is a contraction on the fiber cones
Cω,a and that the image has finite diameter.

Lemma 1.6.3. If ω is good with respect to the numbers ε, a0, B∗, and R∗, then for each
a ≥ a0 we have

L̃R∗
ω (Cω,a) ⊆ CσR∗ (ω),a/2 ⊆ CσR∗ (ω),a.

Proof. For ω good and f ∈ Cω,a, (1.6.7) and (1.6.5) give

var(L̃R∗
ω f) ≤ 1

3
var(f) +B∗ΛσR∗ (ω)(L̃R∗

ω f)

≤ a

3
Λω(f) +

a

6
ΛσR∗ (ω)(L̃R∗

ω f)

≤ a

2
ΛσR∗ (ω)(L̃R∗

ω f).

Hence we have

L̃R∗
ω (Cω,a) ⊆ CσR∗ (ω),a/2 ⊆ CσR∗ (ω),a

as desired. □

1.7. Density estimates and cone invariance on bad fibers

In this section we recall the notion of “bad” fibers from [3, 18]. We show that for fibers
in the small measure set,

ΩB := Ω\ΩG,

the cone Cω,a of positive functions is invariant after sufficiently many iterations for suf-
ficiently large parameters a > 0. We accomplish this by introducing the concept of bad
blocks (coating intervals), which we then show make up a relatively small portion of an
orbit. As the content of this section is adapted from the closed dynamical setting of Section
7 of [3], we do not provide proofs.

Recall that R∗ is given by (1.6.6). Following Section 7 of [3], and using the same
justifications therein, we define the measurable function y∗ : Ω → N so that

0 ≤ y∗(ω) < R∗(1.7.1)

is the smallest integer such that for either choice of sign + or − we have

lim
n→∞

1

n
#
{
0 ≤ k < n : σ±kR∗+y∗(ω)(ω) ∈ ΩG

}
> 1− ε,(1.7.2)

lim
n→∞

1

n
#
{
0 ≤ k < n : Cε

(
σ±kR∗+y∗(ω)(ω)

)
≤ B∗

}
> 1− ε.(1.7.3)
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42 1. THERMODYNAMIC FORMALISM FOR RANDOM INTERVAL MAPS WITH HOLES

Clearly, y∗ : Ω → N is a measurable function such that

y∗(σ
y∗(ω)(ω)) = 0,(1.7.4)

y∗(σ
R∗(ω)) = y∗(ω).(1.7.5)

In particular, (1.7.4) and (1.7.5) together imply that

y∗(σ
y∗(ω)+kR∗(ω)) = 0(1.7.6)

for all k ∈ N. Let

Γ(ω) :=

q∗−1∏
k=0

LN∗
σkN∗ (ω)

,(1.7.7)

where q∗ is given by (1.6.6), and for each ω ∈ Ω, given ε > 0, we define the coating length
ℓ(ω) = ℓε(ω) as follows:

• if ω ∈ ΩG, then set ℓ(ω) := 1,
• if ω ∈ ΩB, then

ℓ(ω) := min

{
n ∈ N :

1

n

∑
0≤k<n

(1ΩB
log Γ) (σkR∗(ω)) ≤ ζR∗

√
ε

}
,(1.7.8)

where ζ is as in (1.5.24). If the minimum is not attained we set ℓ(ω) = ∞.
Since LN∗

ω ≥ 6N∗ by Lemma 1.5.8, we must have that

Γ(ω) ≥ 6R∗(1.7.9)

for all ω ∈ Ω. It follows from Lemma 1.5.8 that for all ω ∈ Ω we have

var(L̃R∗
ω f) ≤ Γ(ω)(var(f) + ΛσR∗ (ω)(f)).(1.7.10)

Furthermore, if ω ∈ ΩG it follows from (G2) that

R∗(ζ − ε) ≤ log Γ(ω) ≤ R∗(ζ + ε).(1.7.11)

The following proposition collects together some of the key properties of the coating length
ℓ(ω).

Proposition 1.7.1. For all ε > 0 sufficiently small the number ℓ(ω) satisfies the fol-
lowing.

For m-a.e. ω ∈ Ω such that y∗(ω) = 0 we have ℓ(ω) <∞,(i)
If ω ∈ ΩB then ℓ(ω) ≥ 2.(ii)

Remark 1.7.2. Given ω0 ∈ Ω, for each j ≥ 0 let ωj+1 = σℓ(ωj)R∗(ωj). As a consequence
of Proposition 1.7.1 (i) and (1.7.5), we see that for m-a.e. ω0 ∈ Ω with y∗(ω0) = 0, we must
have that ℓ(ωj) <∞ for all j ≥ 0.

Definition 1.7.3. We will call a (finite) sequence ω, σ(ω), . . . , σℓ(ω)R∗−1(ω) of ℓ(ω)R∗
fibers a good block (originating at ω) if ω ∈ ΩG (which implies that ℓ(ω) = 1). If, on the
other hand, ω ∈ ΩB we call such a sequence a bad block , or coating interval, originating at
ω.
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1.7. DENSITY ESTIMATES AND CONE INVARIANCE ON BAD FIBERS 43

For ε > 0 sufficiently small we have that ζ
√
ε/log 6 < 1, and so we let γ < 1 such that

ζ
√
ε

log 6
< γ < 1.(1.7.12)

We now wish to show that the normalized operator L̃ω is weakly contracting (i.e. non-
expanding) on the fiber cones Cω,a for sufficiently large values of a > a0. We obtain this
cone invariance on blocks of length ℓ(ω)R∗, however in order to obtain cone contraction
with a finite diameter image we will have to travel along several such blocks. For this
reason we introduce the following notation.

Given ω ∈ Ω with y∗(ω) = 0 for each k ≥ 1 we define the length

Σ(k)
ω :=

k−1∑
j=0

ℓ(ωj)R∗

where ω0 := ω and for each j ≥ 1 we set ωj := σΣ
(j−1)
ω (ω). This construction is justified

as we recall from Proposition 1.7.1 that for m-a.e. ω ∈ Ω with y∗(ω) = 0 we have that
ℓ(ω) <∞. The next lemma was adapted from Lemma 7.5 of [3].

Lemma 1.7.4. For ε > 0 sufficiently small, each N ∈ N, and m-a.e. ω ∈ Ω with
y∗(ω) = 0 we have that

var
(
L̃Σ

(N)
ω

ω f
)
≤
(
1

3

)Σ
(N)
ω /R∗

var(f) +
a∗
6
Λ
σΣ

(N)
ω (ω)

(L̃Σ
(N)
ω

ω f).(1.7.13)

Moreover, we have that

L̃Σ
(N)
ω

ω (Cω,a∗) ⊆ C
σΣ

(N)
ω (ω),a∗/2

,(1.7.14)

where

a∗ = a∗(ε) := 2a0e
ζR∗

√
ε = 12B∗e

ζR∗
√
ε.(1.7.15)

Proof. Throughout the proof we will denote ℓi = ℓ(ωi) and Li =
∑i−1

k=0 ℓk for each
0 ≤ i < N . Then Σ

(N)
ω = LNR∗. Using (1.6.7) on good fibers and (1.7.10) on bad fibers,

for any p ≥ 1 and f ∈ Cω,+ we have

var(L̃pR∗
ω f) ≤

(
p−1∏
j=0

Φ
(R∗)

σjR∗ (ω)

)
var(f) +

p−1∑
j=0

(
D

(R∗)

σjR∗ (ω)
·

p−1∏
k=j+1

Φ
(R∗)

σkR∗ (ω)

)
ΛσpR∗ (ω)(L̃pR∗

ω f),

(1.7.16)

where

(1.7.17) Φ(R∗)
τ =

{
B∗e

−(θ−ε)R∗ for τ ∈ ΩG

Γ(τ) for τ ∈ ΩB

and

(1.7.18) D(R∗)
τ =

{
B∗ for τ ∈ ΩG

Γ(τ) for τ ∈ ΩB.
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For any 0 ≤ i < N and 0 ≤ j < ℓi we can write∑
0≤k<ℓi

(1ΩB
log Γ) (σkR∗(ωi)) =

∑
0≤k<j

(1ΩB
log Γ) (σkR∗(ωi)) +

∑
j≤k<ℓi

(1ΩB
log Γ) (σkR∗(ωi)).

The definition of ℓ(ωi), (1.7.8), then implies that

1

j

∑
0≤k<j

(1ΩB
log Γ) (σkR∗(ωi)) > ζR∗

√
ε,

and consequently that

1

ℓi − j

∑
j≤k<ℓi

(1ΩB
log Γ) (σkR∗(ωi)) ≤ ζR∗

√
ε.(1.7.19)

Now, using (1.7.9), (1.7.19), and (1.7.12) we see that for ε sufficiently small, the proportion
of bad blocks is given by

1

ℓi − j
#
{
j ≤ k < ℓi : σ

kR∗(ωi) ∈ ΩB

}
=

1

ℓi − j

∑
j≤k<ℓi

(1ΩB
) (σkR∗(ωi))

≤ 1

(ℓi − j)R∗ log 6

∑
j≤k<ℓi

(1ΩB
log Γ) (σkR∗(ωi)) ≤ γ.(1.7.20)

In view of (1.7.17), using (1.7.19), (1.7.20), for any 0 ≤ i < N and 0 ≤ j < ℓi we have

ℓi−1∏
k=j

Φ
(R∗)

σkR∗ (ωi)
=

∏
j≤k<ℓi

σkR∗ (ωi)∈ΩG

B∗e
−(θ−ε)R∗ ·

∏
j≤k<ℓi

σkR∗ (ωi)∈ΩB

Γ(σkR∗(ωi))

≤
(
B∗e

−(θ−ε)R∗
)(1−γ)(ℓi−j) · exp ((ζR∗

√
ε
)
(ℓi − j)

)
=
(
B1−γ

∗ exp
((
ζ
√
ε− (θ − ε)(1− γ)

)
R∗
))ℓi−j

<
(
B∗ exp

((
ζ
√
ε− (θ − ε)(1− γ)

)
R∗
))ℓi−j .(1.7.21)

Now for any 0 ≤ j < LN there must exist some 0 ≤ i0 < N and some 0 ≤ j0 < ℓi0+1 such
that Li0−1 + j0 = j < Li0 . Thus, using (1.7.21) we can write

LN−1∏
k=j

Φ
(R∗)

σkR∗ (ω)
=

ℓi0+1−1∏
k=j0

Φ
(R∗)

σkR∗ (ωi0
)
·
N−1∏
i=i0+1

ℓi−1∏
k=0

Φ
(R∗)

σkR∗ (ωi)

<
(
B∗ exp

((
ζ
√
ε− (θ − ε)(1− γ)

)
R∗
))ℓi0+1−j0 ·

·
N−1∏
i=i0+1

(
B∗ exp

((
ζ
√
ε− (θ − ε)(1− γ)

)
R∗
))ℓi

=
(
B∗ exp

((
ζ
√
ε− (θ − ε)(1− γ)

)
R∗
))LN−j

.(1.7.22)
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Now, since B∗,Γ(ω) ≥ 1 for all ω ∈ Ω, using (1.7.18) and (1.7.19), we have that for
0 ≤ i < N and 0 ≤ j < ℓi

D
(R∗)

σjR∗ (ωi)
≤ B∗Γ(σ

jR∗(ωi)) ≤ B∗ ·
∏

j≤k<ℓi
σkR∗ (ωi)∈ΩB

Γ(σkR∗(ωi)) ≤ B∗

(
eζR∗

√
ε
)(ℓi−j)

.(1.7.23)

Similarly to the reasoning used to obtain (1.7.22), for any 0 ≤ j < LN we see that we can
improve (1.7.23) so that we have

D
(R∗)

σjR∗ (ωi)
≤ B∗

(
eζR∗

√
ε
)LN−j

.(1.7.24)

Thus, inserting (1.7.22) and (1.7.24) into (1.7.16) (with p = LN) we see that

var
(
L̃Σ

(N)
ω

ω f
)
≤

(
LN−1∏
j=0

Φ
(R∗)

σjR∗ (ω)

)
var(f) +

LN−1∑
j=0

(
D

(R∗)

σjR∗ (ω)
·
LN−1∏
k=j+1

Φ
(R∗)

σkR∗ (ω)

)
Λ
σΣ

(N)
ω (ω)

(
L̃Σ

(N)
ω

ω f
)
,

≤
(
B∗ exp

((
ζ
√
ε− (θ − ε)(1− γ)

)
R∗
))LN var(f)

+ Λ
σΣ

(N)
ω (ω)

(
L̃Σ

(N)
ω

ω f
) LN−1∑

j=0

B∗

(
eζR∗

√
ε
)(LN−j)

·
(
B∗ exp

((
ζ
√
ε− (θ − ε)(1− γ)

)
R∗
))LN−j−1

=
(
B∗ exp

((
ζ
√
ε− (θ − ε)(1− γ)

)
R∗
))LN var(f)

+B∗e
ζR∗

√
ε · Λ

σΣ
(N)
ω (ω)

(
L̃Σ

(N)
ω

ω f
) LN−1∑

j=0

(
B∗ exp

((
2ζ
√
ε− (θ − ε)(1− γ)

)
R∗
))LN−j−1

.

Therefore, taking ε > 0 sufficiently small1 in conjunction with (G1), we have that

var
(
L̃Σ

(N)
ω

ω f
)
≤
(
B∗e

− θ
2
R∗
)LN

var(f) +B∗e
ζR∗

√
ε · Λ

σΣ
(N)
ω (ω)

(
L̃Σ

(N)
ω

ω f
) LN−1∑

j=0

(
B∗e

− θ
2
R∗
)LN−j−1

≤
(
1

3

)LN

var(f) +B∗e
ζR∗

√
ε · Λ

σΣ
(N)
ω (ω)

(
L̃Σ

(N)
ω

ω f
) LN−1∑

j=0

(
1

3

)LN−j−1

,

and so we must have that

var
(
L̃Σ

(N)
ω

ω f
)
≤
(
1

3

)LN

var(f) + 2B∗e
ζR∗

√
εΛ

σΣ
(N)
ω (ω)

(
L̃Σ

(N)
ω

ω f
)

=

(
1

3

)LN

var(f) +
a∗
6
Λ
σΣ

(N)
ω (ω)

(
L̃Σ

(N)
ω

ω f
)
,

which proves the first claim. Thus, for any f ∈ Cω,a∗ we have that

var(L̃Σ
(N)
ω

ω f) ≤
(
1

3

)LN

Λω(f) +
a∗
6
Λ
σΣ

(N)
ω (ω)

(
L̃Σ

(N)
ω

ω f
)

1Any ε < min

{(
log 55
4ζ

)2
,
(

θ
8ζ

)2}
such that

√
εζ

2 log 55 ≤ γ, which implies − θ
2 > 2

√
εζ − (θ − ε)(1− γ) >

√
εζ − (θ − ε)(1− γ), will suffice; see Observation 7.4 of [3] for details.
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≤ a∗
3
Λ
σΣ

(N)
ω (ω)

(
L̃Σ

(N)
ω

ω f
)
+
a∗
6
Λ
σΣ

(N)
ω (ω)

(
L̃Σ

(N)
ω

ω f
)
,

where we have used the fact that a∗ > 1, and consequently we have

L̃Σ
(N)
ω

ω (Cω,a∗) ⊆ C
σΣ

(N)
ω (ω),a∗/2

⊆ C
σΣ

(N)
ω (ω),a∗

as desired. □

The next lemma shows that the total length of the bad blocks take up only a small
proportion of an orbit, however before stating the result we establish the following notation.
For each n ∈ N we let Kn ≥ 0 be the integer such that

n = KnR∗ + h(n)(1.7.25)

where 0 ≤ h(n) < R∗ is a remainder term. Given ω0 ∈ Ω, let

ωj = σℓ(ωj−1)R∗(ωj−1)(1.7.26)
for each j ≥ 1. Then for each n ∈ N we can break the n-length σ-orbit of ω0 in Ω into
kω0(n) + 1 blocks of length ℓ(ωj)R∗ (for 0 ≤ j ≤ kω0(n)) plus some remaining block of
length rω0(n)R∗ where 0 ≤ rω0(n) < ℓ(ωkω0 (n)+1) plus a remainder segment of length h(n),
i.e. we can write

n =
∑

0≤j≤kω0 (n)

ℓ(ωj)R∗ + rω0(n)R∗ + h(n);(1.7.27)

see Figure 1. We also note that (1.7.25) and (1.7.27) imply that

Kn =
∑

0≤j≤kω0 (n)

ℓ(ωj) + rω0(n).(1.7.28)

The proof of the following lemma is nearly identical to that of Lemma 7.6 of [3], and

ω0

ℓ(ω0)R∗

ω1

ℓ(ω1)R∗

ω2

· · ·
· · ·ωk−1

ℓ(ωk−1)R∗

ωkω0
(n)

ℓ(ωkω0
(n))R∗

ωk+1

rω0(n)R∗

σKnR∗(ω0)

h(n)

σn(ω0) ωk+2

ℓ(ωk+1)R∗

n

Figure 1. The decomposition of n =
∑

0≤j≤kω0 (n)
ℓ(ωj)R∗+rω0(n)R∗+h(n)

and the fibers ωj.

therefore it shall be omitted.

Lemma 1.7.5. There exists a measurable function N0 : Ω → N such that for all n ≥
N0(ω0) and for m-a.e. ω0 ∈ Ω with y∗(ω0) = 0 we have

Eω0(n) :=
∑

0≤j≤kω0 (n)
ωj∈ΩB

ℓ(ωj) + rω0(n) < Y · εKn ≤ Y

R∗
εn
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where

Y = Yε :=
2(2 + ζ)R∗

ζR∗
√
ε

,(1.7.29)

and where Kn is as in (1.7.25), ωj is as in (1.7.26), and kω0(n) and rω0(n) are as in
(1.7.27).

To end this section we note that

ε · Yε → 0(1.7.30)

as ε → 0. For the remainder of the document we will assume that ε > 0 is always taken
sufficiently small such that the results of Section 1.7 apply.

1.8. Further properties of Λω

In this section we prove some additional properties of the functional Λω that will be
necessary in Section 1.9 to obtain cone contraction with finite diameter. In particular, in
the main result of this section, which is a version of Lemma 3.11 of [53] and dates back to
[52, Lemma 3.2], we show that for a function f ∈ Cω,a∗ there exists a partition element on
which the function f takes values at least as large as Λω(f)/4.

Now we prove the following upper and lower bounds for Λ
σΣ

(k)
ω (ω)

(
L̃Σ

(k)
ω

ω f
)
.

Lemma 1.8.1. For m-a.e. ω ∈ Ω such that y∗(ω) = 0, and each k ∈ N we have that

Λ
σΣ

(k)
ω (ω)

(
L̃Σ

(k)
ω

ω 1ω
)
Λω(f) ≤ Λ

σΣ
(k)
ω (ω)

(
L̃Σ

(k)
ω

ω f
)
≤ a∗Λ

σΣ
(k)
ω (ω)

(
L̃Σ

(k)
ω

ω 1ω
)
Λω(f).

Proof. From Lemma 1.5.4 we already see that the first inequality holds. Now, fix
ω ∈ Ω (with y∗(ω) = 0) and k ∈ N. To see the other inequality we first let n,N ∈ N and
x ∈ DσN (ω),N+n, then

L̃N+n
ω (f)(x)

L̃n
σN (ω)

(1σN (ω))(x)
=

L̃N+n
ω (f)(x)

L̃N+n
ω (1ω)(x)

· L̃N+n
ω (1ω)(x)

L̃n
σN (ω)

(1σN (ω))(x)

=
L̃N+n
ω (f)(x)

L̃N+n
ω (1ω)(x)

·
L̃nσN (ω)

(
LNω (1ω) · 1σN (ω)

)
(x)

L̃n
σN (ω)

(1σN (ω))(x)

≤ L̃N+n
ω (f)(x)

L̃N+n
ω (1ω)(x)

· ∥L̃Nω 1ω∥∞.

Now taking the infimum over x ∈ DσN (ω),N+n and letting n→ ∞ gives

ΛσN (ω)(L̃Nω f) ≤ ∥L̃Nω 1ω∥∞Λω(f).(1.8.1)

Now, set N = Σ
(k)
ω . Since 1ω ∈ Cω,a∗ , (1.7.14) from Lemma 1.7.4 implies that

∥L̃Σ
(k)
ω

ω 1ω∥∞ ≤ var(L̃Σ
(k)
ω

ω (1ω)) + Λ
σΣ

(k)
ω (ω)

(L̃Σ
(k)
ω

ω (1ω))

≤
(a∗
2

+ 1
)
Λ
σΣ

(k)
ω (ω)

(L̃Σ
(k)
ω

ω (1ω))
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≤ a∗Λ
σΣ

(k)
ω (ω)

(L̃Σ
(k)
ω

ω (1ω)),(1.8.2)

where we have used the fact that a∗ > 2 which follows from (1.7.15). Combining (1.8.2)
with (1.8.1), we see that

Λ
σΣ

(k)
ω (ω)

(L̃Σ
(k)
ω

ω f) ≤ a∗Λ
σΣ

(k)
ω (ω)

(L̃Σ
(k)
ω

ω 1ω)Λω(f)

completing the proof. □

Lemma 1.8.2. For each δ > 0 and each ω ∈ Ω there exists Nω,δ such that for each
n ≥ Nω,δ, Z(n)

ω has the property that

sup
Z∈Z(n)

ω

Λω(1Z) ≤ δ.

Proof. Choose Nω,δ ∈ N such that

∥g(n)ω ∥∞
ρnω

≤ δ

for each n ≥ Nω,δ. Now, fix some n ≥ Nω,δ and let m ∈ N. Then, for Z ∈ Z(n)
ω we have

Lnω1Z(x) ≤ ∥g(n)ω ∥∞ ≤ δρnω.

For each x ∈ Dσn+m(ω),n+m ⊆ Dσn+m(ω),m we have

Ln+mω 1Z(x)
Ln+mω 1ω(x)

≤
∥Lnω1Z∥∞Lmσn(ω)1σn(ω)(x)

Ln+mω 1ω(x)
≤
δρnωLmσn(ω)1σn(ω)(x)

Lmσn(ω) (Lnω1ω) (x)

≤ δρnω
1

infy∈Dσn+m(ω),m

Lm
σn(ω)

(Ln
ω1ω)(y)

Lm
σn(ω)

1σn(ω)(y)

.

In view of Lemma 1.5.4, taking the infimum over x ∈ Dσn+m(ω),n+m and letting m → ∞
gives

Λω(1Z) ≤ δρnω ·
1

Λσn(ω)(Lnω1ω)
≤ δρnω(ρ

n
ω)

−1 = δ.

□

We are now ready to prove the main result of this section, a random version of Lemma 3.11
in [53]. Let

δ0 :=
1

8a3∗
.(1.8.3)

Lemma 1.8.3. For m-a.e. ω ∈ Ω with y∗(ω) = 0, for all δ < δ0, all n ≥ Nω,δ (where
Nω,δ is as in Lemma 1.8.2), and all f ∈ Cω,a∗ there exists Zf ∈ Z(n)

ω,g such that

inf
Zf

f ≥ 1

4
Λω(f).
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Proof. We shall the prove the lemma via contradiction. To that end suppose that the
conclusion is false, that is we suppose that

inf
Z
f <

Λω(f)

4
(1.8.4)

for all Z ∈ Z(n)
ω,g . Then, for each n ≥ Nω,δ and each k ∈ N such that n < Σ

(k)
ω , using (1.8.4)

we can write

L̃Σ
(k)
ω

ω f =
∑

Z∈Z(n)
ω

L̃Σ
(k)
ω

ω (f1Z) =
∑

Z∈Z(n)
ω,∗

L̃Σ
(k)
ω

ω (f1Z)

=
∑

Z∈Z(n)
ω,g

L̃Σ
(k)
ω

ω (f1Z) +
∑

Z∈Z(n)
ω,b

L̃Σ
(k)
ω

ω (f1Z)

≤ Λω(f)

4

∑
Z∈Z(n)

ω,g

L̃Σ
(k)
ω

ω (1Z) +
∑

Z∈Z(n)
ω,g

L̃Σ
(k)
ω

ω (1Z)varZ(f) + ∥f∥∞
∑

Z∈Z(n)
ω,b

L̃Σ
(k)
ω

ω (1Z).(1.8.5)

Now for Z ∈ Z(n)
ω,b , Lemma 1.8.1 implies that

Λ
σΣ

(k)
ω (ω)

(
L̃Σ

(k)
ω

ω (1Z)
)
≤ a∗Λ

σΣ
(k)
ω (ω)

(
L̃Σ

(k)
ω

ω 1ω
)
Λω(1Z) = 0.(1.8.6)

Thus, for Z ∈ Z(n)
ω,b , using (1.8.6) and (1.7.13), applied along the blocks Σ

(k)
ω , we have that

L̃Σ
(k)
ω

ω (1Z) ≤ Λ
σΣ

(k)
ω (ω)

(
L̃Σ

(k)
ω

ω (1Z)
)
+ var

(
L̃Σ

(k)
ω

ω (1Z)
)

= var
(
L̃Σ

(k)
ω

ω (1Z)
)

≤ 2

(
1

3

)Σ
(k)
ω /R∗

+ a∗Λ
σΣ

(k)
ω (ω)

(
L̃Σ

(k)
ω

ω (1Z)
)
= 2

(
1

3

)Σ
(k)
ω /R∗

.(1.8.7)

Note that the right-hand side above goes to zero as k → ∞. On the other hand, for
Z ∈ Z(n)

ω,g we again use (1.7.13) in conjunction with Lemma 1.8.1 to get that

L̃Σ
(k)
ω

ω (1Z) ≤ Λ
σΣ

(k)
ω (ω)

(
L̃Σ

(k)
ω

ω (1Z)
)
+ var

(
L̃Σ

(k)
ω

ω (1Z)
)

≤ 2

(
1

3

)Σ
(k)
ω /R∗

+ a∗Λ
σΣ

(k)
ω (ω)

(
L̃Σ

(k)
ω

ω (1Z)
)

≤ 2

(
1

3

)Σ
(k)
ω /R∗

+ a2∗ΛσΣ
(k)
ω (ω)

(
L̃Σ

(k)
ω

ω 1ω
)
Λω(1Z).(1.8.8)

Substituting (1.8.8) and (1.8.7) into (1.8.5), applying the functional Λ
σΣ

(k)
ω

to both sides
yields

Λ
σΣ

(k)
ω (ω)

(
L̃Σ

(k)
ω

ω f
)
≤ Λ

σΣ
(k)
ω (ω)

(
L̃Σ

(k)
ω

ω 1ω
)
· Λω(f)

4
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+
∑

Z∈Z(n)
ω,g

a∗Λω(1Z) + 2

(
1

3

)Σ
(k)
ω /R∗

+ a2∗Λω(1Z)

 varZ(f)

Λ
σΣ

(k)
ω (ω)

(
L̃Σ

(k)
ω

ω 1ω
)

+
∑

Z∈Z(n)
ω,b

2

(
1

3

)Σ
(k)
ω /R∗

∥f∥∞Λ
σΣ

(k)
ω (ω)

(
L̃Σ

(k)
ω

ω 1ω
)
.

(1.8.9)

Dividing (1.8.9) on both sides by Λ
σΣ

(k)
ω (ω)

(
L̃Σ

(k)
ω

ω 1ω
)
, letting k → ∞, and using Lem-

mas 1.8.1, 1.8.2, and 1.7.4 gives us

Λω(f) ≤
Λω(f)

4
+
∑

Z∈Z(n)
ω,g

(a∗ + a2∗)Λω(1Z)varZ(f)

≤ Λω(f)

4
+ (a∗ + a2∗)var(f) sup

Z∈Z(n)
ω,g

Λω(1Z)

≤
(
1

4
+ 2a3∗δ

)
Λω(f).

Given our choice (1.8.3) of δ < δ0 we arrive at the contradiction

Λω(f) ≤
1

2
Λω(f),

and thus we are done. □

1.9. Finding finite diameter images

We now find a large measure set of fibers ω ∈ ΩF ⊆ Ω for which the image of the cone
Cω,a∗ has a finite diameter image after sufficiently many iterates of the normalized operator
L̃ω. Towards accomplishing this task we first recall that for each ω ∈ Ω with y∗(ω) = 0
and each k ≥ 0

Σ(k)
ω :=

k−1∑
j=0

ℓ(ωj)R∗

where ω0 := ω and for each j ≥ 1 we set ωj := σΣ
(j−1)
ω (ω). For each ω ∈ Ω with y∗(ω) = 0,

we define the number

Σω := min

Σ(k)
ω : inf

x∈D
σΣ

(k)
ω (ω),Σ

(k)
ω

LΣ
(k)
ω

ω 1Z(x)

LΣ
(k)
ω

ω 1ω(x)
≥ Λω(1Z)

2
for all Z ∈ Z(Nω,δ0

)
ω,g

 .(1.9.1)

Note that by definition we must have that Σω ≥ Nω,δ0 . Recall from the proof of Lemma 1.6.2
that the set Ω1 = Ω1(B∗) is given by

Ω1 := {ω ∈ Ω : Cε(ω) ≤ B∗} ,(1.9.2)

18 Oct 2022 02:26:55 PDT
221018-Vaienti Version 1 - Submitted to Asterisque
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where Cε(ω) comes from Proposition 1.5.9 and B∗ was chosen sufficiently large such that
m(Ω1) ≥ 1− ε/8. For α∗ > 0 and C∗ ≥ 1 we consider the following

ΛσΣω (ω)

(
L̃Σω
ω 1Z

)
≥ α∗ for all Z ∈ Z(Nω,δ0

)
ω,g ,(F1)

C−1
∗ ≤ inf

D
σΣω (ω),Σω

L̃Σω
ω 1ω ≤ ∥L̃Σω

ω 1ω∥∞ ≤ C∗.(F2)

Now, we define the set Ω3, depending on parameters S∗ = kR∗ for some k ∈ N, α∗ > 0,
and C∗ ≥ 1, by

Ω3 = Ω3(S∗, α∗, C∗) := {ω ∈ Ω : Σω ≤ S∗, and (F1) − (F2) hold } ,(1.9.3)

and choose S∗ = kR∗, α∗ > 0, and C∗ ≥ 1 such that m(Ω3) ≥ 1− ε/8. Finally, we define

ΩF := Ω1 ∩ Ω3,(1.9.4)

which must of course have measure m(ΩF ) ≥ 1− ε. Furthermore, in light of the definition
of ΩG from (1.6.4), we have that

σ−R∗(ΩF ) ⊆ ΩG.

Lemma 1.9.1. For all ω ∈ ΩF such that y∗(ω) = 0 we have that

L̃Σω
ω Cω,a∗ ⊆ CσΣω (ω),a∗/2 ⊆ CσΣω (ω),a∗

with

diamσΣω (ω),a∗

(
L̃Σω
ω Cω,a∗

)
≤ ∆ := 2 log

8C2
∗a∗(3 + a∗)

α∗
<∞.(1.9.5)

Proof. The invariance follows from Lemma 1.7.4. To show that the diameter is finite
we first note that for 0 ̸≡ f ∈ Cω,a∗ we must have that Λω(f) > 0 by definition. Now,
Lemma 1.4.8 implies that for f ∈ Cω,a∗ we have

ΘσΣω (ω),a∗(L̃
Σω
ω f, 1σΣω (ω)) ≤ log

∥L̃Σω
ω f∥∞ + 1

2
ΛσΣω (ω)

(
L̃Σω
ω f

)
min

{
infD

σΣω (ω),Σω
L̃Σω
ω f, 1

2
ΛσΣω (ω)

(
L̃Σω
ω f

)} .(1.9.6)

Using Lemmas 1.7.4 and 1.8.1 and (F2) we bound the numerator by

∥L̃Σω
ω f∥∞ +

1

2
ΛσΣω (ω)

(
L̃Σω
ω f

)
≤ var

(
L̃Σω
ω f

)
+

3

2
ΛσΣω (ω)

(
L̃Σω
ω f

)
≤ 3a∗ + a2∗

2
ΛσΣω (ω)

(
L̃Σω
ω 1ω

)
Λω(f)

≤ C∗a∗(3 + a∗)

2
Λω(f).(1.9.7)

To find a lower bound for the denominator we first note that for each f ∈ Cω,a∗ , by
Lemma 1.8.3 there exists Zf ∈ Z(Nω,δ0

)
ω,g such that

inf f |Zf
≥ Λω(f)

4
.(1.9.8)
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Thus, using (1.9.8), for each x ∈ DσΣω (ω),Σω
we have that

inf
x∈D

σΣω (ω),Σω

L̃Σω
ω f(x) ≥ inf

x∈D
σΣω (ω),Σω

L̃Σω
ω (f1Zf

)(x)

≥ inf
Zf

f · inf
x∈D

σΣω (ω),Σω

L̃Σω
ω 1Zf

(x)

≥ Λω(f)

4
inf

x∈D
σΣω (ω),Σω

L̃Σω
ω 1Zf

(x)

≥ Λω(f)

4
inf

y∈D
σΣω (ω),Σω

L̃Σω
ω 1Zf

(y)

L̃Σω
ω 1ω(y)

inf
z∈D

σΣω (ω),Σω

L̃Σω
ω 1ω(z).

In light of conditions (F1)-(F2) we in fact have that

inf
D

σΣω (ω),Σω

L̃Σω
ω f ≥ α∗Λω(f)

8C∗
> 0.(1.9.9)

Combining the estimates (1.9.7) and (1.9.9) with (1.9.6) gives

ΘσΣω (ω),a∗(L̃
Σω
ω f, 1σΣω (ω)) ≤ log

8C2
∗a∗(3 + a∗)

α∗
<∞.

Taking the supremum over all functions f ∈ Cω,a∗ , and applying the triangle inequality
finishes the proof. □

To end this section we recall from Section 1.7 that 0 ≤ y∗(ω) < R∗ is chosen to be the
smallest integer such that for either choice of sign + or − we have

lim
n→∞

1

n
#
{
0 ≤ k < n : σ±kR∗+y∗(ω)(ω) ∈ ΩG

}
> 1− ε,(1.9.10)

lim
n→∞

1

n
#
{
0 ≤ k < n : Cε

(
σ±kR∗+y∗(ω)(ω)

)
≤ B∗

}
> 1− ε.(1.9.11)

In light of the definition of ΩF (1.9.4) and using the same reasoning as in Section 1.7 for
the existence of y∗ (see Section 7 of [3]), for each ω ∈ Ω, we now let 0 ≤ v∗(ω) < R∗ be the
least integer such that for either choice of sign + or − we have that the following hold:

lim
n→∞

1

n
#
{
0 ≤ k < n : σ±kR∗+v∗(ω)(ω) ∈ ΩG

}
> 1− ε,(1.9.12)

lim
n→∞

1

n
#
{
0 ≤ k < n : σ±kR∗+v∗(ω)(ω) ∈ ΩF

}
> 1− ε.(1.9.13)

Two significant properties of v∗ are the following:

v∗(σ
v∗(ω)(ω)) = 0,(1.9.14)

if v∗(ω) = 0, then y∗(ω) = 0.(1.9.15)

1.10. Conformal and invariant measures

We are now ready to bring together all of the results from Sections 1.5-1.9 to establish
the existence of conformal and invariant measures supported in the survivor set Xω,∞. We
follow the methods of [3] and [53], and we begin with the following technical lemma from
which the rest of our results will follow.
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Lemma 1.10.1. Let f, h ∈ BVΩ(I), let ε > 0 sufficiently small such that the results
of Section 1.7 apply, and let V : Ω → (0,∞) be a measurable function. Suppose that for
each n ∈ N, each |p| ≤ n, each l ≥ 0, and for m-a.e. ω ∈ Ω we have fσp(ω) ∈ Cσp(ω),+

with var(fσp(ω)) ≤ eεnV (ω) and hσp−l(ω) ∈ Cσp−l(ω),+ with var(hσp−l(ω)) ≤ eε(n+l)V (ω). Then
there exists ϑ ∈ (0, 1) and a measurable function N3 : Ω → N such that for all n ≥ N3(ω),
all l ≥ 0, and all |p| ≤ n we have

Θσn+p(ω),+

(
L̃nσp(ω)fσp(ω), L̃n+lσp−l(ω)

hσp−l(ω)

)
≤ ∆ϑn.(1.10.1)

Furthermore, ∆, defined in (1.9.5), and ϑ do not depend on V .

Proof. We begin by noting that by (1.5.11) for each l ≥ 0 we have that L̃l
σp−l(ω)

hσp−l(ω) ∈
Cσp(ω),+ for each hσp−l(ω) ∈ Cσp−l(ω),+, and let

hl = L̃lσp−l(ω)hσp−l(ω).

Set v∗ = v∗(σ
p(ω)) (defined in Section 1.7) and let d∗ = d∗(σ

p(ω)) ≥ 0 be the smallest
integer that satisfies

v∗ + d∗R∗ ≥
εn+ log V (ω)

θ − ε
,(1.10.2)

σp+v∗+d∗R∗(ω) ∈ ΩF .(1.10.3)

where θ was defined in (1.5.21). Choose

N1(ω) ≥
log V (ω)

ε
(1.10.4)

and let n ≥ N1(ω). Now using (1.10.4) to write
4εn

θ
=
εn+ εn

θ/2
≥ εn+ log V (ω)

θ/2

and then using (1.6.2) and (1.7.1), we see that (1.10.2) is satisfied for any d∗R∗ ≥ 4εn/θ.
Using (1.9.13), the construction of v∗, and the ergodic decomposition of σR∗ following
(1.9.13), we have for m-a.e. ω ∈ Ω there is an infinite, increasing sequence of integers
dj ≥ 0 satisfying (1.10.3). Furthermore, (1.9.13) implies that

lim
n→∞

1

n/R∗
#

{
0 ≤ k <

n

R∗
: σ±kR∗+v∗(ω)(ω) /∈ ΩF

}
< ε,

and thus for n ∈ N sufficiently large (depending measurably on ω), say n ≥ N2(ω) ≥ N1(ω),
we have that

#

{
0 ≤ k <

n

R∗
: σ±kR∗+v∗(ω)(ω) /∈ ΩF

}
<
εn

R∗
.

Thus the smallest integer d∗ satisfying (1.10.2) and (1.10.3) also satisfies

d∗R∗ ≤
4εn

θ
+ εn =

(
4 + θ

θ

)
εn.(1.10.5)

Let

v̂∗ = v∗ + d∗R∗.(1.10.6)
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Now, we wish to examine the iteration of our operator cocycle along a collection ΣR∗ of

τ−l

l

τ = σp(ω)

v̂∗

τ0

Στ0

τ1

ℓ(τ1)R∗

τ2

· · ·
· · · τk−1

ℓ(τk−1)R∗

τk

r̂τ0(n)R∗

τ∗k

ĥ(n)

σn(τ) τ∗k+1

ΣR∗

Σ0R∗ ℓ(τk)R∗

n

Figure 2. The fibers τj and the decomposition of n = v̂∗ + Στ0 + ΣR∗ + ĥ(n).

blocks, each of length ℓ(ω)R∗, so that the images of L̃ℓ(ω)R∗
ω are contained in Cσℓ(ω)R∗ (ω),a∗/2

as in Lemma 1.7.4; see Figure 2.
We begin by establishing some simplifying notation. To that end, set τ = σp(ω),

τ−l = σp−l(ω), and τ0 = σp+v̂∗(ω); see Figure 2. Note that in light of (1.9.14), (1.9.15), and
(1.10.6) we have that

v∗(τ0) = y∗(τ0) = 0.(1.10.7)

Now, by our choice of d∗, we have that if fτ ∈ Cτ,+ with var(fτ ) ≤ eεnV (ω), then

L̃v̂∗τ fτ ∈ Cτ0,a∗ .(1.10.8)

Indeed, applying Proposition 1.5.9, (1.10.2), (1.10.3), and the definition of ΩF (1.9.4), we
have

var
(
L̃v̂∗τ fτ

)
≤ Cε(σ

v̂∗(τ))e−(θ−ε)v̂∗var(fτ ) + Cε(σ
v̂∗(τ))Λσv̂∗ (τ)

(
L̃v̂∗τ fτ

)
≤ B∗e

−(θ−ε)v̂∗var(fτ ) +B∗Λσv̂∗ (τ)

(
L̃v̂∗τ fτ

)
≤ B∗

var(fτ )
eεnV (ω)

+B∗Λσv̂∗ (τ)

(
L̃v̂∗τ fτ

)
≤ B∗ +B∗Λσv̂∗ (τ)

(
L̃v̂∗τ fτ

)
≤ 2B∗Λσv̂∗ (τ)

(
L̃v̂∗τ fτ

)
≤ a∗

6
Λσv̂∗ (τ)

(
L̃v̂∗τ fτ

)
,

where we recall that a∗ > 12B∗ is defined in (1.7.15). A similar calculation yields that if
hτ−l

∈ Cτ−l,+ with var(hτ−l
) ≤ eε(n+l)V (ω), then L̃l+v̂∗τ−l

hτ−l
∈ Cτ0,a∗ .

We now set τ1 = σΣτ0 (τ0) and for each j ≥ 2 let τj = σℓ(τj−1)R∗(τj−1). Note that since
τ0 ∈ ΩF , we have that Στ0 ≤ S∗.
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As there are only finitely many blocks (good and bad) that will occur within an orbit
of length n, let k ≥ 1 be the integer such that

v̂∗ + Στ0 +
k−1∑
j=1

ℓ(τj)R∗ ≤ n < v̂∗ + Στ0 +
k∑
j=1

ℓ(τj)R∗,

and let

Σ0 :=
k−1∑
j=1

ℓ(τj) and r̂τ0(n) := rτ0(n− v̂∗)

where rτ0(n− v̂∗) is the number defined in (1.7.27). Finally setting

Σ = Σ0 + r̂τ0(n), ĥ(n) := n− v̂∗ − Στ0 − ΣR∗, and τ ∗k := σr̂τ0 (n)(τk),

we have the right decomposition of our orbit length n into blocks which do not expand
distances in the fiber cones Cω,a∗ and Cω,+. Now let

n ≥ N3(ω) := max

{
N2(ω),

R∗

ε
,
S∗

ε

}
.(1.10.9)

Since v∗, ĥ(n) ≤ R∗, by (1.10.9), (1.10.5), and for

ε <
θ

8(1 + θ)
(1.10.10)

sufficiently small, we must have that

ΣR∗ = n− v̂∗ − Στ0 − ĥ(n) = n− v∗ − d∗R∗ − Στ0 − ĥ(n)

≥ n−
(
4 + θ

θ

)
εn− 2R∗ − S∗ ≥ n−

(
4 + θ

θ

)
εn− 3εn

≥ n

(
1− 4ε

(
1 + θ

θ

))
>
n

2
.(1.10.11)

Now we note that since L̃ĥ(n)τ∗k
(Cτ∗k ,+

) ⊆ Cσn+p(ω),+ we have that L̃ĥ(n)τ∗k
is a weak contraction,

and hence, we have

Θσn+p(ω),+

(
L̃ĥ(n)τ∗k

f ′, L̃ĥ(n)τ∗k
h′
)
≤ Θτ∗k ,+

(f ′, h′), f ′, h′ ∈ Θτ∗k ,+
.(1.10.12)

Recall that Eτ1(n− v̂∗ −Στ0), defined in Lemma 1.7.5, is the total length of the bad blocks
of the n− v̂∗ length orbit starting at τ0, i.e.

Eτ1(n− v̂∗ − Στ0) =
∑

1≤j<k
τj∈ΩB

ℓ(τj) + rτ0(n− v̂∗).

Lemma 1.7.5 then gives that

Eτ1(n− v̂∗ − Στ0) < Y εΣ.(1.10.13)

We are now poised to calculate (1.10.1), but first we note that we can write

n = v̂∗ + Στ0 + ΣR∗ + ĥ(n)
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= v̂∗ + Στ0 + Σ0R∗ + r̂τ0(n) + ĥ(n)(1.10.14)

and that the number of good blocks contained in the orbit of length n− v̂∗ − Στ0 is given
by

ΣG := # {1 ≤ j ≤ k : τj ∈ ΩG} = Σ− Eτ1(n− v̂∗ − Στ0) ≤ Σ0.(1.10.15)

Now, using (1.10.14) we combine (in order) (1.10.12), (1.4.2), and Theorem 1.4.4 (repeat-
edly) in conjunction with the fact that τ0 ∈ ΩF to see that

Θσn+p(ω),+

(
L̃nτ (fτ ), L̃n+lτ−l

(hτ−l
)
)

= Θσn+p(ω),+

(
L̃ĥ(n)τk

◦ L̃ΣR∗
τ1

◦ L̃Στ0
τ0 ◦ L̃v̂∗τ (fτ ), L̃ĥ(n)τk

◦ L̃ΣR∗
τ1

◦ L̃Στ0
τ0 ◦ L̃v̂∗τ ◦ L̃lτ−l

(hτ−l
)
)

≤ Θτ∗k ,+

(
L̃ΣR∗
τ1

◦ L̃Στ0
τ0 ◦ L̃v̂∗τ (fτ ), L̃ΣR∗

τ1
◦ L̃Στ0

τ0 ◦ L̃v̂∗τ (hl)
)

≤ Θτ∗k ,a∗

(
L̃r̂τ0 (n)τk ◦ L̃Σ0R∗

τ1
◦ L̃Στ0

τ0 ◦ L̃v̂∗τ (fτ ), L̃
r̂τ0 (n)
τk ◦ L̃Σ0R∗

τ1
◦ L̃Στ0

τ0 ◦ L̃v̂∗τ (hl)
)

≤ Θτk,a∗

(
L̃Σ0R∗
τ1

◦ L̃Στ0
τ0 ◦ L̃v̂∗τ (fτ ), L̃Σ0R∗

τ1
◦ L̃Στ0

τ0 ◦ L̃v̂∗τ (hl)
)

≤
(
tanh

(
∆

4

))ΣG

Θτ1,a∗

(
L̃Στ0
τ0 ◦ L̃v̂∗τ (fτ ), L̃

Στ0
τ0 ◦ L̃v̂∗τ (hl)

)
.

(1.10.16)

Now since τ0 ∈ ΩF and in light of (1.10.8), applying Lemma 1.9.1 allows us to estimate the
Θτ1,a∗ term in the right hand side of (1.10.16) to give

Θσn+p(ω),+

(
L̃nτ (fτ ), L̃n+lτ−l

(hτ−l
)
)
≤
(
tanh

(
∆

4

))ΣG

∆.(1.10.17)

Using (1.10.15), the fact that Eτ1(n− v̂∗ − Στ0) ≥ 1, (1.10.13), and (1.10.11), we see that

ΣG = Σ− Eτ1(n− v̂∗ − Στ0)

≥ Σ− Y εΣ

= Σ (1− Y ε)

≥ (1− Y ε)n

2R∗
.(1.10.18)

In light of (1.7.30), for all ε > 0 sufficiently small we have that 1 − Y ε > 0. Finally,
inserting (1.10.17) and (1.10.18) into (1.10.16) gives

Θσn+p(ω),+

(
L̃nτ (fτ ), L̃n+lτ−l

(hτ−l
)
)
≤ ∆ϑn,

where

ϑ :=

(
tanh

(
∆

4

)) (1−Y ε)
2R∗

< 1,

which completes the proof. □

Combining Lemma 1.10.1 together with Lemma 1.4.5 gives the following immediate
corollary.
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Corollary 1.10.2. Suppose ε > 0, V : Ω → (0,∞), fσp(ω) ∈ Cσp(ω),+, and hσp−l(ω) ∈
Cσp−l(ω),+ all satisfy the hypotheses of Lemma 1.10.1. Then there exists κ ∈ (0, 1) such that
for m-a.e. ω ∈ Ω, all n ≥ N3(ω), all l ≥ 0, and all |p| ≤ n we have

∥L̃nσp(ω)fσp(ω) − L̃n+l
σp−l(ω)

hσp−l(ω)∥∞ ≤ ∥L̃nσp(ω)fσp(ω)∥∞
(
e∆ϑ

n − 1
)
.

Notice that if we wish to apply Lemma 1.10.1 (or Corollary 1.10.2) repeatedly iterating
in the forward direction, i.e. taking p = 0 so that we push forward starting from the ω fiber,
then we only need that f ∈ Cω,+ and do not need to be concerned with the assumption
on the variation. Indeed, as p = 0 is fixed, then we will have var(f) ≤ var(f) · eεn for any
n ≥ 1. However, if we wish to apply Lemma 1.10.1 repeatedly with p = −n for n increasing
to ∞, then we will need to consider special functions f .

Definition 1.10.3. We let the set D denote the set of functions f ∈ BVΩ(I) such that
for each ε > 0 there exists a measurable function Vf,ε : Ω → (0,∞) such that the following
hold for all n ∈ Z with |n| sufficiently large:

var(fσn(ω)) ≤ Vf,ε(ω)e
ε|n|,(D1)

Λσn(ω)(|fσn(ω)|) ≥ V −1
f,ε (ω)e

−ε|n|.(D2)

Let D+ ⊆ D denote the collection of all functions f ∈ D such that fω ≥ 0 for each ω ∈ Ω.

Remark 1.10.4. Note that the space D is nonempty. In particular, D contains any
function f : Ω × I → R such that fω is equal to some fixed function f ∈ BV(I) with
0 < inf |f |. More generally, D contains any functions f ∈ BVΩ(I) such that log var(fω),
log Λω(|fω|) ∈ L1(m).

Remark 1.10.5. Note that if f ∈ D then taking Vf (ω) = V 2
f,ε(ω) measurable and

ε′ = ε/2 we have that
var(fσ−n(ω))

Λσ−n(ω)(fσ−n(ω))
≤ Vf (ω)

var(fω)
Λω(fω)

eε
′n.

In the following corollary we establish the existence of an invariant density.

Corollary 1.10.6. There exists a function ϕ ∈ BVΩ(I) and a measurable function
λ : Ω → R+ such that for m-a.e. ω ∈ Ω

Lωϕω = λωϕσ(ω) and Λω(ϕω) = 1.(1.10.19)

Furthermore, we have that log λω ∈ L1(m) and for m-a.e. ω ∈ Ω, λω ≥ ρω.

Proof. First we note that for any f ∈ D+, Lemma 1.5.4 and Remark 1.10.5 give that

var (fω,n) =
ρnσ−n(ω)

Λω

(
Lnσ−n(ω)fσ−n(ω)

)var
(
fσ−n(ω)

)
≤

var(fσ−n(ω))

Λσ−n(ω)(fσ−n(ω))
≤ Vf (ω)

var(fω)
Λω(fω)

eεn

for all n ∈ N sufficiently large, say for n ≥ N4(ω), and some measurable Vf : Ω → (0,∞),
where

fω,n :=
fσ−n(ω)ρ

n
σ−n(ω)

Λω

(
Lnσ−n(ω)fσ−n(ω)

) ∈ Cσ−n(ω),+.
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Thus, Corollary 1.10.2 (with p = −n and V (ω) = Vf (ω)var(fω)/Λω(fω)) gives that

(L̃nσ−n(ω)fω,n)n∈N =

 Lnσ−n(ω)fσ−n(ω)

Λω

(
Lnσ−n(ω)f

)

n∈N

forms a Cauchy sequence in Cω,+, and therefore there must exist some ϕω,f ∈ Cω,+ with

ϕω,f := lim
n→∞

Lnσ−n(ω)fσ−n(ω)

Λω

(
Lnσ−n(ω)fσ−n(ω)

) .(1.10.20)

By construction we have that Λω(ϕω,f ) = 1. Now, in view of calculating Lωϕω,f , we note
that (1.8.1) (with N = 1 and f = Lnσ−n(ω)fσ−n(ω)) gives that

Λσ(ω)

(
Ln+1
σ−n(ω)fσ−n(ω)

)
Λω

(
Lnσ−n(ω)fσ−n(ω)

) ≤
∥Lω1ω∥∞Λω

(
Lnσ−n(ω)fσ−n(ω)

)
Λω

(
Lnσ−n(ω)fσ−n(ω)

) = ∥Lω1ω∥∞.(1.10.21)

Lemma 1.5.4 (with k = 1 and f = Lnσ−n(ω)fσ−n(ω)) implies that

Λσ(ω)

(
Ln+1
σ−n(ω)fσ−n(ω)

)
Λω

(
Lnσ−n(ω)fσ−n(ω)

) ≥
ρωΛω

(
Lnσ−n(ω)fσ−n(ω)

)
Λω

(
Lnσ−n(ω)fσ−n(ω)

) = ρω,

and thus, together with (1.10.21), we have

Λσ(ω)

(
Ln+1
σ−n(ω)fσ−n(ω)

)
Λω

(
Lnσ−n(ω)fσ−n(ω)

) ∈ [ρω, ∥Lω1ω∥∞].(1.10.22)

Thus there must exist a sequence (nk)k∈N along which this ratio converges to some value
λω,f , that is

λω,f := lim
k→∞

Λσ(ω)

(
Lnk+1

σ−nk (ω)
f
)

Λω

(
Lnk

σ−nk (ω)
f
) .

Hence we have

Lωϕω,f = lim
k→∞

Lnk+1

σ−nk (ω)
f

Λω

(
Lnk

σ−nk (ω)
f
)

= lim
k→∞

Lnk+1

σ−nk (ω)
f

Λσ(ω)

(
Lnk+1

σ−nk (ω)
f
) ·

Λσ(ω)

(
Lnk+1

σ−nk (ω)
f
)

Λω

(
Lnk

σ−nk (ω)
f
) = λω,fϕσ(ω),f .(1.10.23)
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From (1.10.23) it follows that λω,f does not depend on the sequence (nk)k∈N, and in fact
we have

λω,f = lim
n→∞

Λσ(ω)

(
Ln+1
σ−n(ω)f

)
Λω

(
Lnσ−n(ω)f

) ,

and thus,

Lωϕω,f = λω,fϕσ(ω),f .(1.10.24)

To see that ϕω,f and λω,f do not depend on f , we apply Lemma 1.10.1 (with p = −n, l = 0,
and V (ω) = max {Vf (ω)var(fω)/Λω(fω), Vh(ω)var(hω)/Λω(hω)}) to functions f, h ∈ D+ to
get that

Θω,+ (ϕω,f , ϕω,h) ≤ Θω,+ (ϕω,f , fω,n) + Θω,+ (fω,n, hω,n) + Θω,+ (ϕω,h, hω,n) ≤ 3∆ϑn
(1.10.25)

for each n ≥ N3(ω). Thus, inserting (1.10.25) into Lemma 1.4.5 yields

∥ϕω,f − ϕω,h∥∞ ≤ ∥ϕω,f∥∞
(
e(Θω,+(ϕω,f ,ϕω,h)) − 1

)
≤ ∥ϕω,f∥∞

(
e3∆ϑ

n − 1
)
,

which converges to zero exponentially fast as n tends towards infinity. Thus we must in
fact have that ϕω,f = ϕω,h for all f, h. Moreover, in light of (1.10.24), this implies that
λω,f = λω,h. We denote the common values by ϕω and λω respectively. It follows from
(1.3.11) and (1.10.22) that

0 < ρω ≤ λω ≤ ∥Lω1ω∥∞.(1.10.26)

Measurability of the map ω 7→ λω follows from the measurability of the sequenceΛσ(ω)

(
Ln+1
σ−n(ω)1σ−n(ω)

)
Λω

(
Lnσ−n(ω)1σ−n(ω)

)

n∈N

.

The log-integrability of λω follows from the log-integrability of ρω and (1.10.26). Finally,
measurability of the maps ω 7→ inf ϕω and ω 7→ ∥ϕω∥∞ follows from the fact that we have

ϕω = lim
n→∞

Lnσ−n(ω)1σ−n(ω)

Λω(Lnσ−n(ω)1σ−n(ω))
,

which is a limit of measurable functions, and thus finishes the proof.
□

Remark 1.10.7. For each k ∈ N, inducting on (1.10.24) for any f ∈ D+ yields

Lkω(ϕω) = lim
n→∞

Ln+kσ−n(ω)fσ−n(ω)

Λω(Lnσ−n(ω)fσ−n(ω))

= lim
n→∞

Ln+kσ−n(ω)fσ−n(ω)

Λσk(ω)(Ln+kσ−n(ω)fσ−n(ω))
·
Λσk(ω)(Ln+kσ−n(ω)fσ−n(ω))

Λω(Lnσ−n(ω)fσ−n(ω))
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= ϕσk(ω) · lim
n→∞

Λσk(ω)(Ln+kσ−n(ω)fσ−n(ω))

Λω(Lnσ−n(ω)fσ−n(ω))
.(1.10.27)

The final limit in (1.10.27) telescopes to give us

lim
n→∞

Λσk(ω)(Ln+kσ−n(ω)fσ−n(ω))

Λω(Lnσ−n(ω)fσ−n(ω))
= lim

n→∞

Λσ(ω)(Ln+1
σ−n(ω)fσ−n(ω))

Λω(Lnσ−n(ω)fσ−n(ω))
· · ·

Λσk(ω)(Ln+kσ−n(ω)fσ−n(ω))

Λσk−1(ω)(Ln+k−1
σ−n(ω)fσ−n(ω))

= λωλσ(ω) · · ·λσk−1(ω),

For each k ≥ 1 we denote

λkω := λωλσ(ω) · · ·λσk−1(ω).(1.10.28)

Rewriting (1.10.27) gives

Lkωϕω = λkωϕσk(ω).

The following proposition shows that the density ϕω coming from Corollary 1.10.6 is in
fact supported on the set Dω,∞.

Proposition 1.10.8. For m-a.e. ω ∈ Ω we have that

inf
Dω,∞

ϕω > 0.

Proof. First we note that since Λω(ϕω) = 1 > 0 for m-a.e. ω ∈ Ω, using the definition
of Λω (1.3.1), we must in fact have that

inf
Dσn(ω),n

Lnω(ϕω) > 0

for n ∈ N sufficiently large, which, in turn implies that

inf
Xω,n−1

ϕω > 0(1.10.29)

for all n ∈ N sufficiently large. Next, for m-a.e. ω ∈ Ω and all n ∈ N we use (1.10.19) to
see that

inf
Dω,∞

ϕω =
(
λnσ−n(ω)

)−1

inf
Dω,∞

Lnσ−n(ω)ϕσ−n(ω)

≥ inf
Xσ−n(ω),n−1

ϕσ−n(ω)

(
λnσ−n(ω)

)−1

inf
Dω,∞

Lnσ−n(ω)1σ−n(ω).(1.10.30)

As the right hand side is strictly positive for all n ∈ N sufficiently large by (1.10.29),
(1.10.26), and (1.3.12), we are finished. □

Lemma 1.10.9. For each ω ∈ Ω the functional Λω is linear, positive, and enjoys the
property that

Λσ(ω)(Lωf) = λωΛω(f)(1.10.31)

for each f ∈ BV(I). Furthermore, for each ω ∈ Ω we have that

λω = ρω = Λσ(ω)(Lω1ω).(1.10.32)
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Proof. Positivity of Λω follows from the initial properties of Λω shown in Observa-
tion 1.3.1. To prove the remaining claims we first prove a more robust limit characterization
of Λω than the one given by its definition, (1.3.1). Now, for any two sequences of points
(xn)n≥0 and (yn)n≥0 with xn, yn ∈ Dσn(ω),n we have

lim
n→∞

∣∣∣∣ LnωfLnω1ω
(xn)−

Lnωf
Lnω1ω

(yn)

∣∣∣∣ = lim
n→∞

∣∣∣∣ LnωfLnω1ω
(yn)

∣∣∣∣ · ∣∣∣∣ Lnωf(xn)Lnω1ω(xn)
· L

n
ω1ω(yn)
Lnωf(yn)

− 1

∣∣∣∣
≤ ∥f∥∞ lim sup

n→∞

∣∣∣exp(Θσn(ω),+

(
L̃nωf, L̃nω1ω

))
− 1
∣∣∣ = 0.(1.10.33)

Thus, we have shown that we may remove the infimum from (1.3.1), which defines the
functional Λω, that is now we may write

Λω(f) = lim
n→∞

Lnωf
Lnω1ω

(xn)(1.10.34)

for all f ∈ Cω,+ and all xn ∈ Dσn(ω),n. Moreover, this identity also shows that the functional
Λω is linear. To extend (1.10.34) to all of BV(I), we simply write f = f+ − f− so that
f+, f− ∈ Cω,+ for each f ∈ BV(I) so that we have

Λω(f) = Λω(f+)− Λω(f−) = lim
n→∞

Lnωf+
Lnω1ω

− lim
n→∞

Lnωf−
Lnω1ω

= lim
n→∞

Lnωf
Lnω1ω

.(1.10.35)

To prove (1.10.31) and (1.10.32) we use (1.10.35) to note that

Λσ(ω)(Lωf) = lim
n→∞

Ln+1
ω f

Lnσ(ω)1σ(ω)
(xn+1)

= lim
n→∞

Ln+1
ω f

Ln+1
ω 1ω

(xn+1) ·
Ln+1
ω 1ω

Lnσ(ω)1σ(ω)
(xn+1)

= Λω(f) · Λσ(ω)(Lω1ω).(1.10.36)

Considering the case where f = ϕω in (1.10.36) in conjunction with the fact that Λω(ϕω) = 1
and Lωϕω = λωϕσ(ω) gives

ρω := Λσ(ω)(Lω1ω) = Λω(ϕω)Λσ(ω)(Lω1ω) = Λσ(ω)(Lωϕω) = Λσ(ω)(λωϕσ(ω)) = λω,
(1.10.37)

which finishes the proof. □

Remark 1.10.10. In light of the fact that log ρω ∈ L1(m) by (1.3.11), Lemma 1.10.9
implies that

log λω ∈ L1(m).(1.10.38)

In the next lemma we are finally able to show that the functional Λω can be thought of
as Borel probability measure for the random open system.

Lemma 1.10.11. There exists a non-atomic Borel probability measure νω on Iω such
that

Λω(f) =

∫
Iω

f dνω
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62 1. THERMODYNAMIC FORMALISM FOR RANDOM INTERVAL MAPS WITH HOLES

for all f ∈ BV(I). Consequently, we have that

νσ(ω)(Lωf) = λωνω(f)(1.10.39)

for all f ∈ BV(I). Furthermore, we have that supp(νω) ⊆ Xω,∞.

Proof. The proof that the functional Λω can be equated to a non-atomic Borel prob-
ability measure νω goes exactly like the proof of Lemma 4.3 in [53]. Thus, we have only
to prove that supp(νω) ⊆ Xω,∞. To that end, suppose f ∈ L1(νω,0) with f ≡ 0 on Xω,n−1.
Then ∫

I

f dνω = (λnω)
−1

∫
I

Lnω(f) dνσn(ω) = (λnω)
−1

∫
I

Lnω,0(X̂ω,n−1 · f) dνσn(ω) = 0.

As 0 < λnω <∞ for each n ∈ N, we must have that supp(νω) ⊆ Xω,∞. □

Remark 1.10.12. We can immediately see, cf. [31, 5], that the conformality of the
family (νω)ω∈Ω produced in Lemma 1.10.11 enjoys the property that for each n ≥ 1 and
each set A on which T nω |A is one-to-one we have

νσn(ω)(T
n
ω (A)) = λnω

∫
A

e−Sn,T (φω) dνω.

In particular, this gives that for each n ≥ 1 and each Z ∈ Z(n)
ω we have

νσn(ω)(T
n
ω (Z)) = λnω

∫
Z

e−Sn,T (φω) dνω.

Remark 1.10.13. In light of Lemmas 1.10.9 and 1.10.11, the normalized operator L̃ω
is given by L̃ω(·) := ρ−1

ω Lω(·) = λ−1
ω Lω(·). Furthermore, L̃ω enjoys the properties

L̃ωϕω = ϕσ(ω) and νσ(ω)

(
L̃ω(f)

)
= νω(f)

for all f ∈ BV(I).

For each ω ∈ Ω we may now define the measure µω ∈ P(I) by

µω(f) :=

∫
Xω,∞

fϕω dνω, f ∈ L1(νω).(1.10.40)

Lemma 1.10.11 and Proposition 1.10.8 together show that, for m-a.e. ω ∈ Ω, µω is a non-
atomic Borel probability measure with supp(µω) ⊆ Xω,∞, which is absolutely continuous
with respect to νω. Furthermore, in view of Proposition 1.10.8, for m-a.e. ω ∈ Ω, we may
now define the fully normalized transfer operator Lω : BV(I) → BV(I) by

Lωf :=
1

ϕσ(ω)
L̃ω(fϕω) =

1

λωϕσ(ω)
Lω(fϕω), f ∈ BV(I).(1.10.41)

As an immediate consequence of Remark 1.10.13 and (1.10.41), we get that

Lω1ω = 1σ(ω).(1.10.42)

We end this section with the following proposition which shows that the family (µω)ω∈Ω of
measures is T -invariant.
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1.11. DECAY OF CORRELATIONS 63

Proposition 1.10.14. The family (µω)ω∈Ω defined by (1.10.40) is T -invariant in the
sense that ∫

Xω,∞

f ◦ Tω dµω =

∫
Xσ(ω),∞

f dµσ(ω)(1.10.43)

for f ∈ L1(µσ(ω)) = L1(νσ(ω)).

The proof of Proposition 1.10.14 goes just like the proof of Proposition 8.11 of [3], and
has thus been omitted.

1.11. Decay of correlations

We are now ready to show that images under the normalized transfer operator L̃ω
converge exponentially fast to the invariant density as well as the fact that the invariant
measure µω established in Section 1.10 satisfies an exponential decay of correlations. Fur-
thermore, we show that the families (νω)ω∈Ω and (µω)ω∈Ω are in fact random measures and
then introduce the RACCIM η supported on I.

To begin this section we state a lemma which shows that the BV norm of the invariant
density ϕω does not grow too much along a σ-orbit of fibers by providing a measurable
upper bound. In fact, we show that the BV norm of ϕω is tempered. As the proof of the
following lemma is the same as the proof of Lemma 8.5 in the closed dynamical setting of
[3], its proof is omitted.

Lemma 1.11.1. For all δ > 0 there exists a measurable random constant C(ω, δ) > 0
such that for all k ∈ Z and m-a.e. ω ∈ Ω we have

∥ϕσk(ω)∥BV = ∥ϕσk(ω)∥∞ + var(ϕσk(ω)) ≤ C(ω, δ)eδ|k|.

Consequently, we have that q ∈ D.

We are now able to prove the following theorem which completes the proof of Theorem B.

Theorem 1.11.2. There exists a measurable, m-a.e. finite function D : Ω → R and
κ < 1 such that for each f ∈ D, each n ∈ N, and each |p| ≤ n we have

∥L̃nσp(ω)fσp(ω) − νσp(ω)(fσp(ω))ϕσp+n(ω)∥∞ ≤ D(ω)∥fσp(ω)∥∞κn(1.11.1)

and

∥L n
σp(ω)fσp(ω) − µσp(ω)(fσp(ω))1σp+n(ω)∥∞ ≤ D(ω)∥fσp(ω)∥∞κn.(1.11.2)

Proof. We first note that for m-a.e. ω ∈ Ω, all n ≥ N3(ω), all |p| ≤ n, and all f ∈ D+

we may use Lemma 1.10.1 to get that

Θσp+n(ω),+

(
L̃nσp(ω)fσp(ω), νσp(ω)(fσp(ω))ϕσp+n(ω)

)
= Θσp+n(ω),+

(
L̃nσp(ω)fσp(ω), νσp(ω)(fσp(ω))L̃nσp(ω)ϕσp(ω)

)
≤ ∆ϑn.

Applying Lemma 1.4.5 with ϱ = νσp+n(ω) and ∥·∥ = ∥·∥∞, together with Lemma 1.10.1
then gives

∥L̃nσp(ω)fσp(ω) − νσp(ω)(fσp(ω))ϕσp+n(ω)∥∞
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64 1. THERMODYNAMIC FORMALISM FOR RANDOM INTERVAL MAPS WITH HOLES

≤
(
exp

(
Θσp+n(ω),+

(
L̃nσp(ω)fσp(ω), νσp(ω)(fσp(ω))ϕσp+n(ω)

))
− 1
)
νσp(ω)(fσp(ω))∥ϕσp+n(ω)∥∞

≤ ∥fσp(ω)∥∞∥ϕσp+n(ω)∥∞
(
e∆ϑ

n − 1
)

≤ ∥fσp(ω)∥∞∥ϕσp+n(ω)∥∞κ̃n
(1.11.3)

for some κ̃ ∈ (0, 1)2. Since ∥ϕω∥∞ is tempered, as a consequence of Lemma 1.11.1, for each
n ∈ N and each δ > 0 we can find a tempered function An,δ : Ω → R such that

∥ϕσp+n(ω)∥∞ ≤ An,δ(ω)e
(p+n)δ∥ϕω∥∞ ≤ An,δ(ω)e

2nδ∥ϕω∥∞,(1.11.4)

where we have used the fact that |p| ≤ n. For each δ > 0 we let

Bδ(ω) := max
1≤n≤N3(ω)

{An,δ(ω)} κ̃−N3(ω).(1.11.5)

Combining (1.11.3) - (1.11.5), for any n ∈ N we see that

∥L̃nσp(ω)fσp(ω) − νσp(ω)(fσp(ω))ϕσp+n(ω)∥∞ ≤ 2Bδ(ω)e
2nδ∥fσp(ω)∥∞∥ϕω∥∞κ̃n

≤ 2B(ω)∥fσp(ω)∥∞∥ϕω∥∞κn,(1.11.6)

where here we have fixed δ > 0 sufficiently small such that

e2δκ̃ =: κ < 1,

and we have set B(ω) = Bδ(ω)
Now, to extend (1.11.6) to all of D we write a function f ∈ D+ as f = f+ − f−, where

f+, f− ∈ D+. Applying the triangle inequality and using (1.11.6) twice gives

∥L̃nσp(ω)fσp(ω) − νσp(ω)(fσp(ω))ϕσp+n(ω)∥∞ ≤ 4B(ω)∥fσp(ω)∥∞∥ϕω∥∞κn.

Setting D(ω) := 4B(ω)∥ϕω∥∞ finishes the proof of (1.11.1). To prove the second claim
concerning L follows easily from the first claim in a similar fashion as in the proof of
Theorem 10.4 of [3]. □

From the previous result we easily deduce that the invariant measure µ satisfies an
exponential decay of correlations. The following theorem, whose proof is exactly the same
as Theorem 11.1 of [3], completes the proof of Theorem C.

Theorem 1.11.3. For m-a.e. every ω ∈ Ω, every n ∈ N, every |p| ≤ n, every f ∈
L1(µ), and every h ∈ D we have∣∣µτ ((fσn(τ) ◦ T nτ

)
hτ
)
− µσn(τ)(fσn(τ))µτ (hτ )

∣∣ ≤ D(ω)∥fσn(τ)∥L1(µσn(τ))∥hτ∥∞κ
n,

where τ = σp(ω).

Remark 1.11.4. Note that Theorem 1.11.2 implies a stronger limit characterization of
the measure νω than what is concluded in (1.10.34). Indeed, Theorem 1.11.2 implies that

νω(f) = lim
n→∞

Lnωf(xn)
Lnω1ω(yn)

2Any κ̃ > ϑ will work for n sufficiently large.
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1.11. DECAY OF CORRELATIONS 65

for any pair of sequences (xn)n∈N and (yn)n∈N with xn, yn ∈ Dσn(ω),∞, which further implies
that

νω(f) = lim
n→∞

∥Lnωf∥∞
inf Lnω1ω

= lim
n→∞

inf Lnωf
∥Lnω1ω∥∞

.(1.11.7)

Furthermore, the same holds for νω,0; see Lemma 9.2 and Proposition 10.4 of [3].

We now address the uniqueness of the families of measures ν = (νω)ω∈Ω and µ = (µω)ω∈Ω
as well as the invariant density ϕ.

Proposition 1.11.5.

(1) The family ν = (νω)ω∈Ω is a random probability measure which is uniquely deter-
mined by (1.10.39).

(2) The global invariant density q ∈ D produced in Corollary 1.10.6 is the unique
element of L1(ν) (modulo ν) such that

L̃ωϕω = ϕσ(ω).

(3) The family µ = (µω)ω∈Ω is a unique random T -invariant probability measure which
is absolutely continuous with respect to ν.

Proof. The fact that the family (νω)ω∈Ω is a random measure as in Definition 0.1.1
follows from the limit characterization given in (1.11.7), as we have that νω is a limit of
measurable functions. Indeed, for every interval J ⊂ I, the measurability of the function
ω 7→ νω(J) follows from the fact that it is given by the limit of measurable functions by
(1.11.7) applied to the characteristic function fω = 1J . Since B is generated by intervals,
ω 7→ νω(B) is measurable for every B ∈ B. Furthermore, νω is a Borel probability measure
for m-a.e. ω ∈ Ω from Proposition 1.10.11.

The remainder of the proof Proposition 1.11.5 follows along exactly like the proofs of
Propositions 9.4 and 10.4 of [3], and is therefore left to the reader. □

The proof of the following proposition is the same as the proof of Proposition 4.7 of
[57], and so it is omitted.

Proposition 1.11.6. The random T -invariant probability measure µ defined in (1.10.40)
is ergodic.

In the following lemma we establish the existence of the unique random absolutely
continuous conditionally invariant probability measure η with density in BV.

Lemma 1.11.7. The random measure η ∈ PΩ(Ω × I), whose disintegrations are given
by

ηω(f) :=
νω,0(f · 1ω · ϕω)
νω,0(1ω · ϕω)

,

is the unique random absolutely continuous (with respect to ν0) conditionally invariant
probability measure supported on I with fiberwise density of bounded variation.

Proof. The fact that η is an RACCIM follows from Lemma 1.2.5 and uniqueness
follows from Proposition 1.11.5. □
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66 1. THERMODYNAMIC FORMALISM FOR RANDOM INTERVAL MAPS WITH HOLES

As a corollary of Theorem 1.11.2, the following results gives the exponential convergence
of the closed conformal measure νω,0 conditioned on the survivor set to the RACCIM ηω.

Corollary 1.11.8. For m-a.e. every ω ∈ Ω, every n ∈ N, every |p| ≤ n, every A ∈ B,
and every f ∈ D we have∣∣∣νσp(ω),0

(
T−n
σp(ω)(A) |Xσp(ω),n

)
− ησp+n(ω)(A)

∣∣∣ ≤ D(ω)

νσp+n(ω),0

(
1σp+n(ω)ϕσp+n(ω)

)κn
and ∣∣∣∣∣∣

ησp(ω)

(
fσp(ω)|Xσp(ω),n

)
ησp(ω)

(
Xσp(ω),n

) − µσp(ω)(fσp(ω))

∣∣∣∣∣∣ ≤ D(ω)∥fσp(ω)∥∞κn

for m-a.e. ω ∈ Ω.

Proof. For A ∈ B, Lemma 1.2.4 allows us to write

νσp(ω),0

(
T−n
σp(ω)(A) ∩Xσp(ω),n

)
=

∫
Xσp(ω),n

1σp(ω)1A ◦ T nσp(ω) dνσp(ω),0

=
(
λnσp(ω),0

)−1
∫
Iσp+n(ω)

1ALnσp(ω)1σp(ω) dνσp+n(ω),0

= νσp+n(ω),0

(
1A1σp+n(ω)L̃nσp(ω)(1σp(ω))

)
.

So, if A = I, then we have

νσp(ω),0

(
Xσp(ω),n

)
= νσp+n(ω),0

(
1σp+n(ω)L̃nσp(ω)(1σp(ω))

)
.

Thus, we apply (1.11.1) of Theorem 1.11.2 together with elementary calculation to get that∣∣∣νσp(ω),0

(
T−n
σp(ω)(A) |Xσp(ω),n

)
− ησp+n(ω)(A)

∣∣∣
=

∣∣∣∣∣∣
νσp+n(ω),0

(
1A1σp+n(ω)L̃nσp(ω)(1σp(ω))

)
νσp+n(ω),0

(
1σp+n(ω)L̃nσp(ω)(1σp(ω))

) −
νσp+n(ω),0

(
1A1σp+n(ω)ϕσp+n(ω)

)
νσp+n(ω),0

(
1σp+n(ω)ϕσp+n(ω)

)
∣∣∣∣∣∣

≤ D(ω)

νσp+n(ω),0

(
1σp+n(ω)ϕσp+n(ω)

)κn.
To see the second claim we note that for f ∈ D

ησp(ω)

(
fσp(ω)|Xσp(ω),n

)
ησp(ω)

(
Xσp(ω),n

) =
νσp(ω),0

(
fσp(ω)X̂σp(ω),n1σp(ω)ϕσp(ω)

)
νσp(ω),0

(
X̂σp(ω),n1σp(ω)ϕσp(ω)

)
=
νσp+n(ω),0

(
1σp+n(ω)L̃nσp(ω)(fσp(ω)ϕσp(ω))

)
νσp+n(ω),0

(
1σp+n(ω)L̃nσp(ω)(ϕσp(ω))

)
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=
νσp+n(ω),0

(
1σp+n(ω)L

n
σp(ω)(fσp(ω))ϕσp+n(ω)

)
νσp+n(ω),0

(
1σp+n(ω)ϕσp+n(ω)

)
= ησp+n(ω)

(
L n
σp(ω)(fσp(ω))

)
.

Thus, applying (1.11.2) of Theorem 1.11.2, we have∣∣∣∣∣∣
ησp(ω)

(
fσp(ω)|Xσp(ω),n

)
ησp(ω)

(
Xσp(ω),n

) − µσp(ω)(fσp(ω))

∣∣∣∣∣∣ = ∣∣ησp+n(ω)

(
L n
σp(ω)(fσp(ω))

)
− µσp(ω)(fσp(ω))

∣∣
≤ D(ω)∥fσp(ω)∥∞κn,

which finishes the proof. □

Remark 1.11.9. Note that the second claim of Corollary 1.11.8 differs from the third
claim of Theorem A of [53] where the substitute the function f ∈ D (or f ∈ BV(I)) with
the function 1A for A a Borel set. As stated this is not true as this result can not hold
for general A ∈ B; taking A = X∞ produces a counterexample. However, if A is taken as
the union of finitely many intervals, then 1A ∈ BV(I) and the third claim of Theorem A
of [53] holds.

1.12. Expected pressures and escape rates

We now establish the rate at which mass escapes through the hole with respect to
the closed conformal measure νω,0 and the RACCIM ηω in terms of the open and closed
expected pressures.

Definition 1.12.1. Given a potential φ0 on the closed system we define the expected
pressure of the closed and open systems respectively by

EP (φ0) :=

∫
Ω

log λω,0 dm(ω) and EP (φ) :=
∫
Ω

log λω dm(ω).

In light of (1.10.38) (and (C)), we see that the definition of the expected pressures
EP (φ0), EP (φ) ∈ R, are well defined. Since log λω, log λω,0 ∈ L1(m), Birkhoff’s Ergodic
Theorem gives that

EP (φ) = lim
n→∞

1

n
log λnω = lim

n→∞

1

n
log λnσ−n(ω)(1.12.1)

and

EP (φ0) = lim
n→∞

1

n
log λnω,0 = lim

n→∞

1

n
log λnσ−n(ω),0.(1.12.2)

The following lemma, which is the open analogue of Lemma 10.1 of [3], gives an alternate
method for calculating the expected pressure.

Lemma 1.12.2. For m-a.e. ω ∈ Ω we have that

lim
n→∞

∥ 1
n
logLnσ−n(ω)1σ−n(ω) −

1

n
log λnσ−n(ω)∥∞ = 0(1.12.3)
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and

lim
n→∞

∥ 1
n
logLnω1ω −

1

n
log λnω∥∞ = 0.(1.12.4)

Furthermore, for m-a.e. ω ∈ Ω we have that

lim
n→∞

1

n
log inf

Dσn(ω),∞
ϕσn(ω) = lim

n→∞

1

n
log ∥ϕσn(ω)∥∞ = 0.

As the proof of the previous lemma is exactly the same as the proof of Lemma 10.1 of
[3] where infima are taken over the appropriate Dω,∞ sets, the proof is left to the reader.
Now, in view of the fact that

Lω1ω ≤ Lω,01,

Lemma 1.12.2 and Lemma 10.1 of [3], together with (1.12.1) and (1.12.2) imply that

EP (φ) ≤ EP (φ0).(1.12.5)

We now define the fiberwise escape rates of a random measure.

Definition 1.12.3. Given a random probability measure ϱ on I, for each ω ∈ Ω, we
define the lower and upper fiberwise escape rates respectively by the following:

R(ϱω) := − lim sup
n→∞

1

n
log ϱω(Xω,n) and R(ϱω) := − lim inf

n→∞

1

n
log ϱω(Xω,n).

If R(ϱω) = R(ϱω), we say the escape rate exists and denote the common value by R(ϱω).

The previous results allow us to calculate the following escape rates, thus proving The-
orem D.

Proposition 1.12.4. For m-a.e. ω ∈ Ω we have that

R(νω,0) = R(ηω) = EP (φ0)− EP (φ).

Proof. We begin by noting that

νω,0(Xω,n−1) =
(
λnω,0

)−1
νσn(ω),0

(
Lnω,0(X̂ω,n−1)

)
=

λnω
λnω,0

νσn(ω),0

(
L̃nω1ω

)
=

λnω
λnω,0

(
νσn(ω),0(ϕσn(ω))− νσn(ω),0

(
L̃nω1ω − ϕσn(ω)

))
.

Using Theorem 1.11.2 gives that

−R(νω,0) = lim
n→∞

1

n
log

λnω
λnω,0

+ lim
n→∞

1

n
log νσn(ω),0(ϕσn(ω)).

Thus, the temperedness of infDω,∞ ϕω and ∥ϕω∥∞, coming from Lemma 1.12.2, imply that

0 = lim
n→∞

1

n
log inf

Dσn(ω),∞
ϕσn(ω) ≤ lim

n→∞

1

n
log νσn(ω),0(ϕσn(ω)) ≤ lim

n→∞

1

n
log ∥qσn(ω)∥∞ = 0,

which, when combined with (1.12.1) and (1.12.2), completes the proof of the first claim.
As the second equality follows similarly to the first, we are done. □
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Remark 1.12.5. If there exists a T -invariant measure µ0 on the closed system which is
absolutely continuous with respect to ν0 then the proof of Proposition 1.12.4, with minor
adjustments, also shows that for m-a.e. ω ∈ Ω we have that

R(νω,0) = R(µω,0) = EP (φ0)− EP (φ).

1.13. Equilibrium states

In this short section we show that the invariant measures µ = {µω}ω∈Ω constructed in
Section 1.10 are in fact the unique relative equilibrium states for the random open system.

Definition 1.13.1. Let PH
T,m(I) denote the collection of T -invariant random probability

measures ζ on Ω×I, such that the disintegration {ζω} satisfy ζω(Hω) = 0 for m a.e. ω ∈ Ω.
We say that a measure ζ ∈ PH

T,m(Ω) is a relative equilibrium state for the random open
system (open) potential φ if

EP (φ) = hζ(T ) +

∫
Ω×I

φdζ,

where hζ(T ) denotes the entropy of T with respect to ζ.

The proof of the next result follows similarly to the proof of Theorem 2.23 in [3] (see
also Remark 2.24, Lemma 12.2 and Lemma 12.3).

Theorem 1.13.2. The random measure µ ∈ PH
T,m(Ω) with disintegration {µω}ω∈Ω pro-

duced in (1.10.40) is the unique relative equilibrium state for the potential φ. It satisfies
the following variational principle:

EP (φ) = hµ(T ) +

∫
Ω×I

φdµ = sup
ζ∈PH

T,m(Ω×I)

(
hζ(T ) +

∫
Ω×I

φdζ

)
.

Furthermore, for each ζ ∈ PH
T,m(Ω) different from µ we have that

hζ(T ) +

∫
Ω×I

φdζ < hµ(T ) +

∫
Ω×I

φdµ

1.14. Bowen’s formula

This section is devoted to proving a formula for the Hausdorff dimension of the survivor
set in terms of the expected pressure function, which was first proven by Bowen in [13] in
the setting quasi-Fuchsian groups. In this section we will consider geometric potentials of
the form φ0,t(ω, x) = −t log |T ′

ω|(x) (t ∈ [0, 1]) for maps Tω which are expanding on average.
We denote the expected pressure of φ0,t by EP0(t) and the expected pressure of the open
potential φt by EP (t). In the case that t = 1, the fiberwise closed conformal measures νω,0,1
are equal to Lebesgue measure and λω,0,1 = 1. Furthermore, we note that for any t ≥ 0 we
have that

g
(n)
ω,0,t =

(
g
(n)
ω,0,1

)t
=

1

|(T nω )′|t
.(1.14.1)
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Definition 1.14.1. We will say that the weight function gω,0 has the Bounded Distor-
tion Property if for m-a.e. ω ∈ Ω there exists Kω ≥ 1 such that for all n ∈ N, all Z ∈ Z(n)

ω ,
and all x, y ∈ Z we have that

g
(n)
ω,0(x)

g
(n)
ω,0(y)

≤ Kω.

We now adapt the following definitions from [53] to the random setting.

Definition 1.14.2. We will say that the map T has large images if for m-a.e. ω ∈ Ω
we have

inf
n∈N

inf
Z∈Z(n)

ω

νσn(ω),0 (T
n
ω (Z)) > 0.

T is said to have large images with respect to H if for m-a.e. ω ∈ Ω, each n ∈ N, and each
Z ∈ Z(n)

ω with Z ∩Xω,∞ ̸= ∅ we have
T nω (Z ∩Xω,n−1) ⊇ Xσn(ω),∞.

Remark 1.14.3. If T has large images with respect to H then it follows from Re-
mark 1.10.12 that supp(νω,t) = Xω,∞ for any t ∈ [0, 1].

We now prove a formula for the Hausdorff dimension of the surviving set, à la Bowen,
proving Theorem E.

Theorem 1.14.4. Suppose that
∫
Ω
log inf |T ′

ω| dm(ω) > 0 and that g0 = 1/|T ′| satisfies
the bounded distortion property, then there exists a unique h ∈ [0, 1] such that EP (t) > 0
for all 0 ≤ t < h and EP (t) < 0 for all h < t ≤ 1. Furthermore, if T has large images and
large images with respect to H, then for m-a.e. ω ∈ Ω

HD(Xω,∞) = h.

Proof. We will prove this theorem in a series of lemmas.

Lemma 1.14.5. The function EP (t) is strictly decreasing and there exists h ∈ [0, 1] such
that EP (t) > 0 for all 0 ≤ t < h and EP (t) < 0 for all h < t ≤ 1.

Proof. We first note that, using (1.14.1), for any n ∈ N and s < t ∈ [0, 1] we can write

Lnω,t1ω ≤ ∥g(n)ω,1∥t−s∞ Lnω,s1ω.
This immediately implies that

EP (t) < EP (s)
since for m-a.e. ω ∈ Ω we have

lim
n→∞

1

n
log ∥g(n)ω,1∥∞ < 0.

Now since EP (0) ≥ 0 and EP (1) ≤ EP0(1) = 0, there must exist some h ∈ [0, 1] such that
for all s < h < t we have

EP (t) < 0 < EP (s).
□
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To prove the remaining claim of Theorem 1.14.4, we now suppose that T has large
images and large images with respect to H.

Lemma 1.14.6. If T has large images and large images with respect to H, and νω,t(Z) >
0 for all t ∈ [0, 1], all n ∈ N, and all Z ∈ Z(n)

ω , then for all x ∈ Z we have

K−1
ω ≤

(
g
(n)
ω,0,1

)t
(x)

λnω,tνω,t(Z)
≤ Kω and K−1

ω ≤
g
(n)
ω,0,1(x)

Leb(Z)
≤ Kω.

Proof. In light of Remark 1.14.3, supp(νω,t) = Xω,∞, and thus for any Z ∈ Z(n)
ω for

any n ≥ 1, νω,t(Z) > 0 if and only if Z ∩Xω,∞ ̸= ∅. Furthermore, since T has large images
with respect to H, we have that

νσn(ω),t(T
n
ω (Z)) = 1(1.14.2)

for any Z ∈ Z(n)
ω with Z ∩Xω,∞ ̸= ∅. Thus, we may write

νω,t(Z) =

∫
Xω,∞

1Z dνω,t =
(
λnω,t
)−1
∫
Xσn(ω),∞

Lnω,t1Z dνσn(ω),t

=
(
λnω,t
)−1
∫
Xσn(ω),∞

Lnω,0,t
(

1ZX̂ω,n−1

)
dνσn(ω),t

=
(
λnω,t
)−1
∫
Tn
ω (Z)

((
g
(n)
ω,0,1

)t
X̂ω,n−1

)
◦ T−n

ω,Z dνσn(ω),t

=
(
λnω,t
)−1
∫
Tn
ω (Z)

(
g
(n)
ω,0,1

)t
◦ T−n

ω,Z dνσn(ω),t.(1.14.3)

The Bounded Distortion Property implies that for x ∈ Z we have

K−1
ω νσn(ω),t(T

n
ω (Z))

(
g
(n)
ω,0,1

)t
(x) ≤

∫
Tn
ω (Z)

(
g
(n)
ω,0,1

)t
◦ T−n

ω,Z dνσn(ω),t

≤ Kωνσn(ω),t(T
n
ω (Z))

(
g
(n)
ω,0,1

)t
(x).

Thus

K−1
ω

(
g
(n)
ω,0,1

)t
(x)

λnω,tνω,t(Z)
≤ 1

νσn(ω),t(T nω (Z))
≤ Kω

(
g
(n)
ω,0,1

)t
(x)

λnω,tνω,t(Z)
,

which then implies that

K−1
ω

1

νσn(ω),t(T nω (Z))
≤

(
g
(n)
ω,0,1

)t
(x)

λnω,tνω,t(Z)
≤ Kω

1

νσn(ω),t(T nω (Z))
.

The first claim follows from (1.14.2). The proof of the second claim involving the Lebesgue
measure follows similarly noting that νω,0,1 = Leb and λω,0,1 = 1. □
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72 1. THERMODYNAMIC FORMALISM FOR RANDOM INTERVAL MAPS WITH HOLES

Let ε > 0 and n ∈ N such that diam(Z) < ε for all Z ∈ Z(n)
ω . Denote

Fω :=
{
Z ∈ Z(n)

ω : Z ∩Xω,∞ ̸= ∅
}
,

which is a cover of Xω,∞ by sets of diameter less than ε. Then, letting xZ be any element of
Z and using Lemma 1.14.6 twice (first with respect to Leb and then with respect to νω,t),
we have ∑

Z∈Fω

diamt(Z) ≤
∑
Z∈Fω

Lebt(Z) ≤ Kt
ω

∑
Z∈Fω

(
g
(n)
ω,0,1

)t
(xZ)

≤ K2t
ω

∑
Z∈Fω

λnω,tνω,t(Z) = K2t
ω λ

n
ω,tνω,t(Xω,∞) = K2t

ω λ
n
ω,t.(1.14.4)

Now, if t > h we have

lim
n→∞

1

n
log λnω,t = EP (t) < 0,

and thus, for δ > 0 sufficiently small and all n ∈ N sufficiently large,

λnω,t ≤ e−nδ.

Consequently, we see that the right-hand side of (1.14.4) must go to zero, and thus we must
have that HD(Xω,∞) ≤ h.

For the lower bound we turn to the following result of Young.

Proposition 1.14.7 (Proposition, [66]). Let X be a metric space and Z ⊆ X. Assume
there exists a probability measure µ such that µ(Z) > 0. For any x ∈ Z we define

dµ(x) := lim inf
ε→0

log µ(B(x, ε))

log ε
.

If dµ(x) ≥ d for each x ∈ Z, then HD(Z) ≥ d.

We will use this result to prove a lower bound for the dimension, thus completing the
proof of Theorem 1.14.4. Let x ∈ Xω,∞, let ε > 0, and in light of Lemma 1.14.6, let nω,0+1
be the least positive integer such that there exists y0 ∈ B(x, ε) such that

g
(nω,0+1)
ω,0 (y0) ≤ 2εKω.

Note that as ε→ 0 we must have that nω,0 → ∞. So we must have

g
(nω,0)
ω,0 (y0)gσnω,0 (ω),0(T

nω,0
ω (y0)) = g

(nω,0+1)
ω,0 (y0) ≤ 2εKω.(1.14.5)

Thus, using (1.14.5) and the definition of nω,0 we have that

2εKω < g
(nω,0)
ω,0 (y0) ≤

2εKω

inf gσnω,0 (ω),0

.

Now let Z0 ∈ Z(nω,0)
ω be the partition element containing y0. Then Lemma 1.14.6 gives that

diam(Z0) ≤ Kωg
(nω,0)
ω,0 (y0) ≤

2εK2
ω

inf gσnω,0 (ω),0

,(1.14.6)
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and

diam(Z0) ≥ K−1
ω g

(nω,0)
ω,0 (y0) > 2ε.(1.14.7)

Combining (1.14.6) and (1.14.7) gives

2ε < diam(Z0) ≤
2εK2

ω

inf gσnω,0 (ω),0

.(1.14.8)

Now, we define

Bω,1 := B(x, ε)\Z0,

which may be empty. If Bω,1 ̸= ∅, then we let nω,1 + 1 be the least positive integer such
that there exists y1 ∈ Bω,1 such that

g
(nω,1+1)
ω,0 (y1) ≤ 2εKω.

Following the same line of reasoning to derive (1.14.8), we see that

2ε < diam(Z1) ≤
2εK2

ω

inf gσnω,1 (ω),0

,(1.14.9)

where Z1 ∈ Z(nω,1)
ω is the partition element containing y1. Note that by definition we have

that nω,1 ≥ nω,0 and Z0 ∩ Z1 = ∅. This immediately implies that

B(x, ε) ⊆ Z0 ∪ Z1,

as otherwise using the same construction we could find some y2 ∈ Bω,1\Z1, some nω,2 ≥ nω,1
and a partition element Z2 ∈ Z(nω,2)

ω containing y2 with diameter greater than 2ε. But this
would produce three disjoint intervals each with diameter greater than 2ε all of which
intersect B(x, ε), which would obviously be a contradiction.

Now, using (1.14.3) and Lemma 1.14.6 gives that

νω,t(Zj) =
(
λ
nω,j

ω,t

)−1
∫
T

nω,j
ω (Z)

(
g
(nω,j)
ω,0,1

)t
◦ T−nω,j

ω,Z dνσnω,j (ω),t ≤ Kt
ω

(
λ
nω,j

ω,t

)−1
diamt(Zj)

for j ∈ {0, 1}. Using this we see that

log νω,t(B(x, ε)) ≤ log (νω,t(Z0) + νω,t(Z1))

≤ t logKω + log
((
λ
nω,0

ω,t

)−1
diamt(Z0) +

(
λ
nω,1

ω,t

)−1
diamt(Z1)

)
≤ t logKω + log

((
λ
nω,0

ω,t

)−1
(

2εK2
ω

inf gσnω,0 (ω),0

)t
+
(
λ
nω,1

ω,t

)−1
(

2εK2
ω

inf gσnω,1 (ω),0

)t)

= t logKω + t log 2εK2
ω + log

((
λ
nω,0

ω,t

)−1 (
inf gσnω,0 (ω),0

)−t
+
(
λ
nω,1

ω,t

)−1 (
inf gσnω,1 (ω),0

)−t)
.

(1.14.10)

Now since log inf gω,0 ∈ L1(m), inf gω,0 is tempered and thus for each δ > 0 and all n ∈ N
sufficiently large we have that

e−ntδ ≤ inf
(
gσn(ω),0

)t
.(1.14.11)
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From (1.12.1) we get that there for all n ∈ N sufficiently large

λnω,t ≥ en(EP (t)−δ).(1.14.12)

Thus combining (1.14.11) and (1.14.12) with (1.14.10) gives

log νω,t(B(x, ε)) ≤ t logKω + t log 2εK2
ω + log

(
enω,0δ(t+1)−nω,0EP (t) + enω,1δ(t+1)−nω,1EP (t)

)
≤ t logKω + t log 2εK2

ω + log
(
e2nω,0δ−nω,0EP (t) + e2nω,1δ−nω,1EP (t)

)
,(1.14.13)

where we have used the fact that t ∈ [0, 1]. Then for δ > 0 sufficiently small and nω,0 and
nω,1 sufficiently large (which requires ε > 0 to be sufficiently small) we have that

log
(
e2nω,0δ−nω,0EP (t) + e2nω,1δ−nω,1EP (t)

)
< 0,(1.14.14)

since for all t < h we have that EP (t) > 0. Dividing both sides of (1.14.13) by log ε < 0
and using (1.14.14) yields

log νω,t(B(x, ε))

log ε
≥ t

logKω

log ε
+ t

log 2εK2
ω

log ε
+

log
(
e2nω,0δ−nω,0EP (t) + e2nω,1δ−nω,1EP (t)

)
log ε

≥ t
logKω

log ε
+ t

log 2K2
ω

log ε
+ t.(1.14.15)

Taking a liminf of (1.14.15) as ε goes to 0 gives that dνω,t(x) ≥ t for all x ∈ Xω,∞. As this
holds for all t < h, we must in fact have that dνω,t(x) ≥ h. In light of Proposition 1.14.7,
we have proven Theorem 1.14.4. □

1.15. Examples

In this final section we present several examples of our general theory of open ran-
dom systems. In particular, we show that our results hold for a large class of random
β-transformations with random holes which have uniform covering times as well as a large
class of random Lasota-Yorke maps with random holes. However, we note that in principle
any of the finitely branched classes of maps treated in [3] will satisfy our assumptions given
a suitable choice of hole. This includes random systems where we allow non-uniformly
expanding maps, or even maps with contracting branches to appear with positive probabil-
ity. We also note that the examples we present allow for both random maps and random
hole, which, to the authors’ knowledge, has not appeared in literature until now. Before
presenting our examples, we first give alternate hypotheses (to our assumptions (Q1)-(Q3))
that are more restrictive but simpler to check.

We begin by recalling the definitions of the various partitions constructed in Section 1.3
which are used in producing our main Lasota-Yorke inequality (Lemma 1.5.1) and are
implicitly a part of our main assumptions (Q1)-(Q3). Recall that Z(n)

ω denotes the partition
of monotonicity of T nω , and A (n)

ω denotes the collection of all finite partitions of I such that

varAi
(g(n)ω ) ≤ 2∥g(n)ω ∥∞(1.15.1)

for each A = {Ai} ∈ A (n)
ω . Given A ∈ A (n)

ω , Ẑ(n)
ω (A) denotes the coarsest partition

amongst all those finer than A and Z(n)
ω such that all elements of Ẑ(n)

ω (A) are either
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disjoint from Xω,n−1 or contained in Xω,n−1. From Ẑ(n)
ω we recall the subcollections Z(n)

ω,∗ ,
Z(n)
ω,b , and Z(n)

ω,g defined in (1.3.14)-(1.3.16).
For the purposes of showing that examples easily satisfy our conditions, we take the

more general approach to partitions found in Section 2.2 of [3], and instead now set, for
α̂ ≥ 0, A

(n)

ω (α̂) to be the collection of all finite partitions of I such that

varAi
(g(n)ω ) ≤ α̂∥g(n)ω ∥∞(1.15.2)

for each A = {Ai} ∈ A
(n)

ω (α̂). Note that for some α̂ ≤ 1 the collection A
(n)

ω (α̂) may be
empty, but such partitions always exist for any α̂ > 1, and may exist even with α̂ = 0 if
the weight function gω is constant; see [60] Lemma 6. We now suppose that we can find
α̂ ≥ 0 sufficiently large such that

(Z) Z(n)
ω ∈ A

(n)

ω (α̂) for each n ∈ N and each ω ∈ Ω.

Now we set Z(n)

ω be the coarsest partition such that all elements of Z(n)
ω are either disjoint

from Xω,n−1 or contained in Xω,n−1. Note that Z(n)

ω = Ẑ(n)
ω (Z(n)

ω ). Now, define the following
subcollections:

Z(n)

ω,∗ :=
{
Z ∈ Z(n)

ω : Z ⊆ Xω,n−1

}
,

Z(n)

ω,b :=
{
Z ∈ Z(n)

ω : Z ⊆ Xω,n−1 and Λω(1Z) = 0
}
,

Z(n)

ω,g :=
{
Z ∈ Z(n)

ω : Z ⊆ Xω,n−1 and Λω(1Z) > 0
}
.

Consider the collection Z(n)

ω,F ⊆ Z(n)

ω,∗ such that for Z ∈ Z(n)

ω,F we have T nω (Z) = I. We

will elements of Z(n)

ω,F “full intervals”. We let Z(n)

ω,U := Z(n)

ω,∗\Z
(n)

ω,F . Since for any Z ∈ Z(n)

ω,F

we have that T nω (Z) = I, and hence

Λω(1Z) ≥
infDσn(ω),n

Lnω1Z
supDσn(ω),n

Lnω1ω
≥

inf g
(n)
ω,0

∥Lnω,01∥∞
> 0.(1.15.3)

Consequently, we have that Z(n)

ω,F ⊆ Z(n)

ω,g, and thus

Z(n)

ω,b ⊆ Z(n)

ω,U .(1.15.4)

We let ζ(n)ω ≥ 0 denote the maximum number of contiguous non-full intervals for T nω in Z(n)

ω,∗

for each ω ∈ Ω and n ∈ N. Note that ζ(1)ω may be equal to 0, but ζ(n)ω ≥ 1 for all n ≥ 2,
and so it follows from (1.15.4) that

0 ≤ log ξ(n)ω ≤ log ζ(n)ω(1.15.5)

for all n ≥ 2. In the interest of having assumptions that are easier to check than (Q1)-(Q3)
we introduce the following simpler assumptions which use the collections Z(n)

ω,F and Z(n)

ω,U

rather than Z(n)
ω,g and Z(n)

ω,b . We assume the following:

(Q̂0) Z(1)

ω,F ̸= ∅ for m-a.e. ω ∈ Ω,
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(Q̂1)

lim
n→∞

1

n
log ∥g(n)ω ∥∞ + lim sup

n→∞

1

n
log ζ(n)ω < lim

n→∞

1

n
log ρnω =

∫
Ω

log ρω dm(ω),

(Q̂2) for each n ∈ N we have log+ ζ
(n)
ω ∈ L1(m),

(Q̂3) for each n ∈ N, log δ̂ω,n ∈ L1(m), where

δ̂ω,n := min
Z∈Z(n)

ω,F

Λω(1Z).(1.15.6)

Our assumptions (Q1)-(Q3) are used exclusively in Section 1.5, and primarily in Lemma
1.5.1. In the proof of Lemma 1.5.1, the good and bad interval collections Z(n)

ω,g and Z(n)
ω,b

are used only to estimate the variation of a function and can easily be replaced by the
collections Z(n)

ω,F and Z(n)

ω,U . Therefore, we can easily replace the assumptions (Q1)-(Q3)
with (Q̂0)-(Q̂3) without any changes. In particular, we are still able to construct the
number N∗ which is defined in (1.5.20). Note that by replacing the 2 in (1.15.1) with the
α̂ ≥ 0 that appears in (1.15.2), the constant coefficients which appear in the definitions of
A

(n)
ω and B(n)

ω in (1.5.10) at the end of Lemma 1.5.1 may be different, consequently changing
the value of N∗. This ultimately does not affect our general theory as we only care that
such a value N∗ satisfying (1.5.20) exists.

Remark 1.15.1. As in Remark 1.5.7, we again note that checking (Z), (Q̂2), and (Q̂3)
for all n ∈ N could be difficult and that it suffices to instead check these conditions only
for n = N∗. Thus we may replace (Z), (Q̂2), and (Q̂3) with the following:

(Z’) there exists α̂ ≥ 0 such that Z(N∗)
ω ∈ A

(N∗)

ω (α̂) for each ω ∈ Ω,
(Q̂2

′
) log+ ζ

(N∗)
ω ∈ L1(m),

(Q̂3
′
) log δ̂ω,N∗ ∈ L1(m).

The following proposition gives that assumption (Q̂3) is always satisfied, and thus that
we really only need to assume (Q̂1) and (Q̂2).

Proposition 1.15.2. Assumption (Q̂3) is trivially satisfied.

Proof. As the right hand side of (1.15.3) is log-integrable by (1.1.2) and (1.1.3), we
must also have log δ̂ω,n ∈ L1(m). □

Recall that two elements W,Z ∈ Z(n)
ω,∗ are said to be contiguous if either W and Z are

contiguous in the usual sense, i.e. they share a boundary point, or if they are separated
by a connected component of ∪n−1

j=0T
−j
ω (Hσj(ω)). The following proposition gives an upper

bound for the exponential growth of the number ζ(n)ω which will be useful in checking our
assumption (Q̂1), which implies (Q1).
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Proposition 1.15.3. The following inequality holds for ζ
(n)
ω , the largest number of

contiguous non-full intervals for T nω :

ζ(n)ω ≤ n
n−1∏
j=0

(ζ
(1)

σj(ω)
+ 2).(1.15.7)

Consequently, using (1.15.5) and the ergodic theorem, we have that

lim
n→∞

1

n
log ξ(n)ω ≤ lim

n→∞

1

n
log ζ(n)ω ≤

∫
Ω

log(ζ(1)ω + 2) dm(ω).(1.15.8)

Proof. This is a random version of [53, Lemma 6.3]. We sketch the argument here.
To upper bound ζ(n+1)

ω , we observe that the largest number of contiguous non-full intervals
for T n+1

ω is given by

(1.15.9) ζ(n+1)
ω ≤ ζ(1)ω (ζ

(n)
σ(ω) + 2) + 2ζ

(n)
σ(ω).

Indeed, the first term on the right hand side accounts for the (worst case) scenario that
all non-full branches of T nσ(ω) are pulled back inside contiguous non-full intervals for Tω.
For each non-full interval of Tω, there at most ζ(n)σ(ω) + 2 contiguous non-full intervals for
T n+1
ω , as in addition to the ζ(n)σ(ω) non-full intervals pulled back from T nσ(ω), there may be full

branches of T nσ(ω) to the left and right of these which are only partially pulled back inside
the corresponding branch of Tω. The second term in (1.15.9) accounts for an extra (at
most) ζ(n)σ(ω) non full branches of T nσ(ω) pulled back inside the full branches of Tω neighboring
the cluster of ζ(1)ω non-full branches.

Rearranging (1.15.9) yields ζ(n+1)
ω ≤ ζ

(n)
σ(ω)(ζ

(1)
ω + 2) + 2ζ

(1)
ω . The claim follows directly

by induction. □

Let hω denote the number of connected components of Hω. The following lemma shows
that the conditions

Lemma 1.15.4. If assumption (Z’) holds as well as

log hω ∈ L1(m),(CCH)

then log ζ
(1)
ω ∈ L1(m). Consequently, we have that (Q2’) and (Q̂2) hold.

Proof. Since condition (Z’) holds, we see that (LIP) in conjunction with (CCH) gives
that log#Z(1)

ω,∗ ∈ L1(m), and thus we must have that log ζ
(1)
ω ∈ L1(m). In light of (1.15.7)

we see that (Q2’) and (Q̂2) hold if

log(ζ(1)ω + 2) ∈ L1(m),

and thus we are done. □

For each n ∈ N define

F (n)
ω := min

y∈[0,1]
#{T−n

ω (y)}.(1.15.10)
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78 1. THERMODYNAMIC FORMALISM FOR RANDOM INTERVAL MAPS WITH HOLES

Since the sequences {ω 7→ ∥g(n)ω ∥∞}n∈N and {ω 7→ inf Lnω1ω}n∈N are submultiplicative and
supermultiplicative, respectively, the subadditive ergodic theorem implies that the assump-
tion that

lim
n→∞

1

n
log ∥g(n)ω ∥∞ < lim

n→∞

1

n
log inf

Dσn(ω),n

Lnω1ω

is equivalent to the assumption that there exist N ∈ N such that∫
Ω

log ∥g(N)
ω ∥∞ dm(ω) <

∫
Ω

log inf
D

σN (ω),N

LNω 1ω dm(ω).(1.15.11)

A useful lower bound for the right hand side is the following:

inf
D

σN (ω),N

LNω 1ω ≥ inf
Xω,N−1

g(N)
ω F (N)

ω ≥ inf g
(N)
ω,0 F

(N)
ω .(1.15.12)

The next lemma, which offers a sufficient condition to check assumptions (Q1) and (Q̂1), fol-
lows from (1.15.8), (1.15.11), (1.15.12), and the calculations from the proof of Lemma 13.18
in [3].

Lemma 1.15.5. If there exists N ∈ N such that
1

N

∫
Ω

supSN,T (φω,0)− inf SN,T (φω,0) +N log(ζ(1)ω + 2) dm(ω) <
1

N

∫
Ω

logF (N)
ω dm(ω),

then (Q̂1) (and thus (Q1)) holds.

The following definition will be useful in checking our measurability assumptions for
examples.

Definition 1.15.6. We say that a function f : Ω → R+ is m-continuous function if
there is a partition of Ω (mod m) into at most countably many Borel sets Ω1,Ω2, . . . such
that f is constant on each Ωj, say f |Ωj

= fj.

We now give specific classes of random maps with holes which meet our assumptions.
In principle, any of the classes of finitely branched maps discussed in Section 13 of [3]
(including random non-uniformly expanding maps) will fit our current assumptions given
a suitable hole H.

1.15.1. Random β-Transformations With Holes. For this first example we con-
sider the class of maps described in Section 13.2 in [3]. These are β-transformations for
which the last (non-full) branch is not too small so that each branch in the random closed
system has a uniform covering time. In particular we assume there is some δ > 0 such that
for m-a.e. ω ∈ Ω we have

βω ∈
∞⋃
k=1

[k + δ, k + 1].

Further suppose that the map ω 7→ βω is m-continuous. We consider the random β-
transformation Tω : [0, 1] → [0, 1] given by

Tω(x) = βωx (mod 1)
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and the potential
φω,0 = −t log |T ′

ω| = −t log βω
for t ≥ 0. In addition, we assume that

(1.15.13)
∫
Ω

log⌊βω⌋ dm(ω) > log 3

and

(1.15.14)
∫
Ω

log⌈βω⌉ dm(ω) <∞.

Note that we allow βω arbitrarily large. It follows from Lemma 13.6 of [3] that our assump-
tions (T1)-(T3), (LIP), (GP), (A1)-(A2), (M), (C), and (Z) are satisfied.

To check the remainder of our assumptions we must now describe the choice of hole
Hω. For our holes Hω we will consider intervals of length at most 1/βω so that Hω may not
intersect more than two monotonicity partition elements. To ensure that (Q̂0) is satisfied
we assume there is a full-branched element Z ∈ Z(1)

ω,F such that Z ∩Hω = ∅ for each ω ∈ Ω,
and thus, in light of Remark 1.3.5, we also have that assumption (D) is satisfied with
Dω,∞ = I for each ω ∈ Ω.

Now, we note that since (1.15.14) implies our assumption (LIP), Lemma 1.15.4 im-
plies that assumption (Q̂2) is satisfied. Thus, we have only to check the condition (Q̂1).
Depending on Hω we may have that

inf Lω1ω =
⌊βω⌋ − 1

βtω
,

for example if Hω is the last full branch. To ensure that (Q̂1) holds, note that (1.15.11)
holds with N = 1, and thus it suffices to have∫

Ω

log(⌊βω⌋ − 1) dm(ω) >

∫
Ω

log(ζ(1)ω + 2) dm(ω),

since ∫
Ω

log inf Lω1ω − log ∥gω∥∞ dm(ω) ≥
∫
Ω

log
⌊βω⌋ − 1

βtω
+ log βtω dm(ω).

Depending on the placement of Hω we may have ζ(1)ω = i for any i ∈ {0, 1, 2, 3}. Thus, we
obtain the following lemma assuming the worst case scenario, i.e. assuming ζ

(1)
ω = 3 for

m-a.e. ω ∈ Ω.

Lemma 1.15.7. If Hω ⊆ I is such that ζ(1)ω ≤ 3 for m-a.e. ω ∈ Ω, then Theorems A-D
if ∫

Ω

log(⌊βω⌋ − 1) dm(ω) > log 5.

On the other hand, if we have that Hω is equal to the monotonicity partition element
which contains 1, then ζ(1)ω = 0 and

inf Lω1ω =
⌊βω⌋
βtω

.
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80 1. THERMODYNAMIC FORMALISM FOR RANDOM INTERVAL MAPS WITH HOLES

Furthermore, the additional hypotheses necessary for Theorem E are satisfied. In particu-
lar, the fact that T has large images follows from the fact that these maps have a uniform
covering time; see Lemma 13.5 of [3]. Thus, we thus have the following lemma.

Lemma 1.15.8. If Hω = Z1, where 1 ∈ Z1 ∈ Zω, for m-a.e. ω ∈ Ω then Theorems A-E
hold.

More generally, we can consider general potentials, non-linear maps, and holes which
are unions of finitely many intervals so that condition (CCH) holds.

1.15.2. Random Open Lasota-Yorke Maps. We now present an example of a large
class of random Lasota-Yorke maps with holes. The following lemma summarizes the closed
setting for this particular class of random maps was treated in Section 13.6 of [3].

Lemma 1.15.9. Let φ0 : Ω → BV(I) be an m-continuous function, and let φ0 : Ω× I →
R be given by φω,0 := −t log |T ′

ω| = φ0(ω) for t ≥ 0. Then gω,0 = eφω,0 = 1/|T ′
ω|t ∈ BV(I)

for m a.e. ω ∈ Ω. We further suppose the system satisfies the following:
(1) log#Zω ∈ L1(m),
(2) there exists M(n) ∈ N such that for any ω ∈ Ω and any Z ∈ Z(n)

ω we have that
T
M(n)
ω (Z) = I,

(3) for each ω ∈ Ω, Z ∈ Zω, and x ∈ Z
(a) Tω|Z ∈ C2,
(b) there exists K ≥ 1 such that

|T ′′
ω (x)|

|T ′
ω(x)|

≤ K,

(4) there exist 1 < λ ≤ Λ <∞ and n0 ∈ N such that
(a) |T ′

ω| ≤ Λ for m-a.e. ω ∈ Ω,
(b) |(T n0

ω )′| ≥ λn0 for m-a.e. ω ∈ Ω

(c) 1
n0

∫
Ω
logF

(n0)
ω dm(ω) > t log Λ

λ
,

(5) for each n ∈ N there exists

εn := inf
ω∈Ω

min
Z∈Z(n)

ω

diam(Z) > 0.

Then Theorems 2.19-2.23 of [3] hold, and in particular, our assumptions (T1)-(T3), (LIP),
(GP), (A1)-(A2), (M), and (C) hold.

The following lemma gives a large class of random Lasota-Yorke maps with holes for
which our results apply. In particular, we allow our hole to be composed of finitely many
intervals which may change depending on the fiber ω, provided the number of connected
components of the hole is log-integrable over Ω (CCH).

Lemma 1.15.10. Let φω,0 = −t log |T ′
ω| and suppose the hypotheses of Lemma 1.15.9

hold. Additionally we suppose that H ⊆ Ω × I such that (CCH) holds as well as the
following:

(6) for m-a.e. ω ∈ Ω there exists Z ∈ Zω with Z ∩Hω = ∅ such that Tω(Z) = I,
(7) 1

n0

∫
Ω
logF

(n0)
ω dm(ω) > t log Λ

λ
+
∫
Ω
log(ζ

(1)
ω + 2) dm(ω).
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Then the hypotheses of Theorems A-D hold. If in addition we have that
(8) there exists M : N → N such that TM(n)

ω (Z) = I for m-a.e. ω ∈ Ω and each
Z ∈ Z(n)

ω , i.e. there is a uniform covering time,
(9) for m-a.e. ω ∈ Ω there exists Z1, . . . , Zk ∈ Zω such that Hω = ∪kj=1Zj and

Tω(Z) = I for all Z ∈ Zω with Z ∩Hω = ∅,
then the hypotheses of Theorem E also hold.

Proof. The conclusion of Lemma 1.15.9 leaves only to check assumptions (D) and
(Q̂0)-(Q̂3). But in light of Proposition 1.15.2 we see that (Q̂3) holds, and hypothesis (6)
implies (D) (by Remark 1.3.5) and (Q̂0) hold.

To check our remaining hypotheses on the open system we first show that (Z’) holds.
To see this we note that equation (13.20) of [3], together with the fact that hypothesis (2)
of Lemma 1.15.9 implies that Λ−kn0t ≤ g

(kn0)
ω,0 ≤ λ−kn0t < 1, gives that for any ω ∈ Ω and

Z ∈ Z(kn0)
ω we have

varZ(g
(kn0)
ω,0 ) ≤ 2∥g(kn0)

ω,0 ∥∞ +
tK

Λ− 1
·
(
Λ

λt

)kn0

≤ 2∥g(kn0)
ω,0 ∥∞ +

tK

Λ− 1
·
(
Λ

λt

)kn0

· Λkn0t∥g(kn0)
ω,0 ∥∞

≤ α̂k∥g(kn0)
ω,0 ∥∞,

where

α̂k := 2 +
tK

Λ− 1
·
(
Λ2t

λt

)kn0

.

Taking k∗ so large that ∫
Ω

logQ(k∗n0)
ω dm(ω) < 0,

where Q(k∗n0)
ω is defined as in (1.5.12), and setting N∗ = k∗n0, we then see that (Z’) holds,

that is we have that Z(N∗)
ω ∈ A

(N∗)

ω (α̂k∗) for each ω ∈ Ω. Thus, Lemma 1.15.4 together
with (CCH) ensures that (Q̂2) holds. Now taking (7) in conjunction with Lemma 1.15.5
implies assumption (Q̂1), and thus the hypotheses of Theorems A-D hold.

The hypotheses of Theorem E hold since the assumptions (8) and (9) together imply
that T has large images and large images with respect to H, and assumptions (3) and
(4)(b) give the bounded distortion condition for gω,0.

□

Remark 1.15.11. If one wishes to work with general potentials rather than the geo-
metric potentials in Lemmas 1.15.9 and 1.15.10 then one could replace (4) of Lemma 1.15.9
with (1.15.11) and (7) of Lemma 1.15.10 with Lemma 1.15.5.
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CHAPTER 2

Perturbation formulae for quenched random dynamics with
applications to open systems and extreme value theory

In this second chapterwe first develop a perturbation theory for the quasi-compact
linear operators cocycle Lnω and its perturbed version Lnω,ε By defining λω,ε as the leading
Lyapunov multiplier of Lω,ε, we will get a first order formula for λω,ε in terms of λω,0 and
in the size of the perturbation Lω,0 − Lω,ε. Whenever Lω,ε is a transfer operator cocycle
for a random map cocycle T nω , it will be defined by the introduction of small random
holes Hω,ε. The first-order perturbation for the Lyapunov multiplier will therefore been
used to obtain a quenched extreme value theory, by using a suitable spectral approach.
By pursuing with the perturbative scheme, we will establish the existence of equilibrium
states and conditionally invariant measures and we finally prove quenched limit theorems
for equilibrium states arising from contracting potentials.

2.1. Sequential perturbation theorem

In this section we briefly depart from the setting of random dynamical systems to prove
a general perturbation result for sequential operators acting on sequential Banach spaces.
In particular, we will not require any measurability or notion of randomness in this section.

Suppose that Ω is a set and that the map σ : Ω → Ω is invertible. Furthermore, we
suppose that there is a family of (fiberwise) normed vector spaces {Bω, ∥·∥Bω}ω∈Ω and dual
spaces

{
B∗
ω, ∥·∥B∗

ω

}
ω∈Ω such that for each ω ∈ Ω and each 0 ≤ ε ≤ ε0 there are operators

Lω,ε : Bω → Bσω such that the following hold.
(P1) There exists a function C1 : Ω → R+ such that for f ∈ Bω we have

sup
ε≥0

∥Lω,ε(f)∥Bσω ≤ C1(ω)∥f∥Bω .

(P2) For each ω ∈ Ω and ε ≥ 0 there is a functional νω,ε ∈ B∗
ω, the dual space of Bω,

λω,ε ∈ C\ {0}, and ϕω,ε ∈ Bω such that

Lω,ε(ϕω,ε) = λω,εϕσω,ε and νσω,ε(Lω,ε(f)) = λω,ενω,ε(f)

for all f ∈ Bω. Furthermore we assume that

νω,0(ϕω,ε) = 1.

(P3) There is an operator Qω,ε : Bω → Bσω such that for each f ∈ Bω we have

λ−1
ω,εLω,ε(f) = νω,ε(f) · ϕσω,ε +Qω,ε(f).

Furthermore, we have

Qω,ε(ϕω,ε) = 0 and νσω,ε(Qω,ε(f)) = 0.

82
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2.1. SEQUENTIAL PERTURBATION THEOREM 83

Note that assumptions (P2) and (P3) together imply that

νω,ε(ϕω,ε) = 1.

(P4) There exists a function C2 : Ω → R+ such that

sup
ε≥0

∥ϕω,ε∥Bω = C2(ω) <∞.

For each ω ∈ Ω and ε ≥ 0 we define the quantities

∆ω,ε := νσω,0 ((Lω,0 − Lω,ε)(ϕω,0))(2.1.1)

and

ηω,ε := ∥νσω,0(Lω,0 − Lω,ε)∥B∗
ω
.(2.1.2)

(P5) For each ω ∈ Ω we have

lim
ε→0

ηω,ε = 0.

(P6) For each ω ∈ Ω such that ∆ω,ε > 0 for every ε > 0, we have that there exists a
function C3 : Ω → R+ such that

lim sup
ε→0

ηω,ε
∆ω,ε

:= C3(ω) <∞.

Given ω ∈ Ω, if there is ε0 > 0 such that for each ε ≤ ε0 we have that ∆ω,ε = 0 then
we also have that ηω,ε = 0 for each ε ≤ ε0.

(P7) For each ω ∈ Ω we have

lim
ε→0

νω,ε(ϕω,0) = 1.

(P8) For each ω ∈ Ω with ∆ω,ε > 0 for all ε > 0 we have

lim
n→∞

lim sup
ε→0

∆−1
ω,ενσω,0

(
(Lω,0 − Lω,ε)

(
Qn
σ−nω,εϕσ−nω,0

))
= 0.

(P9) For each ω ∈ Ω with ∆ω,ε > 0 for all ε > 0 we have the limit

q
(k)
ω,0 := lim

ε→0

νσω,0

(
(Lω,0 − Lω,ε)(Lkσ−kω,ε

)(Lσ−(k+1)ω,0 − Lσ−(k+1)ω,ε)(ϕσ−(k+1)ω,0)
)

νσω,0 ((Lω,0 − Lω,ε)(ϕω,0))
exists for each k ≥ 0.

Consider the identity

λω,0 − λω,ε = λω,0νω,0(ϕω,ε)− νσω,0(λω,εϕσω,ε)

= νσω,0(Lω,0(ϕω,ε))− νσω,0(Lω,ε(ϕω,ε))
= νσω,0 ((Lω,0 − Lω,ε)(ϕω,ε)) .(2.1.3)

It then follows from (2.1.3), together with (2.1.2) and assumption (P4), that

|λω,0 − λω,ε| ≤ C2(ω)ηω,ε.(2.1.4)

In particular, given assumption (P5), (2.1.4) implies

lim
ε→0

λω,ε = λω,0(2.1.5)
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84 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

for each ω ∈ Ω.

Remark 2.1.1. Note that (P6) and (2.1.4) imply that

lim sup
ε→0

|λω,0 − λω,ε|
∆ω,ε

≤ C2(ω)C3(ω) <∞.

For n ≥ 1 we define the normalized operator L̃nω,ε : Bω → Bσnω by

L̃nω,ε := (λnω,ε)
−1Lnω,ε

where

λnω,ε := λω,ε · · · · · λσn−1ω,ε.

In view of assumption (P3), induction gives

L̃nω,ε(f) = νω,ε(f) · ϕσnω,ε +Qn
ω,ε(f)

for each n ≥ 1 and all f ∈ Bω. Similarly with (2.1.3), we have that

λnω,0 − λnω,ε = νσnω,0

((
Lnω,0 − Lnω,ε

)
(ϕω,ε)

)
.

We now arrive at the main result of this section. We prove a differentiability result for the
perturbed quantities λω,ε as ε→ 0 in the spirit of Keller and Liverani [50].

Theorem 2.1.2. Suppose that assumptions (P1)-(P8) hold. If there is some ε0 > 0
such that ∆ω,ε = 0 for ε ≤ ε0 then

λω,0 = λω,ε,

or if (P9) holds then

lim
ε→0

λω,0 − λω,ε
∆ω,ε

= 1−
∞∑
k=0

(λk+1
σ−(k+1)ω,0

)−1q
(k)
ω,0.

Proof. Fix ω ∈ Ω. First, we note that assumption (P6) implies that if there is some
ε0 such that ∆ω,ε = 0 for all ε ≤ ε0 (which implies, by assumption, that ηω,ε = 0), then
(2.1.4) immediately implies that

λω,0 = λω,ε.

Now we suppose that ∆ω,ε > 0 for all ε > 0. Using (P2), (P3), and (2.1.3), for each n ≥ 1
and all ω ∈ Ω we have

νσ−nω,ε(ϕσ−nω,0)(λω,0 − λω,ε) = νσ−nω,ε(ϕσ−nω,0)νσω,0 ((Lω,0 − Lω,ε)(ϕω,ε))
= νσω,0 ((Lω,0 − Lω,ε)(νσ−nω,ε(ϕσ−nω,0) · ϕω,ε))
= νσω,0

(
(Lω,0 − Lω,ε)(νσ−nω,ε(ϕσ−nω,0) · ϕω,ε +Qn

σ−nω,ε(ϕσ−nω,0)−Qn
σ−nω,ε(ϕσ−nω,0))

)
= νσω,0

(
(Lω,0 − Lω,ε)(L̃nσ−nω,ε −Qn

σ−nω,ε)(ϕσ−nω,0)
)

= νσω,0

(
(Lω,0 − Lω,ε)(L̃nσ−nω,0 − L̃nσ−nω,0 + L̃nσ−nω,ε −Qn

σ−nω,ε)(ϕσ−nω,0)
)

= νσω,0 ((Lω,0 − Lω,ε)(ϕω,0))
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− νσω,0

(
(Lω,0 − Lω,ε)(L̃nσ−nω,0 − L̃nσ−nω,ε)(ϕσ−nω,0)

)
− νσω,0

(
(Lω,0 − Lω,ε)(Qn

σ−nω,ε(ϕσ−nω,0))
)

= ∆ω,ε − νσω,0

(
(Lω,0 − Lω,ε)(L̃nσ−nω,0 − L̃nσ−nω,ε)(ϕσ−nω,0)

)(2.1.6)

− νσω,0
(
(Lω,0 − Lω,ε)(Qn

σ−nω,ε(ϕσ−nω,0))
)
.

(2.1.7)

Since

(L̃nσ−nω,0 − L̃nσ−nω,ε)(ϕσ−nω,0) = ϕω,0 − L̃nσ−nω,ε(ϕσ−nω,0),

using a telescoping argument, the second term of (2.1.6)

D2 := −νσω,0
(
(Lω,0 − Lω,ε)(L̃nσ−nω,0 − L̃nσ−nω,ε)(ϕσ−nω,0)

)
can be rewritten as

D2 = −
n−1∑
k=0

νσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(L̃σ−(k+1)ω,0 − L̃σ−(k+1)ω,ε)(ϕσ−(k+1)ω,0)

)
= −

n−1∑
k=0

νσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(L̃σ−(k+1)ω,0

−λ−1
σ−(k+1)ω,0

Lσ−(k+1)ω,ε + λ−1
σ−(k+1)ω,0

Lσ−(k+1)ω,ε − L̃σ−(k+1)ω,ε)(ϕσ−(k+1)ω,0)
)

= −
n−1∑
k=0

νσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(L̃σ−(k+1)ω,0(2.1.8)

−λ−1
σ−(k+1)ω,0

Lσ−(k+1)ω,ε + λ−1
σ−(k+1)ω,0

Lσ−(k+1)ω,ε)(ϕσ−(k+1)ω,0)
)

+
n−1∑
k=0

νσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(L̃σ−(k+1)ω,ε)(ϕσ−(k+1)ω,0)

)
.(2.1.9)

Reindexing, the second summand of the above calculation, and multiplying by 1, (2.1.9),
can be rewritten as

n−1∑
k=0

νσω,0

(
(Lω,0 − Lω,ε)(L̃k+1

σ−(k+1)ω,ε
)(ϕσ−(k+1)ω,0)

)
=

n∑
k=1

νσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(ϕσ−kω,0)

)
=

n∑
k=1

λ−1
σ−kω,0

λσ−kω,0νσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(ϕσ−kω,0)

)
.(2.1.10)
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And (2.1.8) from above can again be broken into two parts and then rewritten as

−
n−1∑
k=0

λ−1
σ−(k+1)ω,0

νσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(Lσ−(k+1)ω,0 − Lσ−(k+1)ω,ε)(ϕσ−(k+1)ω,0)

)

−
n∑
k=1

λ−1
σ−kω,0

λσ−kω,ενσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(ϕσ−kω,0)

)
,

(2.1.11)

where in the second sum we have used the fact that Lσ−kω,ε = λσ−kω,εL̃σ−kω,ε. Altogether
using (2.1.10) and (2.1.11), D2 we can be written as

D2 = −
n−1∑
k=0

λ−1
σ−(k+1)ω,0

νσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(Lσ−(k+1)ω,0 − Lσ−(k+1)ω,ε)(ϕσ−(k+1)ω,0)

)
−

n∑
k=1

λ−1
σ−kω,0

λσ−kω,ενσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(ϕσ−kω,0)

)
+

n∑
k=1

λ−1
σ−kω,0

λσ−kω,0νσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(ϕσ−kω,0)

)
= −

n−1∑
k=0

λ−1
σ−(k+1)ω,0

νσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(Lσ−(k+1)ω,0 − Lσ−(k+1)ω,ε)(ϕσ−(k+1)ω,0)

)

= +
n∑
k=1

λ−1
σ−kω,0

(
λσ−kω,0 − λσ−kω,ε

)
νσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(ϕσ−kω,0)

)
.

(2.1.12)

Now for each k ≥ 0 we let

q(k)ω,ε :=
νσω,0

(
(Lω,0 − Lω,ε)(Lkσ−kω,ε

)(Lσ−(k+1)ω,0 − Lσ−(k+1)ω,ε)(ϕσ−(k+1)ω,0)
)

νσω,0 ((Lω,0 − Lω,ε)(ϕω,0))
.(2.1.13)

Using (2.1.12) we can continue our rephrasing of νσ−nω,ε(ϕσ−nω,0)(λω,0 − λω,ε) from (2.1.6)
to get

νσ−nω,ε(ϕσ−nω,0)(λω,0 − λω,ε)

= ∆ω,ε −
n−1∑
k=0

λ−1
σ−(k+1)ω,0

νσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(Lσ−(k+1)ω,0 − Lσ−(k+1)ω,ε)(ϕσ−(k+1)ω,0)

)
+

n∑
k=1

λ−1
σ−kω,0

(
λσ−kω,0 − λσ−kω,ε

)
νσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(ϕσ−kω,0)

)
− νσω,0

(
(Lω,0 − Lω,ε)(Qn

σ−nω,ε(ϕσ−nω,0))
)

= ∆ω,ε

(
1−

n−1∑
k=0

λ−1
σ−(k+1)ω,0

(λkσ−kω,ε)
−1q(k)ω,ε

)
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2.1. SEQUENTIAL PERTURBATION THEOREM 87

+
n∑
k=1

λ−1
σ−kω,0

(
λσ−kω,0 − λσ−kω,ε

)
νσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(ϕσ−kω,0)

)

− νσω,0
(
(Lω,0 − Lω,ε)(Qn

σ−nω,ε(ϕσ−nω,0))
)
.

(2.1.14)

Dividing the calculation culminating in (2.1.14) by ∆ω,ε on both sides gives

νσ−nω,ε(ϕσ−nω,0)
λω,0 − λω,ε

∆ω,ε

(2.1.15)

= 1−
n−1∑
k=0

λ−1
σ−(k+1)ω,0

(λkσ−kω,ε)
−1q(k)ω,ε

+∆−1
ω,ε

n∑
k=1

λ−1
σ−kω,0

(
λσ−kω,0 − λσ−kω,ε

)
νσω,0

(
(Lω,0 − Lω,ε)(L̃kσ−kω,ε)(ϕσ−kω,0)

)
(2.1.16)

−∆−1
ω,ενσω,0

(
(Lω,0 − Lω,ε)(Qn

σ−nω,ε(ϕσ−nω,0))
)
.(2.1.17)

Assumption (P8) ensures that (2.1.17) goes to zero as ε → 0 and n → ∞. Now, using
(2.1.2), (2.1.4), (P1), and (P4) we bound (2.1.16) by

∆−1
ω,ε

n∑
k=1

∣∣λσ−kω,0

∣∣−1 ∣∣λσ−kω,0 − λσ−kω,ε

∣∣ ηω,ε∥L̃kσ−kω,ε(ϕσ−kω,0)∥Bω

≤ ηω,ε
∆ω,ε

n∑
k=1

C2(σ
−kω)

∣∣λσ−kω,0

∣∣−1
ησ−kω,ε

∣∣λkσ−kω,ε

∣∣−1 ∥Lkσ−kω,ε(ϕσ−kω,0)∥Bω

≤ ηω,ε
∆ω,ε

n∑
k=1

(C2(σ
−kω))2Ck

1 (σ
−kω)

∣∣λσ−kω,0

∣∣−1
ησ−kω,ε

∣∣λkσ−kω,ε

∣∣−1
.

(2.1.18)

In view of (P5), (P6), and (2.1.5), for fixed n, we may continue from (2.1.18) and let ε→ 0
to see that

lim
ε→0

ηω,ε
∆ω,ε

n∑
k=1

(C2(σ
−kω))2Ck

1 (σ
−kω)

∣∣λσ−kω,0

∣∣−1
ησ−kω,ε

∣∣λkσ−kω,ε

∣∣−1
= 0.(2.1.19)

In light of (P6), (P7), (2.1.19), and (2.1.15)–(2.1.17) together with (P8) and (P9), we see
that first letting ε→ 0 and then n→ ∞ gives

lim
ε→0

λω,0 − λω,ε
∆ω,ε

= 1−
∞∑
k=0

(λk+1
σ−(k+1)ω,0

)−1q
(k)
ω,0

as desired. □

In the sequel we will refer to the quantity on the right hand side of the last equation in
the proof of the previous theorem by θω,0, i.e. we set

θω,0 := 1−
∞∑
k=0

(λk+1
σ−(k+1)ω,0

)−1q
(k)
ω,0.(2.1.20)
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88 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

2.2. Random open systems

We now return to the general random setting of Section 0.1. Suppose that (Ω,m, σ,
J0, T,B,L0, ν0, ϕ0) is a closed random dynamical system as in Definition 0.1.4. That is we
have a base dynamical system (Ω,F ,m, σ), complete metrisable spaces Jω,0 such that the
map Ω ∋ ω 7→ Jω,0 is a closed random set, and maps Tω : Jω,0 → Jσω,0. In addition, we
assume that conditions (M1), (M2), and (CCM) hold, and that the transfer operator Lω,0
acting on the family of Banach spaces {Bω, ∥·∥Bω}ω∈Ω is given by

Lω,0(f)(x) :=
∑

y∈T−1
ω (x)

f(y)gω,0(y), f ∈ Bω, x ∈ Jσω,0,

where gω,0(x) = eφω,0(x) for a suitably chosen random potential φω,0. We will also assume
that the fiberwise Banach spaces Bω ⊆ L∞(νω,0), where ν0 = (νω,0)ω∈Ω is the random
probability measure given by (CCM), and that there exists a measurable m-a.e. finite
function K : Ω → [1,∞) such that
(B) ∥f∥∞,ω ≤ Kω∥f∥Bω

for all f ∈ Bω and each ω ∈ Ω, where ∥ · ∥∞,ω denotes the supremum norm with respect
to νω,0. Now for each ε > 0 we let Hε ⊆ J0 be measurable with respect to the product
σ-algebra F ⊗ B on J0 such that
(A) H ′

ε ⊆ Hε for each 0 < ε′ ≤ ε.

Then the sets Hω,ε ⊆ Jω,0 are uniquely determined by the condition that

{ω} ×Hω,ε = Hε ∩ ({ω} × Jω,0) ,

or equivalently that

Hω,ε = π2(Hε ∩ ({ω} × Jω,0)),

where π2 : J0 → Jω,0 is the projection onto the second coordinate. The sets Hω,ε are then
νω,0-measurable, and (A) implies that
(A’) Hω,ε′ ⊆ Hω,ε for each ε′ ≤ ε and each ω ∈ Ω.
For each ε > 0 we set

Ω+,ε := {ω ∈ Ω : µω,0(Hω,ε) > 0}
and then define

Ω+ :=
⋂
ε>0

Ω+,ε.(2.2.1)

Remark 2.2.1. Note that the set Ω+ is measurable as it is the intersection of a de-
creasing family of measurable sets and it is not necessarily σ-invariant.
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2.2. RANDOM OPEN SYSTEMS 89

For each ω and each ε > 0 we define the fibers Jω,ε := Jω,0\Hω,ε and

Jε := J0\Hε =
⋃
ω∈Ω

{ω} × Jω,ε.

We define the surviving sets Xω,n,ε, Xω,∞,ε, Xn,ε, and X∞,ε as in Section 0.1.

Remark 2.2.2. Note that since (A) implies that Xω,∞,ε ⊆ Xω,∞,ε′ for all ε′ < ε, (X)
holds, i.e. Xω,∞,ε ̸= ∅ for m-a.e. ω ∈ Ω, if there exists ε > 0 such that Xω,∞,ε ̸= ∅ for
m-a.e. ω ∈ Ω. Furthermore, since Tω(Xω,∞,ε) ⊆ Xσω,∞,ε, if Xω,∞,ε ̸= ∅ then XσNω,∞,ε′ ̸= ∅
for each N ≥ 1 and ε′ ≤ ε. As X∞,ε is forward invariant we have that Xω,∞,ε ̸= ∅ not only
implies that X∞,ε ̸= ∅, but also that X∞,ε is infinite.

Now for each ε > 0 define the open transfer operator Lω,ε : Bω → Bσω by

Lω,ε(f) := Lω,0(1Jω,εf), f ∈ Bω.
Iterates of the perturbed operator Lnω,ε : Bω → Bσnω are given by

Lnω,ε := Lσn−1ω,ε ◦ · · · ◦ Lω,ε,
which, using induction, we may write as

Lnω,ε(f) = Lnω,0
(
f · X̂ω,n−1,ε

)
, f ∈ Bω.(2.2.2)

For every ε ≥ 0 we let
L̃ω,ε := λ−1

ω,εLω,ε.

For the remainder of the manuscript we will suppose that (Ω,m, σ,J0, T,B,L0, ν0, ϕ0)
is a closed random dynamical system as Definition 0.1.4, for each ε > 0 Hε ⊆ J0 such that
condition (A) holds, and that for each ε > 0, (Ω,m, σ,J0, T,B,L0, ν0, ϕ0, Hε) is a random
open system as in Definition 0.1.7. In summary, we assume that condition (A) holds in
addition to the assumptions (M1), (M2), (CCM), (B), and (X) from Section 0.1.

2.2.1. Some of the Terms from Sequential Perturbation Theorem. In this
short section we develop a more thorough understanding of some of the vital terms in the
general sequential perturbation theorem of Section 2.1 in the setting of random open sys-
tems. We begin by calculating the quantities ηω,ε and ∆ω,ε from Section 2.1. In particular,
we have that

∆ω,ε := νσω,0 ((Lω,0 − Lω,ε)(ϕω,0))
= νσω,0

(
Lω,0(ϕω,0 · 1Hω,ε)

)
= λω,0 · νω,0(ϕω,0 · 1Hω,ε)

= λω,0 · µω,0(Hω,ε)(2.2.3)

and

ηω,ε : = ∥νσω,0 (Lω,0 − Lω,ε) ∥Bω

= sup
∥ψ∥Bω≤1

νσω,0
(
Lω,0(ψ · 1Hω,ε)

)
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90 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

= λω,0 · sup
∥ψ∥Bω≤1

νω,0
(
ψ · 1Hω,ε

)
≤ Kωλω,0 · νω,0 (Hω,ε) ,(2.2.4)

where the last line follows from (B).
For ε > 0 and µω,0(Hω,ε) > 0, calculating q(k)ω,ε in this setting gives

q(k)ω,ε :=
νσω,0

(
(Lω,0 − Lω,ε)(Lkσ−kω,ε

)(Lσ−(k+1)ω,0 − Lσ−(k+1)ω,ε)(ϕσ−(k+1)ω,0)
)

νσω,0 ((Lω,0 − Lω,ε)(ϕω,0))

=
λk+1
σ−(k+1)ω,0

· µσ−(k+1)ω,0

(
T

−(k+1)

σ−(k+1)ω
(Hω,ε) ∩

(⋂k
j=1 T

−(k+1)+j

σ−(k+1)ω
(Hc

σ−jω,ε)
)
∩Hσ−(k+1)ω,ε

)
µω,0(Hω,ε)

=
λk+1
σ−(k+1)ω,0

· µσ−(k+1)ω,0

(
T

−(k+1)

σ−(k+1)ω
(Hω,ε) ∩

(⋂k
j=1 T

−(k+1)+j

σ−(k+1)ω
(Hc

σ−jω,ε)
)
∩Hσ−(k+1)ω,ε

)
µσ−(k+1)ω,0

(
T

−(k+1)

σ−(k+1)ω
(Hω,ε)

) .

For notational convenience we define the quantity q̂(k)ω,ε by

q̂(k)ω,ε :=
µσ−(k+1)ω,0

(
T

−(k+1)

σ−(k+1)ω
(Hω,ε) ∩

(⋂k
j=1 T

−(k+1)+j

σ−(k+1)ω
(Hc

σ−jω,ε)
)
∩Hσ−(k+1)ω,ε

)
µσ−(k+1)ω,0

(
T

−(k+1)

σ−(k+1)ω
(Hω,ε)

) ,(2.2.5)

and thus we have that

q̂(k)ω,ε =
(
λk+1
σ−(k+1)ω,0

)−1

q(k)ω,ε.

In light of (2.2.5), one can think of q̂(k)ω,ε as the conditional probability (on the fiber σ−(k+1)ω)
of a point starting in the hole Hσ−(k+1)ω,ε, leaving and avoiding holes for k steps, and finally
landing in the hole Hω,ε after exactly k+1 steps conditioned on the trajectory of the point
landing in Hω,ε. Similarly, for ω ∈ Ω+, we set

q̂
(k)
ω,0 :=

(
λk+1
σ−(k+1)ω,0

)−1

q
(k)
ω,0.

2.3. Quenched perturbation theorem and escape rate asymptotics for random
open systems

In this section we introduce versions of the assumptions (P1)–(P9) tailored to random
open systems. Under these assumptions we then prove a derivative result akin to The-
orem 2.1.2 for random open systems as well as a similar derivative result for the escape
rate.

Suppose (Ω,m, σ,J0, T,B,L0, ν0, ϕ0, Hε) is a random open system. We assume the
following conditions hold:
(C1) There exists a measurable m-a.e. finite function C1 : Ω → R+ such that for f ∈ Bω

we have
sup
ε≥0

∥Lω,ε(f)∥Bσω ≤ C1(ω)∥f∥Bω .
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2.3. QUENCHED PERTURBATION THEOREM AND ESCAPE RATE ASYMPTOTICS 91

(C2) For each ε ≥ 0 there is a random measure {νω,ε}ω∈Ω supported in J0 and mea-
surable functions λε : Ω → (0,∞) with log λω,ε ∈ L1(m) and ϕε : J0 → R such
that

Lω,ε(ϕω,ε) = λω,εϕσω,ε and νσω,ε(Lω,ε(f)) = λω,ενω,ε(f)

for all f ∈ Bω. Furthermore we assume that for m-a.e. ω ∈ Ω

νω,0(ϕω,ε) = 1 and νω,0(1) = 1.

(C3) There is an operator Qω,ε : Bω → Bσω such that for m-a.e. ω ∈ Ω and each f ∈ Bω
we have

λ−1
ω,εLω,ε(f) = νω,ε(f) · ϕσω,ε +Qω,ε(f).

Furthermore, for m-a.e. ω ∈ Ω we have

Qω,ε(ϕω,ε) = 0 and νσω,ε(Qω,ε(f)) = 0.

(C4) For each f ∈ B there exist measurable functions Cf : Ω → (0,∞) and α : Ω×N →
(0,∞) with αω(N) → 0 as N → ∞ such that for m-a.e. ω ∈ Ω and all N ∈ N

sup
ε≥0

∥QN
ω,εfω∥∞,σNω ≤ Cf (ω)αω(N)∥fω∥Bω ,

sup
ε≥0

∥QN
σ−Nω,εfσ−Nω∥∞,ω ≤ Cf (ω)αω(N)∥fσ−Nω∥Bσ−Nω

,

and ∥ϕσNω,0∥∞,σNωαω(N) → 0, ∥ϕσ−Nω,0∥∞,σ−Nωαω(N) → 0 as N → ∞.
(C5) There exists a measurable m-a.e. finite function C2 : Ω → [1,∞) such that

sup
ε≥0

∥ϕω,ε∥∞,ω ≤ C2(ω) and ∥ϕω,0∥Bω ≤ C2(ω).

(C6) For m-a.e. ω ∈ Ω we have

lim
ε→0

νω,0(Hω,ε) = 0.

(C7) There exists a measurable m-a.e. finite function C3 : Ω → [1,∞) such that for all
ε > 0 sufficiently small we have

inf ϕω,0 ≥ C−1
3 (ω) > 0 and ess inf

ω
inf ϕω,ε ≥ 0.

(C8) For m-a.e. ω ∈ Ω+ we have that the limit q̂(k)ω,0 := limε→0 q̂
(k)
ω,ε exists for each k ≥ 0,

where q̂(k)ω,ε is as in (2.2.5).

Remark 2.3.1. To obtain the scaling required in (C2) and (C3), in particular to ob-
tain the assumption that νω,0(ϕω,ε) = 1, suppose that (Ω,m, σ,J0, T,B,L0, ν0, ϕ0, Hε) is a
random open system satisfying the following properties:
(O1) For each ε ≥ 0 there is a random measure

{
ν ′ω,ε
}
ω∈Ω with ν ′ω,ε ∈ B∗

ω, the dual space
of Bω, λ′ω,ε ∈ C\ {0}, and ϕ′

ω,ε ∈ Bω such that

Lω,ε(ϕ′
ω,ε) = λ′ω,εϕ

′
σω,ε and ν ′σω,ε(Lω,ε(f)) = λ′ω,εν

′
ω,ε(f)

for all f ∈ Bω.
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92 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

(O2) There is an operator Q′
ω,ε : Bω → Bσω such that for m-a.e. ω ∈ Ω and each f ∈ Bω

we have

(λ′ω,ε)
−1Lω,ε(f) = ν ′ω,ε(f) · ϕ′

σω,ε +Q′
ω,ε(f).

Furthermore, for m-a.e. ω ∈ Ω we have

Q′
ω,ε(ϕ

′
ω,ε) = 0 and ν ′σω,ε(Q

′
ω,ε(f)) = 0.

Then, for every ε > 0 and each f ∈ Bω, by setting

ϕω,0 := ϕ′
ω,0, ϕω,ε :=

1

νω,0(ϕ′
ω,ε)

· ϕ′
ω,ε,

νω,0(f) := ν ′ω,0(f), νω,ε(f) := νω,0(ϕ
′
ω,ε)ν

′
ω,ε(f),

λω,0 := λ′ω,0, λω,ε :=
νσω,0(ϕ

′
σω,ε)

νω,0(ϕ′
ω,ε)

λ′ω,ε,

Qω,0(f) := Q′
ω,0(f), Qω,ε(f) :=

νω,0(ϕ
′
ω,ε)

νσω,0(ϕ′
σω,ε)

Q′
ω,ε(f)

we see that (C2) and (C3) hold, and in particular, νω,0(ϕω,ε) = 1. Furthermore, (O1) and
(O2) together imply that ν ′ω,ε(ϕ′

ω,ε) = νω,ε(ϕω,ε) = 1 for m-a.e. ω ∈ Ω. Note that the
measures νω,ε (for ε > 0) described in (C2) are not necessarily probability measures and
should not be confused with the conformal measures for the open systems.

Now given N ∈ N and ω ∈ Ω, for ψω ∈ Bω such that νω,0(ψω) = 1 we have∫
Xω,N−1,ε

ψω dνω,0 =

∫
Jω,0

ψω ·
N−1∏
j=0

1J
σj−Nω,ε

◦ T jω dνω,0

=
(
λNω,0

)−1
∫
J
σNω,0

LNω,0

(
ψω ·

N−1∏
j=0

1J
σj−Nω,ε

◦ T jω

)
dνσNω,0

=
λNω,ε
λNω,0

∫
J
σNω,0

L̃Nω,ε (ψω) dνσNω,0

=
λNω,ε
λNω,0

∫
J
σNω,0

νω,ε(ψω) · ϕσNω,ε dνσNω,0 +
λNω,ε
λNω,0

∫
J
σNω,0

QN
ω,ε (ψω) dνσNω,0.

Thus if ψω = 1 we have

(2.3.1) νω,0(Xω,N−1,ε) =
λNω,ε
λNω,0

νω,ε(1) +
λNω,ε
λNω,0

∫
J
σNω,0

QN
ω,ε (1) dνσNω,0,

and if ψω = ϕω,0, then we have

µω,0(Xω,N−1,ε) =
λNω,ε
λNω,0

νω,ε(ϕω,0) +
λNω,ε
λNω,0

∫
J
σNω,0

QN
ω,ε (ϕω,0) dνσNω,0.(2.3.2)

18 Oct 2022 02:26:55 PDT
221018-Vaienti Version 1 - Submitted to Asterisque



2.3. QUENCHED PERTURBATION THEOREM AND ESCAPE RATE ASYMPTOTICS 93

Remark 2.3.2. Using (2.1.3) and (C7) we see that

λω,0 − λω,ε = νσω,0 ((Lω,0 − Lω,ε)(ϕω,ε)) = νσω,0
(
(Lω,0(1Hω,εϕω,ε)

)
= λω,0νω,0(1Hω,εϕω,ε) ≥ λω,0νω,0(Hω,ε) inf ϕω,ε ≥ 0.

Thus, we have that λω,0 ≥ λω,ε. Note that if νω,0(1Hω,εϕω,ε) > 0 then we have that λω,0 >
λω,ε. Consequently, if νω,0(Hω,ε) = 0 then we have that λω,0 = λω,ε.

Recall from Definition 1.12.3 that the upper and lower fiberwise escape rate of a random
probability measure ζ on J0, for each ε > 0, is given by the following:

Rε(ζω) := − lim sup
N→∞

1

N
log ζω(Xω,N,ε) and Rε(ζω) := − lim inf

N→∞

1

N
log ζω(Xω,N,ε).

If Rε(ζω) = Rε(ζω) then the fiberwise escape rate exist is denoted the common value by
Rε(ζω). As an immediate consequence of (2.3.1), (2.3.2), and assumptions (C4), (C5),
and (C7) for each (fixed) ε > 0 we have that

lim
N→∞

1

N
log νω,0(Xω,N,ε) = lim

N→∞

1

N
log µω,0(Xω,N,ε) = lim

N→∞

1

N
log λNω,ε − lim

N→∞

1

N
log λNω,0.

(2.3.3)

Since log λω,ε ∈ L1(m) for all ε ≥ 0 by (C2), the following proposition follows directly from
Birkhoff’s Ergodic Theorem.

Proposition 2.3.3. Given a random open system (Ω,m, σ,J0, T,B,L0, ν0, ϕ0, Hε) sat-
isfying conditions (C1)-(C7), for m-a.e. ω ∈ Ω we have that

Rε(νω,0) = Rε(µω,0) =

∫
Ω

log λω,0 dm(ω)−
∫
Ω

log λω,ε dm(ω).(2.3.4)

Remark 2.3.4. We remark that if we were to replace the supremum norm (with respect
to νω,0) ∥·∥∞,ω everywhere in our assumption (C4) with the norm ∥·∥∞ := sup(|·|), then,
using an argument similar to that of Example 7.4 of [2], we would be able to prove a
stronger result than is given in Proposition 2.3.3. Namely we could show that for every
0 ≤ ε′ < ε and m-a.e. ω ∈ Ω we would have

Rε(νω,ε′) = Rε(µω,ε′) =

∫
Ω

log λω,ε′ dm(ω)−
∫
Ω

log λω,ε dm(ω).

We now begin to work toward an application of Theorem 2.1.2 to random open systems.
The following implications are immediate: (C1) =⇒ (P1), (C2) =⇒ (P2), (C3) =⇒ (P3),
(C5) =⇒ (P4), and in light of (2.2.3) and (2.2.4) we also have that (C6) =⇒ (P5) and
(C7) =⇒ (P6). Thus, in order to ensure that Theorem 2.1.2 applies for the random open
dynamical setting we need only to check assumptions (P7) and (P8). We now prove the
following lemma showing that (P7) and (P8) follow from assumptions (C1)-(C7).

Recall that the set Ω+, defined in (2.2.1), is the set of all fibers ω such that µω,0(Hω,ε) > 0
for all ε > 0.

Lemma 2.3.5. Given a random open system (Ω,m, σ,J0, T,B,L0, ν0, ϕ0, Hε) satisfying
conditions (C1)-(C7), for m-a.e. ω ∈ Ω+ we have that

lim
ε→0

νω,ε(ϕω,0) = 1(2.3.5)
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94 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

and

lim
N→∞

lim sup
ε→0

∆−1
ω,ενσω,0

(
(Lω,0 − Lω,ε)(QN

σ−Nω,εϕσ−Nω,0)
)
= 0.(2.3.6)

Proof. First, using (2.2.3), we note that if µω,0(Hω,ε) > 0 then so is ∆ω,ε. To prove
(2.3.5), we note that for fixed N ∈ N we have

lim
ε→0

λNω,0
λNω,ε

µω,0(Xω,N−1,ε) = 1(2.3.7)

since λNω,0/λNω,ε → 1 (by (2.1.4), (2.2.4), (C5), and (C6)) and non-atomicity of νω,0 (CCM)
together with (C3) imply that µω,0(Xω,N−1,ε) → 1 as ε→ 0. Using (2.3.2) we can write

νω,ε(ϕω,0) =
λNω,0
λNω,ε

µω,0(Xω,N−1,ε)− νσNω,0(Q
N
ω,ε(ϕω,0)),(2.3.8)

and thus using (2.3.7) and (C4), for each ω ∈ Ω and each N ∈ N we can write

lim
ε→0

|1− νω,ε(ϕω,0)| ≤ lim
ε→0

∣∣∣∣∣1− λNω,0
λNω,ε

µω,0(Xω,N−1,ε)

∣∣∣∣∣+ ∥QN
ω,ε(ϕω,0)∥∞,σNω

≤ Cϕ0(ω)αω(N)∥ϕω,0∥Bω .

As this holds for each N ∈ N and as the right-hand side of the previous equation goes to
zero as N → ∞, we must in fact have that

lim
ε→0

|1− νω,ε(ϕω,0)| = 0,

which yields the first claim.
Now, for the second claim, using (2.2.3), we note that (C7) implies

∆−1
ω,ενσω,0

(
(Lω,0 − Lω,ε)(QN

σ−Nω,εϕσ−Nω)
)
=
νω,0

(
1Hω,ε ·QN

σ−Nω,ε(ϕσ−Nω,0)
)

µω,0(Hω,ε)

≤ νω,0(Hω,ε)

µω,0(Hω,ε)
∥QN

σ−Nω,ε(ϕσ−Nω,0)∥∞,ω

≤ C3(ω)∥QN
σ−Nω,ε(ϕσ−Nω,0)∥∞,ω.

Thus, letting ε→ 0 first and then N → ∞, the second claim follows from (C4). □

Now recall from (2.1.20) that if µω,0(Hω,ε) > 0 for each ε > 0, then θω,0 is given by

θω,0 := 1−
∞∑
k=0

(λk+1
σ−(k+1)ω,0

)−1q
(k)
ω,0 = 1−

∞∑
k=0

q̂
(k)
ω,0.

In light of Lemma 2.3.5, we see that (C1)-(C8) imply (P1)-(P9), and thus we have the
following Theorem and first main result of this section.

Theorem 2.3.6. Suppose that (C1)-(C7) hold for a random open system (Ω,m, σ,J0,
T,B,L0, ν0, ϕ0, Hε). For m-a.e. ω ∈ Ω if there is some ε0 > 0 such that µω,0(Hω,ε) = 0 for
ε ≤ ε0 then

λω,0 = λω,ε,
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2.3. QUENCHED PERTURBATION THEOREM AND ESCAPE RATE ASYMPTOTICS 95

or if (C8) holds, then

lim
ε→0

λω,0 − λω,ε
λω,0µω,0(Hω,ε)

= θω,0.

Furthermore, the map Ω+ ∋ ω 7→ θω,0 is measurable.

Proof. All statements follow directly from Theorem 2.1.2, except measurability of θω,0,
which follows from its construction as a limit of measurable objects. □

Remark 2.3.7. As Theorem 2.1.2 does not require any measurability, one could restate
Theorem 2.3.6 to hold for sequential open systems satisfying the sequential versions of
hypotheses (C1)-(C8).

The following lemma will be useful for bounding θω,0.

Lemma 2.3.8. Suppose m(Ω\Ω+) = 0. Then for each ε > 0 and m-a.e. ω ∈ Ω we have
∞∑
k=0

(λk+1
σ−(k+1)ω,0

)−1q(k)ω,ε =
∞∑
k=0

q̂(k)ω,ε = 1.

Proof. Recall from Section 0.1.1 that the hole Hε ⊆ J0 is given by

Hε :=
⋃
ω∈Ω

{ω} ×Hω,ε,

and the skew map T : J0 → J0 is given by

T (ω, x) = (σω, Tω(x)).

Let τHε(ω, x) denote the first return time of the point (ω, x) ∈ Hε into Hε. For each k ≥ 0
let Bk := {(ω, x) ∈ Hε : τHε(ω, x) = k + 1} be the set of points (ω, x) that remain outside
of the hole Hε for exactly k iterates, and for each ω ∈ Ω we set Bk,ω := π2(Bk∩{ω}×Jω,0).
Then Bk,ω is precisely the set

Bk,ω =
{
x ∈ Hω,ε : T

k+1
ω (x) ∈ Hσk+1ω,ε and T jω(x) ̸∈ Hσjω,ε for all 1 ≤ j ≤ k

}
.

For each k ≥ 0 we can disintegrate µ0 as

µ0 (Bk) =

∫
Ω

µω,0(Bk,ω) dm(ω),

where the last equality follows from the σ-invariance m. In particular, for fixed ω ∈ Ω+

and each k ≥ 0 we have

µσ−(k+1)ω,0(Bk,σ−(k+1)ω) = µσ−(k+1)ω,0

(
T

−(k+1)

σ−(k+1)ω
(Hω,ε) ∩

(
k⋂
j=1

T
−(k+1)+j

σ−(k+1)ω
(Hc

σ−jω,ε)

)
∩Hσ−(k+1)ω,ε

)
.

(2.3.9)

Recall from (2.2.5) that q̂(k)ω,ε is given by

q̂(k)ω,ε :=
µσ−(k+1)ω,0

(
T

−(k+1)

σ−(k+1)ω
(Hω,ε) ∩

(⋂k
j=1 T

−(k+1)+j

σ−(k+1)ω
(Hc

σ−jω,ε)
)
∩Hσ−(k+1)ω,ε

)
µσ−(k+1)ω,0

(
T

−(k+1)

σ−(k+1)ω
(Hω,ε)

) ,
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96 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

which is well defined since ω ∈ Ω+ by assumption. Note that since
∑∞

k=0 µσ−(k+1)ω,0(Bk,σ−(k+1)ω) ≤
µω,0(Hω,ε) we must have that

∑∞
k=0 q̂

(k)
ω,ε ≤ 1. Now, as the measure µ0 is T -invariant, the

right-hand side of (2.3.9) is equal to q̂(k)ω,εµω,0(Hω,ε), and therefore∫
Ω

q̂(k)ω,ε µω,0(Hω,ε) dm(ω) =

∫
Ω

µω,0(Bk,ω) dm(ω) = µ0(Bk).(2.3.10)

By the Poincaré recurrence theorem we have
∞∑
k=0

µ0(Bk) = µ0(Hε) =

∫
Ω

µω,0(Hω,ε) dm(ω).

By interchanging the sum with the integral above (possible by Tonelli’s Theorem) and using
(2.3.10), we have∫

Ω

(
∞∑
k=0

q̂(k)ω,ε µω,0(Hω,ε)

)
dm(ω) =

∫
Ω

µω,0(Hω,ε) dm(ω),

which implies ∫
Ω

(
µω,0(Hω,ε)

(
∞∑
k=0

q̂(k)ω,ε − 1

))
dm(ω) = 0.

Since we already have that
∑∞

k=0 q̂
(k)
ω,ε ≤ 1 for m-a.e. ω ∈ Ω, we must in fact have∑∞

k=0 q̂
(k)
ω,ε = 1, which completes the proof. □

By definition, we have that q̂(k)ω,ε ∈ [0, 1] and thus (C8) implies that q̂(k)ω,0 ∈ [0, 1] for each
k ≥ 0 as well. In light of the previous lemma, dominated convergence implies that

θω,0 ∈ [0, 1].(2.3.11)

2.3.1. Escape Rate Asymptotics. If we have some additional ω-control on the size
of the holes we obtain the following corollary of Theorem 2.3.6, which provides a formula
for the escape rate asymptotics for small random holes. The scaling of the holes (2.3.13)
takes a similar form to the scaling we will shortly use in the next section for our quenched
extreme value theory.

Corollary 2.3.9. Suppose that (C1)–(C8) hold for a random open system (Ω,m, σ,
J0, T,B,L0, ν0, ϕ0, Hε) and there exists A ∈ L1(m) such that for m-a.e. ω ∈ Ω and all
ε > 0 sufficiently small we have

log λω,0 − log λω,ε
µω,0(Hω,ε)

≤ A(ω).(2.3.12)

Further suppose that there is some κ(ε) with κ(ε) → ∞ as ε→ 0, t ∈ L∞(m) with tω > 0,
and ξω,ε ∈ L∞(m) with ξω,ε → 0 as ε→ 0 for m-a.e. ω ∈ Ω such that

µω,0(Hω,ε) =
tω + ξω,ε
κ(ε)

(2.3.13)
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and |ξω,ε| < Ctω for all ε > 0 sufficiently small for some C > 0. Then for m-a.e. ω ∈ Ω
we have

lim
ε→0

Rε(µω,0)

µω,0(Hω,ε)
=

∫
Ω
θω,0tω dm(ω)

tω
.

In particular, if tω is constant m-a.e. then

lim
ε→0

Rε(µω,0)

µω,0(Hω,ε)
=

∫
Ω

θω,0 dm(ω).

Proof. First, we note that (2.3.13) implies that µω,0(Hω,ε) > 0 for m-a.e. ω ∈ Ω and
all ε > 0 sufficiently small, i.e. m(Ω\Ω+) = 0. Using Theorem 2.3.6 we have that

lim
ε→0

log λω,0 − log λω,ε
µω,0(Hω,ε)

= θω,0(2.3.14)

since
log λω,0 − log λω,ε

µω,0(Hω,ε)
=

log λω,0 − log λω,ε
λω,0 − λω,ε

· λω,0 − λω,ε
µω,0(Hω,ε)

−→ 1

λω,0
· λω,0θω,0 = θω,0

as ε→ 0. In light of (2.3.3) and (2.3.4), we use (2.3.13) to get that

lim
ε→0

Rε(µω,0)

µω,0(Hω,ε)
= lim

ε→0
lim
N→∞

1

N

log λNω,0 − log λNω,ε
µω,0(Hω,ε)

= lim
ε→0

lim
N→∞

1

N

N−1∑
j=0

log λσjω,0 − log λσjω,ε

µσjω,0(Hσjω,ε)
·
µσjω,0(Hσjω,ε)

µω,0(Hω,ε)

= lim
ε→0

lim
N→∞

1

N

N−1∑
j=0

log λσjω,0 − log λσjω,ε

µσjω,0(Hσjω,ε)
·
tσjω + ξσjω,ε

tω + ξω,ε

= lim
ε→0

1

tω + ξω,ε
lim
N→∞

1

N

N−1∑
j=0

log λσjω,0 − log λσjω,ε

µσjω,0(Hσjω,ε)
· (tσjω + ξσjω,ε)

= lim
ε→0

1

tω + ξω,ε

∫
Ω

log λω,0 − log λω,ε
µω,0(Hω,ε)

· (tω + ξω,ε) dm(ω),

where the last line follows from Birkhoff (which is applicable thanks to (2.3.12) and the fact
that tω, ξω,ε ∈ L∞(m)). As ξω,ε → 0 by assumption, (2.3.12) allows us to apply Dominated
Convergence which, in view of (2.3.14), implies

lim
ε→0

Rε(µω,0)

µω,0(Hω,ε)
=

1

tω
lim
ε→0

∫
Ω

log λω,0 − log λω,ε
µω,0(Hω,ε)

· (tω + ξω,ε) dm(ω) =

∫
Ω
θω,0tω dm(ω)

tω
,

completing the proof. □

In the next section we will present easily checkable assumptions which will imply the
hypotheses of Corollary 2.3.9.
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98 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

2.4. Quenched extreme value law

2.4.1. Gumbel’s law in the quenched regime. Suppose that hω : Jω,0 → R is a
continuous function for each ω ∈ Ω. In our quenched random extreme value theory, hω
is an observation function that is allowed to depend on ω. For each ω ∈ Ω let zω be the
essential supremum of hω with respect to νω,0, that is

zω := sup {z ∈ R : νω,0({x ∈ Jω,0 : hω(x) ≥ z}) > 0} .
Similarly we define zω to be the essential infimum of hω with respect to νω,0. Suppose
zω < zω for m-a.e. ω ∈ Ω, and for each z ∈ [zω, zω] we define the set

Vω,zω := {x ∈ Jω,0 : hω(x)− zω > 0} ,
which represents points x in our phase space where the observation hω exceeds a random

threshold zω at base configuration ω. Our theory allows for random thresholds zω so
that we may consider both “anomalous” and “absolute” exceedances. For example in a
real-world application, hω(x) may represent the surface ocean temperature at a spatial
location x for an ocean system configuration ω. Random temperature exceedances above
zω allow one to describe extreme value statistics for temperature anomalies, e.g. those
above a climatological seasonal mean (on average the surface ocean is warmer in summer
and colder in winter). On the other hand, non-random absolute temperature exceedances
above z are more relevant for marine life. We suppose that

νω,0(Vω,zω) = 0.

As is standard in extreme value theory, to develop an exponential law we will consider an
increasing sequence of thresholds zω,0 < zω,1 < · · · . For each N ≥ 0 we take zω,N ∈ [zω, zω]

and the choice will be made explicit in a moment. For each k,N ∈ N define G(k)
ω,N : Jω,0 → R

by

G
(k)
ω,N(x) := hσNω(T

N
ω (x))− zσNω,k.

If G(k)
ω,N > 0 then hσNω(T

N
ω (x)) > zσNω,k. Our extreme value law concerns the large N limit

of the likelihood of continued threshold non-exceedances:

(2.4.1) νω,0

({
x ∈ Jω,0 : max

(
G

(N)
ω,0 (x), . . . , G

(N)
ω,N−1(x)

)
≤ 0
})

.

We may easily transform (2.4.1) into the language of random open systems: one immedi-
ately has that G(k)

ω,N > 0 is equivalent to TNω (x) ∈ VσNω,z
σNω,k

. Therefore, for each N ≥ 0

we have
(2.4.2)
(2.4.1) = νω,0

({
x ∈ Jω,0 : T jω(x) /∈ Vσjω,z

σjω,N
for j = 0, . . . , N − 1

})
= νω,0 (Xω,N−1,εN ) ,

where to obtain the second equality we identify the sets Vω,zω,N
with holes Hω,εN ⊂ Jω,0

for each N ∈ N 1. Now using (2.3.1) and (2.4.2) we may convert (2.4.1) into the spectral

1In Section 2.4 we consider a decreasing sequence of holes, whereas in previous sections we considered
a decreasing family of holes Hω,ε parameterised by ε > 0. For the sake of notational continuity, in this
section, and in the sequel, we denote a decreasing sequence of holes by Hω,εN . Note that εN here is just a
parameter and should not be thought of as a real number, but instead as an index and that Hω,εN serves
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expression:

(2.4.3) (2.4.1) =
λNω,εN
λNω,0

(
νω,εN (1) + νσNω,0

(
QN
ω,εN

(1)
))
.

Similarly, using (2.3.2), we can write

µω,0

({
x ∈ Jω,0 : T jω(x) /∈ Vσjω,z

σjω,N
for j = 0, . . . , N − 1

})
= µω,0 (Xω,N−1,εN )

=
λNω,εN
λNω,0

(
νω,εN (ϕω,0) + νσNω,0

(
QN
ω,εN

(ϕω,0)
))
.(2.4.4)

Before we state our main result concerning the N → ∞ limit, in addition to (C2), (C3), and
(C8), we make the following uniform adjustments to some of the assumptions in Section
2.3 as well as an assumption on the choice of the sequence of thresholds, condition (S). At
the end of this section, we will compare it with the Hüsler condition, which is the usual
prescription for non stationary processes, as we anticipated in the Introduction.
(S) For any fixed random scaling function t ∈ L∞(m) with t > 0, we may find sequences

of functions zN , ξN ∈ L∞(m) and a constant W <∞ satisfying
µω,0({hω(x)− zω,N > 0}) = (tω + ξω,N)/N, for a.e. ω and each N ≥ 1

where:
(i) limN→∞ ξω,N = 0 for a.e. ω and
(ii) |ξω,N | ≤ W for a.e. ω and all N ≥ 1.

(C1’) There exists C1 ≥ 1 such that for m-e.a. ω ∈ Ω we have

C−1
1 ≤ Lω,01 ≤ C1.

(C4’) For each f ∈ B and each N ∈ N there exists Cf > 0 and α(N) > 0 (independent
of ω) with α :=

∑∞
N=1 α(N) <∞ such that for m-a.e. ω ∈ Ω, all N ∈ N
sup
ε≥0

∥QN
ω,εfω∥∞,σNω ≤ Cfα(N)∥fω∥Bω .

(C5’) There exists C2 ≥ 1 such that
sup
ε≥0

∥ϕω,ε∥∞,ω ≤ C2 and ∥ϕω,0∥Bω ≤ C2

for m-a.e. ω ∈ Ω.
(C7’) There exists C3 ≥ 1 such that for all ε > 0 sufficiently small we have

ess inf
ω

inf ϕω,0 ≥ C−1
3 > 0 and ess inf

ω
inf ϕω,ε ≥ 0.

Remark 2.4.1. Note that (S) implies that µω,0(Hω,εN ) > 0 for each N ∈ N since tω > 0,
and in particular we have m(Ω\Ω+) = 0.

Remark 2.4.2. Note that since λω,0 = νσω,0(Lω,01), (C1’) implies that

C−1
1 ≤ λω,0 ≤ C1

for m-a.e. ω.
as an alternative notation to Hω,N . Furthermore, note that the measure of the hole depends on the fiber
ω with µω,0(Hω,εN ) → 0 as N → ∞.
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Remark 2.4.3. Note that conditions (S), (C5’), and (C7’) together imply (C6), thus
Theorem 2.3.6 applies. Furthermore, these same conditions along with Remark 2.4.2 imply
that there exists A ≥ 1 such that

log λω,0 − log λω,ε
µω,0(Hω,ε)

≤ A

for m-a.e. ω ∈ Ω and all ε > 0 sufficiently small, and thus (2.3.12) and (2.3.13) hold,
meaning that Corollary 2.3.9 applies as well.

The following lemma shows that νω,εN (ϕω,0) converges to 1 uniformly in ω under our
assumptions (C1’), (C4’), (C5’), (C7’), and (S).

Lemma 2.4.4. For each N ∈ N there exists CεN ≥ 1 with CεN → 1 as N → ∞ such
that

C−1
εN

≤ νω,εN (1), νω,εN (ϕω,0) ≤ CεN(2.4.5)

for m-a.e. ω ∈ Ω.

Proof. Note that

(2.4.6) νσω,0

(
(Lω,0 − Lω,εN )(L̃kσ−kω,εN

ϕσ−kω,0)
)
= λω,0νω,0

(
1Hω,εN

L̃kσ−kω,εN
ϕσ−kω,0

)
.

Further, by (C7’) we have

(2.4.7) νω,0(Hω,εN ) ≤ C3µω,0(Hω,εN ) =
C3(tω + ξω,N)

N

for m-a.e. ω ∈ Ω. Following the same derivation of (2.1.3), and using (C2) gives that

λω,0 − λω,εN = νσω,0 ((Lω,0 − Lω,εN )(ϕω,εN )) = λω,0νω,0(1Hω,εN
ϕω,εN ).(2.4.8)

Thus it follows from Remark 2.3.2, (2.4.8), (C5’), and (2.4.7) that

(2.4.9) 0 ≤ λω,0 − λω,εN ≤ C2C3λω,0(tω + ξω,N)

N
.

Using Remark 2.4.2 and (2.4.9), for all N sufficiently large, we see that

1 ≤ λω,0
λω,εN

=
λω,0

λω,0 − λω,0νω,0(1Hω,εN
ϕω,εN )

≤ 1

1− C2νω,0(Hω,εN )
≤ 1

1− EN
,(2.4.10)

where

EN :=
C2C3(|t|∞ +W )

N
→ 0

as N → ∞.

Claim 2.4.4.1. For every n, εN , and m-a.e. ω ∈ Ω we have

|1− νω,εN (ϕω,0)| ≤ n

(
1

1− EN

)n
·
(
C1EN +

C1C2EN
1− EN

)
+ C2Cϕ0α(n).
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2.4. QUENCHED EXTREME VALUE LAW 101

Proof. Using (C2) and a telescoping argument, we can write

|1− νω,εN (ϕω,0)| = |νσnω,0(ϕσnω,0)− νω,εN (ϕω,0)|
=
∣∣νσnω,0(ϕσnω,0)− νσnω,0

(
νω,εN (ϕω,0) · ϕσnω,εN

)∣∣
=
∣∣∣νσnω,0

(
ϕσnω,0 − L̃nω,εN (ϕω,0) +Qn

ω,εN
(ϕω,0)

)∣∣∣
≤

n−1∑
k=0

∣∣∣νσnω,0

(
L̃kσn−kω,εN

(ϕσn−kω,0)− L̃k+1
σn−(k+1)ω,εN

(ϕσn−(k+1)ω,0)
)∣∣∣

+
∣∣νσnω,0

(
Qn
ω,εN

(ϕω,0)
)∣∣

=
n−1∑
k=0

∣∣∣νσnω,0

((
L̃kσn−kω,εN

)(
L̃σn−(k+1)ω,0 − L̃σn−(k+1)ω,εN

)
(ϕσn−(k+1)ω,0)

)∣∣∣(2.4.11)

+
∣∣νσnω,0

(
Qn
ω,εN

(ϕω,0)
)∣∣ .(2.4.12)

First we note that we can estimate (2.4.12) as∣∣νσnω,0

(
Qn
ω,εN

(ϕω,0)
)∣∣ ≤ ∥Qn

ω,εN
(ϕω,0)∥∞,σnω ≤ C2Cϕ0α(n).(2.4.13)

Now recall that

X̂σ−kω,k,εN := 1⋂k
j=0 T

−j

σ−kω
(J

σj−kω,εN
).

Using (C2), we can write (2.4.11) as
n−1∑
k=0

∣∣∣νσnω,0

((
L̃kσn−kω,εN

)(
L̃σn−(k+1)ω,0 − L̃σn−(k+1)ω,εN

)
(ϕσn−(k+1)ω,0)

)∣∣∣
=

n−1∑
k=0

∣∣∣νσnω,0

((
λkσn−kω,εN

)−1 Lkσn−kω,0

(
X̂σn−kω,k,εN ·

(
L̃σn−(k+1)ω,0 − L̃σn−(k+1)ω,εN

)
(ϕσn−(k+1)ω,0)

))∣∣∣
=

n−1∑
k=0

λk
σn−kω,0

λk
σn−kω,εN

∣∣∣νσn−kω,0

(
X̂σn−kω,k,εN ·

(
L̃σn−(k+1)ω,0 − L̃σn−(k+1)ω,εN

)
(ϕσn−(k+1)ω,0)

)∣∣∣ .
(2.4.14)

Now, since λω,0/λω,εN ≥ 1 (by Remark 2.3.2) form a.e. ω and ε ≥ 0, and thus λkσn−kω,0/λkσn−kω,εN
≥

1 for each k ≥ 1, we can write

(2.4.14) ≤
λnω,0
λnω,εN

n−1∑
k=0

∣∣∣νσn−kω,0

(
X̂σn−kω,k,εN ·

(
L̃σn−(k+1)ω,0 − L̃σn−(k+1)ω,εN

)
(ϕσn−(k+1)ω,0)

)∣∣∣
≤
(

1

1− EN

)n
·
n−1∑
k=0

∣∣∣νσn−kω,0

(
X̂σn−kω,k,εN ·

(
L̃σn−(k+1)ω,0 − L̃σn−(k+1)ω,εN

)
(ϕσn−(k+1)ω,0)

)∣∣∣ ,
(2.4.15)

Using

L̃ω,0 − L̃ω,ε = L̃ω,0 − λ−1
ω,0Lω,ε + λ−1

ω,0Lω,ε − L̃ω,ε
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102 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

= λ−1
ω,0 (Lω,0 − Lω,ε) + (λ−1

ω,0 − λ−1
ω,ε)Lω,ε

= λ−1
ω,0

(
(Lω,0 − Lω,ε) + λω,0λω,ε(λ

−1
ω,0 − λ−1

ω,ε)L̃ω,ε
)

= λ−1
ω,0

(
(Lω,0 − Lω,ε) + (λω,ε − λω,0)L̃ω,ε

)
,

the fact that

Lω,εN ((fσω ◦ Tω) · hω) = fσω · Lω,εN (hω),

for all εN ≥ 0 and ω ∈ Ω, and Remark 2.4.2, we may estimate the sum in (2.4.15) by
n−1∑
k=0

∣∣∣νσn−kω,0

(
X̂σn−kω,k,εN ·

(
L̃σn−(k+1)ω,0 − L̃σn−(k+1)ω,εN

)
(ϕσn−(k+1)ω,0)

)∣∣∣
≤

n−1∑
k=0

λ−1
σn−(k+1)ω,0

∣∣∣νσn−kω,0

(
X̂σn−kω,k,εN ·

(
Lσn−(k+1)ω,0 − Lσn−(k+1)ω,εN

)
(ϕσn−(k+1)ω,0)

)∣∣∣
+

n−1∑
k=0

λ−1
σn−(k+1)ω,0

∣∣∣(λσn−(k+1)ω,εN
− λσn−(k+1)ω,0) · νσn−kω,0

(
X̂σn−kω,k,εN · L̃σn−(k+1)ω,εN

(ϕσn−(k+1)ω,0)
)∣∣∣

=
n−1∑
k=0

λ−1
σn−(k+1)ω,0

∣∣∣νσn−kω,0

((
Lσn−(k+1)ω,0 − Lσn−(k+1)ω,εN

) ((
X̂σn−kω,k,εN ◦ Tσn−(k+1)ω

)
· ϕσn−(k+1)ω,0

))∣∣∣
(2.4.16)

+
n−1∑
k=0

(
λ−1
σn−(k+1)ω,0

∣∣∣∣1− λσn−(k+1)ω,0

λσn−(k+1)ω,εN

∣∣∣∣
·
∣∣∣νσn−kω,0

(
Lσn−(k+1)ω,εN

((
X̂σn−kω,k,εN ◦ Tσn−(k+1)ω

)
· ϕσn−(k+1)ω,0

))∣∣∣ ).
(2.4.17)

Using (2.4.8), (2.4.9), and Remark 2.4.2 we can estimate (2.4.16) to get
n−1∑
k=0

λ−1
σn−(k+1)ω,0

∣∣∣νσn−kω,0

((
Lσn−(k+1)ω,0 − Lσn−(k+1)ω,εN

) ((
X̂σn−kω,k,εN ◦ Tσn−(k+1)ω

)
· ϕσn−(k+1)ω,0

))∣∣∣
=

n−1∑
k=0

∣∣∣νσn−(k+1)ω,0

(
1H

σn−(k+1)ω,εN

·
((
X̂σn−kω,k,εN ◦ Tσn−(k+1)ω

)
· ϕσn−(k+1)ω,0

))∣∣∣
≤

n−1∑
k=0

νσn−(k+1)ω,0

(
1H

σn−(k+1)ω,εN

)
∥ϕσn−(k+1)ω,0∥∞,σn−(k+1)ω ≤ C2C3(tω + ξω,N) · n

N
≤ nEN .

(2.4.18)

Since Lω,ε(f) = Lω,0(X̂ω,0,εf) we can rewrite the second product in the sum in (2.4.17) so
that we have

νσn−kω,0

(
Lσn−(k+1)ω,εN

((
X̂σn−kω,k,εN ◦ Tσn−(k+1)ω

)
· ϕσn−(k+1)ω,0

))
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2.4. QUENCHED EXTREME VALUE LAW 103

= νσn−kω,0

(
Lσn−(k+1)ω,0

(
X̂σn−(k+1)ω,0,εN

(
X̂σn−kω,k,εN ◦ Tσn−(k+1)ω

)
· ϕσn−(k+1)ω,0

))
≤ ∥Lσn−(k+1)ω,01∥∞,σn−kω∥ϕσn−(k+1)ω,0∥∞,σn−(k+1)ω ≤ C1C2.

(2.4.19)

Inserting (2.4.19) into (2.4.17) and using (2.4.10) yields
n−1∑
k=0

∣∣∣∣1− λσn−(k+1)ω,0

λσn−(k+1)ω,εN

∣∣∣∣ · ∣∣∣νσn−kω,0

(
Lσn−(k+1)ω,εN

((
X̂σn−kω,k,εN ◦ Tσn−(k+1)ω

)
· ϕσn−(k+1)ω,0

))∣∣∣
≤

n−1∑
k=0

C1C2EN
1− EN

= n · C1C2EN
1− EN

.

(2.4.20)

Thus, collecting the estimates (2.4.16)-(2.4.20) together with (2.4.13) and inserting into
(2.4.15) yields

|1− νω,εN (ϕω,0)| ≤
(

1

1− EN

)n
·
(
nEN +

C1C2EN · n
1− EN

)
+ C2Cϕ0α(n),(2.4.21)

which finishes the proof of the claim. ■

To finish the proof of Lemma 2.4.4, we note that (2.4.21) holds for m-a.e. ω, every N
sufficiently large, and each n ≥ 1. Given a δ > 0, choose and fix n so that C2Cϕ0α(n) < δ/2.
Because limN→∞EN = 0, we may choose N large enough so that first summand in (2.4.21)
is also smaller than δ/2. Thus, limN→∞ νω,εN (ϕω,0) = 1, uniformly in ω. This proves (2.4.5)
for νω,εN (ϕω,0); we immediately obtain the other inequality using (C5’) and (C7’), and thus
the proof of Lemma 2.4.4 is complete.

□

We now obtain a formula for the explicit form of Gumbel law for the extreme value
distribution.

Theorem 2.4.5. Given a random open system (Ω,m, σ,J0, T,B,L0, ν0, ϕ0, Hε) satisfy-
ing (C1’), (C2), (C3), (C4’), (C5’), (C7’), (C8), and (S), for almost every ω ∈ Ω one
has
(2.4.22)

lim
N→∞

νω,0 (Xω,N−1,εN ) = lim
N→∞

µω,0 (Xω,N−1,εN ) = lim
N→∞

λNω,εN
λNω,0

= exp

(
−
∫
Ω

tωθω,0 dm(ω)

)
.

Proof.
Step 1: Estimating λω,εN/λω,0. To work towards constructing an estimate for

λNω,εN/λ
N
ω,0, we first estimate λω,εN/λω,0. For brevity, in this step we drop the N sub-

scripts on ε. Following the proof of Theorem 2.1.2 up to equation (2.1.15), which uses
assumptions (C2) and (C3), we have

νσ−nω,ε(ϕσ−nω,0)
λω,0 − λω,ε

∆ω,ε
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104 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

= 1−
n−1∑
k=0

λ−1
σ−(k+1)ω,0

(λkσ−kω,ε)
−1q(k)ω,ε︸ ︷︷ ︸

=:θω,ε,n

(2.4.23)

+ ∆−1
ω,ε

n∑
k=1

λ−1
σ−kω,0

(λσ−kω,0 − λσ−kω,ε)νσω,0((Lω,0 − Lω,ε)(L̃kσ−kω,ε)(ϕσ−kω,0))︸ ︷︷ ︸
=:θ′ω,ε,n

(2.4.24)

+ ∆−1
ω,ε νσω,0(Lω,0 − Lω,ε)(Qn

σ−nω,ε(ϕσ−nω,0))︸ ︷︷ ︸
=:θ′′ω,ε,n

.(2.4.25)

By first rearranging to solve for λω,ε we have

λω,ε = λω,0 −
θω,ε,n∆ω,ε + θ′ω,ε,n + θ′′ω,ε,n

νσ−nω,ε(ϕσ−nω,0)
,

and thus
λω,ε
λω,0

= 1− θω,ε,n∆ω,ε

λω,0νσ−nω,ε(ϕσ−nω,0)︸ ︷︷ ︸
=:Y

(1)
ω,ε,n

−
θ′ω,ε,n

λω,0νσ−nω,ε(ϕσ−nω,0)︸ ︷︷ ︸
Y

(2)
ω,ε,n

−
θ′′ω,ε,n

λω,0νσ−nω,ε(ϕσ−nω,0)︸ ︷︷ ︸
=:Y

(3)
ω,ε,n

.(2.4.26)

Setting Yω,ε,n := Y
(1)
ω,ε,n + Y

(2)
ω,ε,n + Y

(3)
ω,ε,n applying Taylor to log(1− ·), we obtain

(2.4.27)
λω,ε
λω,0

= exp

(
−Yω,ε,n −

Y 2
ω,ε,n

2(1− y)2

)
,

where 0 ≤ y ≤ Yω,ε,n. Setting ε = εN in (2.4.27) we obtain

λNω,εN
λNω,0

= exp

(
−

N−1∑
i=0

Yσiω,εN ,n −
N−1∑
i=0

Y 2
σiω,εN ,n

2(1− y)2

)
(2.4.28)

= exp

(
− 1

N

N−1∑
i=0

(
g
(1)
N,n(σ

iω) + g
(2)
N,n(σ

iω) + g
(3)
N,n(σ

iω)
)
−

N−1∑
i=0

Y 2
σiω,εN ,n

2(1− y)2

)
,(2.4.29)

where g(j)N,n(ω) = NY
(j)
ω,εN ,n for j = 1, 2, 3 and 0 ≤ y ≤ Yω,εN ,n.

Step 2: A non-standard ergodic lemma. In preparation for estimating the products
along orbits contained in λNω,εN/λ

N
ω,0, we state and prove a non-standard ergodic lemma.

Lemma 2.4.6. For N ≥ 0, let gN ∈ L1(m). Suppose that as N → ∞, gN → g m-almost
everywhere for some g ∈ L1(m) and that limN→∞

∫
Ω
|gN − g| dm = 0. Then for m-a.e.

ω ∈ Ω, limN→∞
1
N

∑N−1
i=0 gN(σ

iω) exists and equals E(g) =
∫
Ω
g dm.

Proof. We write∣∣∣∣∣ 1N
N−1∑
i=0

gN(σ
iω)− E(g)

∣∣∣∣∣ ≤ 1

N

N−1∑
i=0

|gN(σiω)− g(σiω)|+

∣∣∣∣∣ 1N
N−1∑
i=0

g(σiω)− E(g)

∣∣∣∣∣ .
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2.4. QUENCHED EXTREME VALUE LAW 105

First, we note that the Birkhoff Ergodic Theorem implies that

lim
N→∞

∣∣∣∣∣ 1N
N−1∑
i=0

g(σiω)− E(g)

∣∣∣∣∣ = 0.

Now, to deal with the remaining term, since gN → g almost everywhere, given δ > 0, we
let Nδ ∈ N be sufficiently large such that

m (Ωδ := {ω ∈ Ω : |g(ω)− gN(ω)| < δ for all N ≥ Nδ}) > 1− δ.

Birkhoff applied to 1Ωδ
then gives that for each δ > 0 and all N ≥ Nδ sufficiently large we

have that
1

N
#
{
0 ≤ k < N : σkω ∈ Ωδ

}
> 1− δ.(2.4.30)

Since limN→∞
∫
Ω
|gN − g| dm(ω) = 0, for each δ > 0 there exists N ′

δ > 0 such that
∫
Ω
|gN −

g| dm < δ for all N ≥ N ′
δ. We apply the Birkhoff Ergodic Theorem to the functions

|gN − g| · 1Ωδ
and |gN − g| · 1Ωc

δ
. Using (2.4.30) gives that for m-a.e. ω ∈ Ω and all

N ≥ max(Nδ, N
′
δ) sufficiently large (so that the Birkhoff error is less than δ, noting that N

depends on ω) we have

1

N

N−1∑
i=0

|gN(σiω)− g(σiω)|

=
1

N

N−1∑
i=0

|gN(σiω)− g(σiω)|1Ωδ
(σiω) +

1

N

N−1∑
i=0

|gN(σiω)− g(σiω)|1Ωc
δ
(σiω)

< δ +

∫
Ωc

δ

|gN − g| dm+ δ ≤ 2δ +

∫
Ω

|gN − g| dm < 3δ.

As this holds for every δ > 0, we must in fact have that

lim
N→∞

∣∣∣∣∣ 1N
N−1∑
i=0

gN(σ
iω)− E(g)

∣∣∣∣∣ = 0

as desired. □

Step 3: Estimating g(1).
In this step we construct estimates of g(1) that are required to apply Lemma 2.4.6.
In preparation for the first use of Lemma 2.4.6 we recall that

g
(1)
N,n(ω) :=

Nθω,εN ,n∆ω,εN

λω,0νσ−nω,εN (ϕσ−nω,0)
=
Nθω,εN ,nµω,0(Hω,εN )

νσ−nω,εN (ϕσ−nω,0)
=
θω,εN ,n(tω + ξω,N)

νσ−nω,εN (ϕσ−nω,0)
,

where limN→∞ ξω,N = 0 for a.e. ω and |ξω,N | ≤ W by (S). We also set g(1)n (ω) := θω,0,ntω,
where

θω,0,n := 1−
n−1∑
k=0

(
λk+1
σ−(k+1)ω,0

)−1

q
(k)
ω,0 = 1−

n−1∑
k=0

q̂
(k)
ω,0.(2.4.31)
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106 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

By Lemma 2.3.8 and (C8) we see that 0 ≤ q̂
(k)
ω,0, q̂

(k)
ω,εN ≤ 1 for each k, N , and m-a.e. ω.

Thus, (C8) and the Dominated Convergence Theorem imply that limN→∞ ∥q̂(k)ω,εN − q̂(k)ω,0∥1 =
0. From (2.4.23) we have that

θω,εN ,n := 1−
n−1∑
k=0

λ−1
σ−(k+1)ω,0

(λkσ−kω,εN
)−1q(k)ω,εN

= 1−
n−1∑
k=0

λk
σ−kω,0

λk
σ−kω,εN

q̂(k)ω,εN
,(2.4.32)

and thus that θω,0,N ∈ [0, 1] and θω,εN ,n ≤ 1 for each n and m-a.e. ω. Using (2.4.10) and
the fact that λω,0/λω,εN ≥ 1 (by Remark 2.3.2), we have that

θω,εN ,n ≥ 1−
λn−1
σ−(n−1)ω,0

λn−1
σ−(n−1)ω,εN

n−1∑
k=0

q̂(k)ω,εN
≥ 1−

(
1 +

C1EN
C1 − EN

)n
.

For fixed n, again we apply Dominated Convergence to get that

lim
N→∞

∥θω,εN ,n − θω,0,n∥1 = 0.(2.4.33)

Using Lemma 2.4.4 and (S) we see that g(1)N,n, g
(1)
n ∈ L1(m) for each N, n.

Referring to the first term in the Y -sum in (2.4.28), we may now apply Lemma 2.4.6 to
conclude that
N−1∑
i=0

θσiω,εN ,n∆σiω,εN

λσiω,0νσ−n+iω,εN (ϕσ−n+iω,0)
=

1

N

N−1∑
i=0

g
(1)
N,n(σ

iω) →
∫
Ω

g(1)n (ω) dm(ω) =

∫
Ω

θω,0,ntω dm(ω),

as N → ∞ for each n and m-a.e. ω.
Step 4: Estimating g(2). We now perform a similar analysis to the previous step to

control the terms in the sum (2.4.28) corresponding to θ′. Again in preparation for applying
Lemma 2.4.6, recall that

g
(2)
N,n(ω) =

Nθ′ω,εN ,n
λω,0νσ−nω,εN (ϕσ−nω,0)

and set g(2)n (ω) ≡ 0 for each n. Using (2.4.24), (2.4.6), (2.4.9), and (C7’), for sufficiently
large N we have

θ′ω,εN ,n :=
n∑
k=1

λ−1
σ−kω,0

(λσ−kω,0 − λσ−kω,ε)νσω,0((Lω,0 − Lω,ε)(L̃kσ−kω,ε)(ϕσ−kω,0))

≤ C2C3λω,0
N

n∑
k=1

λ−1
σ−kω,0

(
λσ−kω,0(tσ−kω + ξσ−kω,N)

)
νω,0

(
1Hω,εN

L̃kσ−kω,εN
ϕσ−kω,0

)
≤ C2C3λω,0

N

n∑
k=1

(tσ−kω + ξσ−kω,N)νω,0(Hω,εN )∥L̃kσ−kω,εN
ϕσ−kω,0∥∞,ω

≤ C2C3λω,0
N

· C3(tω + ξω,N)

N

n∑
k=1

(tσ−kω + ξσ−kω,N)∥L̃kσ−kω,εN
ϕσ−kω,0∥∞,ω.

Using Lemma 2.4.4, (C5’), and (C4’) we note that

∥L̃kσ−kω,εN
ϕσ−kω,0∥∞,ω = ∥νσ−kω,εN (ϕσ−kω,0)ϕω,εN +Qk

σ−kω,εN
ϕσ−kω,0∥∞,ω
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2.4. QUENCHED EXTREME VALUE LAW 107

≤ ∥CεNC2 + Cϕ0C2α(k)∥∞,ω

≤ C2CεN + C2Cϕ0α.(2.4.34)

Finally, we have for N sufficiently large and by (S)

g
(2)
N,n(ω) ≤ NC2C3λω,0(C2CεN + C2Cϕ0α)

Nλω,0νσ−nω,εN (ϕσ−nω,0)
· C3(tω + ξω,N)

N

n∑
k=1

(tσ−kω + ξσ−kω,N).

Integrability of g(2)N,n follows from the the fact that t ∈ L∞(m) and |ξω,N | ≤ W, for almost
all ω. Moreover by (S), for each n we have that g(2)N,n → 0 almost everywhere as N → ∞.
By dominated convergence we have again that limN→∞ ∥g(2)N,n − g

(2)
n ∥1 → 0 for each n.

Referring to Y (2)
ω,εN ,n in (2.4.26), we may now apply Lemma 2.4.6 to conclude that

N−1∑
i=0

θ′σiω,εN ,n

λσiω,0νσ−n+iω,εN (ϕσ−n+iω,0)
=

1

N

N−1∑
i=0

g
(2)
N,n(σ

iω) →
∫
Ω

g(2)n (ω) dm(ω) = 0,

as N → ∞ for each n and a.e. ω.
Step 5: Estimating g(3). We repeat a similar analysis to control the terms in the sum

(2.4.28) corresponding to θ′′. Again in preparation for applying Lemma 2.4.6, recall that

g
(3)
N,n(ω) =

Nθ′′ω,εN ,n
λω,0νσ−nω,εN (ϕσ−nω,0)

.

We begin developing an upper bound for |g(3)N,n|. Using (2.4.25), (C2), (C4’), and (C7’) we
have for sufficiently large N that

|θ′′ω,εN ,n| := νσω,0(Lω,0(1Hω,εN
Qn
σ−nω,ε(ϕσ−nω,0)))

= λω,0νω,0(1Hω,εN
Qn
σ−nω,εN

ϕσ−nω,0)

≤ λω,0νω,0(Hω,εN )∥Qn
σ−nω,εN

ϕσ−nω,0∥∞,ω

≤ λω,0νω,0(Hω,εN )Cϕ0∥ϕσ−nω,0∥Bσ−nω
α(n)

≤ λω,0Cϕ0C2C3α(n)µω,0(Hω,εN )

=
λω,0Cϕ0C2C3α(n)(tω + ξω,N)

N
.

Therefore, using Lemma 2.4.4

|g(3)N,n(ω)| ≤
Nλω,0Cϕ0C2C3α(n)(tω + ξω,N)

Nλω,0νσ−nω,εN (ϕσ−nω,0))
≤ CεNCϕ0C2C3α(n)(tω + ξω,N) =: g̃

(3)
N,n(ω).

We set g̃(3)n (ω) = Cϕ0C2C3α(n)tω. Integrability of g̃(3)N,n and g̃(3)n follows from (S) and the fact
t ∈ L∞(m) and |ξω,N | ≤ W, for almost all ω. Similarly, (recalling that CεN → 1 as N → ∞
by Lemma 2.4.4) for each n, g̃(3)N,n → g̃

(3)
n almost everywhere as N → ∞. For the same

reasons by (S) and dominated convergence we also have that limN→∞ ∥g̃(3)N,n − g̃
(3)
n ∥1 → 0

for each n.
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108 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

Referring to Y
(3)
ω,εN ,n in (2.4.26), we may now apply Lemma 2.4.6 to g̃

(3)
N,n and g̃

(3)
n to

conclude that

1

N

N−1∑
i=0

g
(3)
N,n(σ

iω) ≤ 1

N

N−1∑
i=0

g̃
(3)
N,n(σ

iω) →
∫
Ω

g̃(3)n (ω) dm(ω) = Cϕ0C2C3α(n)

∫
Ω

tω dm(ω)

as N → ∞ for each n and a.e. ω.
Step 6: Finishing up. Recall from (2.4.3) that

(2.4.1) =
λNω,εN
λNω,0

(
νω,εN (1) + νσNω,0

(
QN
ω,εN

(1)
))
.

Using (C4’) and Lemma 2.4.4 we see that limN→∞
(
νω,εN (1) + νσNω,0

(
QN
ω,εN

(1)
))

= 1 for
m-a.e. ω ∈ Ω. By (2.4.29) and Steps 3, 4, and 5 we see that for any n

lim
N→∞

exp

(
− 1

N

N−1∑
i=0

(
g
(1)
N,n(σ

iω) + g
(2)
N,n(σ

iω) + g
(3)
N,n(σ

iω)
))

exp

(
−

N−1∑
i=0

Y 2
σiω,εN ,n

2(1− y)2

)
(2.4.35)

≤ lim
N→∞

λNω,εN
λNω,εN

≤ lim
N→∞

exp

(
− 1

N

N−1∑
i=0

(
g
(1)
N,n(σ

iω) + g
(2)
N,n(σ

iω)− g̃
(3)
N,n(σ

iω)
))

exp

(
−

N−1∑
i=0

Y 2
σiω,εN ,n

2(1− y)2

)
,

where 0 ≤ y ≤ Yσiω,εN ,n. We now treat the Taylor remainder terms. From Steps 3, 4, and
5 for all N sufficiently large we have and for almost all ω:

|g(1)N,n| ≤ CεN (|t|∞ +W ),(2.4.36)

|g(2)N,n| ≤ CεNC2C3(C2CεN + C2Cϕ0α) ·
C3n(|t|∞ +W )2

N
,(2.4.37)

|g(3)N,n| ≤ g̃
(3)
N,n := Cϕ0C2C3α(|t|∞ +W ).(2.4.38)

Further,

(2.4.39)
N−1∑
i=0

Y 2
σiω,εN ,n

2(1− y)2
≤

N−1∑
i=0

Y 2
σiω,εN ,n

2(1− Yσiω,εN ,n)
2
=

N−1∑
i=0

(Gσiω,εN ,n/N)2

2(1− (Gσiω,εN ,n/N))2
,

where Gω,εN ,n := g
(1)
N,n+g

(2)
N,n+g

(3)
N,n. Using the bounds (2.4.36)–(2.4.38) we see that (2.4.39)

approaches 0 for almost all ω for each n as N → ∞. Therefore, combining the expressions
developed in Steps 3, 4, and 5 for the N → ∞ limits with (2.4.35) we have

exp

(
−
∫
Ω

θω,0,ntω dm(ω)

)
≤ lim

N→∞

λNω,εN
λNω,0

≤ exp

(
−
∫
Ω

θω,0,ntω dm(ω) + C2C3Cϕ0α(n)

∫
Ω

tω dm(ω)

)
.

Recalling the definitions of θω,0,n (2.4.31) and θω,0 (2.1.20) and the fact that 0 ≤ θω,0,n ≤ 1
(by (2.3.11)), we may use dominated convergence to take the n→ ∞ limit to obtain

exp

(
−
∫
Ω

θω,0tω dm(ω)

)
≤ lim

N→∞

λNω,εN
λNω,0

≤ exp

(
−
∫
Ω

θω,0tω dm(ω)

)
,
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2.4. QUENCHED EXTREME VALUE LAW 109

thus completing the proof that

lim
N→∞

νω,0 (Xω,N−1,εN ) = lim
N→∞

λNω,εN
λNω,0

= exp

(
−
∫
Ω

tωθω,0 dm(ω)

)
.

To see that limN→∞ µω,0 (Xω,N−1,εN ) is also equal to this value, we simply recall that (2.4.4)
gives that

µω,0(Xω,N−1,εN ) =
λNω,εN
λNω,0

(
νω,εN (ϕω,0) + νσNω,0

(
QN
ω,εN

(ϕω,0)
))
.

Now since (C4’) and Lemma 2.4.4 together give that

lim
N→∞

(
νω,εN (ϕω,0) + νσNω,0

(
QN
ω,εN

(ϕω,0)
))

= 1

for m-a.e. ω ∈ Ω, we must in fact have that

lim
N→∞

µω,0 (Xω,N−1,εN ) = lim
N→∞

λNω,εN
λNω,0

= exp

(
−
∫
Ω

tωθω,0 dm(ω)

)
,

which completes the proof of Theorem 2.4.5.
□

2.4.2. The relationship between condition (0.0.5) and the Hüsler condition.
We now return to the discussion initiated in the Introduction to compare our assumption
(0.0.5) for the thresholds zω,N with the Hüsler type condition (0.0.4). We show that in the
more general situation considered in our paper with random boundary level tω, the limit
(0.0.4) will follow from the simpler assumption (0.0.5), provided we replace t in (0.0.4) with
the expectation of tω.

Recall our assumption for the choice of the thresholds (S) is µω,0(hω(x) > zω,N) =
(tω + ξω,N)/N , where ξω,N goes to zero almost surely when N → ∞ and ξω,N ≤ W for a.e.
ω. It is immediate to see by dominated convergence that:

(2.4.40) lim
N→∞

∫
Ω

|Nµω,0(hω(x) > zω,N)− tω| dm(ω) = 0.

Applying our non-standard ergodic Lemma 2.4.6 with gN(ω) := Nµω,0(hω(x) > zω,N) and
g(ω) := tω, one may transform the sum in (0.0.4) as follows:

lim
N→∞

1

N

N−1∑
i=0

Nµω,0(hσjω(T
j
ω(x)) > zσjω,N) =

∫
Ω

tω dm(ω),

which is the condition (0.0.4) with t replaced by the expectation of tω.

2.4.3. Hitting time statistics. It is well known that in the deterministic setting
there is a close relationship between extreme value theory and the statistics of first hitting
time, see for instance [36, 55]. We now show how our Theorem 2.4.5, with a slight modifi-
cation, can be interpreted in terms of a suitable definition of (quenched) first hitting time
distribution. Let us consider as in the previous sections, a sequence of small random holes
Hω,N := {Hσjω,εN}j≥0, and define the first random hitting time as

τω,Hω,N
(x) = inf{k ≥ 1, T kω (x) ∈ Hσkω,εN}.
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110 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

We recall that the usual statistics of hitting times is written in the form µω,0
(
τω,Hω,N

> t
)
,

for nonnegative values of t. Since the sets Hσjω,εN have measure tending to zero when
N → ∞, and therefore the first hitting times could eventually grow to infinity, one needs
a rescaling in order to get a meaningful limit distribution. This is achieved in the next
Proposition. In our current setting, condition (S) reads: µω,0(Hω,εN ) =

tω+ξω,N

N
, with

limN→∞ ξω,N = 0 for a.e. ω and |ξω,N | ≤ W for a.e. ω and all N ≥ 1.

Proposition 2.4.7. If our random open system (Ω,m, σ,J0, T,B,L0, ν0, ϕ0, Hε) satis-
fies the assumptions of Theorem 2.4.5 with the sequence Hω,εN verifying condition (S), then
the first random hitting time satisfies the limit, for ω m-a.e.

(2.4.41) lim
N→∞

µω,0
(
τω,Hω,N

µω,0(Hω,εN ) > tω
)
= exp

(
−
∫
Ω

tωθω,0dm

)
.

Proof. For N ≥ 1 the event,

(2.4.42) {τω,Hω,N
> N} = {x ∈ I;Tω(x) ∈ Hc

σω,εN
, . . . , TNω (x) ∈ Hc

σNω,εN
}

is also equal to

T−1
ω

(
x ∈ I;x ∈ Hc

σω,εN
, Tσω(x) ∈ Hc

σ2ω,εN
, . . . , TN−1

σω (x) ∈ Hc
σNω,εN

)
.

Then, by equivariance of µ0 we obtain the link between the statistics of hitting time and
extreme value theory:

µω,0
(
τω,Hω,N

> N
)

= µω,0
(
T−1
ω

(
x ∈ I : x ∈ Hc

σω,εN
, Tσω(x) ∈ Hc

σ2ω,εN
, . . . , TN−1

σω (x) ∈ Hc
σNω,εN

))
(2.4.43)

= µσω,0
(
x ∈ Hc

σω,εN
, Tσω(x) ∈ Hc

σ2ω,εN
, . . . , TN−1

σω (x) ∈ Hc
σNω,εN

)
= µσω,0(Xσω,N−1,εN ).(2.4.44)

In order to rescale the eventually growing first random hitting times, we invoke the
condition (S); by substituting N = (tω + ξω,N)/µω,0(Hω,εN ) in the LHS of (2.4.43) we have

(2.4.45) µω,0
(
τω,Hω,N

> N
)
= µω,0

(
τω,Hω,N

µω,0(Hω,εN ) > tω + ξω,N
)
.

Our final preparation before applying Theorem 2.4.5 is to show that
(2.4.46)
|µω,0

(
τω,Hω,N

µω,0(Hω,εN ) > tω + ξω,N
)
− µω,0

(
τω,Hω,N

µω,0(Hω,εN ) > tω
)
| → 0, N → ∞.

Since by a standard trick, see for instance eq. 5.3.6 in [55],

{τω,Hω,N
µω,0(Hω,εN ) > tω}\{τω,Hω,N

µω,0(Hω,εN ) > tω + ξω,N} ⊂

⌈
tω+ξω,n

µω,0(Hω,εN
)

⌉⋃
j=

⌈
tω

µω,0(Hω,εN
)

⌉T−j
ω (Hσjω,εN )

we have by equivariance

|µω,0
(
τω,Hω,N

µω,0(Hω,εN ) > tω + ξω,N
)
−µω,0

(
τω,Hω,N

µω,0(Hω,εN ) > tω
)
| ≤

⌈
tω+ξω,n

µω,0(Hω,εN
)

⌉∑
j=

⌈
tω

µω,0(Hω,εN
)

⌉µσjω,0(Hσjω,N).
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For N large enough:⌈
tω+ξω,n

µω,0(Hω,εN
)

⌉∑
j=

⌈
tω

µω,0(Hω,εN
)

⌉µσjω,0(Hσjω,N) ≤
⌈

|ξω,N |
µω,0(Hω,εN )

⌉
|t|∞ +W

N
≤
⌈

|ξω,N | N
tω − |ξω,N |

⌉
|t|∞ +W

N
,

which goes to zero by (S). Recalling tω > 0 for a.e. ω, the final expression above goes to
zero as N → ∞ for ω m-a.e.

Using (2.4.44)–(2.4.46) and noting that limN→∞ µσω,0(Xσω,N−1,εN ) is nonrandom, ap-
plying Theorem 2.4.5 yields

(2.4.47) lim
N→∞

µω,0
(
τω,Hω,N

µω,0(Hω,εN ) > tω
)
= exp

(
−
∫
Ω

tωθω,0 dm

)
.

□

2.5. Quenched thermodynamic formalism for random open interval maps via
perturbation

In this section we present an explicit class of random piecewise-monotonic interval
maps for which our Theorem 2.3.6, Corollary 2.3.9, and Theorem 2.4.5 apply. Using a
perturbative approach, we introduce a family of small random holes parameterised by ε > 0
into a random closed dynamical system, and for every small ε we prove (i) the existence
of a unique random conformal measure {νω,ε}ω∈Ω with fiberwise support in Xω,∞,ε and
(ii) a unique random absolutely continuous invariant measure {µω,ε}ω∈Ω which satisfies
an exponential decay of correlations and is the unique relative equilibirum state for the
random open system (Ω,m, σ,J0, T,B,L0, ν0, ϕ0, Hε). In addition, we prove the existence
of a random absolutely continuous (with respect to νω,0) conditionally invariant probability
measure {ϱω,ε}ω∈Ω with fiberwise support in [0, 1]\Hω,ε.

We now suppose that the spaces Jω,0 = [0, 1] for each ω ∈ Ω and the maps Tω : [0, 1] →
[0, 1] are surjective, finitely-branched, piecewise monotone, nonsingular (with respect to
Lebesgue), and that there exists C ≥ 1 such that

ess sup
ω

|T ′
ω| ≤ C and ess sup

ω
D(Tω) ≤ C,(E1)

where D(Tω) := supy∈[0,1]#T
−1
ω (y). We let Zω,0 denote the (finite) monotonicity partition

of Tω and for each n ≥ 2 we let Z(n)
ω,0 denote the partition of monotonicity of T nω .

(MC) The map σ : Ω → Ω is a homeomorphism, the skew-product map T : Ω× [0, 1] →
Ω× [0, 1] is measurable, and ω 7→ Tω has countable range.

Remark 2.5.1. Under assumption (MC), the family of transfer operator cocycles {Lω,ε}ε≥0

satisfies the conditions of Theorem 17 [40] (m-continuity and σ a homeomorphism). Note
that condition (MC) implies that T satisfies (M1) and the cocycle generated by L0 satisfies
condition (M2).
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112 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

Recall that the variation of f : [0, 1] → R+ on Z ⊂ [0, 1] be

varZ(f) = sup
x0<···<xk, xj∈Z

k−1∑
j=0

|f(xj+1)− f(xj)| ,

and var(f) := var[0,1](f). We let BV = BV([0, 1]) denote the set of functions on [0, 1] that
have bounded variation. Given a non-atomic and fully supported measure ν (i.e. for any
nondegenerate interval J ⊆ [0, 1] we have ν(J) > 0) we let BVν ⊆ L∞(ν) be the set of
(equivalence classes of) functions of bounded variation on [0, 1], with norm given by

∥f∥BVν := inf
f̃=f ν a.e.

var(f̃) + ν(|f |).

If we require to emphasise that elements of BVν are equivalence classes, we denote these
by [f ]ν (resp. [f ]1). Note that if f ∈ BV is a function of bounded variation, then it is
always possible to choose a representative of minimal variation from the equivalence class
[f ]ν . We define BV1 ⊆ L∞(Leb) and ∥·∥BV1 similarly, with the measure ν replaced with
Lebesgue measure. We denote the supremum norm on L∞(Leb) by ∥·∥∞,1. It follows from
Rychlik [60] that BVν and BV1 are Banach spaces. The following proposition gives the
equivalence of the norms ∥·∥BVν and ∥·∥BV1 .

Proposition 2.5.2. Given a fully supported and non-atomic measure ν on [0, 1] and
f ∈ BV we have that

(1/2)∥f∥BV1 ≤ ∥f∥BVν ≤ 2∥f∥BV1 .

Proof. We first show that for f ∈ BV we have

[f ]ν ∩ BV = [f ]1 ∩ BV.(2.5.1)

To see this let f̃ ∈ [f ]ν ∩ BV. As ν is a fully supported and non-atomic measure, we must
have that the set {x : f(x) ̸= f̃(x)} is countable. Thus f̃ ∈ [f ]1 ∩ BV. As Leb is also fully
supported and non-atomic the same reasoning implies that the reverse inclusion also holds,
proving (2.5.1). As a direct consequence of (2.5.1) we have that

inf
f̃=f ν a.e.

var(f̃) = inf
f̃=f Leb a.e.

var(f̃).(2.5.2)

Since f is continuous everywhere except on a set of at most countably many points, letting
C denote the set of intervals of continuity for f , we have

Leb-ess inf
[0,1]

f = inf
J∈C

Leb-ess inf
J

f = inf
J∈C

inf
J
f = inf

J∈C
ν-ess inf

J
f = ν-ess inf

[0,1]
f.(2.5.3)

Using similar reasoning we must also have

Leb-ess sup f = ν-ess sup f.(2.5.4)

Combining (2.5.2) and (2.5.3) we have

∥f∥BV1 = inf
f̃=f Leb a.e.

var(f̃) + Leb(|f |) ≤ 2 inf
f̃=f Leb a.e.

var(f̃) + Leb-ess inf |f |

= 2 inf
f̃=f ν a.e.

var(f̃) + ν-ess inf |f |
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≤ 2 inf
f̃=f ν a.e.

var(f̃) + ν(|f |) ≤ 2∥f∥BVν .

Similarly, using (2.5.2) and (2.5.4) we have ∥f∥BVν ≤ 2∥f∥BV1 , and thus the proof is
complete.

□

Proposition 2.5.2 will be used later to provide (non-random) equivalence of ∥·∥BVνω,0

and ∥·∥BV1 for each ω ∈ Ω. We set Jω := |T ′
ω| and define the random Perron–Frobenius

operator, acting on functions in BV

Pω(f)(x) :=
∑

y∈T−1
ω (x)

f(y)

Jω(y)
.

The operator P satisfies the well-known property that∫
[0,1]

Pω(f) dLeb =

∫
[0,1]

f dLeb(2.5.5)

for m-a.e. ω ∈ Ω and all f ∈ BV. Recall from Section 2.2 that g0 = {gω,0}ω∈Ω and that

Lω,0(f)(x) :=
∑

y∈T−1
ω (x)

gω,0(y)f(y), f ∈ BV.

We assume that the weight function gω,0 lies in BV for each ω ∈ Ω and satisfies

(E2) ess sup
ω

∥gω,0∥∞,1 <∞,

and

(E3) ess inf
ω

inf gω,0 > 0.

Note that (E1) and (E2) together imply

ess sup
ω

∥Lω,01∥∞,1 ≤ ess sup
ω

D(Tω)∥gω,0∥∞,1 <∞(2.5.6)

and

ess sup
ω

∥gω,0Jω∥∞,1 <∞.(2.5.7)

We also assume a uniform covering condition2 :
(E4) For every subinterval J ⊂ [0, 1] there is a k = k(J) such that for a.e. ω one has

T kω (J) = [0, 1].
Concerning the open system we assume that the holes Hω,ε ⊆ [0, 1] are chosen so that
assumption (A) holds. We also assume for each ω ∈ Ω and each ε > 0 that Hω,ε is
composed of a finite union of intervals such that
(E5) There is a uniform-in-ε and uniform-in-ω upper bound on the number of connected

components of Hω,ε,

2We could replace the covering condition with the assumption of a strongly contracting potential. See
[2] for details.
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114 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

and

lim
ε→0

ess sup
ω

Leb(Hω,ε) = 0,(E6)

and
(EX) There exists an ε > 0 and an open neighborhood H̃ω,ε ⊇ Hω,ε such that Tω(Uω) ⊇

H̃c
σω,ε, where Uω := ∪Z∈Zω,0Zε and Zε denotes the closure of Zε ∈ Aω,ε := {Z ∩ H̃c

ω,ε :
Z ∈ Zω,0} with m({ω ∈ Ω : #Aω,ε ≥ 2}) > 0.

Remark 2.5.3. Assumption (EX) is satisfied for any random open system such that
each map contains at least two intervals of monotonicity, the holes are contained in the
interior of exactly one interval of monotonicity, and the image of the complement of the
hole is the full interval, i.e. Tω(Hc

ω,ε) = [0, 1]. In particular, (EX) is satisfied if there exists
a full branch outside of the hole.

Recall that condition (X) states
(X) For m-a.e. ω ∈ Ω we have Xω,∞,ε ̸= ∅.

Remark 2.5.4. Note that since (A) (i.e. Hε′ ⊆ Hε for ε′ < ε) implies that Xω,∞,ε′ ⊇
Xω,∞,ε for all ε′ < ε, (X) holds if there exists ε > 0 such that Xω,∞,ε ̸= ∅ for m-a.e. ω ∈ Ω.
Furthermore, since Tω(Xω,∞,ε) ⊆ Xσω,∞,ε, if Xω,∞,ε ̸= ∅ then XσNω,∞,ε′ ̸= ∅ for each N ≥ 1
and ε′ ≤ ε. As X∞,ε is forward invariant we have that Xω,∞,ε ̸= ∅ not only implies that
X∞,ε ̸= ∅, but also that X∞,ε is infinite.

The following proposition ensures that condition (X) holds.

Proposition 2.5.5. The assumption (EX) implies (X).

Proof. In light of Remark 2.5.4, to show that (X) is satisfied, it suffices to show that
there is some ε > 0 such that Xω,∞,ε ̸= ∅ for m-a.e. ω ∈ Ω.

Let T̃ω,Z denote the continuous extension of Tω onto Zε for each Zε ∈ Aω,ε, and let
X̃ω,∞,ε denote the survivor set for the open system consisting of the maps T̃ω and holes
H̃ω,ε. By Proposition 0.1.5 (taking Vω = [0, 1]\H̃ω,ε and Uω,j = Zε for each 1 ≤ j ≤ #Aω,ε)
we see that X̃ω,∞,ε is uncountable. Let

Dω :=
⋃
j≥0

T̃−j
ω (∪Zε∈Aσjω,ε

Zε\Zε).

Since the survivor set for the original (unmodified) open system Xω,∞,ε ⊆ X̃ω,∞,ε\Dω, and
since Dω is at most countable, we must in fact have thatXω,∞,ε ̸= ∅, thus satisfying (X). □

Further, we suppose that for m-a.e. ω ∈ Ω and all ε > 0 sufficiently small

Tω(Jω,ε) = [0, 1](E7)

and there exists n′ ≥ 1 and ε0 > 0 such that 3

(E8) 9 · ess sup
ω

∥g(n
′)

ω,0 ∥∞,1 < ess inf
ω

inf
0≤ε≤ε0

inf Ln′

ω,ε1,

3Note that the 9 appearing in (E8) is not optimal. See Section 1.15 and [3] for how this assumption
may be improved.
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where
Lω,ε(f)(x) := Lω,0(1Hc

ω,ε
f)(x) =

∑
y∈T−1

ω (x)

gω,ε(y)f(y), f ∈ BV

and gω,ε := gω,01Hc
ω,ε

as in Section 0.1.1.
Note that (E7) and (E3) together imply that Lω,ε1(x) > 0 for all x ∈ [0, 1]:

ess inf
ω

inf
ε≤ε0

inf Lω,ε1 > ess inf
ω

inf gω,0 > 0,(2.5.8)

and since ∥gω,ε∥∞,1 ≤ ∥gω,0∥∞,1 for all ε > 0, (E8) is equivalent to the following

9 · sup
0≤ε≤ε0

ess sup
ω

∥g(n′)
ω,ε ∥∞,1 < ess inf

ω
inf

0≤ε≤ε0
inf Ln′

ω,ε1.(2.5.9)

Remark 2.5.6. Note that the assumption (E7) is equivalent to there existing N ′ ≥ 1
such that for m-a.e. ω ∈ Ω and all ε ≥ 0 sufficiently small

TN
′

ω (Xω,N ′−1,ε) = [0, 1].

Indeed, since the surviving sets are forward invariant (0.1.8), we have that TN ′−1
ω (Xω,N ′−1,ε) ⊆

XσN′−1ω,0,ε = JσN′−1ω,ε, and thus,

[0, 1] = TN
′

ω (Xω,N ′−1,ε) ⊇ TσN′−1ω(JσN′−1ω,ε).

For each n ∈ N and ω ∈ Ω we let A (n)
ω,0 be the collection of all finite partitions of [0, 1]

such that
varAi

(g
(n)
ω,0) ≤ 2∥g(n)ω,0∥∞,1(2.5.10)

for each A = {Ai} ∈ A (n)
ω,0 . Given A ∈ A (n)

ω,0 , let Ẑ(n)
ω,ε(A) be the coarsest partition amongst

all those finer than A and Z(n)
ω,0 such that all elements of Ẑ(n)

ω,ε(A) are either disjoint from
Xω,n−1,ε or contained in Xω,n−1,ε.

Remark 2.5.7. Note that if varZ(gω,0) ≤ 2∥g(n)ω,0∥∞,1 for each Z ∈ Z(n)
ω,0 then we can

take the partition A = Z(n)
ω,0 . Furthermore, the 2 above can be replaced by some α̂ ≥ 0

(depending on gω,0) following the techniques of Section 1.15 and [3].

Define the subcollection
Z(n)
ω,∗,ε := {Z ∈ Ẑ(n)

ω,ε(A) : Z ⊆ Xω,n−1,ε}.(2.5.11)

Recalling that g(n)ω,ε := g
(n)
ω,01Xω,n−1,ε , (2.5.10) implies that

varZ(g(n)ω,ε) ≤ 2∥g(n)ω,0∥∞,1(2.5.12)

for each Z ∈ Z(n)
ω,∗,ε. We assume the following covering condition for the open system

(E9) There exists ko(n′) ∈ N such that for m-a.e. ω ∈ Ω, all ε > 0 sufficiently small,
and all Z ∈ Z(n′)

ω,∗,ε we have T ko(n
′)

ω (Z) = [0, 1], where n′ is the number coming from
(E8).

Remark 2.5.8. Note that the uniform open covering time assumption (E9) clearly holds
if (E4) holds and if there are only finitely many maps Tω. In Remark 2.C.2 we present an
alternative assumption to (E9).
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The following lemma extends several results in [33] from the specific weight gω,0 = 1/|T ′
ω|

to general weights satisfying the conditions just outlined.

Lemma 2.5.9. Assume that a family of random piecewise-monotonic interval maps {Tω}
satisfies (E2), (E3), and (E4), as well as (E8) and (MC) for ε = 0. Then (C1’) and the
ε = 0 parts of (C2), (C3), (C4’), (C5’), and (C7’) as well as (CCM) hold. Further, νω,0 is
fully supported, condition (C4’) holds with Cf = K, for some K <∞, and with α(N) = γN

for some γ < 1.

Proof. See Appendix 2.A. □

In what follows we consider transfer operators acting on the Banach spaces Bω = BVνω,0

for a.e. ω ∈ Ω. The norm we will use is ∥ · ∥Bω = ∥ · ∥BVνω,0
:= var(·) + νω,0(| · |). As νω,0 is

fully supported and non-atomic (Lemma 2.5.9), Proposition 2.5.2 implies that
(2.5.13) (1/2)∥f∥BV1 ≤ ∥f∥Bω ≤ 2∥f∥BV1

for m-a.e. ω ∈ Ω and f ∈ BV. Furthermore, applying (2.5.13) twice, we see that
(2.5.14) (1/4)∥f∥Bω ≤ ∥f∥Bσnω

≤ 4∥f∥Bω

for m-a.e. ω ∈ Ω and all n ∈ Z. It follows from the proof of Proposition 2.5.2 that
(2.5.15) ∥f∥∞,ω = ∥f∥∞,1

for all f ∈ BV and m-a.e. ω ∈ Ω, where ∥·∥∞,ω denotes the supremum norm with respect
to νω,0. From (2.5.13) we see that (B) is clearly satisfied.

From Lemma 2.5.9 we have that λω,0 := νσω,0(Lω,01) and thus we may update (2.5.8)
to get

ess inf
ω

λn
′

ω,0 ≥ ess inf
ω

inf
ε≤ε0

inf Ln′

ω,ε1 ≥ ess inf
ω

inf g
(n′)
ω,0 > 0.(2.5.16)

Note that since the conditions (B), (X), and (CCM) have been verified and we have assumed
(A) and (MC), we see that (Ω,m, σ, [0, 1], T,BV,L0, ϕ0, Hε) forms a random open system
as defined in Section 0.1.1 for all ε > 0 sufficiently small. We now use hyperbolicity of the
ε = 0 transfer operator cocycle to guarantee that we have hyperbolic cocycles for small
ε > 0, which will yield (C2), (C3), (C4’), (C5’), (C6), and (C7’) for small positive ε.

Lemma 2.5.10. Assume that the conditions (E1)–(E9) hold for the random open system
(Ω,m, σ, [0, 1], T,BV1,L0, ν0, ϕ0, Hε). Then for sufficiently small ε > 0, conditions (C2),
(C3), (C4’), (C5’), (C6), and (C7’) hold. Furthermore, the functionals νω,ε ∈ BV∗

1 can be
identified with non-atomic Borel measures.

Proof. For each ω and ε > 0 we define L̂ω,ε := λ−1
ω,0Lω,ε; note that L̂ω,0 = L̃ω,0. Our

strategy is to apply Theorem 4.8 [22], to conclude that for small ε the cocycles {L̂ω,ε}
are uniformly hyperbolic when considered as cocycles on the Banach space (BV1, ∥ · ∥BV1).
Because of (2.5.13), we will conclude the existence of a uniformly hyperbolic splitting in
∥ · ∥Bω for a.e. ω.

First, we note that Theorem 4.8 [22] assumes that the Banach space on which the
transfer operator cocycle acts is separable. A careful check of the proof of Theorem 4.8
[22] shows that it holds for the Banach space (BV1, ∥·∥BV1) under the alternative condition
(MC) (see Appendix 2.B). To apply Theorem A [22] we require, in our notation, that:
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2.5. QUENCHED THERMODYNAMIC FORMALISM FOR RANDOM OPEN INTERVAL MAPS VIA PERTURBATION117

(1) L̂ω,0 is a hyperbolic transfer operator cocycle on BV1 with norm ∥ · ∥BV1 and a
one-dimensional leading Oseledets space (see Definition 3.1 [22]), and slow and
fast growth rates 0 < γ < Γ, respectively. We will construct γ and Γ shortly.

(2) The family of cocycles {L̂ω,ε}0≤ε≤ε0 satisfy a uniform Lasota–Yorke inequality

∥L̂kω,εf∥BV1 ≤ Aαk∥f∥BV1 +Bk∥f∥1

for a.e. ω and 0 ≤ ε ≤ ε0, where α ≤ γ < Γ ≤ B.
(3) limε→0 ess supω

∣∣∣∣∣∣∣∣∣L̂ω,0 − L̂ω,ε
∣∣∣∣∣∣∣∣∣ = 0, where |||·||| is the BV − L1(Leb) triple norm.

By Lemma 2.5.9 we obtain a unique measurable family of equivariant functions {ϕω,0}
satisfying (C7’) and (C5’) for ε = 0. We have the equivariant splitting span{ϕω,0} ⊕ Vω,
where Vω = {f ∈ BV1 : νω,0(f) = 0}. We claim that this splitting is hyperbolic in the sense
of Definition 3.1 [22]; this will yield item (1) above. To show this, we verify conditions
(H1)–(H3) in [22]. In our setting, Condition (H1) [22] requires the norm of the projection
onto the top space spanned by ϕω,0, along the annihilator of νω,0, to be uniformly bounded
in ω. This is true because this projection acting on f ∈ BV1 is νω,0(f)ϕω,0 and therefore

∥νω,0(f)ϕω,0∥BV1 ≤ ess sup
ω

∥ϕω,0∥BV1 · νω,0(f) ≤ 2 ess sup
ω

∥ϕω,0∥BV1 · ∥f∥BV1 ,

using (C5’) and equivalence of ∥ · ∥BV1 and ∥ · ∥Bω (2.5.13). Next, we define

αn
′
:=

9 ess supω ∥g
(n′)
ω,0 ∥∞,1

ess infω infε≥0 inf Ln
′
ω,01

< 1,

which is possible by (E8). Condition (H2) requires ∥L̂nω,0ϕω,0∥BV1 ≥ CΓn∥ϕω,0∥BV1 for some
C > 0, Γ > 0, all n and a.e. ω. By (C7’) one has

∥L̂nω,0ϕω,0∥BV1 = ∥ϕσnω,0∥BV1 ≥ ess inf
ω

inf ϕσnω,0 > 0,

and thus we obtain (H2) with C = Γ = 1. Condition (H3) requires ∥L̂nω,0|Vω∥BV1 ≤ Kγn

for some K < ∞, α ≤ γ < 1, all n and a.e. ω. This is provided by the ε = 0 part of
(C4’)—specifically the stronger exponential version guaranteed by Lemma 2.5.9—and the
equivalence of ∥ · ∥BV1 and ∥ · ∥Bσnω

.
For item (2) we begin with the Lasota–Yorke inequality for var(·) and νω,0(| · |) provided

by the final line of the proof of Lemma 2.C.1 (equation (2.C.7)). Dividing through by λn′
ω,0

we obtain

var(L̂n′

ω,εf) ≤
9∥g(n

′)
ω,ε ∥∞,1

λn
′
ω,0

var(f) +
8∥g(n

′)
ω,ε ∥∞,1

λn
′
ω,0min

Z∈Z(n′)
ω,∗,ε(A)

νω,0(Z)
νω,0(|f |)

≤ αn
′
var(f) +

αn
′

min
Z∈Z(n′)

ω,∗,ε(A)
νω,0(Z)

νω,0(|f |),(2.5.17)

noting that ess infωmin
Z∈Z(n′)

ω,∗,ε(A)
νω,0(Z) > 0 since the uniform open covering assumption

(E9) together with (E3) and (2.5.16) imply that and equivariance of the backward adjoint
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cocycle together imply that for Z ∈ Z(n′)
ω,∗,ε we have

νω,0(Z) = νσko(n′)ω,0

((
λ
ko(n′)
ω,0

)−1

Lko(n
′)

ω,0 1Z

)
≥

inf g
ko(n′)
ω,0

λ
ko(n′)
ω,0

> 0.(2.5.18)

As the holesHω,ε are composed of finite unions of disjoint intervals, assumption (E6) implies
that the radii of each of these intervals must go to zero as ε→ 0. Thus, using (E6) together
with the fact that νω,0 is fully supported and non-atomic, we see that (C6) must hold.

We construct a uniform Lasota–Yorke inequality for all n in the usual way by using
blocks of length jn′; we write this as

(2.5.19) var(L̂nω,εf) ≤ A1α
nvar(f) + An2νω,0(|f |)

for some A2 > α. We now wish to convert this to an inequality

(2.5.20) var(L̂nω,εf) ≤ A′
1α

nvar(f) + (A′
2)
n∥f∥1.

In light of (E2), (2.5.16), (E1), and (2.5.5), we see that there is a constant B so that for
m-a.e. ω ∈ Ω we have

∥L̂n′

ω,εf∥1 =
(
λn

′

ω,0

)−1
∫
[0,1]

∣∣∣∣∣∣
∑

y∈T−n′
ω x

g
(n′)
ω,0 (y)X̂ω,n′−1,ε(y)f(y)

∣∣∣∣∣∣ dLeb(x)

≤
∥g(n

′)
ω,0 J

(n′)
ω ∥∞,1

λn
′
ω,0

∫
[0,1]

∣∣∣∣∣∣
∑

y∈T−n′
ω (x)

f(y)

J
(n′)
ω (y)

∣∣∣∣∣∣ dLeb(x)

=
∥g(n

′)
ω,0 J

(n′)
ω ∥∞,1

λn
′
ω,0

∫
[0,1]

∣∣∣P n′

ω (f)
∣∣∣ dLeb(x)

≤
∥g(n

′)
ω,0 J

(n′)
ω ∥∞,1

λn
′
ω,0

∥f∥1 ≤ Bn′∥f∥1.

Using the non-atomicicty of νω,0 from (CCM) (shown in (2.5.9)) and the fact that var(|f |) ≤
var(f), we may apply Lemma 5.2 [12] to νω,0 to obtain that for each ζ > 0, there is aBζ <∞
such that νω,0(|f |) ≤ ζvar(f) +Bζ∥f∥1. Now using (2.5.19) we see that

∥L̂nω,εf∥BV1 = var(L̂nω,εf) + ∥L̂nω,ε(f)∥1
≤ A1α

nvar(f) + An2νω,0(|f |) +Bn∥f∥1
≤ (A1α

n + An2ζ)var(f) + (Bn + An2Bζ)∥f∥1
≤ (A1α

n + An2ζ)∥f∥BV1 + (Bn + An2 (Bζ − ζ)− A1α
n))∥f∥1.

Selecting ζ sufficiently small and n′′ sufficiently large so that C(αn′′
+ ζ) < 1 we again (by

proceeding in blocks of n′′) arrive at a uniform Lasota–Yorke inequality of the form (2.5.20)
for all n ≥ 0.

For item (3) we note that∣∣∣∣∣∣∣∣∣L̂ω,0 − L̂ω,ε
∣∣∣∣∣∣∣∣∣ := sup

∥f∥BV1
=1

∥(L̂ω,0 − L̂ω,ε)f∥1 = sup
∥f∥BV1

=1

∥L̂ω,0(f1Hω,ε)∥1 ≤ ∥L̂ω,0(1Hω,ε)∥1
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= λ−1
ω,0

∫
[0,1]

∣∣∣∣∣∣
∑

y∈T−1
ω (x)

gω,0(y)1Hω,ε(y)

∣∣∣∣∣∣ dLeb(x)

≤ ∥gω,0Jω∥∞,1

λω,0

∫
[0,1]

∣∣∣∣∣∣
∑

y∈T−1
ω (x)

1Hω,ε(y)

Jω(y)

∣∣∣∣∣∣ dLeb(x)

=
∥gω,0Jω∥∞,1

λω,0

∫
[0,1]

∣∣Pω(1Hω,ε)
∣∣ dLeb(x)

≤ ess sup
ω

∥gω,0Jω∥∞,1

λω,0
· ess sup

ω
Leb(Hω,ε).

Because (E2), (E1) and (2.5.16) imply ess supω ∥gω,0Jω∥∞,1/λω,0 < ∞, and since (E6) implies
that limε→0 ess supω Leb(Hω,ε) = 0, we obtain item (3).

We may now apply Theorem 4.8 [22] to conclude that given δ > 0 there is an ε0 > 0

such that for all ε ≤ ε0 the cocycle generated by L̂ε is hyperbolic, with
(i) the existence of an equivariant family ϕ̂ω,ε ∈ BV with ess supω ∥ϕ̂ω,ε−ϕω,0∥BV1 < δ,
(ii) existence of corresponding Lyapunov multipliers λ̂ω,ε satisfying |λ̂ω,ε − 1| < δ,
(iii) operators Q̂ω,ε satisfying ∥(Q̂ω,ε)

n∥BV1 ≤ K ′(γ + δ)n, where γ is the decay rate for
Qω,0 from the proof of Lemma 2.5.9.

To obtain an L̂∗
ω,ε-equivariant family of linear functionals ν̂ω,ε ∈ BV∗

1 we apply Corollary 2.5
[32]. Using the one-dimensionality of the leading Oseledets space for the forward cocycle,
this result shows that the leading Oseledets space for the backward adjoint cocycle is also
one-dimensional. This leading Oseledets space is spanned by some ν̂ω,ε ∈ BV∗

1, satisfying
ν̂σω,ε(L̂ω,ε(f)) = ϑ̂ω,εν̂ω,ε(f), for Lyapunov multipliers ϑ̂ω,ε. By Lemma 2.6 [32], we may
scale the ν̂ω,ε so that ν̂ω,ε(ϕ̂ω,ε) = 1 for a.e. ω. We show that in fact ϑ̂ω,ε = λ̂ω,ε m-a.e.
Indeed,

1 = ν̂σω,ε(ϕ̂σω,ε) = ν̂σω,ε(L̂ω,εϕ̂ω,ε/λ̂ω,ε) = (ϑ̂ω,ε/λ̂ω,ε)ν̂ω,ε(ϕ̂ω,ε) = ϑ̂ω,ε/λ̂ω,ε.

Note that Lω,ε = λω,0L̂ω,ε, and we now define ϕω,ε, λω,ε, Qω,ε, and νω,ε by the following:

ϕω,ε :=
1

νω,0(ϕ̂ω,ε)
· ϕ̂ω,ε, νω,ε(f) := νω,0(ϕ̂ω,ε)ν̂ω,ε(f),

λω,ε := λω,0
νσω,0(ϕ̂σω,ε)

νω,0(ϕ̂ω,ε)
λ̂ω,ε, Qω,ε(f) :=

νω,0(ϕ̂ω,ε)

νσω,0(ϕ̂σω,ε)
Q̂ω,ε(f)

Clearly all of the properties of (C2) and (C3) are now satisfied except for the log-integrability
of λω,ε in (C2). To demonstrate this last point, we note that by uniform hyperbolicity of
the perturbed cocycles, λ′ω,ε are uniformly bounded below and are therefore log-integrable.
Since

|1− νω,0(ϕ̂ω,ε)| = |νω,0(ϕω,0)− νω,0(ϕ̂ω,ε)| ≤ ∥ϕ̂ω,ε − ϕω,0∥BV1 < δ,

the λω,ε are uniformly small perturbations of the λ̂ω,ε, and since λω,0 is log-integrable by
(E2) and (2.5.16), we must therefore have that the log integrability condition on λω,ε in

18 Oct 2022 02:26:55 PDT
221018-Vaienti Version 1 - Submitted to Asterisque
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(C2) is satisfied. Point (i) above, combined with the ε = 0 part of (C5’) (resp. (C7’)) and
the uniform estimate for |1− νω,0(ϕ̂ω,ε)|, immediately yields the ε > 0 part of (C5’) (resp.
(C7’)). Point (iii) above combined with the same estimates also ensures that the norm of
∥Qn

ω,ε∥∞,1 decays exponentially fast, uniformly in ω and ε, satisfying the stronger expo-
nential version of (C4’). In fact point (iii) implies the stronger statement that ∥Qn

ω,ε∥BV1

decays exponentially fast, uniformly in ω and ε.
Finally we show that νω,ε : C0([0, 1]) → C is a positive linear functional with νω,ε(f) ∈ R

if f is real. From this fact it will follow by Riesz-Markov (e.g. Theorem A.3.11 [65]) that νω,ε
can be identified with a real finite Borel measure on [0, 1]. By linearity we may consider
the two cases: (i) f = ϕω,ε > 0 (the generator of the leading Oseledets space) and (ii)
f ∈ Fω,ε, where Fω,ε is the Oseledets space complementary to span{ϕω,ε}. In case (i)
νω,ε(ϕω,ε) = 1 > 0. In case (ii), Lemma 2.6 [32] implies νω,ε(f) = 0. In summary we see
that νω,ε is positive. □

Remark 2.5.11. As we have just shown that assumptions (C1’), (C2), (C3), (C4’),
(C5’), (C6), (C7’) (Lemmas 2.5.9 and 2.5.10), we see that Proposition 2.3.3 holds as well as
Theorem 2.3.6 for the random open system (Ω,m, σ, [0, 1], T,BV,L0, ν0, ϕ0, Hε) under the
additional assumption of (C8). In light of Remark 2.4.3, if we assume (S) in addition to
(C8) then both Corollary 2.3.9 and Theorem 2.4.5 apply.

The following theorem is the main result of this section and elaborates on the dynamical
significance of the perturbed objects produced in Lemma 2.5.10.

Theorem 2.5.12. Suppose (Ω,m, σ, [0, 1], T,B,L0, ν0, ϕ0, Hε) is a random open system
and that the assumptions of Lemma 2.5.10 hold. Then there exists ε0 > 0 sufficiently small
such that for every 0 ≤ ε < ε0 we have the following:

(1) There exists a unique random probability measure ζε = {ζω,ε}ω∈Ω on [0, 1] such
that, for ε > 0, ζω,ε is supported in Xω,∞,ε and

ζσω,ε(Lω,εf) = ρω,εζω,ε(f),

for m-a.e. ω ∈ Ω and each f ∈ BV, where

ρω,ε := ζσω,ε(Lω,ε1).

Furthermore, for ε = 0 we have ζω,0 = νω,0 and ρω,0 = λω,0 and for ε > 0 we have
that C−1

1 ≤ ρω,ε ≤ C1 for m-a.e. ω ∈ Ω.

(2) There exists a measurable function ψε : Ω× [0, 1] → (0,∞) such that ζω,ε(ψω,ε) = 1
and

Lω,εψω,ε = ρω,εψσω,ε

for m-a.e. ω ∈ Ω. Moreover, ψε is unique modulo ζε, and there exists C ≥ 1 such
that C−1 ≤ ψω,ε ≤ C for m-a.e. ω ∈ Ω. Furthermore, for m-a.e. ω ∈ Ω we have
that ρω,ε → ρω,0 = λω,0 and ψω,ε → ψω,0 = ϕω,0 (in Bω) as ε → 0, where ϕω,0 and
λω,0 are defined in Lemma 2.5.9.
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(3) The random measure µε = {µω,ε := ψω,εζω,ε}ω∈Ω is a T -invariant and ergodic ran-
dom probability measure whose fiberwise support, for ε > 0, is contained in Xω,∞,ε.
Furthermore, µε is the unique relative equilibrium state, i.e.∫

Ω

log ρω,ε dm(ω) =: EPε(log g0) = hµε(T ) +

∫
J0

log g0 dµε = sup
ηε∈PHε

T,m(J0)

(
hηε(T ) +

∫
J0

log g0 dηε

)
,

where hηε(T ) is the entropy of the measure ηε, EPε(log g0) is the expected pressure
of the weight function g0 = {gω,0}ω∈Ω, and PHε

T,m(J0) denotes the collection of T -
invariant random probability measures ηε on J0 whose disintegration {ηω,ε}ω∈Ω
satisfies ηω,ε(Hω,ε) = 0 for m-a.e. ω ∈ Ω. Furthermore, limε→0 EPε(log g0) =
EP0(log g0) :=

∫
Ω
log λω,0 dm.

(4) For ε > 0, let ϱε = {ϱω,ε}ω∈Ω be the random probability measure with fiberwise
support in [0, 1]\Hω,ε whose disintegrations are given by

ϱω,ε(f) :=
νω,0

(
1Hc

ω,ε
ψω,εf

)
νω,0

(
1Hc

ω,ε
ψω,ε

)
for all f ∈ BV. ϱω,ε is the unique random conditionally invariant probability
measure that is absolutely continuous (with respect to {νω,0}ω∈Ω) with density of
bounded variation.

(5) For each f ∈ BV there exists D > 0 and κε ∈ (0, 1) such that for m-a.e. ω ∈ Ω
and all n ∈ N we have

∥
(
ρnω,ε
)−1 Lnω,εf − ζω,ε(f)ψσnω,ε∥Bσnω

≤ D∥f∥Bωκ
n
ε .

Furthermore, for all A ∈ B and f ∈ BV we have∣∣νω,0 (T−n
ω (A) |Xω,n,ε

)
− ϱσnω,ε(A)

∣∣ ≤ Dκnε ,

and ∣∣∣∣∣ϱω,ε
(
f |Xω,n,ε

)
ϱω,ε(Xω,n,ε)

− µω,ε(f)

∣∣∣∣∣ ≤ D∥f∥Bωκ
n
ε .

In addition, we have limε→0 κε = κ0, where κ0 is defined in Lemma 2.5.9.

(6) There exists C > 0 such that for every f, h ∈ BV, every n ∈ N sufficiently large,
and for m-a.e. ω ∈ Ω we have

|µω,ε ((f ◦ T nω )h)− µσnω,ε(f)µω,ε(h)| ≤ C∥f∥∞,ω∥h∥Bωκ
n
ε .

Proof. First we note that the claims of items (1) – (3) and (5) – (6) above for ε = 0
follow immediately from Lemma 2.5.9. Now we are left to prove each of the claims for
ε > 0.

Claims (1) – (3) follow from Lemma 2.5.10 with the scaling:

ψω,ε := νω,ε(ϕω,ε)ϕω,ε, ζω,ε(f) :=
νω,ε(f)

νω,ε(1)
, ρω,ε :=

νω,ε(1)
νσω,ε(1)

λω,ε.
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The uniform boundedness on ρω,ε and ψω,ε follows from the uniform boundedness on λω,ε
and ϕω,ε coming from Lemma 2.5.10. The fact that µε is the unique relative equilibrium
state follows similarly to the proof of Theorem 2.23 in [3] (see also Remark 2.24, Lemma
12.2 and Lemma 12.3). The claim that supp(ζω,ε) ⊆ Xω,∞,ε follows similarly to Lemma
1.10.11. Noting that ∥f∥∞,ω = ∥f∥∞,1 for f ∈ BV by the proof of Proposition 2.5.2, we
now proof Claims (4) – (6).

Claim (4) follows from Lemma 1.2.5 and the uniqueness of the density ψω,ε ∈ BV.
The first item of Claim (5) follows from Lemma 2.5.10 and the remaining items are

proved similarly to Corollary 1.11.8.
Claim (6) follows from Claim (5) and is proven in Appendix 2.D. □

Remark 2.5.13. If one considers a two-sided (bi-infinite) sequential analogue of random
open systems, then because Theorem 4.8 [22] also applies to two-sided sequential systems,
one could prove similar results to items (1), (2), (4), (5), and (6) of Theorem 2.5.12.

2.6. Limit theorems

In this section we prove a few limit theorems for the closed systems discussed in Sec-
tion 2.5 (Ω,m, σ, [0, 1], T,BV,L0, ν0, ϕ0). We will in fact show that such systems are admis-
sible in the sense of [32]. This will allow us to adapt to our setting the spectral approach à la
Nagaev-Guivarc’h developed in [32] and get a quenched central limit theorem, a quenched
large deviation theorem and a quenched local central limit theorem. We will also present an
alternative approach based on martingale techniques [33, 1, 34], which produces an almost
sure invariance principle (ASIP) for the random measure µ0 = {µω,0}ω∈Ω. Moreover, the
ASIP implies that µ0 satisfies the central limit theorem as well as the law of the iterated
logarithm. The martingale approach will also give an upper bound for any (large) deviation
from the expected value and a Borel-Cantelli dynamical lemma. At the moment we could
not extend the previous limit theorems to the open systems investigated in Section 2.5.
There are a few reasons for that which concern the Banach space Bω,ε associated to those
systems and defined by the norm: || · ||Bω,ε = var(·) + ζω,ε(| · |). First of all, we do not
know if the random cocycle Rε = (Ω,m, σ,Bω,ε, L̃ω,ε) is quasi-compact which is an essential
requirement for admissibility. Second, the results of Theorem 2.5.12 are not particularly
compatible with the Banach spaces Bω,ε, ε > 0, since the inequalities of items (5) and (6)
are in terms of the norms ∥·∥∞,ω and ∥·∥Bω which are defined modulo νω,0 and the Bω,ε
norm is defined via ζω,ε, a measure which is supported on a νω,0-null set.

2.6.1. The Nagaev-Guivarc’h approach. The paper [32] developed a general scheme
to adapt the Nagaev-Guivarc’h approach to random quenched dynamical systems, allowing
one to prove limit theorems by exploring the connection between a twisted operator cocycle
and the distribution of the Birkhoff sums. The results in [32] were confined to the geo-
metric potential | det(DTω)|−1 and the associated conformal measure, Lebesgue measure.
We now show how to extend those results to the systems verifying the assumptions stated
in Section 2.5 and the results of Theorem 2.5.12, whenever ε = 0, that is we will consider
random closed systems for a larger class of potentials.

The starting point is to replace the linear operator Lω,0 associated to the geometric
potential and the (conformal) Lebesgue measure introduced in [32], with our operator Lω,0
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and the associated conformal measures νω,0. In particular, if we work with the normalized
operator L̃ω,0 := λ−1

ω,0Lω,0 the results in [32] are reproducible almost verbatim with a few
precautions which we are going to explain. As before, let Bω be the Banach space defined
by || · ||Bω = var(·) + νω,0(| · |), where the variation is defined using equivalence classes
mod-νω,0. In order to apply the theory in [32] we must show that our random cocycle is
admissible. This reduces to check two sets of properties which were listed in [32] respectively
as conditions (V1) to (V9) and conditions (C0) up to (C4). The first set of conditions
reproduces the classical properties of the total variation of a function and its relationship
with the L1(Leb) norm. We should emphasize that in our case the variation is defined using
equivalence classes mod-νω,0. It is easy to check that properties (V1, V2, V3, V5, V8, V9)
hold with respect to this variation. In particular (V3) asserts that for any f ∈ Bω we have
||f ||L∞(νω,0) ≤ ||f ||Bω ; we will refer to it in the following just as the (V3) property. Notation:
recall that given an element f ∈ Bω, the L∞ norm of f with respect to the measure νω,0 is
denoted by ||f ||∞,ω in the rest of this section.

Property (V7) is not used in the current paper; (V6) is a general density embedding
result proved in Hofbauer and Keller (Lemma 5 [45]). We elaborate on property (V4).
To obtain (V4) in our situation one needs to prove that the unit ball of Bω is compactly
injected into L1(νω,0). As we will see, this is used to get the quasi-compactness of the
random cocycle. The result follows easily by adapting Proposition 2.3.4 in [14] to our
conformal measure νω,0, which is fully supported and non-atomic. We now rename the
other set of properties (C0)–(C4) in [32] as (C0) to (C4) to distinguish them from our (C)
properties stated earlier in Sections 2.3 and 2.4.

• Assumption (C0) coincides with our condition (MC).
• Condition (C1) requires us to prove in our case that

(2.6.1) ||L̃ω,0f ||Bσω ≤ K||f ||Bω ,

for every f ∈ Bω and for m-a.e. ω, with ω-independent K.
• Condition (C2) asks that there exists N ∈ N and measurable α̃N , β̃N : Ω → (0,∞),

with
∫
Ω
log α̃N(ω)dm(ω) < 0, such that for every f ∈ Bω and m-a.e. ω ∈ Ω,

(2.6.2) ||L̃Nω,0f ||BσNω
≤ α̃N(ω)||f ||Bω + β̃N(ω)||f ||L1(νω,0).

• Condition (C3) is the content of the first display equation in item 5 in the statement
of Theorem 2.5.12.

• Condition (C4) is only used to obtain Lemma 2.11 in [32]. There are three results
in that Lemma which we now compare with our situation. The third result is
the decay of correlations stated in item 6 of Theorem 2.5.12. The second result
is the almost-sure strictly positive lower bound for the density ϕω,0 stated in item
2 of Theorem 2.5.12. The first result requires that ess supω∈Ω ||ϕω,0||Bω < ∞.
This follows by checking that the proof of Proposition 1 in [33] works in our
current setting with the obvious modifications; we note that Proposition 1 [33]
only assumes conditions (C1) and (C3).

We are thus left with showing conditions (C1) and (C2) in our setting. We will get both at
the same time as a consequence of the following argument, which consists in adapting to our
current situation the final part of Lemma 2.C.1. Our starting point will be the inequality
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(2.C.6). Since we are working with the normalized operator cocycle L̃Nω,0, we have to divide
the expression in (2.C.6) by λn

′
ω,0; moreover we have to replace the measure νω,0 with the

equivalent conformal probability measure νω,0. Therefore (2.C.6) now becomes

(2.6.3) (λnω,0)
−1var

(
1Tn

ω (Z)

(
(fg

(n)
ω,0) ◦ T−n

ω,Z

))
≤ 9

∥g(n)ω,0∥∞,ω

λnω,0
varZ(f)+

8∥g(n)ω,0∥∞,ω

λnω,0νω,0(Z)
νω,0(|f |Z),

where Z is an element of Z(n)
ω,0 . Since each element of the partition Z(n)

ω,0 has nonempty
interior and the measure νω,0 charges open intervals, if we set

ν
(n)
ω,0 := min

Z∈Z(n)
ω,0

νω,0(Z) > 0,

and we take the sum over the Z ∈ Z(n)
ω,0 we finally get

(2.6.4) var(L̃nω,0f) ≤ 9
∥g(n)ω,0∥∞,ω

λnω,0
var(f) + 8

∥g(n)ω,0∥∞,ωνω,0(|f |)
λnω,0ν

(n)
ω,0

.

Notice that condition (C2) requires that α̃N < 1, which in our case becomes

(2.6.5) 9
ess supω ∥g

(n)
ω,0∥∞,ω

ess infω λnω,0
< 1,

or equivalently

9
ess supω ∥g

(n)
ω,0∥∞,ω

ess infω inf Lnω,01
< 1,

which is guaranteed by (E8). We now move on to check condition (C1). From (2.6.4),
setting n = 1 we see that a sufficient condition for (C1) is

(2.6.6)
ess supω ∥g

(1)
ω,0∥∞,ω

ess infω λ1ω,0νω,0
<∞.

or equivalently

(2.6.7)
ess supω ∥g

(1)
ω,0∥∞,ω

ess infω inf Lω,01νω,0
<∞

Condition (2.6.7) is in principle checkable (n = 1) and we could assume it as a part of the
admissibility condition for our random cocycle R = (Ω,m, σ,Bω, L̃ω,0).

The admissibility conditions stated in [32], in particular (C2) and (C3), were sufficient
to prove the quasi-compactness of the random cocycle introduced in [32], but they rely
on another assumption, which was a part of the Banach space construction, namely that
BV1 was compactly injected into L1(Leb). We saw above that the same result holds for
our Banach space Bω and our measure νω,0. In order to prove quasi-compactness follow-
ing Lemma 2.1 in [32], we use condition (C2) with the almost-sure bound α̃N(ω) < 1.
We must additionally prove that the top Lyapunov exponent Λ(R) defined by the limit
Λ(R) = limn→∞

1
n
log ||L̃nω,0||Bω is not less than zero. This will follow by applying item
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5 and the bound on the density ϕω,0 in item 2, both in Theorem 2.5.12. Since the den-
sity ϕω,0 is for m-a.e. ω ∈ Ω bounded from below by the constant C−1, we have that
lim supn→∞

1
n
log ∥ϕσnω,0∥Bσnω

≥ lim supn→∞
1
n
logC−1 = 0. Now we continue as in the

proof of Theorem 3.2 in [32]. Let N be the integer for which α̃N(ω) < 1 ω a.s. We
then consider the cocycle RN generated by the map ω → LNω,0. It is easy to verify that
Λ(RN) = NΛ(R) and the index of compactness κ (see section 2.1 in [32] for the definition)
of the two cocycles also satisfies κ(RN) = Nκ(R). Because

∫
log α̃N(ω) dm < 0 ≤ Λ(RN),

Lemma 2.1 in [32] guarantees that κ(RN) ≤
∫
log α̃N(ω) dm, proving quasicompactness of

R.
As we said at the beginning of this section, we could now follow almost verbatim the

proofs in [32] by using our operators Lω,0 and by replacing the Lebesgue measure with the
conformal measures νω,0. We briefly sketch the main steps of the approach; we first define
the observable v as a measurable map v : Ω× [0, 1] → R with the additional properties that
||v(ω, x)||L1(ν0) < ∞ and ess supω ||vω||∞,ω < ∞, where we set vω(x) = v(ω, x). Moreover
we assume vω is fibrewise centered:

∫
vω(x)dµω,0(x) = 0, for m-a.e. ω ∈ Ω. We then define

the twisted (normalized) transfer operator cocycle as:

L̃θω,0(f) = L̃ω,0(eθvω(·)f), f ∈ Bω.

The link with the limit theorems is provided by the following equality which follows easily
by the duality property of the operator:∫

L̃θ,nω,0(f)dνσnω,0 =

∫
eθSnvω(·)fdνω,0,

where L̃θ,nω,0 = L̃θσn−1ω,0 ◦ · · · ◦ L̃θω,0. The adaptation of Theorem 3.12 in [32] to our case,
shows that the twisted operator is quasi-compact (in Bω) for θ close to zero. Moreover, by
denoting with

Λ(θ) = lim
n→∞

1

n
log ||L̃θ,nω,0||Bω

the top Lyapunov exponent of the cocycle, the map θ → Λ(θ) is of class C2 and strictly
convex in a neighborhood of zero. We have also the analog of Lemma 4.3 in [32], linking
the asymptotic behavior of characteristic functions associated to Birkhoff sums with Λ(θ) :

lim
n→∞

1

n
log

∣∣∣∣∫ eθSnvω(x)dµω,0

∣∣∣∣ = Λ(θ).

We are now ready to collect our results on a few limit theorems; we first define the variance

Σ2 =

∫
vω(x)

2 dµω,0 dm+ 2
∞∑
n=1

∫
vω(x)v(T

n
ω (x)) dµω,0 dm.

We also define the aperiodicity condition by asking that for m-a.e. ω ∈ Ω and for every
compact interval J ⊂ R \ {0}, there exists C(ω) > 0 and ρ ∈ (0, 1) such that ||L̃it,nω,0 ||Bω ≤
C(ω)ρn, for t ∈ J and n ≥ 0.

Theorem 2.6.1. Suppose that our random cocycle R = (Ω,m, σ,Bω, L̃ω,0) is admissible
and take the centered observable v verifying ess supω ||vω||∞,ω <∞. Then:
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• (Large deviations). There exists κ0 > 0 and a non-random function c : (−κ0,κ0) →
R which is nonnegative, continuous, strictly convex, vanishing only at 0 and such
that

lim
n→∞

1

n
log µω,0(Snvω(·) > nκ) = −c(κ), for 0 < κ < κ0, and m− a.e. ω ∈ Ω.

• (Central limit theorem). Assume that Σ2 > 0. Then for every bounded and
continuous function ϕ : R → R and m-a.e. ω ∈ Ω, we have

lim
n→∞

∫
ϕ

(
Snvω(x)√

n

)
dµω,0 =

∫
ϕ dN (0,Σ2).

• (Local central limit theorem). Suppose the aperiodicity condition holds. Then
for m-a.e. ω ∈ Ω and every bounded interval J ⊂ R, we have

lim
n→∞

sup
s∈R

∣∣∣∣Σ√nµω,0(s+ Snvω(·) ∈ J)− 1√
2π
e−

s2

2nΣ2 |J |
∣∣∣∣ = 0.

2.6.2. The martingale approach. The deviation result quoted above allows to con-
trol, asymptotically, deviations of order κ, for κ in a sufficiently small bounded interval
around 0. We now show how to extend that result to any κ by getting an exponential
bound on the deviation of the distribution function instead of an asymptotic expansion;
in particular our bound shows that deviation probability stays small for finite n,which is
a typical concentration property. We now derive this result since it will provide us with
the martingale that is used to obtain the ASIP. Recall that the equivariant measure µω,0 is
equivalent to νω,0. We consider again the fibrewise centered observable v from the previous
section, and we wish to estimate

µω,0

(∣∣∣∣∣ 1n
n−1∑
k=0

vσkω ◦ T kω

∣∣∣∣∣ > κ

)
.

We will use the following result (Azuma, [7]): Let {Mi}i∈N be a sequence of martingale
differences. If there is a > 0 such that ||Mi||∞ < a for all i, then we have for all b ∈ R :

µω,0

(
n∑
i=1

Mi ≥ nb

)
≤ e−n

b2

2a2 .

If we denote Fk
ω := (T kω )

−1(F), we can easily prove that for a measurable map ϕ :
[0, 1] → R, we have (the expectations Eω will be taken with respect to µω,0):

(2.6.8) Eω(ϕ ◦ T l|Fn
ω ) =

(
L̃n−l
σlω,0

(λσlω,0ϕ)

λσnω,0

)
◦ T nω

We now set:
Mn := vσnω +Gn −Gn+1 ◦ Tσnω,

with G0 = 0 and

(2.6.9) Gn+1 =
L̃σnω,0(vσnωλσnω,0 +Gnλσnω,0)

λσk+1ω,0
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It is easy to check that
Eω(Mn ◦ T nω |Fn+1

ω ) = 0,

which means that the sequence (Mn ◦ T nω ) is a reversed martingale difference with respect
to the filtration Fn

ω . By iterating (2.6.9) we get

(2.6.10) Gn =
1

λσnω,0

n−1∑
j=0

L̃(n−j)
σjω,0

(vσjωλσjω,0),

and by a telescopic trick we have
n−1∑
k=0

Mk ◦ T kω =
n−1∑
k=0

vσkωT
n
ω −Gn ◦ T nω .

Suppose for the moment we could bound Gn uniformly in n, but not necessarily in ω, by
||Gn||∞,ω ≤ C1(ω). Since by assumption there exists a constant C2 such that ess supω ||vω||∞,ω ≤
C2, we have ||Mn||∞,ω ≤ C2 + 2C1(ω), and by Azuma:

µω,0

(∣∣∣∣∣ 1n
n−1∑
k=0

Mk ◦ T kω

∣∣∣∣∣ > κ
2

)
≤ 2 exp

{
− κ2

8(C2 + 2C1(ω))2
n

}
.

Therefore

µω,0

(∣∣∣∣∣ 1n
n−1∑
k=0

vσkω ◦ T kω

∣∣∣∣∣ > κ

)
≤ µω,0

(∣∣∣∣∣ 1n
n−1∑
k=0

Mk ◦ T kω

∣∣∣∣∣+ 1

n
C1(ω) > κ

)

≤ µω,0

(∣∣∣∣∣ 1n
n−1∑
k=0

Mk ◦ T kω

∣∣∣∣∣ > κ
2

)

≤ 2 exp

{
− κ2

8(C2 + 2C1(ω))2
n

}
,

provided n > n0, where n0 verifies 1
n0
C1(ω) ≤ κ

2
.

In order to estimate C1, we proceed in the following manner. We have

(2.6.11) ||Gn||∞ ≤ 1

λσnω,0

n−1∑
j=0

||L̃(n−j)
σjω,0

(vσjωλσjω,0)||∞,ω.

The multiplier λω,0 is bounded from above and from below ω a.s. respectively by, say, U
and 1/U by conditions (C1) and item 1 Theorem 2.5.12, respectively. Then we use item 5
of Theorem 2.5.12 and property (V3) to bound the term into the sum. In conclusion we
get:

||Gn||∞,ω ≤ U2DC2

∞∑
j=0

κn−j := C1.

We summarize this result in the following
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Theorem 2.6.2. (Large deviations bound)
Suppose that our random cocycle R = (Ω,m, σ,Bω, L̃ω,0) is admissible and take the fibrewise
centered observable v satisfying ess supω ||vω||∞,ω = C2 <∞. Then there exists C1 > 0 such
that for m-a.e. ω ∈ Ω and for any κ > 0 :

µω,0

(∣∣∣∣∣ 1n
n−1∑
k=0

vσkω ◦ T kω

∣∣∣∣∣ > κ

)
≤ 2 exp

{
− κ2

8(C2 + 2C1)2
n

}
,

provided n > n0, where n0 is any integer number satisfying 1
n0
C1 ≤ κ

2
.

We point out that whenever our random cocycle R = (Ω,m, σ,Bω, L̃ω,0) is admissible,
we satisfy all the assumptions in the paper [33], which allows us to get the almost sure
invariance principle. We should simply replace the (conformal) Lebesgue measure with our
random conformal measure νω,0, and use our operators L̃ω,0, as we already did in Section
2.6.1 for the Nagaev-Guivarc’h approach. It is worthwhile to observe that [33] relies on the
construction of a suitable martingale, which in our case is precisely the reversed martingale
difference Mn ◦ T nω obtained above in the proof of the large deviation bound. We denote
with Σ2

n the variance Σ2
n = Eω

(∑∞
k=0 vσkω ◦ T kω

)2
, where vω is a centered observable, and

with Σ2 the quantity introduced above, in the statement of the central limit theorem. We
have the following:

Theorem 2.6.3. (Almost sure invariance principle)
Suppose that our random cocycle R = (Ω,m, σ,Bω, L̃ω,0) is admissible and consider a

centered observable vω. Then limn→∞
1
n
Σ2
n = Σ2. Moreover one of the following cases hold:

(i) Σ = 0, and this is equivalent to the existence of ψ ∈ L2(µ0)

v = ψ − ψ ◦ T,

where T is the induced skew product map and µ its invariant measure, see Definition 0.1.1.
(ii) Σ2 > 0 and in this case for m a.e. ω ∈ Ω, ∀ϱ > 5

4
, by enlarging the probability space

(X,F , µω,0) if necessary, it is possible to find a sequence (Bk)k of independent centered
Gaussian random variables such that

sup
1≤k≤n

∣∣∣∣∣
k∑
i=1

(vσiω ◦ T iω)−
k∑
i=1

Bi

∣∣∣∣∣ = O(n1/4 logϱ(n)), µω,0 a.s..

We show in Section 2.4.47 that the distribution of the first hitting random time in
a decreasing sequence of holes follows an exponential law, see Proposition 2.4.7. We now
prove a recurrence result by giving a quantitative estimate of the asymptotic number of entry
times in a descending sequence of balls. This is known as the shrinking target problem.

Proposition 2.6.4. Suppose that our random cocycle R = (Ω,m, σ,Bω, L̃ω,0) is admis-
sible. For each ω let Bω,ξk,ω(p) be a descending sequence of balls centered at the point p and
with radii ξk+1,ω < ξk,ω, such that

Eω,n :=
n−1∑
k=0

µσk
ω ,0

(Bσkω,ξ
k,σkω

(p)) → ∞ for m-a.e. ω.

18 Oct 2022 02:26:55 PDT
221018-Vaienti Version 1 - Submitted to Asterisque



2.6. LIMIT THEOREMS 129

Then for m-a.e. ω and µω,0-almost all x, T kω (x) ∈ Bσkω,ξ
k,σkω

(p) for infinitely many k and

1

Eω,n
#{0 ≤ k < n : T kω (x) ∈ Bσkω,ξ

k,σkω
(p)} → 1.

The proposition is a simple consequence of the following Borel-Cantelli like property,
whenever we put the observable v in the theorem below as vk,σkω = 1B

σkω,ξ
k,σkω

(p).

Theorem 2.6.5. Suppose that our random cocycle R = (Ω,m, σ,Bω, L̃ω,0) is admissi-
ble. Take a sequence of nonnegative observables vn, satisfying supn ess supω ||vn,ω||Bω ≤M .
Suppose that for m a.e. ω ∈ Ω

Eω,n :=
n−1∑
k=0

∫
vk,σkω(x)dµσk

ω ,0
(x) → ∞, n→ ∞.

Then for m a.e. ω ∈ Ω

lim
n→∞

1

Eω,n

n−1∑
k=0

vk,σkω(T
k
ωx) = 1,

for µω,0-almost all x.

Proof. Let us write

Sω :=

∫ ( ∑
m<k≤n

(
vk,σkω(T

k
ωy)−

∫
vk,σkωdµσk

ω ,0

))2

dµω,0(y).

If we could prove that Sω ≤ constant
∑

m<k≤n
∫
vk,σkωdµσkω,0, then the result will follow by

applying Sprindzuk theorem [61]4, where we identify
∫
vk,σkωdµσkω,0 with the functions gk

and hk in the previous footnote. So we have

Sω =

∫ [ ∑
m<k≤n

vk,σkω(T
k
ωy)

]2
dµω,0(y)−

[ ∑
m<k≤n

∫
vk,σkωdµσk

ω ,0

]2
=

∑
m<k≤n

∫
vk,σkω(T

k
ωy)

2dµω,0 + 2
∑

m<i<j≤n

∫
vi,σiω(T

i
ωy)vj,σjω(T

j
ωy)dµω,0

4We recall here the Sprindzuk theorem. Let (Ω,B, µ0) be a probability space and let (fk)k be a sequence
of nonnegative and measurable functions on Ω. Moreover, let (gk)k and (hk)k be bounded sequences of real
numbers such that 0 ≤ gk ≤ hk. Assume that there exists C > 0 such that∫  ∑

m<k≤n

(fk(x)− gk)

2

dµ0(x) ≤ C
∑

m<k≤n

hk

for m < n. Then, for every ε > 0 we have∑
1≤k≤n

fk(x) =
∑

1≤k≤n

gk +O(Θ1/2(n) log3/2+ε Θ(n)),

for µ a.e. x ∈ Ω, where Θ(n) =
∑

1≤k≤n hk.
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130 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

−
∑

m<k≤n

[∫
vk,σkωdµσkω,0

]2
− 2

∑
m<i<j≤n

∫
vi,σiωdµσiω,0

∫
vj,σjωdµσjω,0.

We now discard the third negative piece and bound the first by Hölder inequality as∑
m<k≤n

∫
vk,σkω(T

k
ωy)

2dµω,0 ≤
∑

m<k≤n

M

∫
vk,σkωdµσkω,0.

Then for the remaining two pieces we use the decay of correlations given in Theorem 2.21
of our paper [3], where the observables are taken in Bω and in L1(µω,0). We can apply it
to our case since the two observables coincide with vω, and the measures µω,0 and νω,0 are
equivalent. We point out that this result improves the decay bound given in item (6) of
Theorem 2.5.12 where the presence of holes for ε > 0 forced us to use L∞(νω,ε) instead of
L1(νω,ε). Hence:∣∣∣∣∫ vi,σiω(T

i
ωy)vj,σjω(T

j
ωy)dµω,0 −

∫
vi,σiωdµσiω,0

∫
vj,σjωdµσjω,0

∣∣∣∣ ≤ CMκj−i
∫
vj,σjωdµσjω,0.

In conclusion, we get

Sω ≤
∑

m<k≤n

M

∫
vk,σkωdµσkω,0 + CM

∑
m<i<j≤n

κj−i
∫
vj,σjωdµσjω,0

≤M

(
C

1− κ
+ 1

) ∑
m<k≤n

∫
vk,σkωdµσkω,0,

which satisfies Sprindzuk. □

2.7. Examples

In this section we present explicit examples of random dynamical systems to illustrate
the quenched extremal index formula in Theorem 2.4.5. In all cases, Theorem 2.5.12 can
be applied to guarantee the existence of all objects therein for the perturbed random open
system (in brief, the thermodynamic formalism for the closed random system implies a
thermodynamic formalism for the perturbed random open system). In Examples 2.7.1–
2.7.3 we derive explicit expressions for the quenched extreme value laws.

Our examples are piecewise-monotonic interval map cocycles whose transfer operators
act on Bω = BV := BV([0, 1]) for a.e. ω. The norm we will use is ∥ · ∥Bω = ∥ · ∥BVνω,0

:=

var(·) + νω,0(| · |). In Section 2.5 we noted that (B) is automatically satisfied. Lemma 2.5.9
shows that (CCM) holds under assumptions (E2), (E3), (E4), and (E8). To obtain a random
open system, in addition to (B) and (CCM) we need (MC) (implying (M1) and (M2)), (A),
and (X). Therefore, in each example we verify conditions (A), (X) (Section 0.1.1) and (MC)
and (E1)–(E9) (Section 2.5); and where required (S).

Example 2.7.1. Random maps and random holes centered on a non-random
fixed point (random observations with non-random maximum)

We show that nontrivial quenched extremal indices occur even for holes centered on
a non-random fixed point x0. To define a random (open) map, let (Ω,m) be a complete
probability space, and σ : (Ω,m) → (Ω,m) be an ergodic, invertible, probability-preserving
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transformation. For example, one could consider an irrational rotation on the circle. Let
Ω = ∪∞

j=1Ωj be a countable partition of Ω into measurable sets on which ω 7→ Tω is
constant. This ensures that (MC) is satisfied. For each ω ∈ Ω let Jω,0 = [0, 1] and let
Tω : Jω,0 → Jσω,0 be random, with all maps fixing x0 ∈ [0, 1]. The observation functions
hω : Jω,0 → R have a unique maximum at x0 for a.e. ω.

To make all of the objects and calculations as simple as possible and illustrate some
of the underlying mechanisms for nontrivial extremal indices we use the following specific
family of maps {Tω}:

(2.7.1) Tω(x) =

 1− 2x/(1− 1/sω), 0 ≤ x ≤ (1− 1/sω)/2;
sωx− (sω − 1)/2, (1− 1/sω)/2 ≤ x ≤ (1 + 1/sω)/2;
1− (2x− (1 + 1/sω))/(1− 1/sω) (1 + 1/sω)/2 ≤ x ≤ 1,

where 1 < s ≤ sω ≤ S < ∞ and s|Ωj
is constant for each j ≥ 1; thus (M1) holds. These

maps have three full linear branches, and therefore Lebesgue measure is preserved by all
maps Tω; i.e. µω,0 = Leb for a.e. ω. The central branch has slope sω and passes through
the fixed point x0 = 1/2, which lies at the center of the central branch; see Figure 1. A

Figure 1. Graph of map Tω, with sω = 2.

specific random driving could be σ : S1 → S1 given by σ(ω) = ω + α for some α /∈ Q and
sω = s0 + s1 · ω for 1 < s0 < ∞ and 0 < s1 < ∞, but only the ergodicity of σ will be
important for us. Setting gω,0 = 1/|T ′

ω| it is immediate that (E1), (E2), (E3), and (E4)
hold.

We select a measurable family of observation functions h : Ω × [0, 1] → R. For a.e.
ω ∈ Ω, hω is C1, has a unique maximum at x0 = 1/2, and is a locally even function about
x0. For small εN we will then have that Hω,εN = {x ∈ [0, 1] : hω(x) > zω,N} is a small
neighbourhood of x0, satisfying (E5) and (A). In light of Remark 2.5.3 and Proposition
2.5.5 we see that (X) holds. The corresponding cocycle of open operators Lω,ε satisfy (MC).
Given an essentially bounded function t, the zω,N are chosen to satisfy (S). Because the hω
are C1 with unique maxima and µω,0 is Lebesgue for all ω we can make such a choice of zω,N
with5 ξω,N ≡ 0. Furthermore, as µω,0 is Lebesgue we have that (S) implies that assumption

5In the situation where zω,N is constant a.e. for each N ≥ 1, in general we cannot satisfy (S) for a
given fixed scaling function t. In the case where t is also constant a.e. if hω is random but sufficiently
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(E6) is automatically satisfied. With the above choices, (E7) is clearly satisfied for n′ = 1.
To show condition (E8) with n′ = 1 we note that ∥gω,0∥∞ = (1 − 1/sω)/2 < (1 − 1/S)/2,
while inf Lω,ε1 ≥ 2 · (1− 1/sω)/2 ≥ 1− 1/s. Therefore we require (1− 1/S)/2 < 1− 1/s,
which by elementary rearrangement is always true for 0 < s < S < ∞. Because there is a
full branch outside the branch with the hole, (E9) is satisfied with n′ = 1 and ko(n′) = 1.

At this point we have checked all of the hypotheses of Theorem 2.5.12 and we obtain
that for sufficiently small holes as defined above, the corresponding random open dynamical
system has a quenched thermodynamic formalism and quenched decay of correlations. We
note that this result does not require (S); the holesHεN do not need to scale in any particular
way with N , they simply need to be sufficiently small. In order to next apply Theorem
2.4.5 we do require (S) and additionally (C8).

To finish the example, we verify (C8). We claim that for each fixed k > 0, one has
q̂
(k)
ω,εN = 0 for sufficiently sufficiently large N (sufficiently small εN). If this were not the case,

there must be a positive µω,0-measure set of points that (i) lie in Hσ−kω,εN , (ii) land outside
the sequence of holes Hσ−(k−1)ω,εN

, . . . , Hσ−1ω,εN for the next k− 1 iterations, and then (iii)
land in Hω,εN on the kth iteration. In this example, because all Hω,εN are neighbourhoods
of x0 of diameter smaller than (|t|∞ + γN)/N , and the maps are locally expanding about
x0, for fixed k one can find a large enough N so that it is impossible to leave a small
neighbourhood of x0 and return after k iterations. For k = 0, by definition

(2.7.2) q̂(0)ω,εN
=
µσ−1ω,0(T

−1
σ−1ωHω,εN ∩Hσ−1ω,εN )

µσ−1ω,0(T
−1
σ−1ωHω,εN )

=
µσ−1ω,0(T

−1
σ−1ωHω,εN ∩Hσ−1ω,εN )

µω,0(Hω,εN )
.

There are two cases to consider:
Case 1: Hσ−1ω,εN is larger than the local preimage ofHω,εN ; that is, T−1

σ−1ωHω,εN∩Hω,εN ⊂
Hσ−1ω,εN . Because of the linearity of the branch containing x0, one has q̂(0)ω,εN = 1/T ′

σ−1ω(x0).
Case 2: Hσ−1ω,εN is smaller than the local preimage of Hω,εN ; that is, T−1

σ−1ωHω,εN ∩
Hω,εN ⊃ Hσ−1ω,εN . By (2.7.2) and (S) we then have

tσ−1ω − γN
tω + γN

≤ q̂(0)ω,εN
≤ tσ−1ω + γN

tω − γN

and thus for such an ω, limN→∞ q̂
(0)
ω,εN = tσ−1ω/tω. Thus, combining the two cases,

q̂
(0)
ω,0 := lim

N→∞
q̂(0)ω,εN

= min

{
tσ−1ω

tω
,

1

|T ′
σ−1ω(x0)|

}
exists for a.e. ω, verifying (C8).

Recalling that θω,0 = 1 −
∑∞

k=0 q̂
(k)
ω,0 = 1 − q̂

(0)
ω,0, we may now apply Theorem 2.4.5 to

obtain the quenched extreme value law:

lim
N→∞

νω,0 (Xω,N−1,εN ) = exp

(
−
∫
Ω

tωθω,0 dm(ω)

)
close to a non-random observation h for each ω, we can satisfy (S) by incorporating the error term ξω,N .
This situation corresponds to a decreasing family of holes whose length fluctuates slightly in ω with the
fluctuation decreasing to zero sufficiently fast. A similar situation can occur if the scaling function is a
general measurable function. These situations motivate the use of the error term ξω,N in condition (S).
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= exp

(
−
∫
Ω

tω

(
1−min

{
tσ−1ω

tω
,

1

|T ′
σ−1ω(x0)|

})
dm(ω)

)
(2.7.3)

This formula is a generalization of the formula in Remark 8 [48], where we may create
nontrivial laws from either the random dynamics Tω, or the random scalings tω, or both.
The following two special cases consider these mechanisms separately.

(1) Random maps, non-random scaling (tω takes a constant value t > 0): Since |T ′
ω| >

1, in this case (2.7.3) becomes

(2.7.4) lim
N→∞

νω,0 (Xω,N−1,εN ) = exp

(
−t
[
1−

∫
Ω

1

|T ′
ω(x0)|

dm(ω)

])
,

and we see that we can interpret θ = 1−
∫
Ω

1
|T ′

ω(x0)|
dm(ω) as an extremal index.

(2) Fixed map, random scaling: Suppose Tω ≡ T ; then we may replace T ′
ω(x0) with

T ′(x0) in (2.7.3), and we see we the extremal index depends on the choice of
random scalings tω alone; of course the thresholds zω,N depend on the chosen tω.

Similar results could be obtained with the Tω possessing nonlinear branches. The argu-
ments above can also be extended to the case where x0 is a periodic point of prime period
p for all maps; the formula (2.7.3) now includes (T pω)

′(x0) and tω, tσ1ω, . . . , tσ−(p−1)ω. If the
scaling tω = t is non-random, one would simply replace T ′

ω(x0) in (2.7.4) with (T pω)
′(x0).

We recall that for deterministic T (including non-uniformly hyperbolic maps), the ex-
tremal index enjoys a dichotomy, in the sense that it is equal to 1 when a single hole HεN

shrinks to an aperiodic point, and it is strictly smaller than 1 when the hole shrinks to a
periodic point. In the latter case the extremal index can be expressed in terms of the pe-
riod; see [55] for a general account of the above facts. Example 2.7.1 shows that in a simple
random setting there are many more ways to obtain nontrivial exponential limit laws, e.g.
by random scaling, or by the existence of periodic orbits for only a positive measure set of
ω.

Example 2.7.2. Random β-maps, random holes containing a non-random
fixed point (random observations with non-random maximum), general geo-
metric potential

We show how a nontrivial extremal index can arise from random β-maps where statistics
are generated by an equilibrium state of a general geometric potential. Consider the “no
short branches” random β-map example of Section 13.2 [3], where βω ∈ {2} ∪

⋃
2≤k≤K [k +

δ, k+1] for a.e. ω, and some δ > 0 and K <∞. The measurability of ω 7→ βω yields (M1).
We use the weight gω = 1/|T ′

ω|r, r ≥ 0. To obtain (MC) the base dynamics is driven by
an ergodic homeomorphism σ on a Borel subset Ω of a separable, complete metric space,
assuming that ω 7→ Lω,0 has countable range, as in Example 2.7.1. Our random observation
function h : Ω× [0, 1] → R is measurable and for a.e. ω, hω is C1 with a unique maximum
at x = 0. We select a measurable scaling function tω; either or both of hω and tω could
be ω-independent. By assigning thresholds zω,N (which could also be ω-independent) we
obtain a decreasing family of holes Hω,εN , which are decreasing intervals with left endpoint
at x = 0.

Clearly (E2) and (E3) hold and Lemma 13.5 [3] provides (E4). Conditions (E5) and
(E6), and (A) are immediate, as is (E7) with n′ = 1. Condition (EX) holds because there
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134 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

is at least one full branch outside the branch with the hole. Regarding (E8), ∥gω,ε∥∞ ≤ β−r
ω

and arguing as in the previous example, since inf Lω,ε1 ≥ ⌊βω⌋/βrω, we see (E8) holds with
n′ = 1 because βω ≥ 2. Because there is at least one full branch outside the branch with the
hole, (E9) holds with n′ = 1 and ko(n′) = 1. We have now checked all of the hypotheses of
Theorem 2.5.12. By this theorem, for sufficiently small holes Hε, the corresponding random
open dynamical system has a quenched thermodynamic formalism and quenched decay of
correlations. As in the previous example, we emphasise that this result does not require
(S).

Because ϕω,0 is uniformly bounded above and below, as long as zω,N is random, we
may adjust zω,N to obtain (S). We now verify (C8) for our holes, which are of the form
Hω,εN = [0, rω,N ], in preparation to apply Theorem 2.4.5. The same arguments from Case
1 and Case 2 of the previous example apply. Case 2 is unchanged. In Case 1 we have

q̂(0)ω,εN
=
µσ−1ω,0(T

−1
σ−1ωHω,εN ∩Hσ−1ω,εN )

µσ−1ω,0(T
−1
σ−1ωHω,εN )

.

Because T−1
σ−1ωHω,εN is a finite union of left-closed intervals, using the fact that ϕσ−1ω,0 ∈ BV,

and therefore has left- and right-hand limits everywhere, we may redefine ϕσ−1ω,0(y) at the
finite collection of points y ∈ T−1

σ−1ω(0) so that

lim
N→∞

µσ−1ω,0(T
−1
σ−1ωHω,εN ∩Hσ−1ω,εN )

µσ−1ω,0(T
−1
σ−1ωHω,εN )

=
ϕσ−1ω,0(0)∑

y∈T−1

σ−1ω
(0) ϕσ−1ω,0(y)

,

recalling that in Case 1, T−1
σ−1ωHω,εN ⊂ Hσ−1ω,εN . Taking the minimum of Cases 1 and 2 as

in Example 1, we see that q̂(0)ω,0 = limN→∞ q̂
(0)
ω,εN exists, which verifies (C8). Finally,

(2.7.5)

lim
N→∞

νω,0 (Xω,N−1,εN ) = exp

(
−
∫
Ω

tω

(
1−min

{
tσ−1ω

tω
,

ϕσ−1ω,0(0)∑
y∈T−1

σ−1ω
(0) ϕσ−1ω,0(y)

})
dm(ω)

)
Example 2.7.3. A fixed map with random holes containing a fixed point (ran-

dom observations with a non-random maximum)
Let us now consider more closely the case of a fixed map and holes moving randomly

around a fixed point z, a situation previously considered in [9] in the annealed framework.
We take a piecewise uniformly expanding map T of the unit interval I of class C2,

and such that T is surjective on the domains of local injectivity. Moreover T preserves a
mixing measure µ equivalent to the Lebesgue measure Leb, with strictly positive density
ρ. We moreover assume that T and ρ are continuous at a fixed point x0. The observation
functions hω have a common maximum at x0, leading to holesHω,εN that are closed intervals
containing the point x0 for any N . In Example 2.7.1 the holes were centered on x0 but
could vary dramatically in diameter between ω-fibers. In this example the holes need not
be centered on x0 but must become more identical as they shrink. Specifically, we assume

(2.7.6) sup
k

Leb(Hω,εN∆Hσ−kω,εN )

Leb(Hω,εN )
→ 0, N → ∞,

where the use of Lebesgue is for simplicity.
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Since the sample measures µω,0 coincide with µ, we may easily verify condition (S) by
choosing conveniently the size of the hole Hω,εN . Moreover, by choosing the holes to be
contained entirely within exactly one interval of monotonicity, we see that (EX) holds, and
thus (X) holds via Remark 2.5.3 and Proposition 2.5.5. Since the weights gω are nonrandom
and equal to 1/|T ′|, conditions (E1) to (E7) clearly hold. Since T is continuous in x0,, the
holes will belong to one branch of T. Therefore if D(T ) will denote the number of branches
of T and λm := minI |T ′|, λM := maxI |T ′|, it will be enough to have D(T ) − 1 > λM

λm
in

order to satisfy (E9) with n′ = 1. Moreover, still keeping n′ = 1 and since we have finitely
many branches, condition (E9a) in Remark 2.C.2 is satisfied with ko(n′) = 1. We may now
apply Theorem 2.5.12 to obtain a quenched thermodynamic formalism for our fixed map
with sufficiently small random holes.

Whenever the point x0 is not periodic, one obtains that all the q̂(k)ω,εN are zero by repeating
the argument given in Example 2.7.1 for k ≥ 0 and using the continuity of T at x0. We
now take x0 as a periodic point of minimal period p and we assume that T p and ρ are
continuous at x0. We now begin to evaluate

(2.7.7) q̂(p−1)
ω,εN

=
µ(T−pHω,εN ∩Hσ−pω,εN )

µ(Hω,εN )
.

Since T p is continuous and expanding in the neighborhood of x0, by taking N large enough,
the set T−pHω,εN ∩Hσ−pω,εN has only one connected component. Denote the local branch of
T through x0 by Tx0 . Therefore by a local change of variable we have for the upper bound
of the numerator

µ(T−pHω,εN ∩Hσ−pω,εN ) =

∫
T p(T−pHω,εN

∩Hσ−pω,εN
)

ρ(T−p
x0
y)|DT p(T−p

x0
y)|−1dLeb(y)(2.7.8)

≤ sup
Hω,εN

|DT p|−1 sup
Hω,εN

ρ Leb(Hω,εN ).

For the lower bound of the numerator, since T p is locally expanding, T p(Hσ−pω,εN ) ⊃
Hσ−pω,εN , and by (2.7.8)

µ(T−pHω,εN ∩Hσ−pω,εN ) ≥
∫
Hω,εN

∩Hσ−pω,εN

ρ(T−p
x0
y)|DT p(T−p

x0
y))|−1dLeb(y)

≥ inf
Hω,εN

|DT p|−1 inf
Hω,εN

ρ Leb(Hω,εN )−
∫
Hω,εN

\Hσ−pω,εN

ρ(T−p
x0
y)|DT p(T−p

x0
y)|−1dLeb(y)

We can bound the second negative term as∫
Hω,εN

\Hσ−pω,εN

ρ(T−p
x0
y)|DT p(T−p

x0
y)|−1(y)dLeb(y) ≤ sup

Hω,εN

ρ sup
Hω,εN

|DT p|−1 Leb(Hω,εN∆Hσ−pω,εN ).

We are now in a position to verify the existence of the limit limεN→0 q̂
(p−1)
ω,εN . Using the

above bounds we have

infHω,εN
|DT p|−1 infHω,εN

ρ Leb(Hω,εN )

supHω,εN
ρLeb(Hω,εN )

−
supHω,εN

|DT p|−1 Leb(Hω,εN∆Hσ−pω,εN )

Leb(Hω,εN )
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136 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

≤ q̂(p−1)
ω,εN

≤
supHω,εN

|DT p|−1 supHω,εN
ρ Leb(Hω,εN )

infHω,εN
ρLeb(Hω,εN )

.

Since the map T p and the density ρ are continuous at x0, and by using the assumption
(2.7.6), we will finally obtain the ω-independent value

θω,0 = 1− 1

|DT p(x0)|
.

Theorem 2.4.5 may now be applied to obtain the quenched extreme value law.

Example 2.7.4. Random maps with random holes
We saw in Examples 2.7.1 and 2.7.3 that an extremal index less than one could be

obtained for observables reaching their maximum around a point which was periodic for all
the random maps, or, for a fixed map, when the holes shrink around the periodic point. We
now produce an example where periodicity is not responsible for getting an extremal index
less than one. This example is the quenched version of the annealed cases investigated in
sections 4.1.2 and 4.2.1 of the paper [19].

Let Ω = {0, . . . , l − 1}Z, with σ the bilateral shift map, and m an invariant ergodic
measure. To each letter j = 0, . . . , l− 1 we associate a point v(j) in the unit circle S1 and
we consider the well-known observable in the extreme value theory literature:

hω(x) = − log |x− v(ω0)|, x ∈ S

where ω0 denotes the 0-th coordinate of ω ∈ Ω.
In this case the hole Hω,εN will be the ball B(v(ω0), e

−zN (ω)), of center v(ω0) and radius
e−zN (ω);. For each ω ∈ Ω we associate a map Tω0 , where T0, . . . , Tl−1 are maps of the circle
which we will take as β-maps of the form6 Ti(x) = βix + ri (mod 1), with βi ∈ N, βi ≥ 3,
and 0 ≤ ri < 1. Since the range of ω 7→ Lω,0 is finite and the shift is a homeomorphism
on Ω with respect to the usual metrics for Ω, assumption (MC) is verified. Since the
potential is equal to 1/|T ′

ω|, conditions (E1) to (E7) clearly hold. Condition (E8) holds as
in Example 2.7.1, which uses similar piecewise linear expanding maps. Condition (E9) is
a consequence of the fact that we have finitely many maps each of which is full branches;
it will be therefore enough to invoke (E9a) with n′ = ko(n

′) = 1. As we have chosen βi ≥ 3
we have that (EX) holds and thus (X) follows via Proposition 2.5.5.

At this point we may apply Theorem 2.5.12 to obtain a quenched thermodynamic
formalism for sufficiently small holes.

6The reason for this choice is that, in order to compute the quantities q̂
(k)
ω,0, we have to follow the

itinerary of the points v(i) under the composition of the maps Ti and compare with their predecessors. As
it will be clear in the computation below for k = 0 and 1, the task will be relatively easy and generalizable
to any k > 0, if all the maps are at least C1 which in particular means that the image of the point
Ti(vj), i, j = 0, . . . , l − 1 is not a discontinuous point of the Ti, i = 0, . . . , l − 1,. It will also be true that
all the maps Ti, 0 = 1, . . . , l− 1 are differentiable with bounded derivative in small neighbourhoods of any
vi, i = 0, . . . , l − 1. If these conditions are relaxed, it could be that the limit defining the q̂

(k)
ω,0 for some k

is not immediately computable, we defer to section 3.3 and Proposition 3.4 in [6] for a detailed discussion
of the computation of the extremal index in presence of discontinuities. Another advantage of our choice
is that, as in Example 2.7.1, all the sample measure µω,0 are equivalent to Lebesgue, Leb.

18 Oct 2022 02:26:55 PDT
221018-Vaienti Version 1 - Submitted to Asterisque



2.7. EXAMPLES 137

As a more concrete example, we will consider an alphabet of four letters A := {0, 1, 2, 3}
and we set the associations

i→ vi := v(i), i = 0, 1, 2, 3,

where the points vi ∈ (0, 1), are chosen on the unit interval according to the following
prescriptions:

(2.7.9) T1(v1) = T2(v2) = v0; T0(v0) = v3; T3(vi) ̸= v3, i = 0, 1, 2, 3.

Since the sample measures coincide with the Lebesgue measure, condition (S) reduces to
2e−zN (ω) =

tω+ξω,N

N
and we can solve for zN(ω) by setting ξω,N ≡ 0. The prescription (2.7.9)

clearly avoids any sort of periodicity when we take the first iteration of the random maps
needed to compute q̂(0)ω,0; nevertheless we will show that q̂(0)ω,0 > 0 and this is sufficient to
conclude that θω,0 is smaller than 1. Of course we need to prove that the limits defining all
the other q̂(k)ω,0 for any k > 0 exist. We will show it for k = 1 and the same arguments could
be generalized to any k > 1.

Using T -invariance of Lebesgue, we have (for simplicity we write zN instead of zN(ω)):

q̂
(0)
ω,0 = lim

N→∞

Leb
(
T−1
σ−1ωB(v(ω0), e

−zN ) ∩B(v((σ−1ω)0), e
−zN )

)
Leb(B(v(ω0), e−zN ))

,

provided the limit exists, which we are going to establish. Consider first a point ω in the
cylinder [ω−1 = 0, ω0 = 3]; the quantity we have to compute is therefore

(2.7.10) q̂
(0)
ω,0 =

Leb
(
T−1
0 B(v3, e

−zN ) ∩B(v0, e
−zN )

)
Leb(B(v3, e−zN ))

If N is large enough, by the prescription (2.7.9), T0(v0) = v3, we see that the local preimage
of B(v3, e

−zN ) under T−1
0 will be strictly included into B(v0, e

−zN ) and its length will be
contracted by a factor β−1

0 . Therefore the ratio (2.7.10) will be simply β−1
0 . The same

happens with the cylinders [ω−1 = 1, ω0 = 0] and [ω−1 = 2, ω0 = 0], producing respectively
the quantities β−1

1 and β−1
2 . For all the other cylinders the ratio will be zero since the sets

entering the numerator of (2.7.10) will be disjoint for N large enough. In conclusion we
have∫

Ω

tω q̂
(0)
ω,0dm =

∫
[ω−1=0,ω0=3]

tωβ
−1
0 dm+

∫
[ω−1=1,ω0=0]

tωβ
−1
1 dm+

∫
[ω−1=2,ω0=0]

tωβ
−1
2 dm.

If we now take tω = t, ω-independent, and we choose m as the Bernoulli measure with
equal weights 1/4, the preceding expression assumes the simpler form∫

Ω

tq̂
(0)
ω,0dm =

t

16
(β−1

0 + β−1
1 + β−1

2 ).

To compute q̂(1)ω,0 we have to split the integral over cylinders of length three. As a concrete
example let us consider the cylinder [ω−2 = i, ω−1 = j, ω0 = k], where i, j, k ∈ A. By using
the preceding notations, we have to control the set

T−1
i T−1

j B(vk, e
−zN ) ∩ T−1

i Bc(vj, e
−zN ) ∩B(vi, e

−zN ) =

T−1
i

(
T−1
j B(vk, e

−zN ) ∩Bc(vj, e
−zN )

)
∩B(vi, e

−zN ).
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138 2. PERTURBATION FORMULAE AND QUENCHED EXTREME VALUE THEORY

Let us first consider the intersection T−1
j B(vk, e

−zN )∩Bc(vj, e
−zN ). Call u one of the preim-

ages of T−1
j (vk) and T−1

j,u the inverse branch giving T−1
j,u (vk) = u. If u = vj then the in-

tersection T−1
j,uB(vk, e

−zN ) ∩ Bc(vj, e
−zN ) is empty. Otherwise, by taking N large enough,

the set T−1
j,uB(vk, e

−zN ) will be completely included in Bc(vj, e
−zN ) and moreover we have,

by the linearity of the maps, T−1
j,uB(vk, e

−zN ) = B(u, β−1
j e−zN ). We are therefore left with

the computation of T−1
i B(u, β−1

j e−zN ) ∩ B(vi, e
−zN ). If u ∈ A we proceed as in the com-

putation of q̂(0)ω,0 by using the prescriptions (2.7.9); otherwise such an intersection will be
empty for N large enough. For instance, if, in the example we are considering, we take
k = 0, j = 2, i = 0 and we suppose that among the β2 preimages of v0 there is, besides v0,
v3 too, namely T2(v3) = v0, and no other element of A, 7 then we get the contribution for
q̂
(1)
ω,0 : ∫

[ω−2=0,ω−1=2,ω0=0]

tωβ
−1
2 β−1

0 dm.

From the above it follows that θω,0 exists for a.e. ω, and that we may apply Theorem 2.4.5.

It is not difficult to give an example where all the q̂(k)ω,0 can be explicitly computed. Let us
take our beta maps Ti(x) = βix+ ri-mod 1 in the particular case where all the ri are equal
to the irrational number r. Then take a sequence of random balls B(v((σkω)0), e

−zN ), k ≥ 0
with the centers v((σkω)0), k ≥ 0 which are rational numbers. From what we discussed
above, it follows that a necessary condition to get a q̂(k)ω,0 ̸= 0 is that the center v((σ−(k+1)ω)0)
will be sent to the center v(ω0). Let z one of this rational centers; the iterate T nω (z) has the
form T nω (z) = βωn−1 · · · βω0z + knr,-mod1, where kn is an integer number. Therefore such
an iterate will be never a rational number which shows that all the q̂(k)ω,0 = 0 for any k ≥ 0
and ω, and therefore θω,0 = 1.

7This condition does not intervene to compute q̂
(0)
ω,0 and shows that it is strictly less than one.
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Chapter 2 Appendices

2.A. A version of [33] with general weights

In this appendix we outline how to extend relevant results from [33] from the Perron–
Frobenius weight gω,0 = 1/|T ′

ω| to the general class of weights gω,0 in Section 2.5. To
begin, we note that there is a unique measurable equivariant family of functions {ϕω,0}ω∈Ω
guaranteed by Theorem 2.19 [3] (called qω there). We wish to obtain uniform control on
the essential infimum and essential supremum of ϕω,0 for a suitable class of maps.

In [33] we work with the space BV1 = {h ∈ L1(Leb) : var(h) < ∞} and use the norm
∥·∥BV1 = var(·)+∥·∥1. Here we have a measurable family of random conformal probability
measures νω,0 (guaranteed by Theorem 2.19 [3]) and we work with the random spaces Bω =
BVνω,0 = {h ∈ L1(νω,0) : var(h) <∞} and the random norms ∥ · ∥Bω = var(·) + ∥ · ∥L1(νω,0).
We also work with the normalised transfer operator L̃ω,0(f) := Lω,0(f)/νω,0(Lω,01). All of
the variation axioms (V1)–(V8) in [33] hold with the obvious replacements.

Proof of Lemma 2.5.9.
C1’: Since ess infω inf Lω,01 ≥ ess infω inf gω,0, (E3) and (2.5.6) together imply that

(C1’) holds.

C7’ (ε = 0): We show ess infω inf ϕω,0 > 0; this will give us (C7’). The statement
ess infω inf ϕω,0 > 0 is a generalized version of Lemmas 1 and 5 [33] and we follow the
strategy in [33]. The result follows from Lemma 2.A.2 below, which in turn depends on
(2.A.3) and Lemma 2.A.1.

C4’ (ε = 0): It will be sufficient to show that there is a K < ∞ and 0 < γ < 1 such
that for all f ∈ Bω with νω,0(f) = 0 and a.e. ω, one has

(2.A.1) ∥L̃nω,0f∥Bσnω
≤ Kγn∥f∥Bω for all n ≥ 0.

This is a generalized version of Lemma 2 [33], which has an identical proof, making the
replacements outlined in the proof of Lemma 2.A.1 below, and using Lemmas 2.A.1–2.A.5
and (2.A.3). We also use the non-random equivalence (2.5.13) of the Bω norm to the usual
BV1 norm.

C2 (ε = 0), C3 (ε = 0), C5’ (ε = 0): We wish to show that there is a unique
measurable, nonnegative family ϕω,0 with the property that ϕω,0 ∈ Bω,

∫
ϕω,0 dνω,0 = 1,

L̃ω,0ϕω,0 = ϕσω,0 for a.e. ω, ess supω ∥ϕω,0∥Bω <∞, and

(2.A.2) ess sup
ω

∥ϕω,0∥Bω .

139
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We note that again the norm equivalence (2.5.13). This is a generalized version of Propo-
sition 1 [33]. To obtain this generalization, in the proof of Proposition 1 [33], one modifies
the space Y to become

Y = {v : Ω×X → R : v measurable, vω := v(ω, ·) ∈ Bω and ess sup
ω

∥vω∥Bω <∞}.

All of the arguments go through as per [33] with the appropriate substitutions. Our
modified proof of Proposition 1 [33] will also use the modified Lemmas 2.A.1–2.A.5, and
inequality (2.A.3) below.

CCM: Finally, we note that (CCM) follows from (C2) (ε = 0) together with non-
atomicity of νω,0. But non-atomicity of νω,0 follows from the random covering assumption
as in the proof of Proposition 3.1 [3]

Full Support: Following the proof of Claim 3.1.1 of [3], we are able to show that νω,0
is fully supported on [0, 1], i.e. νω,0(J) > 0 for any non-degenerate interval J ⊆ [0, 1]. □

We note that by (2.5.19) with ε = 0, we have our uniform Lasota–Yorke equality.

(2.A.3) var(L̃nω,0ψ) ≤ Aαnvar(ψ) +Bνω,0(|ψ|),
for all n ≥ 1 and a.e. ω. This immediately provides a suitable general version of (H2) [33],
which is that there is a C <∞ such that

(2.A.4) ∥L̃ω,0ψ∥Bσω ≤ C∥ψ∥Bω for a.e. ω.

Define random cones Ca,ω = {ψ ∈ Bω : ψ ≥ 0, varψ ≤ a
∫
ψ dνω,0}.

Lemma 2.A.1 (General weight version of Lemma A.1 [33]). For sufficiently large a > 0
we have that L̃RNω,0 Ca,ω ⊂ Ca/2,σRNω for sufficiently large R and a.e. ω.

Proof. Identical to [33], substituting Ca,ω for Ca, L̃ω,0 for Lω,0, and νω,0 for Lebesgue.
□

Lemma 2.A.2 (General weight version of Lemma 1 [33]). If one has uniform covering
in the sense of (11) [33], then there is an N such that for each a > 0 and sufficiently large
n, there exists c > 0 such that

(2.A.5) ess inf
ω

L̃Nnω h ≥ (c/2)νω,0(|h|) for every h ∈ Cω,a and a.e. ω.

Proof. Making all of the obvious substitutions, as per Lemma 2.A.1 and its proof, we
subdivide the unit interval into an equipartition according to νω,0 mass. This is possible
because νω,0 is non-atomic (Proposition 3.1 [3]). We conclude, as in the proof of Lemma 1
[33], that there is an interval J of νω,0-measure 1/n such that for each f ∈ Cω,a, one has
infJ f ≥ (1/2)νω,0(f). Then using uniform covering and the facts that ess infω inf gω,0 > 0,
ess supω gω,0 <∞, and ess supωD(Tω) <∞, we obtain ess infω inf L̃kω,0f ≥ α∗

0 > 0, where k
is the uniform covering time for the interval J . The rest of the proof follows as in [33]. □

Lemma 2.A.3 (General weight version of Lemma A.2 [33]). Assume that ψ, ψ′ ∈ Ca,ω
and

∫
ψ dνω,0 =

∫
ψ′ dνω,0 = 1. Then ∥ψ − ψ′∥Bω ≤ 2(1 + a)Θa,ω(ψ, ψ

′).

Proof. Identical to [33], substituting νω,0 for Lebesgue. The randomness of the Hilbert
metric Θa,ω only appears because the functions lie in Ca,ω. □
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Lemma 2.A.4 (General weight version of Lemma A.3 [33]). For any a ≥ 2var(1X), we
have that L̃RNω,0 is a contraction on Cω,a for any sufficiently large R and a.e. ω ∈ Ω.

Proof. The proof in [33] may be followed, making the substitutions as in Lemma
2.A.1 and its proof. The first inequality reads

ess sup
ω

L̃RNω,0 f ≤ νσRNω(|L̃RNω,0 f |) + Cvar(L̃RNω,0 f) ≤ (1 + Cvara/2)νω,0(|f |) = 1 + Cvara/2,

where we have used axiom (V3) [33] and the weak contracting property of L̃RNω,0 in the νω,0
norm. The rest of the proof follows as in [33]. □

Let Bω,0 = {ψ ∈ Bω :
∫
ψ dνω,0 = 0}.

Lemma 2.A.5 (General weight version of Lemma A.4 [33]).

Proof. Identical to [33], substituting as per Lemma 2.A.1 and Lemma 2.A.3 and their
proofs above, and using (2.A.4). □

Lemma 2.A.6 (General weight version of Lemma 5 [33]). ess infω ϕω,0 ≥ c/2 for a.e. ω.

Proof. Identical to [33] with the appropriate substitutions. □

2.B. A summary of checks that relevant results from [22] can be applied to
BV1

The stability result Theorem 4.8 [22] assumes that the underlying Banach space is
separable, however this separability assumption is only used to obtain measurability of
various objects (and in fact Theorem 3.9 [22] may be applied to sequential dynamics). We
use these results for the non-separable space BV1 in the proof of Lemma 2.5.10, and we
therefore need to check that all relevant results in [22] hold for BV1, under the m-continuity
assumption on ω 7→ Lω,0; the latter will provide the required measurability. All section,
theorem, proposition, and lemma numbers below refer to numbering in [22].

There are no issues of measurability in Section 3, including Theorem 3.9, until Section
4, so we begin our justifications from Section 4.

Theorem 4.8: This is the main stability theorem. We would substitute “separable
strongly measurable random dynamical system” with m-continuous random dynamical sys-
tem. This theorem relies on Propositions 4.15 and 4.16, Lemma 4.21, Proposition 4.22, and
Lemma 4.23.

Proposition 4.15: There is no measurability involved.

Proposition 4.16: Uses Lemmas 4.17 and 4.19. We note that the bounds (95)–(97) in
the proof are simpler in our application of this result as our top space is one-dimensional.

Lemma 4.17: This may be replaced by Theorem 17 [40], which treats the m-continuous
setting. This removes any use of Lemma B.1 and Lemma B.7.

18 Oct 2022 02:26:55 PDT
221018-Vaienti Version 1 - Submitted to Asterisque



142 CHAPTER 2 APPENDICES

Lemma 4.18: This uses Lemma 4.17 and the fact that compositions of m-continuous
maps are m-continuous. The latter replaces the use of Lemma A.5 [43], which is used in
several results. This replacement will not be mentioned further.

Lemma 4.19: We will assume that ω 7→ Πω is m-continuous in the statement of the
lemma. At the start of the proof we would now instead have ω 7→ Πω(X) is m-continuous
by the definition of m-continuity (see e.g. (4) in [40]); this removes the use of Lemma B.2
in the proof. Lian’s thesis is quoted regarding measurable maps/bases connected with a
measurable space Πω(X). In our application, Πω has rank 1 and therefore stating that
there is a (in our case m-continuous) map e : Ω → Πω(X) is trivial. One proceeds similarly
for the dual basis.

Lemma 4.21: This concerns measurability and integrability of ω 7→ det(Lnω|Ei,ω) and
ω 7→ log ∥Lnω|Ei,ω∥ where Ei,ω is an Oseledets space. m-continuity of ω 7→ Ei,ω is pro-
vided by Theorem 17 [40], removing the need for Lemma B.2. The m-continuity of
ω 7→ log ∥Lnω|Ei,ω∥ follows from Lemma 7 [40]. Because in our application setting we only
require one-dimensional Ei,ω, the determinants are given by norms and there is nothing
more to do concerning determinants. This removes the need for Proposition B.8. Lemma
B.16 [43] may be replaced with Lemma 7 [40] to cover the m-continuous setting. Proposi-
tion B.6 is not required in the P -continuity setting.

Proposition 4.22: There is no measurability involved.

Lemma 4.23: There is no measurability involved.

2.C. A var–νω,0(| · |) Lasota–Yorke inequality

Recall from Section 2.5 that Z(n)
ω,0 denotes the partition of monotonicity of T nω and that

A (n)
ω,0 is the collection of all finite partitions of [0, 1] such that

varAi
(g

(n)
ω,0) ≤ 2∥g(n)ω,0∥∞(2.C.1)

for each A = {Ai} ∈ A (n)
ω,0 . Given A ∈ A (n)

ω,0 , we set Z(n)
ω,∗,ε :=

{
Z ∈ Ẑ(n)

ω,ε(A) : Z ⊆ Xω,n−1,ε

}
where Ẑ(n)

ω,ε(A) is the coarsest partition amongst all those finer than A and Z(n)
ω,0 such that

all elements of Ẑ(n)
ω,ε(A) are either disjoint from Xω,n−1,ε or contained in Xω,n−1,ε. Then

(2.C.1) implies that

varZ(g(n)ω,ε) ≤ 2∥g(n)ω,0∥∞(2.C.2)

for each Z ∈ Z(n)
ω,∗,ε. We now prove a Lasota–Yorke inequality inspired by Lemma 1.5.1.

Lemma 2.C.1. For any f ∈ BVνω,0 we have

var(Lnω,ε(f)) ≤ 9∥g(n)ω,ε∥∞var(f) +
8∥g(n)ω,ε∥∞

min
Z∈Z(n)

ω,∗,ε(A)
νω,0(Z)

νω,0(|f |).

18 Oct 2022 02:26:55 PDT
221018-Vaienti Version 1 - Submitted to Asterisque



2.C. A VAR–νω,0(| · |) LASOTA–YORKE INEQUALITY 143

Proof. Since Lnω,ε(f) = Lnω,0(f ·X̂ω,n−1,ε), if Z ∈ Ẑ(n)
ω,ε(A)\Z(n)

ω,∗,ε, then Z∩Xω,n−1,ε = ∅,
and thus, we have Lnω,ε(f1Z) = 0 for each f ∈ BVνω,0 . Thus, considering only on intervals
Z in Z(n)

ω,∗,ε, we are able to write

Lnω,εf =
∑

Z∈Z(n)
ω,∗,ε

(1Zfg
(n)
ω,ε) ◦ T−n

ω,Z(2.C.3)

where
T−n
ω,Z : T nω (Iω,ε) → Z

is the inverse branch which takes T nω (x) to x for each x ∈ Z. Now, since

1Z ◦ T−n
ω,Z = 1Tn

ω (Z),

we can rewrite (2.C.3) as

Lnω,εf =
∑

Z∈Z(n)
ω,∗,ε

1Tn
ω (Z)

(
(fg(n)ω,ε) ◦ T−n

ω,Z

)
.(2.C.4)

So,

var(Lnω,εf) ≤
∑

Z∈Z(n)
ω,∗,ε

var
(
1Tn

ω (Z)

(
(fg(n)ω,ε) ◦ T−n

ω,Z

))
.(2.C.5)

Now for each Z ∈ Z(n)
ω,∗,ε we have

var
(
1Tn

ω (Z)

(
(fg(n)ω,ε) ◦ T−n

ω,Z

))
≤ varZ(fg(n)ω,ε) + 2 sup

Z

∣∣fg(n)ω,ε

∣∣
≤ 3varZ(fg(n)ω,ε) + 2 inf

Z

∣∣fg(n)ω,ε

∣∣
≤ 3∥g(n)ω,ε∥∞varZ(f) + 3 sup

Z
|f |varZ(g(n)ω,ε) + 2∥g(n)ω,ε∥∞ inf

Z
|f |

≤ 3∥g(n)ω,ε∥∞varZ(f) + 6∥g(n)ω,ε∥∞ sup
Z

|f |+ 2∥g(n)ω,ε∥∞ inf
Z

|f |

≤ 9∥g(n)ω,ε∥∞varZ(f) + 8∥g(n)ω,ε∥∞ inf
Z

|f |

≤ 9∥g(n)ω,ε∥∞varZ(f) + 8∥g(n)ω,ε∥∞
νω,0(|f |Z |)
νω,0(Z)

.(2.C.6)

Using (2.C.6), we may further estimate (2.C.5) as

var(Lnω,εf) ≤
∑

Z∈Z(n)
ω,∗,ε

(
9∥g(n)ω,ε∥∞varZ(f) + 8∥g(n)ω,ε∥∞

νω,0(|f |Z |)
νω,0(Z)

)

≤ 9∥g(n)ω,ε∥∞var(f) +
8∥g(n)ω,ε∥∞

min
Z∈Z(n)

ω,∗,ε(A)
νω,0(Z)

νω,0(|f |),(2.C.7)

and thus we are done. □
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Remark 2.C.2. Note that we could have used Leb or any probability measure in (2.C.6)
rather than νω,0. Furthermore, Lemma 2.C.1 could be applied to Section 2.5 with a measure
other than νω,0 if the appropriate changes are made to the assumption (E9) so that a
uniform-in-ω lower bound similar to (2.5.18) may be calculated.

In particular if we replace (E9) with the following:
(E9a) There exists ko(n′) ∈ N and δ > 0 such that form-a.e. ω ∈ Ω, all ε > 0 sufficiently

small, we have Leb(Z) > δ for all Z ∈ Z(n′)
ω,∗,ε(A),

(E9b) There exists c > 0 such that ess infω |T ′
ω| > c,

then the claims of Section 2.5 hold with νω,0 in (2.C.6) replaced with Leb.
Indeed, to obtain a replacement for (2.5.18) one could use (E9a) and (E9b) to get

Leb(Z) = Leb(L̃ko(n
′)

ω,0 1Z) ≥
inf g

(ko(n′))
ω,0 inf J

(ko(n′))
ω

λ
ko(n′)
ω,0

Leb(P ko(n′)
ω 1Z)

≥ ess inf
ω

inf g
(ko(n′))
ω,0 inf J

(ko(n′))
ω

λ
ko(n′)
ω,0

Leb(Z) > 0

for all Z ∈ Z(n′)
ω,∗,ε(A), where we have also used (E3) for the final inequality. As (E9) is only

used to prove (2.5.18), the remainder of Section 2.5 can be carried out with the appropriate
notational changes. In fact, the proof of Lemma 2.5.10 can be simplified by replacing νω,0
with Leb as Lemma 5.2 of [12] would no longer be needed.

Remark 2.C.3. Note that the 2 appearing in (2.C.1), and thus the 9 and 8 appearing in
(2.C.7), are not optimal. See [3] and Section 1.15 for how these estimates can be improved.

2.D. Proof of Claim (6) of Theorem 2.5.12

Proof of Claim (6) of Theorem 2.5.12: Set Bω = BVνω,0 . Define the fully nor-
malized operator Lω,ε : Bω → Bσω given by

Lω,ε(f) :=
1

ρω,εψσω,ε
Lω,ε(f · ψω,ε).

Then we have that Lω,ε1 = 1 and µσω,ε(Lω,εf) = µω,ε(f). Following the proof of Theorem
1.11.2, we can prove the following similar statement to Claim (5) of Theorem 2.5.12: For
each h ∈ Bω, m-a.e. ω ∈ Ω and all n ∈ N we have

∥L n
ω,εh− µω,ε(h)1∥Bσnω

= ∥L n
ω,εĥ∥Bσnω

≤ D∥h∥Bωκ
n
ε ,(2.D.1)

where ĥ := h − µω,ε(h) and D, κε are as in Claim (5) of Theorem 2.5.12. Using standard
arguments (see Theorem 11.1 [3]) we have that

|µω,ε ((f ◦ T nω )h)− µσnω,ε(f)µω,ε(h)| = µσnω,ε

(∣∣∣fL n
ω,εĥ

∣∣∣) .
Note that at this stage we are unable to apply (2.D.1) as the ∥ · ∥Bω norm and the measure
µω,ε are incompatible. Now from the third statement of Claim (5) of Theorem 2.5.12 we
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2.D. PROOF OF CLAIM (6) OF THEOREM 2.5.12 145

have that ∣∣∣∣∣∣µσnω,ε

(∣∣∣fL n
ω,εĥ

∣∣∣)− ϱσnω,ε

(∣∣∣fL n
ω,εĥ

∣∣∣ X̂σnω,n,ε

)
ϱσnω,ε (Xσnω,n,ε)

∣∣∣∣∣∣ ≤ D∥fL n
ω,εĥ∥Bσnω

κnε ,

and thus we must have that

µσnω,ε

(∣∣∣fL n
ω,εĥ

∣∣∣) ≤ D∥fL n
ω,εĥ∥Bσnω

κnε +
ϱσnω,ε

(∣∣∣fL n
ω,εĥ

∣∣∣ X̂σnω,n,ε

)
ϱσnω,ε(Xσnω,n,ε)

.(2.D.2)

Using (2.D.1) and (2.5.14), we have that

ϱσnω,ε

(∣∣∣fL n
ω,εĥ

∣∣∣ X̂σnω,n,ε

)
ϱσnω,ε(Xσnω,n,ε)

≤ ∥fL n
ω,εĥ∥σnω,∞ ≤ ∥f∥σnω,∞∥L n

ω,εĥ∥Bσnω
≤ D∥f∥∞,ω∥h∥Bωκ

n
ε .

(2.D.3)

Combining (2.D.2) and (2.D.3) and using (2.D.1) again we see that

|µω,ε ((f ◦ T nω )h)− µσnω,ε(f)µω,ε(h)| ≤ µσnω,ε

(∣∣∣fL n
ω,εĥ

∣∣∣)
≤ D∥fL n

ω,εĥ∥Bσnω
κnε +

ϱσnω,ε

(∣∣∣fL n
ω,εĥ

∣∣∣ X̂σnω,n,ε

)
ϱσnω,ε(Xσnω,n,ε)

≤ D∥fL n
ω,εĥ∥Bσnω

κnε +D∥f∥∞,ω∥h∥Bωκ
n
ε

≤ D2∥f∥Bω∥h∥Bωκ
2n
ε +D∥f∥∞,ω∥h∥Bωκ

n
ε

≤ D̃∥f∥∞,ω∥h∥Bωκ
n
ε

for all n sufficiently large, and thus the proof of Claim (6) of Theorem 2.5.12 is complete.
□
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Glossary of Assumptions

A:
For each ε > 0 Hε ⊆ J0 is measurable with respect to the product σ-algebra

F ⊗ B on J0 such that H ′
ε ⊆ Hε for each 0 < ε′ ≤ ε . . . . . . . . . . . . . . . . see page 88

A’:
Hω,ε′ ⊆ Hω,ε for each ε′ ≤ ε and each ω ∈ Ω . . . . . . . . . . . . . . . . . . . . . see page 88

B:
For each ω Bω ⊆ L∞(νω,0), where ν0 = (νω,0)ω∈Ω is the random probability

measure given by (CCM), and there exists a measurable m-a.e. finite function
K : Ω → [1,∞) such that ∥f∥∞,ω ≤ Kω∥f∥Bω for all f ∈ Bω and each ω ∈ Ω,
where ∥ · ∥∞,ω denotes the supremum norm with respect to νω,0. . . . . .see page 88

C:
There exists a random probability measure ν0 = {νω,0}ω∈Ω ∈ PΩ(Ω × I) and

measurable functions λ0 : Ω → R\ {0} and ϕ0 : J0 → (0,∞) with ϕ0 ∈ BVΩ(I)
such that

Lω,0(ϕω,0) = λω,0ϕσω,0 and νσω,0(Lω,0(f)) = λω,0νω,0(f)

for all f ∈ BV(I). Furthermore, we suppose that the fiber measures νω,0 are
non-atomic and that λω,0 := νσω,0(Lω,01) with log λω,0 ∈ L1(m). The T -invariant
random probability measure µ0 on Ω× I is given by

µω,0(f) :=

∫
I

fϕω,0 dνω,0, f ∈ L1(νω,0).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 23

C1:
There exists a measurable m-a.e. finite function C1 : Ω → R+ such that for

f ∈ Bω we have

sup
ε≥0

∥Lω,ε(f)∥Bσω ≤ C1(ω)∥f∥Bω

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 90

C1’:
There exists C1 ≥ 1 such that for m-e.a. ω ∈ Ω we have

C−1
1 ≤ Lω,01 ≤ C1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 99
151
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152 Glossary of Assumptions

C2:
For each ε ≥ 0 there is a random measure {νω,ε}ω∈Ω supported in J0 and

measurable functions λε : Ω → (0,∞) with log λω,ε ∈ L1(m) and ϕε : J0 → R such
that

Lω,ε(ϕω,ε) = λω,εϕσω,ε and νσω,ε(Lω,ε(f)) = λω,ενω,ε(f)

for all f ∈ Bω. Furthermore, for m-a.e. ω ∈ Ω

νω,0(ϕω,ε) = 1 and νω,0(1) = 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 91

C3:
There is an operator Qω,ε : Bω → Bσω such that for m-a.e. ω ∈ Ω and each

f ∈ Bω we have

λ−1
ω,εLω,ε(f) = νω,ε(f) · ϕσω,ε +Qω,ε(f).

Furthermore, for m-a.e. ω ∈ Ω we have

Qω,ε(ϕω,ε) = 0 and νσω,ε(Qω,ε(f)) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 91

C4:
For each f ∈ B there exist measurable functions Cf : Ω → (0,∞) and α :

Ω × N → (0,∞) with αω(N) → 0 as N → ∞ such that for m-a.e. ω ∈ Ω and all
N ∈ N

sup
ε≥0

∥QN
ω,εfω∥∞,σNω ≤ Cf (ω)αω(N)∥fω∥Bω ,

sup
ε≥0

∥QN
σ−Nω,εfσ−Nω∥∞,ω ≤ Cf (ω)αω(N)∥fσ−Nω∥Bσ−Nω

,

and ∥ϕσNω,0∥∞,σNωαω(N) → 0, ∥ϕσ−Nω,0∥∞,σ−Nωαω(N) → 0 asN → ∞ . . . . see page 91

C4’:
For each f ∈ B and eachN ∈ N there exists Cf > 0 and α(N) > 0 (independent

of ω) with α :=
∑∞

N=1 α(N) <∞ such that for m-a.e. ω ∈ Ω, all N ∈ N
sup
ε≥0

∥QN
ω,εfω∥∞,σNω ≤ Cfα(N)∥fω∥Bω

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 99

C5:
There exists a measurable m-a.e. finite function C2 : Ω → [1,∞) such that

sup
ε≥0

∥ϕω,ε∥∞,ω ≤ C2(ω) and ∥ϕω,0∥Bω ≤ C2(ω)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 91

C5’:
There exists C2 ≥ 1 such that

sup
ε≥0

∥ϕω,ε∥∞,ω ≤ C2 and ∥ϕω,0∥Bω ≤ C2
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for m-a.e. ω ∈ Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 99

C6:
For m-a.e. ω ∈ Ω we have

lim
ε→0

νω,0(Hω,ε) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 91

C7:
There exists a measurable m-a.e. finite function C3 : Ω → [1,∞) such that for

all ε > 0 sufficiently small we have

inf ϕω,0 ≥ C−1
3 (ω) > 0 and ess inf

ω
inf ϕω,ε ≥ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 91

C7’:
There exists C3 ≥ 1 such that for all ε > 0 sufficiently small we have

ess inf
ω

inf ϕω,0 ≥ C−1
3 > 0 and ess inf

ω
inf ϕω,ε ≥ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 99

C8:
For m-a.e. ω ∈ Ω+ we have that the limit q̂(k)ω,0 := limε→0 q̂

(k)
ω,ε exists for each

k ≥ 0, where q̂(k)ω,ε is as in (2.2.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 91

CCM:
There exists a random probability measure ν0 = {νω,0}ω∈Ω ∈ PΩ(J0) and

measurable functions λ0 : Ω → R\ {0} and ϕ0 : J0 → (0,∞) with ϕ0 ∈ B such
that

Lω,0(ϕω,0) = λω,0ϕσω,0 and νσω,0(Lω,0(f)) = λω,0νω,0(f)

for all f ∈ Bω where ϕω,0(·) := ϕ0(ω, ·). Furthermore, the fiber measures νω,0 are
non-atomic and that λω,0 := νσω,0(Lω,01) with log λω,0 ∈ L1(m). The T -invariant
random probability measure µ0 on J0 is then given by

µω,0(f) :=

∫
Jω,0

fϕω,0 dνω,0, f ∈ L1(νω,0).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 16

E1:
There exists C ≥ 1 such that

ess sup
ω

|T ′
ω| ≤ C and ess sup

ω
D(Tω) ≤ C,

where D(Tω) := supy∈[0,1]#T
−1
ω (y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 111

E2:
The weight function gω,0 lies in BV for each ω ∈ Ω and satisfies

ess sup
ω

∥gω,0∥∞,1 <∞
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 113

E3:

ess inf
ω

inf gω,0 > 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 113

E4:
For every subinterval J ⊂ [0, 1] there is a k = k(J) such that for a.e. ω one has

T kω (J) = [0, 1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 113

E5:
There is a uniform-in-ε and uniform-in-ω upper bound on the number of con-

nected components of Hω,ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 113

E6:

lim
ε→0

ess sup
ω

Leb(Hω,ε) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 114

E7:
For m-a.e. ω ∈ Ω and all ε > 0 sufficiently small

Tω(Jω,ε) = [0, 1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 114

E8:
There exists n′ ≥ 1 and ε0 > 0 such that

9 · ess sup
ω

∥g(n
′)

ω,0 ∥∞,1 < ess inf
ω

inf
0≤ε≤ε0

inf Ln′

ω,ε1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 114

E9:
There exists ko(n′) ∈ N such that for m-a.e. ω ∈ Ω, all ε > 0 sufficiently small,

and all Z ∈ Z(n′)
ω,∗,ε we have T ko(n

′)
ω (Z) = [0, 1], where n′ is the number coming from

(E8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 115

E9a:
There exists ko(n′) ∈ N and δ > 0 such that for m-a.e. ω ∈ Ω, all ε > 0

sufficiently small, we have Leb(Z) > δ for all Z ∈ Z(n′)
ω,∗,ε(A) . . . . . . . . .see page 144

E9b:
There exists c > 0 such that ess infω |T ′

ω| > c . . . . . . . . . . . . . . . . . . . . see page 144

EX:
There exists an ε > 0 and an open neighborhood H̃ω,ε ⊇ Hω,ε such that

Tω(Uω) ⊇ H̃c
σω,ε, where Uω := ∪Z∈Zω,0Zε and Zε denotes the closure of Zε ∈

Aω,ε := {Z ∩ H̃c
ω,ε : Z ∈ Zω,0} with m({ω ∈ Ω : #Aω,ε ≥ 2}) > 0 . . . . see page 114
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M:
The map T : Ω× I → Ω× I is measurable . . . . . . . . . . . . . . . . . . . . . . .see page 23

M1:
The map T : J0 → J0 is measurable with respect to F ⊗ B . . . . . see page 15

M2:
For every measurable function f ∈ B, the map (ω, x) 7→ (L0f)ω(x) is measur-

able . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 16

MC:
The map σ : Ω → Ω is a homeomorphism, the skew-product map T : Ω ×

[0, 1] → Ω×[0, 1] is measurable, and ω 7→ Tω has countable range . . . . see page 111

P1:
There exists a function C1 : Ω → R+ such that for f ∈ Bω we have

sup
ε≥0

∥Lω,ε(f)∥Bσω ≤ C1(ω)∥f∥Bω

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 82

P2:
For each ω ∈ Ω and ε ≥ 0 there is a functional νω,ε ∈ B∗

ω, the dual space of Bω,
λω,ε ∈ C\ {0}, and ϕω,ε ∈ Bω such that

Lω,ε(ϕω,ε) = λω,εϕσω,ε and νσω,ε(Lω,ε(f)) = λω,ενω,ε(f)

for all f ∈ Bω. Furthermore,

νω,0(ϕω,ε) = 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 82

P3:
There is an operator Qω,ε : Bω → Bσω such that for each f ∈ Bω we have

λ−1
ω,εLω,ε(f) = νω,ε(f) · ϕσω,ε +Qω,ε(f).

Furthermore, we have

Qω,ε(ϕω,ε) = 0 and νσω,ε(Qω,ε(f)) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 82

P4:
There exists a function C2 : Ω → R+ such that

sup
ε≥0

∥ϕω,ε∥Bω = C2(ω) <∞

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 83

P5:
For each ω ∈ Ω we have

lim
ε→0

ηω,ε = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 83
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P6:
For each ω ∈ Ω such that ∆ω,ε > 0 for every ε > 0, there exists a function

C3 : Ω → R+ such that

lim sup
ε→0

ηω,ε
∆ω,ε

:= C3(ω) <∞.

Given ω ∈ Ω, if there is ε0 > 0 such that for each ε ≤ ε0 we have that ∆ω,ε = 0
then we also have that ηω,ε = 0 for each ε ≤ ε0 . . . . . . . . . . . . . . . . . . . . . . see page 83

P7:
For each ω ∈ Ω

lim
ε→0

νω,ε(ϕω,0) = 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 83

P8:
For each ω ∈ Ω with ∆ω,ε > 0 for all ε > 0 we have

lim
n→∞

lim sup
ε→0

∆−1
ω,ενσω,0

(
(Lω,0 − Lω,ε)

(
Qn
σ−nω,εϕσ−nω,0

))
= 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 83

P9:
For each ω ∈ Ω with ∆ω,ε > 0 for all ε > 0 the limit

q
(k)
ω,0 := lim

ε→0

νσω,0

(
(Lω,0 − Lω,ε)(Lkσ−kω,ε

)(Lσ−(k+1)ω,0 − Lσ−(k+1)ω,ε)(ϕσ−(k+1)ω,0)
)

νσω,0 ((Lω,0 − Lω,ε)(ϕω,0))
exists for each k ≥ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 83

Q1:

lim
n→∞

1

n
log ∥g(n)ω ∥∞ + lim sup

n→∞

1

n
log ξ(n)ω < lim

n→∞

1

n
log ρnω =

∫
Ω

log ρω dm(ω).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 30

Q2:
For each n ∈ N we have log ξ

(n)
ω ∈ L1(m). . . . . . . . . . . . . . . . . . . . . . . . . see page 30

Q2’:
log ξ

(N∗)
ω ∈ L1(m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 38

Q3:
For each n ∈ N, log δω,n ∈ L1(m), where

δω,n := min
Z∈Z(n)

ω,g

Λω(1Z).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 30

Q3’:
log δω,N∗ ∈ L1(m), where δω,n is defined by (1.3.18) . . . . . . . . . . . . . . .see page 38
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Q̂0:
Z(1)

ω,F ̸= ∅ for m-a.e. ω ∈ Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 75

Q̂1:

lim
n→∞

1

n
log ∥g(n)ω ∥∞ + lim sup

n→∞

1

n
log ζ(n)ω < lim

n→∞

1

n
log ρnω =

∫
Ω

log ρω dm(ω),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 76

Q̂2:
For each n ∈ N we have log+ ζ

(n)
ω ∈ L1(m) . . . . . . . . . . . . . . . . . . . . . . . . see page 76

Q̂2’:
log+ ζ

(N∗)
ω ∈ L1(m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 76

Q̂3:
For each n ∈ N, log δ̂ω,n ∈ L1(m), where

δ̂ω,n := min
Z∈Z(n)

ω,F

Λω(1Z).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 76

Q̂3’:
log δ̂ω,N∗ ∈ L1(m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see page 76

S:
For any fixed random scaling function t ∈ L∞(m) with t > 0, there are se-

quences of functions zN , ξN ∈ L∞(m) and a constant W <∞ satisfying
µω,0({hω(x)− zω,N > 0}) = (tω + ξω,N)/N, for a.e. ω and each N ≥ 1

where:
(i) limN→∞ ξω,N = 0 for a.e. ω and
(ii) |ξω,N | ≤ W for a.e. ω and all N ≥ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 99

X:
For m-a.e. ω ∈ Ω we have Xω,∞ ̸= ∅ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 18

Z:
There exists α̂ ≥ 0 sufficiently large such that Z(n)

ω ∈ A
(n)

ω (α̂) for each n ∈ N
and each ω ∈ Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see page 75

Z’:
There exists α̂ ≥ 0 such that Z(N∗)

ω ∈ A
(N∗)

ω (α̂) for each ω ∈ Ω . . . . see page 76
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(n)
ω , 34

B∗, 40
B

(n)
ω , 34

C(ω, δ), 63
Cε(ω), 39
Dω,∞, 19
Dω,n, 19
G

(k)
ω,N , 98

Hω,εN , 98
Iω, 24
Jω, 113
Jω,+(Z), 35
Jω,−(Z), 35
K

(n)
ω , 37

Lω, 38
Mω(Z), 30
N∗, 38
Pω, 113
Q

(n)
ω , 37

R(ϱω), 68
R∗, 40
Rε(ζω), 93
Ra, 40
Sn,T , 16
Sn,σ, 16
T : J0 → J0, 15
T nω : Jω,0 → Jσnω,0, 15
Vω,zω , 98
Vf,ε, 57
Xω,∞,ε, 89
Xω,∞, 18
Xω,n,ε, 89
Xω,n, 17
BV(I), 22
BV1, 112

BVΩ(I), 22
BVν , 112
B(I), 22
BΩ(I), 22
∆ω,ε, 83, 89
Γ(ω), 42
Λ(R), 124
Leb, 15
Λω(f), 27
Ω, 14
Ω+, 88
ΩB, 41
ΩF , 51
ΩG, 40
Σω, 50
Σ

(k)
ω , 43

Θω,+, 33
Θω,a, 33
R(ϱω), 68
zω, 98
Rε(ζω), 93
A, 30
B, 16
Bω, 16
D, 57
D+, 57
EP (φ), 67
EP (φ0), 67
I, 24
J , 17
J0, 15
Jω, 17
Jω,0, 14
Lω, 19
Lω,0, 16
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Lω,ε, 82, 89
PΩ(Y ), 15
PH
T,m(I), 69

X∞,ε, 89
X∞, 18
Xn,ε, 89
Xn, 18
Zω, 21
Z(n)
ω , 21

Z(n)
ω,∗,ε, 115

Z(n)
ω,∗ , 30

Z(n)
ω,b , 30

Z(n)
ω,g , 30

diamω,+(Y ), 33
diamω,a(Y ), 33
δω,n, 31
ℓ(ω), 42
ηω,ε, 83, 90
q̂
(k)
ω,0, 90
q̂
(k)
ω,ε, 90
L̂ω,0, 116
L̂ω,ε, 116
D̂ω,∞, 20
D̂ω,n, 20
X̂ω,∞, 18
X̂ω,n, 18
1ω, 17, 24
∥f∥BV, 22
∥f∥∞, 22
R(ϱω), 68
zω, 98
Z(n)

ω , 75
Z(n)

ω,∗, 75

Z(n)

ω,F , 75

Z(n)

ω,U , 75

Z(n)

ω,b, 75

Z(n)

ω,g, 75
Rε(ζω), 93
hω, 77
ρω, 28

A (n)
ω , 30

B, 15
Cω,+, 33
Cω,a, 33
F , 14
F ⊗ B, 15
Lω, 62
σ : Ω → Ω, 14
θ, 38
θω,0,n, 105
θω,0, 88, 94
θω,εN ,n, 106
τω,Hω,N

, 110
var(f), 22
varA(f), 22
φ0 : J0 → R, 16
Ẑ(n)
ω (A), 30

ξω,N , 99
ξ
(n)
ω , 30
ζ, 39
L̃ω, 19
L̃ω,ε, 89
a0, 40
gω,0, 16
gω,ε, 115
m, 14
q∗, 40
q
(k)
ω,0, 83
q
(k)
ω,ε, 86
tω, 99
y∗ : Ω → N, 42
zω,N , 98

admissible potential, 22

bad block, 42
base dynamical system, 14

closed random dynamical system, 17
closed random set, 15
contiguous, 30
convex cone, 31
covering, 113

expected pressure, 67
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fiberwise escape rate, 68, 93

good block, 42
good fiber, 40

Lyapunov exponent, 124

open covering time, 30

potential, 16

random absolutely continuous
conditionally invariant probability
measure (RACCIM), 25

random bounded, 22
random bounded variation, 22
random conditionally invariant

probability measure (RCIM), 25
random measure, 15

random probability measure, 15
relative equilibrium state, 69

surviving set, 18

weight, 16
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