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We propose a systematic approach to the nonequilibrium dynamics of strongly interacting many-body
quantum systems, building upon the standard perturbative expansion in the Coulomb interaction. High-
order series are derived from the Keldysh version of the determinantal diagrammatic quantumMonte Carlo
algorithm, and the reconstruction beyond the weak-coupling regime of physical quantities is obtained by
considering them as analytic functions of a complex-valued interactionU. Our advances rely on two crucial
ingredients: (i) a conformal change of variable, based on the approximate location of the singularities of
these functions in the complex U plane, and (ii) a Bayesian inference technique, that takes into account
additional known nonperturbative relations, in order to control the amplification of noise occurring at large
U. This general methodology is applied to the strongly correlated Anderson quantum impurity model and is
thoroughly tested both in and out of equilibrium. In the situation of a finite voltage bias, our method is able
to extend previous studies, by bridging with the regime of unitary conductance and by dealing with energy
offsets from particle-hole symmetry. We also confirm the existence of a voltage splitting of the impurity
density of states and find that it is tied to a nontrivial behavior of the nonequilibrium distribution function.
Beyond impurity problems, our approach could be directly applied to Hubbard-like models, as well as other
types of expansions.

DOI: 10.1103/PhysRevX.9.041008 Subject Areas: Condensed Matter Physics,
Mesoscopics,
Strongly Correlated Materials

I. INTRODUCTION

The study of the out-of-equilibrium regime of strongly
correlated many-body quantum problems is a major chal-
lenge in theoretical condensed matter physics. Its interest
has grown rapidly in the past few years with new experi-
ments, e.g., the ability to control light-matter interaction on
an ultrafast timescale [1], light-induced superconductivity
[2–6], or a metal-insulator transition driven by an electric
field [7], proposed, e.g., to build artificial neurons [8].
These experiments raise the question whether the combi-
nation of strong correlation effects and out-of-equilibrium
regimes could lead to genuinely new physics and phases
of matter that do not have an equilibrium counterpart.
Quantum nanoelectronics also provide many examples of

such systems. A classic example is the spin-1=2 Kondo
effect occurring in a quantum dot, but recent experiments
have also managed to study in great detail underscreened
[9,10] and overscreened [11,12] (multichannel) Kondo
effects, characterized by non-Fermi-liquid fixed points.
Other notable examples of new quantum states induced
by interactions are Luttinger liquids [13] that take place
at edges in the fractional quantum Hall regime or the “0.7
anomaly” [14–16] occurring in a simple quantum point
contact geometry. Last, solid-state-based quantum com-
puters such as spin qubit devices are nothing but out-of-
equilibrium quantum many-body systems (few site
Hubbard-like models, possibly connected to electrodes) that
bringnewquestions into the scope of correlated systems [17].
It is worth noting that even the simplest of these out-

of-equilibrium problems, the single-impurity Anderson
model, is still the subject of active research [18,19]. Early
approaches use a range of approximate techniques includ-
ing fourth-order perturbation theory [20], equation of
motion techniques [21], and the noncrossing approximation
(NCA) [22]. State-of-the-art techniques include the time-
dependent numerical renormalization group (NRG) and the
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density matrix renormalization group [19,23–28]. Early
attempts of a real-time quantum Monte Carlo algorithm
[29–33] experienced an exponential sign problem at a long
time and large interaction. Within Monte Carlo methods,
two main routes are currently explored to resolve this issue:
the inchworm algorithm [34–38] and the Schwinger-
Keldysh diagrammatic quantum Monte Carlo (QMC)
[39] algorithm. The latter, which we use in this paper,
reaches the infinite time steady-state limit and has a
complexity which does not grow with time. The develop-
ment of controlled computational methods is critical for the
development of the theory in this field. Beyond its direct
application to impurities and quantum dot physics, the
Anderson model is of direct interest for quantum embed-
ding methods such as the dynamical mean field theory
(DMFT) [40–42] which reduce the bulk lattice problem to
the solution of a self-consistent quantum impurity model.
A straightforward approach to study the out-of-

equilibrium many-body quantum problem is to compute
the systematic perturbative expansion of some physical
quantity F in power of the electron-electron interaction U:
FðUÞ≡P∞

n¼0 FnUn. In practice, F may depend on the
time (or frequency) as well as the voltage bias, temperature,
etc. The coefficients Fn are given by the out-of-equilibrium
Schwinger-Keldysh version of the Feynman diagrams [43].
Such a perturbative expansion is a central tool in quantum
mechanics and quantum field theory. In weak-coupling
theories, a few orders are sufficient to explain many
physical phenomena, even quantitatively, as, e.g., in quan-
tum electrodynamics. However, at intermediate or strong
coupling, this approach faces two main challenges: (i) the
computation of the coefficients for n large enough and
(ii) the reconstruction of the physical quantities as a
function of U from a finite number of coefficients.
Using the standard Wick theorem, an explicit expression

of Fn to order n can be written as n-dimensional integrals.
While the computation of Fn can hardly be achieved
analytically beyond a few orders, QMC algorithms known
as “diagrammatic Monte Carlo” [44–59] are able to
compute a finite number of these coefficients Fn for a
general class of quantum many-body problems, in practice
up to 8 or 15 depending on the model and the physical
quantity. The first generation of these algorithms used to
explicitly sample the Feynman diagrams one by one with a
complex Markov chain, moving from one diagram to
another. A second generation of algorithms handles the
diagrams collectively using combinations of determinants
to cancel disconnected diagrams in physical quantities.
This rewriting was achieved in the real-time Schwinger-
Keldysh formalism [39] and in the imaginary-timeMatsubara
formalism [60–63].
The resummation of the series is a nontrivial mathemati-

cal task outside of the weak-coupling regime, even with
a perfect knowledge of the coefficients Fn. The issue
comes from the finite radius of convergence of the series.

WhenU is larger than this radius, the truncated series to the
first Nth terms does not converge with N and some
resummation technique must be used to compute FðUÞ.
Moreover, there are two additional difficulties associated
with numerical methods: (i) Only a finite number of
coefficients Fn can be computed, since the computation
cost is exponential in n, and (ii) the Fn are known only with
a finite precision, typically of a few digits in QMC.
In this paper, we approach this problem from the angle of

complex analysis. Indeed, the divergence of the series
originates from the singularity structure of the function
FðUÞ in the complex plane U (bottom left in Fig. 1). We
discuss how to locate the singularities closest to 0 and
how to construct an analytic change of variable to resum
the series beyond weak coupling (bottom right in Fig. 1).
We also introduce a Bayesian technique to take into
account the amplification of the Monte Carlo noise in
the resummation process using some simple nonperturba-
tive additional information on the model.

FIG. 1. Top: The Anderson quantum impurity model describing
a single-level quantum dot. The level with energy ϵd is subject to
a finite Coulomb interaction U and is hybridized with a tunnel
coupling γ to two leads that are biased with voltage Vb. Bottom:
Illustration of the general computation scheme developed in this
work. A physical quantity F (e.g., the current through the dot)
presents singularities in the U complex plane (left), such as poles
(stars) or branch cuts (dashed line), hampering the proper
convergence of perturbative approaches for values of U outside
the convergence disk (gray area). After defining a broad singu-
larity-free contour C (red line) that encircles both U ¼ 0 and a
targeted U0 value, a conformal map U → WðUÞ is defined in
order to bring W0 ¼ WðU0Þ inside the convergence disk of
F½UðWÞ� (right). Resummation techniques can then be applied in
a controlled way.
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While our approach is quite general, we focus here on the
nonequilibrium Anderson quantum impurity model in the
quantum dot configuration (top in Fig. 1). Our starting
point is an expansion of the Green’s function in power of
the Hubbard interaction U, using an extension of the
algorithm of Ref. [39]. The algorithm is discussed in detail
in a companion paper [64], and its implementation is based
on the TRIQS library [65]. This algorithm provides a
numerically exact computation of the perturbative series
of physical quantities in power of the interaction U, at a
cost which is uniform in time but exponential with the
expansion order. Hence, it allows one to compute in a
transient regime as well as directly in a long time steady
state, a regime in which most competing methods have
severe limitations.
This paper is organized as follows. Section II introduces

our notations for the single-impurity Anderson model.
Section III develops the resummation technique and illus-
trates it on the Kondo temperature. Section IV performs a
benchmark of the method against the NRG for the equilib-
rium dynamics. Section V presents new results in the
nonequilibrium regime, including the voltage-split spectral
function, extended-range current-voltage characteristics,
and a nontrivial dot distribution function. Section VI con-
cludes this article and presents perspectives for our con-
formal approach to the perturbative expansions of strongly
interacting quantum systems.

II. THE ANDERSON IMPURITY MODEL

In this paper, we focus on the single-impurity Anderson
model both at and out of equilibrium. While originally
formulated to describe the effect of magnetic impurities in
metals, this model is widely used in theoretical condensed
matter, both as a simple model for quantum dots in
mesoscopic physics and as a building block of “quantum
embedding” approximations like DMFT and its general-
izations. At the core of the Anderson model lies Kondo
physics. The repulsive interaction on the quantum dot
leads to an effective antiferromagnetic interaction between
the electronic reservoirs and the spin of the (unique)
electron trapped in the quantum dot in the local moment
regime. This interaction leads to the formation of the
Kondo resonance, a thin peak in the local density of state
pinned at the Fermi energy [66]. The Anderson impurity
Hamiltonian reads

Ĥ ¼
Xþ∞

i¼−∞

X
σ

γiĉ
†
i;σĉiþ1;σ þ H:c:þ ϵdðn̂↑ þ n̂↓Þ

þ UθðtÞ
�
n̂↑ −

1

2

��
n̂↓ −

1

2

�
: ð1Þ

It connects an impurity on site 0 to two semi-infinite
electrodes i < 0 and i > 0. The model corresponds to a
single-level artificial atom as sketched in the upper panel in

Fig. 1. Here, ϵd is the on-site energy of the impurity
(relative to the particle-hole symmetric point), and n̂σ ¼
ĉ†0;σĉ0;σ is the impurity density of spin σ electrons. ĉ†i;σ and
ĉi;σ are the creation and annihilation operators, respectively,
for electrons on site iwith spin σ. We use ℏ ¼ e ¼ 1. θðtÞ is
the Heaviside function: We switch the interaction on at time
t ¼ 0. Typical calculations are performed for large times so
that the system relaxes to its stationary regime. The
hopping parameters are given by γi ¼ 1 except for γ0 ¼
γ−1 ¼ γ which connect the impurity to the electrodes. The
calculations can be performed for arbitrary values of γ.
However, since we are not interested in the large-energy
physics of the electrodes, we suppose that γ ≪ 1, i.e., that
the tunneling rate from the impurity to the electrodes is
energy-independent Γ ¼ 2πγ2ρF, where ρF is the density of
states of the electron reservoirs at the Fermi level. The
noninteracting retarded Green’s function of the free impu-
rity is given by

gRðωÞ ¼ 1

ω − ϵd þ iΓ
: ð2Þ

The two electrodes have a chemical potential symmetric
with respect to zero �Vb=2 which corresponds to a bias
voltage Vb. They share the same temperature that we take
very low: T ¼ 10−4Γ. Within the standard nonequilibrium
Keldysh formalism [67], the noninteracting lesser and
greater Green’s functions are given, respectively, by

g<ðωÞ ¼ iΓ½nFðωþ Vb
2
Þ þ nFðω − Vb

2
Þ�

ðω − ϵdÞ2 þ Γ2
; ð3Þ

g>ðωÞ ¼ iΓ½nFðωþ Vb
2
Þ þ nFðω − Vb

2
Þ − 2�

ðω − ϵdÞ2 þ Γ2
; ð4Þ

where nFðωÞ ¼ 1=ðeω=T þ 1Þ is the Fermi function. g>ðωÞ
and g<ðωÞ are the starting point for the expansion in power
of U that will be performed with the real-time diagram-
matic quantum Monte-Carlo method.
The quantities of interest in this article are the interacting

Green’s functions (denoted with capital letters)

GRðt; t0Þ ¼ −iθðt − t0Þhfĉ0↑ðtÞ; ĉ†0↑ðt0Þgi; ð5aÞ

G<ðt; t0Þ ¼ ihĉ†0↑ðt0Þĉ0↑ðtÞi; ð5bÞ

G>ðt; t0Þ ¼ −ihĉ0↑ðtÞĉ†0↑ðt0Þi; ð5cÞ

where the operators have been written in the Heisenberg
representation. Since we restrict ourselves to the stationary
limit, these functions are a function of t − t0 only and can be
studied in the frequency domain. Of particular interest is
the spectral function (or interacting local density of state)
given by
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AðωÞ ¼ −
1

π
Im½GRðωÞ�: ð6Þ

The equilibrium spectral function displays the important
features of Kondo physics: a sharp Kondo resonance at the
Fermi level and satellite peaks around ω ¼ �U=2 in the
case of particle-hole symmetry.
The out-of-equilibrium spectral function can be used for

the computation of the current-voltage characteristic using
the Wingreen-Meir formula [68]:

I ¼ Γ
2

Z
AðωÞ

�
nF

�
ωþ Vb

2

�
− nF

�
ω −

Vb

2

��
dω: ð7Þ

The retarded self-energy ΣRðωÞ is defined from the
interacting Green’s function by

GRðωÞ ¼ 1

ω − ϵd þ iΓ − ΣRðωÞ : ð8Þ

Physical quantities have a systematic expansion in power
of U:

GRðt − t0Þ ¼
Xþ∞

n¼0

GR
n ðt − t0ÞUn; ð9Þ

from which we obtain the corresponding quantity in the
frequency domain by Fourier transform:

GRðωÞ ¼
Xþ∞

n¼0

GR
n ðωÞUn: ð10Þ

We obtain the functions GR
n ðωÞ (typically up to n ¼ 10)

using the QMC algorithm of Refs. [39,64]. The expansion
of the self-energy

ΣRðωÞ ¼
Xþ∞

n¼0

ΣR
n ðωÞUn ð11Þ

is obtained from theGR
n ðωÞ using a formal series expansion

order by order of the Dyson equation (8). As an illustration,
Fig. 2 shows the self-energy series, up to the 10th order, for
the equilibrium particle-hole symmetric model as obtained
from diagrammatic QMC [64]. These series are the starting
point of this paper, which is devoted to the resummation of
the perturbative expansion for the Green’s function and the
self-energy beyond weak coupling.

III. THE PERTURBATIVE SERIES BEYOND
THE WEAK-COUPLING REGIME

The diagrammatic quantum Monte Carlo algorithm
yields the first orders of the perturbation expansion of
physical quantities, with some error bars. In weak coupling,
we can directly sum this series and obtain the physical
quantities with a few orders. Beyond weak coupling,
however, we face a more complex problem. For a given
physical quantity F, we want to evaluate FðUÞ from the
first N (typically N ∼ 10) coefficients F0; F1; F2…FN of a
series FðUÞ≡P∞

n¼0 FnUn. In the following, F stands for
the width of the Kondo peak, the Green’s functionG, or the
self-energy Σ of the impurity. In the latter cases, the
coefficients are functions of the frequencies, GnðωÞ and
ΣnðωÞ. We also want to know, for a given physical quantity
F and interaction U, how many orders N0 are needed to
obtain FðUÞ at a given precision. Since the cost of the
diagrammatic QMC approach is exponential in N0,
the answer to this question gives the ultimate limit of
the method.
The mathematical problem of series resummation is a

quite old topic, e.g., Ref. [69]. Various techniques have
been used in physics problems including Padé approxim-
ants [70], Lindelöf extrapolation [52,71], or the Cesàro-
Riesz technique [48]. In diagrammatic QMC, this is

FIG. 2. First nonzero orders of the self-energy series ΣRðU;ωÞ in powers of U for the equilibrium particle-hole symmetric Anderson
model (real part in blue and imaginary part in red). This series is computed with a real-time diagrammatic quantum Monte Carlo
algorithm detailed in a companion article [64]. The statistical error is shown as shaded areas. Because of particle-hole symmetry, odd
orders are zeros.
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typically (except in bold diagrammatic QMC) a postpro-
cessing step: The Monte Carlo algorithm produces the
values of the various orders of the expansion, and one then
attempts to sum the series to obtain the final result.
However, the situation is quite different if we want to
use such a technique to solve quantum impurity models
in the context of the quantum embedding methods like
DMFT [40] or, e.g., Trilex [72,73]. Indeed, in such cases,
the method requires multiple solutions of the impurity model
to solve their self-consistency loop. Therefore, it is necessary
to develop more robust methods to sum the perturbative
series for impurity systems, which could be automatized.
In the cases considered in this paper (quantum impurity

models), and in general for lattice models at a finite temper-
ature (such as the Hubbard model), the series for F is
expected to have a nonzero radius of convergence RF. Note
that RF not only depends on the chosen physical quantity F,
but may also depend on the frequency, voltage, temperature,
etc.RF separates theweak-coupling regime (jUj < RF) from
the strong-coupling regime (jUj > RF). At weak coupling,
the truncated series

P
N
n¼0 FnUn provides an accurate esti-

mate of FðUÞ and is controlled exponentially with the
number of coefficients N [like a geometric series since
Fn ∼ ð1=RFÞn]. At strong coupling, however, this truncated
series diverges. Note that in some problems like, e.g.,
the unitary fermionic gas, the series has a zero radius of
convergence; see, e.g., Ref. [74] for a recent example with
diagrammatic QMC. We do not consider these cases in this
paper, as they require other techniques than the ones
presented here, e.g., Borel summation techniques.
In this paper, we consider the series summation problem

with the angle of reconstructing the function FðUÞ in the
complex U plane. The divergence of the series is due to the
presence of singularities in the complex U plane, starting
on the circle jUj ¼ RF. The question is to reconstruct F
beyond the radius of convergence.

A. General theory

1. Conformal transformation

Conformal transformations can be used to deform the
complex plane and bring the point to be computed back into
the convergence disk of a transformed series. This tech-
nique was used a long time ago, e.g., in statistical physics
[75]. In a previous work [39], some of us showed that a
simple conformal Euler transform allows one to compute
the density on the impurity up to U ¼ ∞, at a very low
temperature, from the first 12 coefficients of the series.
However, this Euler transform is not always successful in
resumming other quantities like the Green’s function and
the self-energy and needs to be generalized.
Suppose that we aim at evaluating FðUÞ at U ¼ U0 with

U0 real, positive, and U0 > RF. First, we assume a
separation property, i.e., that we can find a simply
connected domain delimited by a curve C containing 0
and U0 but no singularities of the function F, as illustrated

in the bottom left of Fig. 1. The singularities of the function
FðUÞ are located outside the domain C. We then proceed as
follows.

(i) First, according to the Riemann mapping theorem,
we can construct a biholomorphic change of variable
WðUÞ such that (i) Wð0Þ ¼ 0 and (ii) it maps the
interior of C into a disk DC centered at 0 in the W
plane (see the bottom right of Fig. 1). In practice, we
seek C to separate the singularities from the half
straight line of real positive U. In the following, we
use two simple transformations, but, in general, we
could use a Schwarz-Christoffel map if C is a
polygon [76], composed with a Möbius transforma-
tion of the disk to enforce (i).

(ii) Second, we form the series for the reciprocal
function U½W� of WðUÞ which is defined term by
term by the equation U½WðUÞ� ¼ U. We then con-
struct the series F̄ðWÞ≡P

pF̄pWp defined by the
composition F̄ðWÞ ¼ FðU½W�Þ. Since Wð0Þ ¼ 0,
the first N terms of FðWÞ can be computed from
the first N terms of FðUÞ.

(iii) We evaluate the series F̄ðW0Þ at the point of interest
W0 ¼ WðU0Þ. Indeed, by construction W0 ∈ DC,
and, since F̄ðWÞ is holomorphic in DC, DC is
included in the convergence disk of the series F̄.
Hence, the series F̄ converges at W0.

The result is independent of the choice of the domain C,
but the speed of convergence of the series for F̄ðW0Þ versus
N is not, since it is determined by the relative position of
W0 compared to the radius of convergence RF̄ of F̄, i.e.,
ηC ≡ jW0=RF̄j. Therefore, there are ways to optimize the
domain C. For example, we cannot simply take a narrow
domain close to the real axis, for the convergence in W
would be really slow: We need to have U0 and 0 as “far” as
possible from the curve C (the precise meaning of far being
given by ηC). For each domain C satisfying the separation
property, there is a minimum number of orders NC needed
to obtain the result at a given precision ϵ. There is,
therefore, an optimal domain, which minimizes NC to
Nopt ¼ minCNC. This optimum is the absolute minimum
of orders needed to sum the series and, therefore, determine
in fine the complexity of the diagrammatic QMC algorithm.
Our next goal is to approach such an optimum.
Note that a failure of the separation assumption, i.e., the

choice of a domain containing singularities, may result
simply in the divergence of the series F̄ atW0, and, hence, a
clear failure of the method rather than a wrong result.
Conversely, the study of the convergence radius of the
F̄ðWÞ series provides direct information on the singularity-
free regions of the U plane. Indeed, the region of the U
plane that is mapped into the inside of the convergence
radius of F̄ðWÞ are singularity- and branch-cut-free. Hence,
using several conformal transforms, one may perform a
step-by-step construction of the domain C. Another note is
that, as a consistency check, one can also check the stability
of the final result upon small deformations of the domain
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[or the WðUÞ function], as discussed in detail in Ref. [39]
for the Euler transform.
The existence of the domain C and the transformation

WðUÞ has a direct consequence on the algorithmic com-
plexity of the diagrammatic quantum Monte Carlo algo-
rithm. It is shown in Ref. [77] that, for values of U inside
the convergence radius, connected diagrammatic quantum
Monte Carlo techniques provide a systematic route for
calculating the many-body quantum problem in a computa-
tional time that increases only polynomially with the
requested precision. The result also applies to the
Keldysh diagrammatic QMC. For completeness, the core
of the argument is as follows: Inside the radius of con-
vergence R, the precision of a calculation ϵ increases
exponentially with the number of orders N used
ϵ ∼ ðU=RÞN . Hence, although the computational time C
increases exponentially with N, C ∼ aN , the overall com-
putational time scales as C ∼ ð1=ϵÞlog a= logðR=UÞ, i.e., poly-
nomially; see Ref. [77] for a detailed analysis. For a given
U0 and domain C, we now have to sum the transformed
series F̄ inside the radius of convergence. Hence, the same
argument also applies for this series, and, therefore, we
conclude that, even outside the disk of convergence, we
expect the algorithm to have a polynomial complexity as a
function of the precision. Let us emphasize, however, that
this result is largely academic, since in practice the power
law can be large. Moreover, as we discuss, for some
physical quantities the transformation to W can lead to a
dramatic increase of the noise which induces a large
computation time for a given precision.

2. Location of singularities in the complex U plane

In order to choose C properly, we need to have some
information on the location of the singularities in the U
plane. In this paper, we use the following technique to
approximately locate the poles of FðUÞ in the complex
plane.

(i) We form an inverse of F of the form KðUÞ ¼
1=½FðUÞ þ a� as a formal series (i.e., order by
order). a is a constant that we choose at our
convenience. In order for the series KðUÞ to exist,
we must have F0 þ a ≠ 0.

(ii) We estimate the radii of convergenceRF (respectively,
RK) of F (respectively, K), by plotting jFnj and jKnj
versus n and fitting the asymptote jFnj ∼ ð1=RFÞn.

(iii) In most situations, we find RF ≠ RK . If not, we use a
different a so as to obtain RF ≠ RK . Without loss of
generality, let us assume that RK is the largest. We
use the truncated polynomial of the series,P

N
p¼0KpUp, to compute KðUÞ within its disk of

convergence and, therefore, locate its zeros, which
are the poles of F. They appear as the accumulation
of the zeros of the polynomials at large enough N.

If RF > RK , we simply reverse the roles of the series
and reconstruct KðUÞ.

This technique has a quite large degree of generality but
also limitations. It assumes, for example, that the leading
singularities in F are poles and that the radius of con-
vergence of F and K are different. Also, it does not give us
indications of poles that would be far from the origin but
close to the real axis. However, in practice, we see below
that, for the quantities and the physical problem considered
in this paper (Green’s function and self-energy in real
frequency and Kondo temperature), this technique is
sufficient. Finally, once FðUÞ has been resummed, it can
be used to locate its zeros and, hence, for the resummation
of KðUÞ, which provides another consistency check of the
method.

3. Controlling the noise amplification using
nonperturbative information and Bayesian inference

The transformation from Fn to F̄p is a linear one (with a
lower triangular matrix), for a given transformation WðUÞ.
Depending on the eigenvalues of the corresponding matrix,
the Monte Carlo error bar in Fn may be strongly amplified
by the transformation. As a result, the method may become
unusable at strong coupling, as illustrated below in Fig. 6.
However, if we add some nonperturbative information,

such as the fact that the Kondo temperature vanishes at
infinite U, or a sum rule, we can construct a Bayesian
inference technique that may be used to decrease the
statistical uncertainty. Bayesian inference provides a sys-
tematic and rigorous way to incorporate this information
into the results and improve their accuracy. In the rest of
this subsection, we describe the general theory for this
technique. We illustrate it in the following section.
Let us consider a series FðUÞ ¼ P

N
n¼0 FnUn, where the

Fn are known with a finite precision. We denote F ¼
fF0; F1;…FNg the corresponding (vectorial) random var-
iable. We calculate the mean values hFni and the corre-
sponding errors δn within the quantum Monte Carlo
technique. We assume that the coefficients Fn are given
by independent Gaussian variables. The assumption con-
stitutes the “prior” distribution Pprior½F ¼ f� in the absence
of additional information:

Pprior½F ¼ f� ¼
YN
i¼0

1ffiffiffiffiffiffiffiffiffiffi
2πδn

p e
− ðfn−hFniÞ2

2δ2n : ð12Þ

Let us note the additional information X. X is a random
variable that can be directly calculated from the series,
X ¼ gðFÞ, but whose actual value is also known very
precisely by other means. In the example below, X is the
value of FðUÞ at large U. Bayesian inference amounts to
replacing the prior distribution with the posterior distribu-
tion PðF ¼ fjX ¼ x0Þ that incorporates the knowledge of
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the actual value of X [we denote PðAjBÞ the conditional
probability of event A knowing event B]. The value of X is
often known exactly. However, due to the presence of
truncation errors, its value cannot be enforced exactly, and
we suppose that it is known with a small error ε. Eventually,
we take the limit ε → 0. Hence, we assign to X a Gaussian
probability distribution PX½X ¼ x� ¼ 1=ðε ffiffiffiffiffiffi

2π
p Þ exp½−ðx −

x0Þ2=ð2ε2Þ� and define the posterior distribution as

PposteriorðF¼ fÞ≡
Z

dxPðF¼ fjX¼ xÞPX½X¼ x�: ð13Þ

Using Bayes formula PðF ¼ fjX ¼ xÞ ¼ PðX ¼ xjF ¼
fÞPprior½F ¼ f�=Pprior½X ¼ x� and the deterministic relation
PðX ¼ xjF ¼ fÞ ¼ δ½x − gðfÞ�, one arrives at

PposteriorðF ¼ fÞ ¼ PX½X ¼ gðfÞ�Pprior½F ¼ f�
Pprior½X ¼ gðfÞ� : ð14Þ

In practice, one proceeds as follows: (i) One generates many
series according to Pprior½F ¼ f�. We emphasize that these
series result from a single QMC run and, hence, are trivially
generated (independent Gaussian numbers). Bayesian infer-
ence implies no significant computational overhead. (ii) One
constructs a histogram of the values of X to obtain
Pprior½X ¼ gðfÞ�. (iii) Each series is given a weight
PX½X ¼ gðfÞ�=Pprior½X ¼ gðfÞ�, which is used to calculate
other observables such as the value of FðUÞ at different
values of U. In practice, the results are insensitive to the
choice of ε as long as it is chosen large enough so that a finite
fraction of the sample contributes to the final statistics.

B. Illustration with the Kondo temperature

Let us first apply the method described above to the
Kondo temperature TK (which is F in this section). TK
corresponds roughly to the width of the low-energy Kondo
peak and is defined more specifically in this paper as the
dimensionful Fermi-liquid quasiparticle weight extracted
from the retarded self-energy at a low energy:

TKðUÞ≡ 2Γ
1 − ∂ωReΣRðU;ωÞjω¼0

: ð15Þ

Our first goal is to illustrate how the method actually works
and benchmark it against the calculation of the same
quantity from the NRG technique and Bethe ansatz [78,79].

1. Singularities in the complex U plane

The dashed blue lines in Fig. 3 show the truncated series
of TK ¼ P

N
n¼0 FnUn for various orders N ≤ 10. These

truncated series diverge around RTK
≈ 5Γ, which is the

convergence radius of the series for these parameters.
Increasing the value of N helps to obtain a reliable value
of TK closer to RTK

. However, as expected, even with a very

large number of terms, the bare series cannot be summed
near or above RTK

. Anticipating the final results, the plain
red line corresponds to the results after resummation, which
matches very well with what is obtained with our bench-
mark NRG calculation (see Sec. IVA for details on the used
NRG implementation).
The inset in Fig. 3 shows the value of jFnUnj (blue

circles) as a function of n for U=Γ ¼ 9 which lies above the
convergence radius of the series. The log-linear plot shows
an exponential increase of jFnUnj ∼ ðU=RTK

Þn with n
which we use to extract the convergence radius of the
series. Note that, for other series, it can happen that jFnj
oscillates with n. Whenever Fn changes sign, it becomes
close to zero, which provides deviations from the clear
exponential behavior shown in the inset in Fig. 3. Hence, to
obtain convergence radii which are robust to these outliers,
we use a robust regression method on the log jFnj versus n
data (we compute the regression slope as the median of all
slopes between pairs of data points, which is known in
statistics as the Theil-Sen estimator [80]).
We now compute the first ten terms of the series of

1=TKðUÞ. This series has a radius of convergence of the
order of 10Γ. We look for the zeros, in the complex plane,
of the series 1=TKðUÞ truncated at the Nth order. Since the
truncated series is a polynomial, it has (generically) N
zeros, which are shown in Fig. 4 for N ¼ 6 (red squares),
N ¼ 8 (blue circles), and N ¼ 10 (stars). One pair of zeros

FIG. 3. Resummation of the Kondo temperature [as defined in
Eq. (15)] in the symmetric model (ϵd ¼ 0). Plain red line:
Resummation technique including Bayesian inference, using
the Euler transform (error bar shown as a red shaded area);
dashed thick green line: exact result from the Bethe ansatz [78];
black circles: reference NRG results; dashed blue lines: truncated
series including up to N ¼ 2, 4, 6, 8, and 10 terms. The vertical
line shows the estimated convergence radius of the series. Inset:
Evolution of FnUn with n forU ¼ 9Γ in the log-linear scale (blue
circles); evolution of the series F̄nWn obtained after conformal
transformation (red squares). The value W ¼ 0.7 is obtained by
applying the conformal transformation to U ¼ 9Γ. The F̄nWn

decreases exponentially, indicating a convergence of the trans-
formed series while the original series (blue circles) diverges.
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U ≈�i5Γ is converged for all the truncations and, hence,
corresponds to a true zero of 1=TKðUÞ, i.e., to a pole of
TKðUÞ. Figure 4 also shows the circle jUj ¼ RTK

extracted
from the analysis of the TKðUÞ series done in the inset in
Fig. 3. We find that the two poles �i5Γ do indeed lie right
on this circle.

2. Conformal transformation

Let us now turn to the conformal transformation WðUÞ,
which maps the two poles�i5Γ away and brings the values
of interest U > 0 (real) closer to zero. We illustrate the
technique with two maps: the Euler map defined by

W ¼ U
U − p

ð16Þ

and the “parabola” map, which is defined as

W ¼ − tan2
�
π

2

ffiffiffiffi
U
p

s �
; ð17Þ

where p is an adjustable complex parameter.
Figure 5 shows the various regions (different colors) in

the U plane that are mapped onto concentric circles of
the W plane. 0 is mapped onto 0 and p onto ∞ in both
transforms. The Euler map (left column) maps one half of

the plane into the unit disk and the other half into the
outside of the unit disk (separated by a black line). The
parabola transform (right column) maps the inside of
a parabola (black line) into the unit disk and the outside
of the parabola into the outside of the unit disk. In the case
where there are no singularities on the positive half plane
Re½U� > 0, the Euler transform should be preferred, since
real values of U > 0 are typically mapped closer to U ¼ 0
than with the parabola transform (compare the size of the
blue region of the parabola and Euler case, for instance).
However, the parabola map is more agnostic about the
positions of the singularities and will work even if there are
singularities on the positive half plane Re½U� > 0 as long as
they lie outside the parabola.
We now perform the resummation of TKðUÞ. The series

contains only even power of U due to particle-hole
symmetry, so that it can be considered as a function of
U2. The two poles U ¼ �i5Γ correspond to a single one
U2 ¼ −25Γ2. In the U2 plane, the pole being on the
negative real axis, the Euler maps works very effectively.
The resummation can also be performed with the parabola
transform.
Once the conformalmap is selected, we form the series F̄p

in the W variable, as explained above. The inset in Fig. 3
shows F̄nWn

0 (red squares) as a function of n for
W0 ¼ 0.7 ¼ WðU0 ¼ 9ΓÞ, using the Euler map with p ¼
−35Γ2 (the parabola yields similar results withp ¼ −15Γ2).
As expected,U0 is way beyond the radius of convergence in
the original variable U, while W0 lies within the disk of
convergence of F̄ðWÞ whose radius is found to be RF̄ ≈ 2.

FIG. 5. Left: Euler map. Right: Parabola map. Top: Complex U
plane. Bottom: Complex W plane. The transformation maps the
top regions of various colors onto the bottom regions of matching
colors. In particular, the thick straight line (top left) and the
parabola (top right) are mapped onto the unit circles (bottom left
and right, respectively).

FIG. 4. Poles of TKðUÞ identified from the zeros of the
1=TKðUÞ function. These are found by looking for the zeros
of its truncated series. Here, they are shown in the U=Γ complex
plane with truncation at the order of 6 (red squares), 8 (blue
points), and 10 (black stars). The black circle corresponds to
jUj ¼ RTK

, where RTK
is the radius of convergence of the series

of TK . The stable points close to �i5Γ correspond to true
nonperturbative poles of TKðUÞ. The exact zeros (small orange
arrows) are computed from the exact 1=TK series found with the
Bethe ansatz [78].
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The final resultTKðUÞ using the Euler transforms is shown in
Fig. 3. The parabola transform (not shown) is undistinguish-
able from the Euler at this scale.
In this work, singularities are never found near the real

positive axis, so that all U > 0 can be reached using the
conformal transforms in Fig. 5, given that enough orders of
the series are known. However, one may very well build a
conformal transform to reach a regime beyond a singularity
by considering a concave contour C, as shown in the
Appendix A. This approach may become interesting if a
phase transition occurs when interaction is increased.

3. Noise reduction with Bayesian inference

Let us now apply the Bayesian inference technique
described above to the computation of TKðUÞ. In the left
in Fig. 6, we resample the series for the Kondo temperature;
i.e., we generate many series (typically, 103–105 samples).
For each sample, we perform the conformal transformation
and plot the result for the Kondo temperature as a function
of U (thin red lines). While we find that all results agree for
U ≤ 6Γ, the bundle of curves starts to diverge for larger
values of U. In the middle, we plot (black thin line) the
corresponding histogram of the values obtained for
TKðU ¼ ∞Þ, which is Pprior½TK ¼ gðfÞ�.
We use the nonperturbative relation limU→∞TKðUÞ ¼ 0.

Hence, we want to “postselect” the configuration of Fn
which gives a vanishing Kondo temperature at large U,

at precision ε. Following the procedure described in
Sec. III A 3, our final result is obtained by averaging the
different traces (thin red lines) with the weight given by
Eq. (14). The right in Fig. 6 shows the result for three
different values ofU as a function of ε, which confirms that
the results are insensitive to the actual value of ε. We find a
very good agreement with the results obtained from the
NRG even at large values of U, noting that NRG spectra
have typical relative error bars of a few percents (see
Sec. IVA for details).

4. Benchmark with the Bethe ansatz exact solution

The series expansion for 1=TKðUÞ is calculated explic-
itly and exactly using the Bethe ansatz technique by
Horvatić and Zlatić [78,79]. Reference [78] provides an
iterative formula for calculating the coefficients of the
expansions and shows that the corresponding series has an
infinite radius of convergence. This result provides another
independent benchmark of the calculation of TKðUÞ as well
as of themethod itself.We check that the ten first coefficients
of this series agree with the one that we compute with QMC.
Figure 3 shows our final result together with the NRG

result (black circles) and the Bethe ansatz results. At this
scale, the agreement is perfect. Using the exact series for
1=TKðUÞ (truncated to around 50 coefficients), we study
its zeros, which are the poles of TKðUÞ. We find that they
are situated on the imaginary axis. The poles closest to the

FIG. 6. Reduction of the statistical noise on the resummed TKðUÞ series by Bayesian inference. Left: Kondo temperature as a function
of U. The bundle of red lines corresponds to different samples of our series after resummation (see the text). The thick line shows the
final result after Bayesian inference, while the circles show our reference NRG calculations. The dashed blue lines show the bare results
without resummation, which diverge for U > 5Γ. Middle: Histogram of the values of TKðU ¼ ∞Þ obtained from our samples (black
line) and a histogram of its assumed distribution with tolerance ε (purple line). Right: The final result after inference as a function
of ε for three values of U=Γ ¼ 6, 9, and 12 (thin lines), the reference NRG result (dotted lines), and the Bethe ansatz result
(dashed horizontal lines).
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origin are U=Γ ≈�4.890 59579i in agreement with our
findings; see Fig. 4. The next poles are U=Γ ≈�13.79i,
21.77i, 29.89i, 37.87i, and 45.9i but are too far to be
accessible with only the first ten coefficients. The right in
Fig. 6 provides a detailed benchmark of our results versus
both the NRG and the exact Bethe ansatz solution.
We find that the QMC results for TK are slightly more

accurate than the NRG, because the extraction of TK from
the NRG self-energy [see Eq. (15)] contains inherent
broadening errors. The agreement between all three meth-
ods is nevertheless excellent. In addition, we can extract
from the Bethe ansatz the exact QMC error, and this error
matches the measured one-sigma statistical error bars.

C. Equilibrium dynamical correlation functions

Let us now apply our method to the Green’s function and
self-energy as a function of the real frequency ω.

1. Singularities in the long time (stationary) limit

Let us now turn to the full Green’s functionGRðω; UÞ and
self-energy ΣRðω; UÞ. An example of our bare data is shown
in Fig. 2, wherewe plot the coefficientsΣR

n ðωÞ obtained from
the real time diagrammatic quantum Monte Carlo algorithm
for n ¼ 2, 4, 6, 8, and 10. The description of the method
used to calculate these coefficients ΣR

n ðωÞ is explained in the
companion paper to this article [64].
We focus on the quantity ΣRðωÞ − iΓ and denote its

inverse FωðUÞ ¼ 1=½ΣRðωÞ − iΓ�. The retarded Green’s
function can be recovered from FωðUÞ using GRðωÞ ¼
1=½ω − FωðUÞ−1� [using ω − ΣRðωÞ þ iΓ turns out to be
less convenient especially at high frequencies].
Figure 7 shows the convergence radius of FωðUÞ as a

function of the frequency, extracted from a study of the
exponential decay of the corresponding series with n. We
also perform a systematic study of the zeros of ΣRðωÞ − iΓ
in order to localize the poles of FωðUÞ. We find one pair of
poles at each frequency. The results are shown in the inset
in Fig. 7 for a set of frequencies from ω ¼ 0 to ω ¼ 10Γ in
the complex plane forU2. The absolute value of the poles of
FωðUÞ is also plotted in the main frame in Fig. 7 as a
function of the frequency (circles of varying colors from
blue to red). We observe a perfect match with our
estimation of the convergence radius, reflecting the fact
that these poles are responsible for the divergence of the
series. It is important to note here that working in the real
frequency domain is very helpful: We find a single pole per
frequency (at least for the range of interactions that we
could study). Hence, we expect that performing the
resummation in real time or imaginary frequencies could
be more complex, since all these poles would be involved
simultaneously.
The results for three frequencies (ω=Γ ¼ 1, 2, and 6) are

given in Fig. 8. We show the convergence of the imaginary
part of the self-energy using two different resummed series:

FωðUÞ (green symbols) and 1=FωðUÞ (purple symbols).
The former is resummed with an Euler transform with a
frequency-dependent p set close to the poles shown in
Fig. 7. The latter, for which our method does not detect
poles, is resummed with the parabola transform (in the U
plane) with p ¼ −4.5Γ. Again, Bayesian inference is
used to enforce limU→∞GðU;ωÞ ¼ 0 for all ω ≠ 0.

FIG. 7. Main frame: Convergence radius RFω
of FωðUÞ ¼

1=½ΣRðU;ωÞ − iΓ� (thin line) in the equilibrium symmetric
Anderson impurity model. The color circles show the absolute
value of the pole of FωðUÞ. Inset: Position of the pole of FωðUÞ
in the U2 complex plane for different frequencies. The color blue
to red corresponds to the increasing frequency, as in the main
frame. At high frequencies, the statistical uncertainty prevents an
accurate localization of the poles.

FIG. 8. Resummation of the self-energy in the equilibrium
symmetric Anderson impurity model at U ¼ 9Γ. The imaginary
part of ΣRðωÞ is shown as a function of the number n of terms
kept in the resummation, for three frequencies ω ¼ Γ (circles), 2Γ
(triangles), and 6Γ (squares). The independent resummations of
FωðUÞ (green line) and of ΣRðωÞ − iΓ (purple line) converge with
one another. The results with truncation and statistical errors are
shown on the left of the y axis, along with NRG results (black
symbols).
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For comparison, we also include the NRG results (which
are very accurate at small frequencies and possibly less
accurate at large frequencies). The slight difference
between the purple and green curves is due to the truncation
error. We find that the series which has (initially) the largest
convergence radius is less sensitive to truncation error
or statistical noise than the other. We attribute the small
discrepancy between the QMC results and NRG at large
frequencies to a lack of convergence of the latter. These
results are obtained for a rather strong interaction U ¼ 9Γ.
At smaller interactions, the QMC and NRG results become
undistinguishable. At larger interactions, the QMC results
become increasingly inaccurate due to truncation errors.

2. The long time limit

In the Keldysh formalism, the interactions are switched
on at an initial time (t ¼ 0), and one follows the evolution
of the system with time t. We assume here that the system
relaxes to a steady state at a long time. Let us consider
the average of an operator Ô as a function of the time,
and its expansion hÔðtÞi ¼ P

nOnðtÞUn (the extension of
the following arguments to the Green’s function is
straightforward).
At finite time t, the radius of convergence of this series is

infinite, as shown in Appendix B. Each order in the
perturbation expansion OnðtÞ relaxes with t to a long time
limit, but the time trelax½n� it takes to reach this limit can
increase with n. The long time and large n limit do not
commute, in general:

lim
n→∞

lim
t→∞

OnðtÞ ≠ lim
t→∞

lim
n→∞

OnðtÞ: ð18Þ

This behavior was already noted in Fig. 14 in Ref. [39]. It is
also illustrated in Fig. 9, which shows various orders n of
the expansion of the current through the dot versus n, for
different times. We observe that at small times the orders In
decrease faster than exponentially with n, consistent with
the bound mentioned above. The coefficients converge to
the steady-state limit at long time.
At finite time t, since the series converges, it is sufficient

to have enough orders. In the steady state, as explained
above, we have a minimal order N0 needed to compute the
quantity at a given precision. One should then simply
compute at a time t > trelax½N0�.
In the Anderson model, some quantities like the spectral

function are known to relax on a long timescale tK ∼ T−1
K ;

see, e.g., Ref. [81]. The previous remarks explain how the
algorithm deals with this long time. For a given U, we need
N0ðUÞ orders, hence, to compute at a time larger than
trelax½N0ðUÞ�. The largerU is, the longer this time becomes.
However, it is still finite at fixed U, and, since our
calculation of the perturbative expansion is uniform in
time, it is not an issue (the computation effort does not grow
with time). However, the existence of the Kondo time

indicates that the number of orders necessary to compute,
e.g., the low-frequency spectral function at a given U
increases with U (otherwise, the relaxation time of the
physical quantity would be bounded at large U).

IV. BENCHMARK OF THE DYNAMICS IN
EQUILIBRIUM

We now benchmark our results in the case of equilib-
rium, testing various regimes of the Anderson impurity
model. Let us first describe the high-precision NRG
computations that are performed.

A. NRG implementation

The NRG [82] is used to benchmark our QMC calcu-
lations in equilibrium and to test the reliability of the series
extrapolation method for spectral functions at various
values of U and ϵd. In order to obtain precise NRG data
for the spectral function of the Anderson impurity model,
the computations are performed using several improve-
ments over the simplest implementations of the NRG. First,
the full density matrix formulation of the NRG [83] is used
to reduce finite size effects due to the NRG truncation.
Second, symmetries of the problem are heavily exploited
[84], allowing one to reduce significantly the Hilbert space
dimension of various multiplets. In the particle-hole sym-
metric case, the full SUð2Þcharge ⊗ SUð2Þspin symmetry is
used, while the charge sector is reduced to Uð1Þcharge away

FIG. 9. Coefficients (absolute value) of the series for the current
(circles with thin lines) in the asymmetric model (ϵd ¼ Γ,
Vb ¼ 1.6Γ) computed at different times t (different colors).
The apparent convergence radius decreases with time. For small
values of t, we can observe that the series coefficients decrease
faster than exponentially, which indicates an infinite convergence
radius. The thick dashed line shows the corresponding fit with
ðtΓ=2Þn=n!. For large enough t, the series converges toward the
steady-state limit.
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from particle-hole symmetry. Third, the impurity Green’s
function is extracted from a direct computation of the
d-level self-energy ΣðωÞ [85], according to its exact
representation as the ratio of two retarded correlation
functions in the frequency domain:

ΣðωÞ ¼ U
FRðωÞ
GRðωÞ ; ð19Þ

where GRðtÞ ¼ −iθðtÞhfdσð0Þ; d†σðtÞgi is the usual single-
particle retarded Green’s function in the time domain and
FRðtÞ¼−iθðtÞhfdσð0Þd†−σð0Þd−σð0Þ;d†σðtÞgi is a composite
fermionic correlation function. In practice, Im½GRðωÞ� and
Im½FRðωÞ� are computed from the Källén-Lehmann repre-
sentationusing the broadenedNRGspectra, and the real parts
of bothGRðωÞ andFRðωÞ are obtained via aKramers-Kronig
relation. Finally, the truncation parameters of the NRG
simulations are taken to model as closely as possible a
continuous density of states for the electronic bath. Although
the use of the logarithmic Wilson discretization grid,
ωn ¼ DΛ−n, is inherent to the practical success of NRG,
we find that values of Λ as low as Λ ¼ 1.4 can be managed
in practice within the NRG, taking a very large number
Nkept ¼ 3200 of kept multiplets. Up to Niter ¼ 120 NRG

iterations are used, so that the effective temperature can be
considered to be practically zero. With such a small value of
Λ, the broadening parameter b of the discrete NRG spectra
could be decreased down to b ¼ 0.2, without z averaging,
which further enhances the spectral resolution of the
Hubbard satellites in the spectral function.

B. Comparison to NRG in equilibrium

Figure 10 shows the spectral function as well as the
imaginary and real parts of the self-energy for the symmetric
Anderson impurity in the strong correlation regimeU ¼ 9Γ
(the same data as the purple curve in Fig. 8). The spectral
function shows a clear Kondo peak and the two satellites at
ω ≃�4.5Γ ¼ �U=2 in good agreement with the NRG data.
For this calculation, a simple second-order calculation of the
self-energy already provides a reasonably good result (thin
black line), due to near cancellations in higher-order
diagrams in the peculiar case of particle-hole symmetry.
Figure 11 shows the same plot in the asymmetric case

ϵd ¼ 1. This case is more complex, because the resonance
at U ¼ 0 is offset with respect to the Fermi level and,
hence, to the position of the Kondo peak. We note that
previous real-time QMC techniques suffer from a strong
sign problem and cannot access the asymmetric regime

FIG. 10. Resummed equilibrium spectral function (top), real
part (middle), and imaginary part (bottom) of the retarded self-
energy ΣRðωÞ for the symmetric Anderson impurity ϵd=Γ ¼ 0 at
U ¼ 9Γ. Purple line: Resummed result from 10 orders of
perturbation theory; dashed line: NRG; dotted line: noninteract-
ing result; thin black line: second-order perturbation theory for
the self-energy. Inset: Enlargement of the imaginary part at a
small energy with error bars.

FIG. 11. Resummed equilibrium spectral function (top), real
part (middle), and imaginary part (bottom) of the retarded self-
energy ΣRðωÞ for the asymmetric Anderson impurity ϵd=Γ ¼ 1 at
U ¼ 6Γ. Purple line: Resummed result from 10 orders of
perturbation theory; dashed line: NRG; dotted line: noninteract-
ing result; thin black line: second-order perturbation theory for
the self-energy. Inset: Enlargement of the imaginary part at a
small energy with error bars.
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[31]. We also stress that the second-order approximation is
now very different from the correct result. The comparison
to the NRG data is still excellent.
Another advantage of the techniques described in this

article and its companion article [64] is that a single QMC
run provides the full dependence in both ω and U, which is
very time consuming in the NRG. Hence we show in
Fig. 12 the spectral function as a function of ω and U. One
can clearly observe the formation of the Kondo peak (which
gets thinner as one increases U and shifts toward ω ¼ 0 in
the asymmetric case) as well as the Hubbard bands at
ω ¼ �U=2. Note that the results are perfectly well behaved
(qualitatively correct) up to very large U (even above U ¼
12Γ shown in the plot) but become quantitatively inaccu-
rate at too large values ofU. Improving them would require
the use of higher perturbation orders.
The bare power series for the Green's functions com-

puted with QMC in this section can be found in
Supplemental Material [86].

V. OUT-OF-EQUILIBRIUM RESULTS

We finally turn to the out-of-equilibrium regime and
present some accurate computation of current-voltage
characteristics, as well as novel predictions for dynamical
observables in the presence of a finite bias voltage.
The bare power series for the nonequilibrium Green's

functions computed with QMC for typical sets of param-
eters can be found in Supplemental Material [86].

A. Splitting of the spectral function

Figure 13 shows the spectral function of the symmetric
impurity in the presence of various bias voltages from Vb ¼
0 to 4Γ. The results are obtained using the parabolic map on
the series of ΣωðU2Þ − iΓ (with an optimized frequency-
dependent parameter p=Γ2 ∈ ½−25;−200�). Upon increas-
ing the bias voltage, we find as expected from the NCA [22]
and perturbative [20] calculations that the Kondo resonance
simultaneously broadens and gets split into two peaks.
Previous results on the spectral function [35] are based on
the bold diagrammatic approach and are calculated at a
relatively high temperature (T ¼ Γ=3) while using a third
terminal for computing the spectral function.
Most of the results of this paper are obtained at a very

low temperature. We emphasize, however, that increasing
the temperature makes the calculations easier: Indeed, at a
finite temperature, the noninteracting Green’s functions
decrease exponentially as e−t=β instead of the algebraic
decay at a zero temperature. It follows that the support of
the integrals to be calculated is smaller and, hence, the
convergence of the calculation faster. We show a calcu-
lation at a finite temperature in Fig. 14, where we compute
the spectral density of the symmetric impurity at temper-
ature T ¼ Γ=50 under a bias voltage Vb ¼ 0.6Γ and
Vb ¼ 1.5Γ. A single Monte Carlo run allows us to observe
the splitting of the Kondo resonance asU is increased (top).
The result is quantitatively accurate up to U ≈ 8Γ (bottom)
but remains qualitatively meaningful at a higher interac-
tion (top).
The fate of the Kondo resonance out of equilibrium, in

the presence of a bias voltage, can be understood

FIG. 12. Color plot of the spectral density Aðω; UÞ in the
symmetric case (ϵd=Γ ¼ 0, upper) and asymmetric case
(ϵd=Γ ¼ 1, lower) as a function of ω and U. The data from
each panel are obtained in a single QMC run.

FIG. 13. Out-of-equilibrium spectral functions with interaction
strength U=Γ ¼ 5, in the symmetric (ϵd=Γ ¼ 0) model with a
symmetric voltage bias Vb. The resulting self-energy series is
resummed in a similar fashion as for the previous results. The
noninteracting spectral function is shown as a dotted line.
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qualitatively from the interplay of two phenomena. On the
one hand, the bias voltage induces a splitting of the Fermi
energies of the two reservoirs; hence, one expects a
corresponding splitting of the Kondo resonance. On the
other hand, the voltage, like the temperature, increases the
energy and phase space for the spin fluctuations, leading
eventually to the disappearance of the Kondo resonance
[87–89]. The competition between both effects leads to the
appearance of the splitting only above a finite voltage
threshold (about Vb ≃ Γ in the plot in Fig. 13).

B. I-V transport characteristics

Figure 15 shows the results obtained for the I-V
characteristics in the symmetric case ϵd ¼ 0. The resum-
mation is done for the series of 1=IðU2Þ using a parabolic
transform with p ¼ −40Γ2. At small bias, we recover a
perfect transmission I ¼ ðe2=hÞVb due to the unitary
Kondo resonance, while for eVb > kBTK the conductance
experiences an extra suppression by the interaction
(Coulomb blockade). We find a very good match with a
previous calculation from Ref. [31]. The present technique
allows one to lift the main limitations that Refs. [30,31]
face: We can now access long times (here, we use ∼20=Γ,
but it could be increased further if necessary) to be
compared with maximum times of the order of ∼3–5=Γ
in Ref. [31]. As a consequence, we can reach the low bias

regime, which is not accessible in Ref. [31]. Another
important point is that the method is not limited to the
symmetry point, as we now demonstrate.
Figure 16 shows the I-V characteristics for an asym-

metric model with ϵd=Γ ¼ 1. The results are obtained from
the resummation of 1=IðUÞ with a parabolic trans-
form (p ¼ −6Γ) and no Bayesian inference. The I-V

FIG. 15. Current-voltage characteristics at different interaction
strengths in the symmetric case ϵd ¼ 0. Perturbation series for the
current are computed using the Landauer formula Eq. (7) and
then resummed. The results are consistent with a weak-coupling
quantum Monte Carlo calculation from Werner et al. [31]
(triangles) but extends further down in bias.

FIG. 14. Out-of-equilibrium spectral functions of the impurity
with the same parameters as in Fig. 13, except for temperature
T ¼ Γ=50. Top: Color plot of the spectral density as a function of
ω andU for a voltage bias Vb ¼ 0.6Γ. Bottom: Spectral density at
U ¼ 8Γ for a bias Vb ¼ 0.6Γ (blue line) and Vb ¼ 1.5Γ (orange
line). Error bars are shown as shaded areas. The dotted line shows
the noninteracting density. No Bayesian inference is used. The
integration time is 20=Γ.

FIG. 16. Current-voltage characteristics at different interaction
strengths in the asymmetric model (ϵd=Γ ¼ 1). The bottom-right
inset shows the development of the zero-bias anomaly in the
differential conductance whenU increases (U=Γ ¼ 0 in blue, 2 in
green, and 4 in red).
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characteristics is particularly interesting, because, due to
the asymmetry, the noninteracting low bias transmission is
modified by interactions, and one must first build up
the Kondo resonance to approach I ≃ ðe2=hÞVb (note that
the unitary limit is strictly exact only at ϵd ¼ 0, and the
conductance is slightly lower than e2=h otherwise in the
Kondo regime). This behavior leads to a nonmonotonic
current versus U: As one increases U, the current first
increases until the Kondo resonance is fully built (see the
bottom in Fig. 12). As one increases further U, the Kondo
width TK shrinks and the current decreases as Coulomb
blockade starts to set in.

C. Biased distribution function

Finally, we discuss the out-of-equilibrium distribution
function of the impurity, i.e., its energy-dependent prob-
ability of occupation. We define the distribution function
nðωÞ as

nðωÞ ¼ G<ðωÞ
2πiAðωÞ ; ð20Þ

so that at equilibrium nðωÞ is simply the Fermi function
nFðωÞ. Without an interaction, the distribution function
amounts (at a zero temperature) to a double-step function
nðωÞU¼0 ¼ ½nFðω − Vb=2Þ þ nFðωþ Vb=2Þ�=2. We want
to investigate the behavior of nðωÞ as U increases, a
question that is not addressed in the previous literature
to the best of our knowledge.
The results are shown in Fig. 17. In this particular case, the

series are fully alternated, which means that the singularity
lies on the negative real axis. We could sum the series using
an Euler transform (p ¼ −8Γ2) up toU ¼ þ∞. We find that
the function nðωÞ is not thermal; i.e., it cannot be fitted by a
Fermi function nF with an effective temperature. In particu-
lar, it still exhibits discontinuities at the position of the lead
Fermi surfaces, which we expect to be rounded at a finite
temperature. Interestingly, these discontinuities are compa-
rable to the equilibrium quasiparticle weight forU ¼ 4Γ and
do not seem to vanish in the limitU ¼ ∞. Also very striking
is the quasilinear behavior of nðωÞ that is observed
for −Vb=2 < ω < Vb=2.
Experiments that measure the nonequilibrium distribu-

tion function quantity typically use a third (for instance,
superconducting) terminal weakly coupled to the system
[90–93]. To the best of our knowledge, this quantity has
not been measured in quantum dots, and we hope that
the present prediction may stimulate some experimental
activity.

VI. CONCLUSION: THE FALL
OF THE CONVERGENCE WALL

We have presented a systematic computation of the
perturbative expansion of the Anderson impurity model in
and out of equilibrium in power of the interaction strength
U. The main advantage of our Keldysh expansion approach
is its ability to calculate directly in the long time steady-
state regime. Using our approach, we were able to obtain
improved or novel results regarding the nonequilibrium
dynamics of strongly interacting quantum dots.
The main contribution of this article lies in the systematic

construction of a set of conformal transformations that
provide a practical route for a mathematically controlled
resummation of series. We have shown how to use analytic
conformal transform guided by an approximated location
of the singularities of the physical quantities in the U
complex plane. We also presented a Bayesian method to
control the strong amplification of statistical noise during
this procedure, using some simple nonperturbative infor-
mation. The combination of singularity location, conformal
transform crafting, and Bayesian inference provides a
robust and generic resummation methodology.
It was noticed recently [77] that, for values of U inside

the convergence radius, connected diagrammatic quantum

FIG. 17. Bottom: Out-of-equilibrium electron distribution func-
tion on the impurity (ϵd=Γ ¼ 0) under a bias voltage Vb ¼ 2.4Γ.
The distribution function is defined as in Eq. (20). Increasing the
interaction strength (U=Γ ¼ 4 blue line, U=Γ ¼ þ∞ red line)
leads to a softening of the characteristic double step of the
noninteracting distribution function (dashed line). It is linear
between the Fermi levels of the two leads. The Euler transform is
used for resummation, and the result is not submitted to Bayesian
inference. Top: Normalized slope of the distribution function near
ω ¼ 0 as a function of the bias voltage (left) and interaction
strength (right). For an intermediate interaction, the normalized
slope reaches an extremum near Vb ¼ 2Γ (left). At a strong
interaction, the normalized slope saturates (right, for Vb ¼ 2.4Γ).
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Monte Carlo techniques provide a systematic route for
calculating the many-body quantum problem in a computa-
tional time that only increases polynomially with the
requested precision. We argue that the argument in
Ref. [77] can be directly extended to systems where the
separation hypothesis holds (switching from working with
the series in U to the series in W). We conclude that, in
general, systems where the separation hypothesis holds can
be computed with a computing time that increases poly-
nomially with the requested precision.
The approach presented here may have implications for a

large class of other problems within or beyond condensed
matter physics. In particular, a possible extension is to build
a real-time (equilibrium or nonequilibrium) quantum impu-
rity solver for DMFT or its extensions or directly address
lattice problems such as the Hubbard model. At its core, it
consists in techniques to efficiently compute the bare
perturbation series and to sum it. Its limitations remain
to be explored. They could come from a resurgence of the
sign problem, which would manifest itself in a very
oscillatory nature of the integrals for expansion coeffi-
cients, making them hard to evaluate, or from a difficulty to
sum the perturbative series, in particular, for systems with a
phase transition, or a non-Fermi-liquid fixed point at a
low temperature. In order to address these questions, the
technique needs to be applied to more complex models.
Work is in progress in this direction.
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APPENDIX A: A TOY MODEL FUNCTION WITH
A SINGULARITY ON THE REAL AXIS

We present here in Fig. 18 a toy model for the
resummation of a function fðUÞ ¼ 1= ln½ið1 −UÞ þ 1�
that has a pole on the real axis at U ¼ 1 as well as a
branch cut on the curve U ¼ 1 − ið1þ xÞ with x ∈ ½0;∞�.
The aim of this toy model is to show that, even though fðUÞ
has a singularity on the real axis (and, hence, it will be
difficult to calculate close to this singularity), it is possible
to calculate the function beyond the singularity using a
conformal transformation. We use the conformal mapW ¼
½χðUÞ − χð0Þ�=½χðUÞ − χð0Þ��, with χðUÞ¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðU−1Þ=pp
−i

that maps the inside of a parabola into the outside of the
unit disk (see the upper left and right in Fig. 18). The lower
panel in Fig. 18 shows the corresponding resummed series
using N ¼ 10, 20, and 30 terms in the expansion of fðUÞ.
Although we cannot calculate close to U ¼ 1, we find that,

with as little as N ¼ 20 terms in the expansion of fðUÞ, we
can recover an accurate description of fðUÞ for U > 1.2
from an expansion around U ¼ 0.

APPENDIX B: CONVERGENCE OF THE
PERTURBATION SERIES AT A FINITE TIME

In this Appendix, we show that, at finite time t, the radius
of convergence of the perturbation series for the average of
an operator O is infinite, for a system with a finite number
of interacting orbitals and an infinite noninteracting bath.
The average value of such an operator is given by

hÔðtÞi ¼ hTce
−iU

R
duĤintðuÞÔðtÞi ðB1Þ

≡X
n

On
Un

n!
; ðB2Þ

where the integral goes along the forward-backward
Keldysh contour 0 → t → 0, the operators are taken in
the interaction representation, Tc is the usual Keldysh
contour ordering operator, and ĤintðuÞ is the interacting
part of the Hamiltonian.

FIG. 18. Resummation of the series of fðUÞ¼1=ln½ið1−UÞþ1�
near U ¼ 0 on the real positive axis, beyond the pole at U ¼ 1. f
has a pole at U ¼ 1 and a branch cut starting at U ¼ 1 − i and
going in a straight line toward 1 − i∞ (stars and dashed line in top
left). We isolate these singularities by applying a con-
formal map W ¼ ½χðUÞ − χð0Þ�=½χðUÞ − χð0Þ��, with χðUÞ ¼
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðU − 1Þ=pp
− i. It maps the inside of a parabola into the outside

of the unit disk (left and right top). p controls the direction and
width of the parabola. Here, p ¼ 0.2eiπ×0.4. With N ¼ 30 terms,
one can compute f for all realU (black plain line) except a narrow
band around the pole (dashed black vertical line).
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The interaction Hamiltonian has the form

Hint ¼
XL
α¼1

Vαc
†
iðαÞc

†
jðαÞckðαÞclðαÞ; ðB3Þ

where 1 ≤ α ≤ L labels the interaction terms. The coef-
ficients On are obtained from an expression of the form

On ¼
Z
½0;t�n

du1…dun

×
X
ai¼�1

X
αi

�Yn
i¼1

ai

�
hÔðtÞCfaigfαigðu1;…; unÞi;

ðB4Þ

where Cfaigfαigðu1;…; unÞ is a product of interaction terms,
in an order determined by the Keldysh indices ai. It has the
form

Cfaigfαigðu1;…; unÞ ¼
Yn
p¼1

VαpU
†
pc

†
iðαpÞc

†
jðαpÞckðαpÞclðαpÞUp;

where Up are unitary operators (evolution operator of the
noninteracting Hamiltonian). An explicit form of Eq. (B4)
can be found in Eq. (12) in Ref. [39].
In the following section of this Appendix, we show the

bound

jhÔðtÞCfaigfαigðu1;…; unÞij ≤ kOkV̄n; ðB5Þ

where we denote V̄ ≡maxαjVαj. This bound is obtained for
a finite size of the bath (where all operators are finite
dimensional matrices and, hence, well defined), but it is
independent of the size of the bath and, hence, valid in the
thermodynamic limit. We note that the proof of Eq. (B5)
does not involve the Wick theorem.
Using Eq. (B5) in Eq. (B4), we arrive at

jOnj ≤ kOkð2tV̄LÞn; ðB6Þ

where the factor 2n arises from the sum over Keldysh
indices and Ln from the sum over vertices. Hence, the series
(B2) in U is absolutely convergent for all U and has an
infinite radius of convergence. Note that this argument is
valid, because the electron-electron interaction is present on
a finite number of sites only (L is finite). It would not apply
directly to, e.g., the Hubbard model in the thermody-
namic limit.

1. Proof of Eq. (B5)

We introduce an orthonormal eigenbasis of the non-
interacting Hamiltonian (impurity and bath), with eigen-
vectors jξi and eigenvalues Eξ:

hÔðtÞCðu1;…unÞi ¼ Tr

�
e−βH0

Z0

ÔðtÞCðu1;…unÞ
�

¼
X
ξ

e−βEξ

Z0

hξjÔðtÞCðu1;…unÞjξi:

We denote by kvk the norm of a vector jvi in the Fock
Hilbert space, and we introduce the corresponding induced
norm of an operator kAk defined as usual by

kAk≡ sup
jxi

kAjxik
kxk : ðB7Þ

Using the short notation C ¼ Cfaigfαigðu1;…; unÞ, the
Cauchy-Schwarz inequality, and the definition of the
operator norm, we obtain the bound

jhÔðtÞCij ≤
X
ξ

e−βEξ

Z0

kÔðtÞCjξikkξk

≤
X
ξ

e−βEξ

Z0

kÔðtÞCkkξk2:

Using the following properties of the induced operator
norm (A, B being operators):

kABk ≤ kAkkBk; ðB8Þ

kU†AUk ¼ kAk for any unitary operator U; ðB9Þ

and the fact that kξk ¼ 1, we arrive at

jhÔðtÞCij ≤ kOkkck4nV̄n;

where c is a bare creation or destruction operator.
Finally, the crucial point to obtain (B5) is to show that

the norm of the c operator is bounded by 1, independently
of the size of the bath. Indeed, let us consider a destruction
operator ca. It acts on the total Fock space (impurity and
bath), whose states can be written as

jψi ¼
X

n1;…;nK¼0;1

ψ0;n1;…;nK j0; n1;…; nKi ðB10Þ

þψ1;n1;…;nK j1; n1;…; nKi; ðB11Þ

where the first term of the Fock space corresponds to the
one-body level a and ni to all the (K) other ones. Then, we
have (up to a sign)

cajψi ¼
X

n1;…;nK¼0;1

ψ1;n1;…;nK j0; n1;…; nKi ðB12Þ

and therefore
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kcajψik¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n1;…;nK¼0;1

jψ1;n1;…;nK j2
s

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n1;…;nK¼0;1

jψ0;n1;…;nK j2þjψ1;n1;…;nK j2
s

¼kψk:

Hence, kcak ≤ 1. The same argument can be applied to
kOk, which concludes the proof of Eq. (B5).
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