
HAL Id: hal-03941939
https://hal.science/hal-03941939v1

Preprint submitted on 16 Jan 2023 (v1), last revised 7 Nov 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wave equation-tailored Gaussian process regression with
applications to related inverse problems

Iain Henderson, Pascal Noble, Olivier Roustant

To cite this version:
Iain Henderson, Pascal Noble, Olivier Roustant. Wave equation-tailored Gaussian process regression
with applications to related inverse problems. 2023. �hal-03941939v1�

https://hal.science/hal-03941939v1
https://hal.archives-ouvertes.fr


Wave equation-tailored Gaussian process regression

with applications to related inverse problems

I. Henderson ∗1, P. Noble1, and O. Roustant1
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Abstract

In this article, we consider the general task of performing Gaussian process re-
gression (GPR) on pointwise observations of solutions of the 3 dimensional free
space wave equation. In a recent article, we obtained promising covariance expres-
sions for this equation: we now explore the potential applications of these formulas.
We first study the particular cases of stationarity, radial symmetry and point source,
for which significant simplifications arise. We next show that the true-angle multi-
lateration method for point source localization, as used in GPS systems, is naturally
recovered by our GPR formulas in the limit of the small source radius. Additionally,
we show that this GPR framework provides a new answer to the ill-posed inverse
problem of reconstructing initial conditions for the wave equation from a limited
number of sensors, and simultaneously enables the inference of physical parame-
ters from these data. We finish by illustrating this “physics informed” GPR on a
number of practical examples.

1 Introduction

Machine learning techniques have proved time and again that they can provide efficient
solutions to difficult problems in the presence of field data. A key element to this suc-
cess is the incorporation of “expert knowledge” in the corresponding statistical models.
In many practical applications, this knowledge takes the form of mathematical models
which are sometimes already well understood. This is e.g. common when dealing with
problems arising from physics, in which case the mathematical models often take the
form of Partial Differential Equations (PDEs), such as the wave equation at hand in
this article. Because of the broadness of the applications PDEs offer, large efforts have
been devoted to studying and solving them, both theoretically [16] and numerically [23].
These equations impose very specific (yet often simple) structures on the observed data
which can be very difficult to capture or mimic with general machine learning models.

In this article, we will focus on the linear 3 dimensional homogeneous free space wave
equation. This equation is the prototype for describing simple 3D phenomena which
propagate at finite speed; although particularly simple in the landscape of PDEs, it is
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in fact central for many applications emerging from different fields such as acoustics or
electromagnetics. The homogeneity assumption is also commonly encountered in physics,
when modelling conservation laws. Given that the main structures of the solutions of
this PDE are well known, one may thus attempt to incorporate them in the machine
learning models that work with such solutions.

The class of models we will deal with is that of Gaussian Process Regression (GPR),
which is a Bayesian framework for function regression and interpolation [45]. It is a
”kernel method”, meaning that it is built upon a positive definite function, the kernel
in question. In the language of Bayesian inference, GPR puts a prior probability dis-
tribution on a suitable function space in which the unknown function u is assumed to
lie. This prior is then conditioned on available field data involving u thanks to Bayes’
law, which in turn provides a posterior probability distribution from which statistical
estimators related to u can be computed. The posterior expectation in particular plays
the role of an approximant of u while the posterior covariance provides posterior error
bounds. In the case of GPR, these prior and posterior distributions are in many ways
generalizations to infinite dimensions of the multivariate normal distribution, and are
fully specified by a mean and covariance functions. These priors are naturally obtained
by modelling u as a sample path of a Gaussian process and we will thus say that we put
a Gaussian process (GP) prior over u. Imposing strict linear constraints on a GP prior
as well as on the posterior expectation it provides is straightforward in principle; we will
apply this observation to the case where the linear constraint is the homogeneous wave
equation itself, as in [25].

In this article, we will first be concerned with building GP priors which incorporate
beforehand the knowledge that the sought function is in fact a solution to the same wave
equation. The main consequence will be that all the possible estimators of u provided by
GPR will also be solutions to the wave equation. Those priors are particular cases of gen-
eral covariance formulas first described in [25]; these general covariance formulas initially
take the form of convolutions. They were derived by putting generic Gaussian process
priors over the initial conditions of the wave equation and propagating them through the
solution map of the said equation, leading to ”wave equation-tailored” covariance func-
tions. In this article, we explore the particular cases where the initial condition priors
are either stationary, radially symmetric or point sources, as then notable simplifications
can be obtained. For the point source in particular, we show that the task of recovering
the position of the point source using multilateration (as in e.g. GPS systems, see [18])
is naturally recovered by maximizing the likelihood attached to the GPR models we
previously obtained for the wave equation, in the limit of the small source radius (Figure
1). We will also discuss applications of our model in physical parameter estimation and
initial condition reconstruction. Recovering the initial position in particular is the pur-
pose of photoacoustic tomography (PAT), an exercise for which we will provide a simple
proof of concept application, in the presence of radial symmetry.

Related literature The idea of solving and “learning” linear ODEs and PDEs thanks
to GPR probably goes back to [22] and has been re-explored ever since. A large part of
the subsequent works inspired by [22] deal with PDEs of the form Lpuq “ f where f is
a partially known interior source term: that is, f and u have the same input space. We
will not be interested in this case as we will impose the strict condition that f ” 0, as is
e.g. the case in PAT. In our case, the initial conditions will instead play the role of the
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source terms. For dealing with interior source terms, see [46, 57, 3, 47, 33, 43, 44] and
[2, 38] for subsequent applications to inhomogeneous wave equations. See also [8] for
an alternative method applicable to non linear PDEs. Compared to these approaches,
ensuring (deterministically) the homogeneity constraint f “ 0 in the wave equation will
allow us to drastically reduce the dimensionality of the problem of approximating u given
scattered measurements of u.

Ensuring homogeneous PDE constraints on centered GPs is done by appropriately
constraining its covariance kernel ([25], Proposition 3.4). Such PDE constrained kernels
have been explicitly built for a number of classical PDEs, namely: divergence-free vector
fields [36, 49], curl-free vector fields [20, 49, 54, 28], the Laplace equation [48, 35, 1],
Maxwell’s equations [30], the heat equation in 1D [1] and 2D [21], Helmholtz’ 2D equa-
tions [1], and linear solid mechanics [27]. See also [53] where generic PDE-constrained
kernels are built under stationarity assumptions. This article is the continuation of a
previous work [25], where we described a covariance kernel tailored to the wave equa-
tion at hand in this article. In parallel with homoegeneous PDEs, [31, 24, 50] enforce
homogeneous boundary conditions on the covariance kernel.

The approach presented in this article falls in the field of Bayesian methods for solving
PDE related inverse problems, the literature of which is extensive; see [51, 10, 9, 11]
and the many references therein. However, the method we adopt here differs from the
standard Bayesian inversion methods aforementioned in that we incorporate the PDE
constraint beforehand, i.e. directly in the prior; the PDE does not only appear in the
likelihood. See [37] for a point of view similar with that of the present article, which
uses PDE-tailored GP priors for building optimal finite dimensional approximations of
solution spaces of PDEs.

The inverse problems we will study deal with approximating the initial conditions
of (3.1) as well as the related physical parameters (wave speed, source location and
source size), given scattered measurements of the solution u. A general methodology
for estimating the parameters of a linear PDE using GPR is described in [43], using
the forward differential operator. Here we will rather use its inverse, i.e. the Green’s
function. The task of approximating the initial position in particular is the purpose of
photoacoustic tomography (PAT), which is a technique commonly used e.g. in biomedical
imaging [4]. See e.g. [29, 5] for details on the standard mathematical techniques and
models used in PAT. Note that the solution is often assumed available on a surface
enclosing the source [56], in order to use Radon transforms or similar inversion formulas.
Our method instead allows the sensors to be arbitrarily scattered. As the corresponding
PAT problem becomes ill-posed, we do not aim for a full reconstruction of the initial
conditions. Instead, we show that our method amounts to computing a projection of the
solution over a well-chosen finite dimensional space. Of course, the geometry of the sensor
locations plays a crucial role in the accuracy of our model, but the reconstruction formula
we introduce remains nonetheless independent of any underlying geometry assumptions.
It is worth noting that [40] already showed that a GPR methodology based on Radon
transforms could be set up for solving x-ray tomography problems in the presence of
limited (scattered) data.

Organization of the paper For self-containment, section 2 is dedicated to reminders
on GPR. Section 3 is dedicated to the study of GP priors tailored to the wave equation.
In section 4, we showcase some numerical applications of the previous section on wave
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equation data. We conclude in section 5.

Notations Let D be a set, m : D Ñ R and k : D ˆ D Ñ R. Given x P D, kx
denotes the function y ÞÑ kpx, yq. If X “ px1, ..., xnqT is a column vector in Dn, we
denote mpXq the column vector such that mpXqi “ mpxiq, kpX,Xq the square matrix
such that kpX,Xqij “ kpxi, xjq and given x P D, kpX,xq the column vector such that
kpX,xqi “ kpxi, xq. The variables pr, θ, ϕq, r ě 0, θ P r0, πs, ϕ P r0, 2πs, denote spherical
coordinates and S denotes the unit sphere of R3. We write dΩ “ sin θdθdϕ its surface
differential element; γ “ psin θ cosϕ, sin θ sinϕ, cos θqT P S denotes the unit length vector
parametrized by pθ, ϕq.

2 Background on Gaussian process regression

2.1 Gaussian Processes and positive definite functions [45]

Let D be a set. A Gaussian process pUpxqqxPD is a collection of normally distributed
random variables defined on the same probability space pΩ,F ,Pq such that for any
px1, ..., xnq P Dn, the law of pUpx1q, ..., UpxnqqT is a multivariate normal distribution.
The law of a GP is characterized by its mean and covariance functions ([26], Section
8), defined by mpxq :“ ErUpxqs and kpx, x1q “ CovpUpxq, Upx1qq “ ErUpxqUpx1qs ´

mpxqmpx1q, and we write pUpxqqxPD „ GP pm, kq. Given ω P Ω, the associated sample
path is the deterministic function Uω : x ÞÑ Upxqpωq. The mean function can be chosen
arbitrarily, but the covariance function has to be positive definite, which means that
for all px1, ..., xnq P Dn, the matrix pkpxi, xjqq1ďi,jďn is non negative definite. The
mathematical properties of the GP are encoded in the function k. Furthermore, there
is a bijection between positive definite functions and covariance functions of centered
GPs ([26], Theorem 8.2). We will thus focus on the design of positive definite kernels.
A covariance kernels is stationary if kpx, x1q only depends on the increment x ´ x1:
kpx, x1q “ kSpx ´ x1q. Common examples are the squared exponential and Matérn
kernels [45]; see e.g. equation (4.1). Informally, if the covariance function of a GP is
stationary, then its sample paths ”look similar at all locations” ([45], p.4).

2.2 Gaussian Process Regression [45]

2.2.1 Kriging equations. GPs can be used for function interpolation. Let u be a
function defined on D for which we know a dataset of values B “ tupx1q, ..., upxnqu.
Conditioning the law of a GP pUpxqqxPD „ GP pm, kq on the data B yields a second
GP defined by V pxq :“ pUpxq|Upxiq “ upxiq, i “ 1, ..., nq. Its mean and covariance
functions m̃ and k̃ are given by the so-called Kriging equations (2.1) and (2.2). Note
X “ px1, ..., xnqT and assume that KpX,Xq is invertible, then [45]

"

m̃pxq = mpxq ` kpX,xqT kpX,Xq´1pupXq ´ mpXqq, (2.1)

k̃px, x1q = kpx, x1q ´ kpX,xqT kpX,Xq´1kpX,x1q. (2.2)

The function m̃ is an estimator of u and for all x in D, m̃pxq can be used for predicting
the value upxq. By construction, for all observation points xi, we have m̃pxiq “ upxiq and
k̃pxi, xiq “ 0. If observing noisy data Ui “ Upxiq ` εi with pε1, ..., εnqT „ N p0, σ2Inq

4



independent from U , one replaces KpX,Xq with KpX,Xq`σ2I in the Kriging equations
and leaves the other terms kpX,xq unchanged. This amounts to applying Tikhonov
regularization on kpX,Xq, which is also relevant for approximating equations (2.1) and
(2.2) when kpX,Xq is ill-conditioned.

2.2.2 Tuning covariance kernels [45]. Covariance functions are usually chosen among
a parametrized family of kernels tkθ, θ P Θ Ă Rqu. θ contains the hyperparameters of kθ.
One then attempts to find the value θ which fits best the observations uobs “ pu1, ..., unqT ,
the set of observations of u at locations X “ px1, ..., xnq. This is performed by max-
imizing the marginal likelihood, which is the probability density of the random vector
pUpx1q, ..., UpxnqqT at point uobs, given θ. Denote ppuobs|θq the associated marginal like-

lihood at θ, one searches for θ̂ such that θ̂ “ argmaxθPΘppuobs|θq. Explicitly, assuming
that m ” 0, then pUpx1q, ..., UpxnqqT „ N p0, kθpX,Xqq and

ppuobs|θq “
1

p2πqn{2 det kθpX,Xq1{2
e´ 1

2u
T
obskθpX,Xq

´1uobs . (2.3)

Equivalently, for noisy observations with identical noise standard deviation σ, set

Lpθ, σ2q : “ ´2 log ppuobs|θq ´ n log 2π

“ uT
obspkθpX,Xq ` σ2Inq´1uobs ` log detpkθpX,Xq ` σ2Inq. (2.4)

We call Lpθ, σ2q the negative log marginal likelihood, and one may rather attempt to

find θ̂ such that θ̂ “ argminθPΘ Lpθ, σ2q. Note that σ can also be interpreted as a
hyperparameter and estimated through log marginal likelihood minimization.

2.2.3 The RKHS point of view. The Kriging equations (2.1) and (2.2) can alter-
natively be viewed as orthogonal projections of u in a suitable Hilbert space. Given a
positive definite kernel k defined on a set D, one may build a Reproducing Kernel Hilbert
Space (RKHS) of functions defined on D, which we denote by Hk. The inner product of
Hk verifies the reproducing property [55]: xkpx, ¨q, kpx1, ¨qyHk

“ kpx, x1q. One may then
formulate the following regularized interpolation problem [19, 55]

inf
vPHk

||v||Hk
s.t. vpxiq “ upxiq @i P t1, ..., nu. (2.5)

Then m̃ in equation (2.1) is the unique solution of (2.5). One can also show [55] that equa-
tion (2.1) amounts to m̃ “ m`pF pu´mq, where pF stands for the orthogonal projection
operator on F :“ Spanpkpx1, ¨q, ..., kpxn, ¨qq w.r.t. the inner product of Hk. If in particu-
lar m ” 0, then m̃ “ pF puq. Likewise, equation (2.2) amounts to k̃px, ¨q “ PFK pkpx, ¨qq.
Viewing the Kriging mean as an orthogonal projection over a finite dimensional deter-
ministic space is reminiscent of Fourier series or Galerkin reconstruction approaches.

3 Gaussian processes for the 3D wave equation

3.1 General solution to the wave equation

Denote the 3D Laplace operator ∆ “ B2
xx ` B2

yy ` B2
zz and the d’Alembert operator with

the box symbol, l “ c´2B2
tt ´ ∆ with constant wave speed c ą 0. Consider then the
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following initial value problem in the free space R3

#

lw “ 0 @px, tq P R3 ˆ R˚
`,

wpx, 0q “ u0pxq, Btwpx, 0q “ v0pxq @x P R3.
(3.1)

The solution of this problem is unique in the distributional sense ([14], p. 164). It can
be extended to all t P R and is represented as follow ([14], p. 295)

wpx, tq “ pFt ˚ v0qpxq ` p 9Ft ˚ u0qpxq @px, tq P R3 ˆ R. (3.2)

pFtqtPR is the Green’s function of the wave equation ([13], p. 202), and is a family of
singular measures. 9Ft is its “time derivative” ([14], equation (18.16) p. 297), understood
as a continuous linear form over C1pR3q. Explicitly, Ft and 9Ft are given by

Ft “
σc|t|

4πc2t
, and x 9Ft, φyC1pR3q1,C1pR3q “ Bt

ż

R3

φpxqdFtpxq. (3.3)

where σR is the surface measure of the sphere of center 0 and radius R. If u0 P C1pR3q

and v0 P C0pR3q, then w as defined in (3.2) is a pointwise defined function given by the
Kirschoff formula ([16], p. 72), which writes in spherical coordinates:

wpx, tq “

ż

S

tv0px ´ c|t|γq ` u0px ´ c|t|γq ´ c|t|γ ¨ ∇u0px ´ c|t|γq
dΩ

4π
. (3.4)

3.2 Gaussian Process priors for the wave equation

3.2.1 General covariance structure. Suppose that the initial conditions u0 and v0
are realizations of two independent centered Gaussian processes, U0 „ GP p0, kuq and
V 0 „ GP p0, kvq. That is, u0 “ U0

ω and v0 “ V 0
ω for some ω P Ω. This assumption is

relevant e.g. when u0 and v0 are unknown, in which case U0 and V 0 are interpreted as
GP priors over u0 and v0. We will assume that the sample paths of V 0 are continuous
and that of U0 are continuously differentiable, in order to use the formula (3.4) (see [25],
Section 4.2 for more details and discussions on these assumptions). By solving (3.1), one
obtains a time-space random field W px, tq defined by

W px, tq : Ω Q ω ÞÝÑ pFt ˚ V 0
ω qpxq ` p 9Ft ˚ U0

ωqpxq. (3.5)

The next recent result is taken from [25], which shows that the random field W is a GP
as well; more importantly, it describes its covariance function.

Proposition 1. Denote z “ px, tq and z1 “ px1, t1q the space-time variables. Let ku
(resp. kv) be a positive definite function such that the sample paths of the associated GP
are continuously differentiable (resp. continuous). In particular, kv P C0pR3 ˆ R3q and
kupx, .q, kup. , x1q P C1pR3q for all x, x1 P R3. Define then the two functions

kwave
v pz, z1q “ rpFt b Ft1 q ˚ kvspx, x1q, (3.6)

kwave
u pz, z1q “ rp 9Ft b 9Ft1 q ˚ kuspx, x1q. (3.7)

Then pW pzqqzPR3ˆR is a centered GP whose covariance kernel is given by

kwpz, z1q “ kwave
v pz, z1q ` kwave

u pz, z1q. (3.8)
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Expressions of equations (3.6) and (3.7) in terms of integrals of ku, its first derivatives
and kv over the unit sphere can be found in [25], p. 21. They are derived from the
Kirschoff formula (3.4). It should be mentioned that the converse of Proposition 1
holds: under mild assumptions, any second order random random field pW pzqqzPR3ˆR
whose covariance function is of the form (3.8) has its sample paths solution to the wave
equation, in the sense of distributions, almost surely ([25], Proposition 3.4).

Observe now that for all z “ px, tq P R3 ˆ R, we have lkwpz, ¨q “ 0: using equation
(2.1), one then deduces that all the Kriging mean obtained using the kernel kw always
verifies lm̃ “ 0. For this reason, we call WIGPR (”Wave equation informed GPR”)
the act of performing GPR with a covariance kernel of the form (3.8). Note that the
inheritance of the distributional PDE constraint over sample paths of the conditioned
GP is proved in [25], Proposition 3.7. We now explore particular cases of the covariance
expressions (3.6) and (3.7) under different assumptions over kv and ku.

3.2.2 Stationary initial conditions. Many standard covariance kernels used for GPR
are stationary [45]. For this reason, we study equation (3.6) when kv is stationary. For
conciseness, we restrict ourselves to the case where u0 “ 0, i.e. ku “ 0.

Proposition 2. Assume that kv is continuous and stationary: kvpx, x1q “ kSpx ´ x1q.
(i) Then kwave

v is stationary in space and

rpFt b Ft1 q ˚ kvspx, x1q “ pFt ˚ Ft1 ˚ kSqpx ´ x1q. (3.9)

(ii) Moreover, the measure Ft ˚ Ft1 is absolutely continuous over R3. Denoting |h| the
Euclidean norm of h P R3 and identifying Ft ˚ Ft1 with its density, we have

pFt ˚ Ft1 qphq “
sgnptqsgnpt1q

8πc2|h|
1“

c
ˇ

ˇ|t|´|t1|

ˇ

ˇ,cp|t|`|t1|q

‰p|h|q. (3.10)

Proof of Proposition 2. piq : Assume for simplicity that c “ 1. Using the definition of
the convolution against the measure Ft b Ft1 (see e.g. [52], Exercise 26.1 p. 282),

rpFt b Ft1 q ˚ kvspx, x1q “

ż

R3ˆR3

kpx ´ s1, x
1 ´ s2qdFtps1qdFt1 ps2q

“

ż

R3ˆR3

kSpx ´ x1 ´ s1 ` s2qdFtps1qdFt1 ps2q.

But S is invariant under the change of variable S Q γ ÞÝÑ ´γ and thus for any continuous
function f ,

ş

R3 fps2qdFt1 ps2q “
ş

R3 fp´s2qdFt1 ps2q. This yields

rpFt b Ft1 q ˚ kvspx, x1q “

ż

R3ˆR3

kSpx ´ x1 ´ s1 ´ s2qdFtps1qdFt1 ps2q.

Applying the definition of the convolution of measures (see e.g. [7], p. 101) to Ft ˚ Ft1 ,

pFt ˚ Ft1 ˚ kSqphq “

ż

R3

kSph ´ sqdpFt ˚ Ft1 qpsq

“

ż

R3

ż

R3

kSph ´ s1 ´ s2qdFtps1qdFt1 ps2q.
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Setting h “ x ´ x1 finishes the proof of Point piq.
piiq : Without loss of generality we assume that c “ 1. The computation is carried out
in the Fourier domain. Recall that Ft and 9Ft are tempered distributions whose Fourier
transforms are given by ([14], equation (18.12) p. 294)

FpFtqpξq “
sinpct|ξ|q

c|ξ|
and Fp 9Ftqpξq “ cospct|ξ|q. (3.11)

We then obtain that ([14], Theorem 14.33)

FpFt ˚ Ft1 qpξq “ FpFtqpξqFpFt1 qpξq “
sinpt|ξ|q sinpt1|ξ|q

|ξ|2
“

cospa|ξ|q ´ cospb|ξ|q

2|ξ|2
. (3.12)

with a “ t´ t1, b “ t` t. We then compute the inverse Fourier transform of the quantity
above. Let h P R3. In spherical coordinates, noting the unit vectors γh “ h{|h| and
γ “ ξ{|ξ| “ ξ{r, we define fa by

faphq “

ż

R3

eixh,ξy cospa|ξ|q

|ξ|2
dξ “

ż `8

0

ż 2π

0

ż π

0

eirxh,γy cosparq

r2
r2 sin θdθdϕdr (3.13)

“

ż `8

0

cosparq

ż

S

eir|h|xγ,γhydΩdr.

Above, we used the spherical coordinate change ξ “ rγ, dξ “ r2 sin θdθdϕdr. We now
make use of radial symmetry in the interior integral, as follow. Note e3 the third vector
of the canonical basis of R3 and M an orthogonal matrix such that Mγh “ e3. We
perform the change of variable γ1 “ Mγ, using that MS :“ tMγ, γ P Su “ S and that
the corresponding Jacobian is equal to 1:

ż

S

eir|h|xγ,γhydΩ “

ż

MS

eir|h|xMT γ1,γhydΩ1 “

ż

S

eir|h|xγ1,MγhydΩ1 (3.14)

“

ż

S

eir|h|xγ,e3ydΩ “ 2π

ż π

0

eir|h| cospθq sinpθqdθ

“ 2π

„

´
eir|h| cospθq

ir|h|

ȷπ

0

“ 2π
eir|h| ´ e´ir|h|

ir|h|
“ 4π

sinpr|h|q

r|h|
, (3.15)

and thus

faphq “ 4π

ż 8

0

cosparq sinp|h|rq

r|h|
dr “ 4π

ż 8

0

sinpp|h| ` aqrq ` sinpp|h| ´ aqrq

2r|h|
dr

“
2π

|h|

ż 8

0

sinpαrq

r
`

sinpβrq

r
dr, (3.16)

with α “ |h| ` a, β “ |h| ´ a. Finally, we have the Dirichlet integral

ż 8

0

sinpαrq

r
dr “ sgnpαq

π

2
. (3.17)

We define the function fb exactly as fa, and compute it by replacing a by b in every
step above. Putting (3.12), (3.16) and (3.17) together, the inverse Fourier transform of
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FpFt ˚ Ft1 q is an absolutely continuous measure whose density f is given by

fphq “
1

p2πq3

1

2

`

faphq ´ fbphq
˘

“
1

16π|h|

´

sgnp|h| ` t ´ t1q ` sgnp|h| ´ t ` t1q

´ sgnp|h| ` t ` t1q ´ sgnp|h| ´ t ´ t1q

¯

(3.18)

“:
1

16π|h|
Kp|h|, t, t1q. (3.19)

Kp|h|, t, t1q is defined in equation (3.19). Note that Kp|h|,´t, t1q “ ´Kp|h|, t, t1q and
likewise with t1, thus Kp|h|, t, t1q “ sgnptqsgnpt1qKp|h|, T, T 1q with T “ |t|, T 1 “ |t1|.
Using the symmetries in t and t1 in equation (3.18) and the fact that sgnpsq “ 1 if s ą 0,
we obtain

Kp|h|, T, T 1q “ sgnp|h| ` |T ´ T 1|q ` sgnp|h| ´ |T ´ T 1|q

´ sgnp|h| ` T ` T 1q ´ sgnp|h| ´ T ´ T 1q

“ 1 ` sgnp|h| ´ |T ´ T 1|q ´ 1 ´ sgnp|h| ´ T ´ T 1q

“ sgnp|h| ´ |T ´ T 1|q ´ sgnp|h| ´ T ´ T 1q. (3.20)

From equation (3.20), one checks that Kp|h|, T, T 1q “ 0 if |h| ă |T ´ T 1| or |h| ą

T ` T 1 and Kp|h|, T, T 1q “ 2 if |T ´ T 1| ă |h| ă T ` T 1. Thus, Kp|h|, T, T 1q “

2 ˆ 1r|T´T 1|,T`T 1sp|h|q. Identifying the measure Ft ˚ Ft1 with its density, we obtain

pFt ˚ Ft1 qphq “
sgnptqsgnpt1q

8π|h|
1”

ˇ

ˇ|t|´|t1|

ˇ

ˇ,|t|`|t1|

ıp|h|q. (3.21)

which concludes the proof.

Formally, one can obtain similar formulas for kwave
u by differentiating the formulas

above with respect to t and t1, as 9Ft “ BtFt ( 9Ft ˚ 9Ft1 will only be a generalized function
though). We underline that the proof of Point piiq Proposition 2 makes use of the
specificities of the dimension 3. First in equation (3.13), where the scalars r2 cancel each
other out; second in (3.15) where an exact antiderivative of the integrated function can
be computed. None of these two simplifications hold in higher dimension or in dimension
2, and formulas as simple as equation (3.10) are not expected to hold.

Remark 3.1. Expression (3.10) with h “ x ´ x1 is the covariance kernel of the solution
process U with initial condition the “formal” white noise process V 0 with the stationary
Dirac delta covariance kernel kvpx, x1q “ δ0px ´ x1q:

rpFt b Ft1 q ˚ kvspx, x1q “ pFt ˚ Ft1 ˚ δ0qpx ´ x1q “ pFt ˚ Ft1 qpx ´ x1q. (3.22)

Somewhat surprisingly, although formula (3.10) yields a summable function over R3

when t and t1 are fixed, it can not be used for practical computations as the diagonal
terms of the related covariance matrices are all singularities: pFt ˚ Ftqp0q “ `8... Yet,
formula (3.10) may be used together with explicit kernels kS to yield usable expressions.
For instance, if kvpx, x1q “ kSpx ´ x1q “ C expp´|x ´ x1|2{2L2q, we state without proof

9



that

pFt ˚ Ft1 ˚ kSqphq “

sgnptt1q

?
2π

2

CL3

c2

˜

Φ
`R1`|h|

L

˘

´ Φ
`R1´|h|

L

˘

2|h|
´

Φ
`R2`|h|

L

˘

´ Φ
`R2´|h|

L

˘

2|h|

¸

. (3.23)

where h “ x ´ x1, Φpsq “ p2πq´1{2
şs

´8
expp´t2{2qdt, R1 “ c

ˇ

ˇ|t| ´ |t1|
ˇ

ˇ, R2 “ cp|t| ` |t1|q.
Such a kernel always takes finite values: when h goes to 0, the above formula reduces to
well defined derivatives.

Although these formulas are interesting in their own right, the study of propagation
phenomena is usually done thanks to compactly supported initial conditions, which can
never be modelled with a stationary GP. We partially deal with compactly supported
initial conditions in Section 3.2.3, within the context of radial symmetry.

3.2.3 Radially symmetric initial conditions. Assume that the sample paths of the
GP prior V 0 enjoy radial symmetry around some x0 P R3. This can be expressed in
terms of differential operators in pr, θ, ϕq, the spherical coordinate system around x0:

Pptω P Ω : BθV
0
ω “ 0uq “ 1, and Pptω P Ω : BϕV

0
ω “ 0uq “ 1. (3.24)

Then by Proposition 3.4 of [25], kv verifies (in the sense of distributions)

@x P D, Bθpkvpx, ¨qq “ 0 and Bϕpkvpx, ¨qq “ 0.

Thus, there exists a kernel k0v on R` such that kvpx, x1q “ k0vpr2, r12q, with r “ |x|,
r1 “ |x1| (directly using the squares r2 and r12 will simplify the computations). Similarly,
assume that the sample paths of U0 exhibit radial symmetry and write kupx, x1q “

k0upr2, r12q. We then have the following convolution-free formulas:

Proposition 3. Set Kvpr, r1q “
şr

0

şr1

0
k0vps, s1qdsds1. Then for all z “ px, tq P R3 ˆ R

and z1 “ px1, t1q P R3 ˆ R,

kwave
v pz, z1q “

sgnptt1q

16c2rr1

ÿ

ε,ε1Pt´1,1u

εε1Kv

`

pr ` εc|t|q2, pr1 ` ε1c|t1|q2
˘

, (3.25)

kwave
u pz, z1q “

1

4rr1

ÿ

ε,ε1Pt´1,1u

pr ` εc|t|qpr1 ` ε1c|t1|q ˆ k0u
`

pr ` εc|t|q2, pr1 ` ε1c|t1|q2
˘

. (3.26)

The expressions (3.25) and (3.26) are interesting in that they are much faster to
compute than (3.7) and (3.6), which require to compute convolutions.

Proof. Without loss of generality, we assume that c “ 1 and x0 “ 0. We first derive
expression (3.25). Let f be a function defined on R` and g the function defined on R3

by gpxq “ fp|x|2q. Let F be an antiderivative of f and let x P R3. As in (3.14), let M be
an orthogonal matrix such that Mpx{|x|q “ e3 and use the change of variable γ1 “ Mγ.
As MS “ S, we have

pFt ˚ gqpxq “
1

4πt

ż

S

gpx ´ tγqt2dΩ “
t

4π

ż

S

fp|x ´ tγ|2qdΩ
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“
t

4π

ż

S

fp|x|2 ` t2 ´ 2|t|xx, γyqdΩ

“
t

4π

ż

MS

f

ˆ

|x|2 ` t2 ´ 2|t||x|

B

x

|x|
,MT γ1

F˙

dΩ1

“
t

4π

ż

S

fp|x|2 ` t2 ´ 2|t||x|xe3, γyqdΩ

“
t

4π

ż 2π

ϕ“0

ż π

θ“0

fp|x|2 ` t2 ´ 2|t||x| cospθqq sinpθqdθdϕ

“
t

2

ż π

θ“0

fp|x|2 ` t2 ´ 2|t||x| cospθqq sinpθqdθ

“
t

4|x||t|

”

F p|x|2 ` t2 ´ 2|t||x| cospθqq

ıθ“π

θ“0

“
sgnptq

4|x|

´

F pp|x| ` |t|q2q ´ F pp|x| ´ |t|q2q

¯

“
sgnptq

4|x|

ÿ

εPt´1,1u

εF pp|x| ` ε|t|q2q. (3.27)

Introduce now the functions

k10pr, r1q :“

ż r1

0

k0pr, sqds and Kvpr, r1q :“

ż r

0

ż r1

0

kps, s1qds1ds. (3.28)

We apply twice result (3.27) on kv: first by setting gpx1q “ k0p|x ´ tγ|2, |x1|2q where
x ´ tγ is fixed, which integrates to F psq “ k10p|x ´ tγ|2, sq. Second, by setting gpxq “

k10p|x|2, p|x1| ` ε|t1|q2q where |x1| ` ε1|t1| is fixed, which integrates to F psq “ Kvps, p|x1| `

ε1|t1|q2q. In detail, we obtain

rpFt b Ft1 q ˚ kvspx, x1q “
1

4πt

1

4πt1

ż

S

ż

S

k0p|x ´ tγ|2, |x1 ´ t1γ1|2qt12dΩ1t2dΩ

“
1

4πt

sgnpt1q

4|x1|

ż

S

ÿ

ε1Pt´1,1u

ε1k10p|x ´ tγ|2, p|x1| ` ε1|t1|q2qt2dΩ

“
sgnptt1q

16rr1

ÿ

ε,ε1Pt´1,1u

εε1Kv

`

pr ` ε|t|q2, pr1 ` ε1|t1|q2
˘

. (3.29)

We can then use this result to compute

rp 9Ft b 9Ft1 q ˚ kuspx, x1q “ BtBt1 rpFt b Ft1 q ˚ kuspx, x1q. (3.30)

First, we compute it for t ‰ 0 and t1 ‰ 0 by differentiating (3.29) w.r.t. t and t1, using
that for t ‰ 0, d|t|{dt “ sgnptq and dsgnptq{dt “ 0. This yields

rp 9Ftb 9Ft1 q ˚ kuspx, x1q

“
1

4rr1

ÿ

ε,ε1Pt´1,1u

pr ` ε|t|qpr1 ` ε1|t1|qk0u
`

pr ` ε|t|q2, pr1 ` ε1|t1|q2
˘

. (3.31)
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For the case where either t “ 0 or t1 “ 0, note first from equation (3.11) that Fp 9F0qpξq “ 1
and thus 9F0 “ δ0, the Dirac mass at 0, which is the neutral element for the convolution.
Therefore, when we have both t “ 0 and t1 “ 0:

rp 9F0 b 9F0q ˚ kuspx, x1q “ rpδ0 b δ0q ˚ kuspx, x1q “ rδp0,0q ˚ kuspx, x1q “ kupx, x1q.

which is also the result provided by (3.31) evaluated at t “ t1 “ 0. When t1 “ 0 and
t ‰ 0, we still have d|t|{dt “ sgnptq and dsgnptq{dt “ 0, yielding

rp 9Ft b 9F0q ˚ kuspx, x1q “ rp 9Ft b δ0q ˚ kuspx, x1q “ BtrpFt b δ0q ˚ kuspx, x1q

“ Bt

ż

R3

ż

R3

k0up|x ´ y|2, |x1 ´ y1|2qFtpdyqδ0pdy1q

“ Bt
1

4πt

ż

S

k0up|x ´ tγ|2, |x1|2qt2dΩ

“ Bt
sgnptq

4r

ÿ

εPt´1,1u

εk10ppr ` ε|t|q2, |x1|2q

“
1

2r

ÿ

εPt´1,1u

pr ` ε|t|qk0uppr ` ε|t|q2, |x1|2q.

which is also the result provided by (3.31) evaluated at t1 “ 0. The same arguments
apply to show that expression (3.31) is valid when t “ 0 and t1 ‰ 0. Therefore the
expression (3.31) is valid whatever the value of t, t1 P R.

3.2.4 Compactly supported initial conditions. Suppose that v0 is compactly sup-
ported on a ball Bpx0, Rq. The Strong Huygens Principle for the 3 dimensional wave
equation ([16], p. 80) states that Ft˚v0 is supported on the ring Bpx0, R`c|t|qzBpx0, pR´

c|t|q`q, where x` :“ maxp0, xq. From a GP modelling perspective, assuming that
SupppV 0q Ă Bpx0, Rq amounts to imposing that V 0pxq “ 0 a.s. if x R Bpx0, Rq. This
is equivalent to VarpV 0pxqq “ kvpx, xq “ 0 since V 0 is assumed centered. The same
reasoning in terms of support can be applied to u0 and U0. In the next proposition, we
explore the consequences of such compactness assumptions on the radial formulas (3.25)
and (3.26). The new formulas are readily deduced from Proposition 3, but we state them
on their own as they are the ones used in Section 4.

Proposition 4. Let Rv ą 0 and Ru ą 0. Let α P p0, 1q and φα : R` Ñ r0, 1s be a
C8 decreasing function such that φαpsq “ 1 if s ă α and φαpsq “ 0 if s ě 1. Set the
truncated kernels

kRv
v px, x1q “ k0,Rv

v pr2, r12q “ k0vpr2, r12q1r0,Rvsprq1r0,Rvspr
1q, (3.32)

kRu
u px, x1q “ k0,Ru

u pr2, r12q “ k0upr2, r12qφ
`

r{Ru

˘

φ
`

r1{Ru

˘

. (3.33)

Assume now that V 0 „ GP p0, kRv
v q and U0 „ GP p0, kRu

u q. Then, defining the function

Kvpr, r1q “
şr

0

şr1

0
k0vps, s1qdsds1, the two following formulas hold

kwave
v pz, z1q “

sgnptt1q

16c2rr1
ˆ

12



ÿ

ε,ε1Pt´1,1u

εε1Kv

´

min
`

pr ` εc|t|q2, R2
v

˘

,min
`

pr1 ` ε1c|t1|q2, R2
v

˘

¯

, (3.34)

kwave
u pz, z1q “

1

4rr1
ˆ

ÿ

ε,ε1Pt´1,1u

pr ` εc|t|qpr1 ` ε1c|t1|qk0,Ru
u

`

pr ` εc|t|q2, pr1 ` ε1c|t1|q2
˘

. (3.35)

Proof. When using the kernel k0,Rv
v , we can directly use equation (3.25) by substituting

Kv with KRv
v pr, r1q :“

şr

0

şr1

0
k0,Rv
v ps, s1qdsds1 and observing that for all r, r1 ě 0,

KRv
v pr2, r12q :“

ż r2

0

ż r12

0

k0,Rv
v ps, s1qdsds1 “ Kv

´

min
`

r2, R2
v

˘

,min
`

r12, R2
v

˘

¯

which directly proves (3.34). Additionally, (3.35) is only a substitution of k0u with k0,Ru
u

in (3.26): all the mathematical steps are justified as φ P C8pR`q.

Notice that the truncated kernels kRv
v and kRu

u are the covariance kernels of the trun-
cated processes V 0

truncpxq “ 1r0,Rvsp|x´ x0|qV 0pxq and U0
truncpxq “ φ

`

|x´ x0|{Ru

˘

U0pxq

respectively. For kRu
u , the truncation procedure has to be smooth enough as computing

p 9Ft ˚ 9Ft1 q ˚ kRu
u requires to differentiate kRu

u . In contrast, we used a blunt truncation for
kRv
v . Strictly speaking, the sample paths of V 0

truncpxq are not continuous and Proposition
1 cannot be used on this GP. However, as discussed in [25], Section 4.2.1, it is easily
checked that for V 0

truncpxq, all the computations leading to equation (3.6) still hold, and
thus equation (3.34) also holds.

We also observe that such compactly supported kernels can never be stationary as
their sample paths are compactly supported. Using equation (3.34), one can indeed check
that kwave

v pz, zq “ VarpV pzqq “ 0 as soon as pr´c|t|q2 ą R2
v, ie V pzq “ 0 a.s. and likewise

for kwave
u : this is the expression of the strong Huygens principle on the kernels kwave

v and
kwave
u . Such compactly supported kernels may lead to sparse covariance matrices which

may then be used for computational speedups (a topic we leave aside in this article).

3.2.5 Estimation of physical parameters. The wave kernel (3.8), using for ku and
kv radially symmetric kernels supported in Bpxu

0 , Ruq and Bpxv
0, Rvq respectively, has

for hyperparameters θ “ pc, xu
0 , Ru, θk0

u
, xv

0, Rv, θk0
v
q Among those, pc, xu

0 , Ru, x
v
0, Rvq all

correspond to physical parameters. Their estimation via likelihood maximisation is nu-
merically investigated in Section 4. Note that finding the correct Ru and Rv is not a well
posed problem: if SupppU0q Ă Bpxu

0 , Ruq then SupppU0q Ă Bpxu
0 , αRuq for any α ě 1

and αRu is also a suitable candidate for Ru. This is discussed in Section 4.

Remark 3.2 (GPR, radial symmetry and the 1D wave equation). It is known that the
radially symmetric 3D wave equation is equivalent to the 1D wave equation, by introduc-
ing w̃pr, tq “ rwpx, tq, r “ |x|. However, the joint problem of approximating a radially
symmetric solution w of Problem (3.1) with GPR and searching for the correct source
location parameters pxu

0 , Ru, x
v
0, Rvq cannot be reduced to the one dimensional case, as

the source centers xu
0 and xv

0 both lie in R3.
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3.3 The Point Source Limit

The case of the point source deserves a study on its own as it plays a central role for
linear PDEs, both in theory [13] and in applications. For the wave equation, modelling
the source term as a point source (i.e. a Dirac mass) is relevant in a number of real life
cases: a localized detonation in acoustics, an electric point source in electromagnetics,
a mass point in mechanics and so forth. In this section, we will not make use of the
Kriging equations (2.1) and (2.2) as reconstructing an initial condition that is a point
source is actually of little interest. Also, reconstructing the wave equation’s Green’s
function thanks to a pointwise approximation such as GPR is expected to yield poor
results because this Green’s function in particular is not even defined pointwise: it is
a family of singular measures, see equation (3.3). However, estimating the physical
parameters attached to it, essentially the position parameter x0, is a relevant question
and an attainable goal. This is the topic of this section, where we study the behaviour of
the log marginal likelihood that comes with WIGPR when the initial condition reduces
to a point source. We will restrict ourselves to the case u0 “ 0 in equation (3.1) and
thus focus on the kernel kwave

v pz, z1q. We begin by clarifying the setting in which we will
work.

3.3.1 Setting, assumptions and objectives.

(i) Note x1, ..., xq the q sensor locations and assume that we have N time measurements
in r0, T s corresponding to times 0 “ t1 ă ... ă tN “ T for each sensor; we have overall
n “ Nq pointwise observations of a function w that is a solution of the problem (3.1).
The space-time observation locations pxi, tjq are stored in a vector Z “ pZ1| ¨ ¨ ¨ |ZqqT

where Zi :“ ppxi, t1q, ..., pxi, tN qq corresponds to the ith sensor. The observations are
then stored in the column vector wobs “ pwpZ1q|...|wpZqqqT .

(ii) We assume that the initial condition v0 corresponding to w is almost a point source:
in particular it is supported on a small ball Bpx˚

0 , R
˚q where R˚ ! 1.

(iii) We are interested in finding x˚
0 , the correct source location. To do so, we study

the log marginal likelihood associated to the observations wobs, using a covariance kernel
associated to initial conditions truncated around a ball Bpx0, Rq to be estimated. Set first
kRx0

px, x1q :“ p4πR3{3q´2kvpx, x1q1Bpx0,Rqpxq1Bpx0,Rqpx1q where kv is a given a covariance
function. The pre-factor p4πR3{3q´2 is an anticipation of the upcoming Proposition 5.
We will then use the wave kernel

kwave,R
x0

ppx, tq, px1, t1qq “ rpFt b Ft1 q ˚ kRx0
spx, x1q. (3.36)

We then view px0, Rq as hyperparameters of kwave,R
x0

, and we denote px˚
0 , R

˚q the real
source position and size.

(iv) We assume that except for x0, all the other hyperparameters θ of kwave,R
x0

are fixed.
In particular, we assume that c “ c˚ and R “ R˚.

In that framework, the log-marginal likelihood ppwobs|θq only depends on x0. We thus
write Kx0

:“ kRx0
pX,Xq and Lpθ, λq “ Lpx0, λq, λ being a Tikhonov regularization

parameter (see equation (3.37) below). The log-marginal likelihood then writes

Lpθ, λq “ Lpx0, λq “ wT
obspKx0 ` λInq´1wobs ` log detpKx0 ` λInq. (3.37)
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3.3.2 Level sets of Lpx0, λq and GPS localization. In Figure 1, we provide a 3
dimensional image which displays the numerical values of the map x0 ÞÑ Lpx0, λq that
are below a suitable threshold, on a test case. This figure constitutes visual evidence that
in the limit R Ñ 0, recovering a point source location from minimizing the log marginal
likelihood provided by the kernel (3.36) reduces to the classic true-angle multilateration
method used for example in GPS systems (see e.g. [18]). In this localization method, the
user who is located on a sphere (Earth) sends signals to satellites gravitating around the
Earth. From the corresponding time measurements, the distance between the satellite
and the user is deduced, which in turn defines a sphere (one for each satellite) on which
the user is located. The location of the user lies at the intersection of those spheres, and
the Earth. At least three satellites are needed for this intersection to be reduced to a
point.

On Figure 1, three facts in particular are noteworthy; our task will be to explain
them mathematically. First, as a function of x0, Lpx0, λq reaches local minima over the
whole surface of spheres centered on each sensor. Second, at the intersection of two of
those spheres, the local minima are smaller. Third, the spheres all intersect at a single
point x˚

0 , which is the global minima of Lpx0, λq and the real source location.
On our way to explaining these three facts, we begin with a convergence statement

describing the point source limit, from a covariance point of view.

Proposition 5. Let k be a continuous positive definite function defined on R3 ˆR3 and
let x0 P R3. For R ą 0, define kRx0

its truncation around x0 by

kRx0
px, x1q “ kpx, x1q1Bpx0,Rqpxq1Bpx0,Rqpx1q{p4πR3{3q2.

Let t, t1 P R. Then pFt b Ft1 q ˚ kRx0
defines an absolutely continuous Radon measure over

R3 ˆ R3. Furthermore we have the following weak-‹ convergence in the space of Radon
measures (i.e. the dual of CcpR3 ˆ R3q, the latter space being the space of continuous
functions over R3 ˆ R3 with compact support):

rpFt b Ft1 q ˚ kRx0
s

CcpR3
ˆR3

q
1

ÝÝÝÝÝÝÝÑ
RÑ0

kpx0, x0q ˆ pτx0
Ftq b pτx0

Ft1 q, (3.38)

where τxµ, the translation of µ by x, is defined by
ş

fpyqτxµpdyq :“
ş

fpx ` yqµpdyq.

Proof. The proof is carried out by direct computations. First, equation (3.4) yields

rpFt b Ft1 q ˚ kRx0
spx, x1q “ tt1

ż

SˆS

kRx0
px ´ c|t|γ, x1 ´ c|t1|γ1q

dΩdΩ1

p4πq2
. (3.39)

The integrated function in equation (3.39) is piecewise continuous over R3 ˆR3 and the
integral in (3.39) is well defined, whatever the values of x and x1. Let f be a continuous
compactly supported function on R3 ˆ R3. We define

IR : “ xpFt b Ft1 q ˚ kRx0
, fy{p4πR3{3q2,

and wish to show that IR Ñ kpx0, x0qxτx0Ft b τx0Ft1 , fy when R Ñ 0. Using equation
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Figure 1: Negative log marginal likelihood as a function of x0 P R3. Are only represented
values of the negative log marginal likelihood that are below 2.035 ˆ 109. There only
remains thin spherical shells. Red crosses: sensor locations. Black cross: source position.
The source is located at the intersection of spheres centered at the sensor locations.

p52q from [25] and Fubini’s theorem, we have

IR “
1

p 4
3πR

3q2

ż

R3ˆR3

fpx, x1qrpFt b Ft1 q ˚ kRx0
spx, x1qdxdx1

“
1

p 4
3πR

3q2

ż

R3ˆR3

fpx, x1qtt1

ż

SˆS

kRx0
px ´ c|t|γ, x1 ´ c|t1|γ1q

dΩdΩ1

p4πq2
dxdx1

“
1

p 4
3πR

3q2
tt1

ż

SˆS

ż

R3ˆR3

˜

fpx, x1qkx0px ´ c|t|γ, x1 ´ c|t1|γ1q

ˆ 1r0,Rsp|x ´ c|t|γ ´ x0|q1r0,Rsp|x1 ´ c|t1|γ1 ´ x0|q

¸

dxdx1 dΩdΩ
1

p4πq2
.
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The first indicator function restricts the integration domain of x to Bpx0 ` c|t|γ,Rq,
and symmetrically for the second indicator function and x1. For x in Bpx0 ` c|t|γ,Rq,
in spherical coordinates around x0 ` c|t|γ, write x “ x0 ` c|t|γ ` Rργx with ρ P r0, 1s,
γx P S and associated surface differential element dΩx. We do symmetrically for x1 P

Bpx0 ` c|t1|γ1, Rq, which yields

IR “ tt1

ż

SˆS

ż

SˆS

ż 1

0

ż 1

0

˜

fpx0 ` c|t|γ ` Rργx, x0 ` c|t1|γ1 ` Rρ1γx1 q

ˆ kpx0 ` Rργx, x0 ` Rρ1γx1 q

¸

ˆ 9ρ2dρρ12dρ1 dΩxdΩx1

p4πq2

dΩdΩ1

p4πq2
.

The integration domain above is a compact subset of R10. Since f is continuous and
k is assumed continuous in the vicinity of px0, x0q, Lebesgue’s dominated convergence
theorem can be applied when R Ñ 0, which yields

IR ÝÝÝÑ
RÑ0

tt1kpx0, x0q

ż

SˆS

fpx0 ` c|t|γ, x0 ` c|t1|γ1q
dΩdΩ1

p4πq2
ˆ

ˆ

3

ż 1

0

ρ2dρ

˙2

“ kpx0, x0qxτx0
Ft b τx0

Ft1 , fy.

which concludes the proof.

As before, the kernel kRx0
of Proposition 5 is the covariance kernel of the truncated

process V 0
truncpxq “ 1Bpx0,RqpxqV 0pxq{p4πR3{3q. The limit object we obtain in equation

(3.38) is not a function but a singular measure, and thus it cannot be a covariance
function. This means that we do not obtain a Gaussian process in the point source
limit. More precisely, the Gaussian process associated to the covariance function kwave,R

x0

degenerates into a Gaussian measure [7] over the locally convex space CcpR3ˆR3q when R
goes to zero, though we leave aside this observation for now. On a formal level though,
Proposition 5 provides an entry point for studying the log marginal likelihood (3.37)
associated with the kernel (3.36) when R is small. Indeed, Proposition 5 states that for
small values of R, the kernel (3.36) behaves like a rank one kernel, i.e. a kernel of the
form kpz, z1q “ fpzqfpz1q for some particular function f . This observation will prove to
be enough for explaining the patterns observed in Figure 1.

Properly dealing with the limit R Ñ 0 implies that we use a mathematical framework
compatible with general Radon measures, as indicated by Proposition 5. This also implies
an additional layer of technicality. Instead, we introduce regularized (mollified) versions
of both the limit object in Proposition 5 and Lpx0, λq. and study these regularized terms.
This is the content of Propositions 6 and 7, which are statements on the regularized log
marginal likelihood Lregpx0, λq introduced in equation (3.40). Note however that proving
a rigorous mathematical statement linking the behaviours of Lpx0, λq and Lregpx0, λq is
an open question.

3.3.3 Point source mollification. We start with regularizing Ft thanks to a mollifier
φpxq on R3 which we choose to be radially symmetric as in [17], section 4.2.1. Define
φRpyq “ φpy{Rq{R3, then a C8

c regularization of Ft is obtained by setting fR
t pxq :“

pFt ˚ φRqpxq for all x in R3. As Ft, f
R
t exhibits radial symmetry. We will next use the

following regularizations:
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• Note kregx0
ppx, tq, px1, t1qq :“ fR

t px´x0qfR
t1 px1 ´x0q, which plays the role of a regularized

version of the limit measure in Proposition 5. The same proposition states that in some
sense, when R approaches 0, kwave,R

x0
is close to kregx0

. Denote also Fx0
:“ pF 1

x0
| ¨ ¨ ¨ |F q

x0
qT ,

with F i
x0

:“ pfR
t1pxi ´ x0q, ..., fR

tN pxi ´ x0qq. The covariance matrix corresponding to the
hyperparameter x0 is then given by Kreg

x0
“ kregx0

pZ,Zq “ Fx0F
T
x0
. In particular it is rank

one.

• We also assume that wpxi, tjq can be approximated by w̃pxi, tjq “ fR
tj pxi´x˚

0 q as in the
point source limit, v0 “ δx˚

0
and in that case we would have wpxi, tjq “ pFtj ˚ v0qpxiq “

Ftj pxi ´x˚
0 q (forgetting for a second that Ft is not defined pointwise). We thus introduce

the column vector of “approximated observations” W “
`

w̃pxi, tjq
˘

i,j
and we assume

that W is ordered as W “ pW1| ¨ ¨ ¨ |WqqT where Wi corresponds to the ith sensor:
Wi “ pw̃pxi, t1q, ..., w̃pxi, tN qq P RN .

We may then introduce the “regularized” log marginal likelihood built by replacing k
with kregx0

and wobs by W :

Lregpx0, λq :“ WT pKreg
x0

` λInq´1W ` log detpKreg
x0

` λInq, (3.40)

with Kreg
x0

“ kregx0
pZ,Zq “ Fx0

FT
x0
. We will then study Lregpx0, λq in the place of Lpx0, λq;

as stated before, we expect that Lpx0, λq behaves similarly to Lregpx0, λq, although proofs
of such statements are lacking for the moment.

We begin with a proposition which describes the asymptotic behaviour of Lregpx0, λq

in the limit of λ Ñ 0. This limit corresponds to noiseless observations, and the limit
object in Proposition 6 provides an explanation of the patterns of Figure 1.

Proposition 6 (Asymptotic behaviour of Lregpx0, λq when λ Ñ 0). Let ε ą 0 and
Eε :“ tx0 P R3 : ||Fx0

||2Rn ą εu. Define the correlation coefficient between Fx0
and W by

rpx0q “ CorrpFx0
,W q “ xFx0

,W yRn{p||W ||Rn ||Fx0
||Rnq. We set rpx0q “ 0 if Fx0

“ 0.
Then we have the following pointwise convergence:

@x0 P R3,
ˇ

ˇλLregpx0, λq ´ ||W ||2Rn

`

1 ´ rpx0q2
˘
ˇ

ˇ “ OλÑ0pλ log λq,

and the uniform convergence on Eε

sup
x0PEε

ˇ

ˇλLregpx0, λq ´ ||W ||2Rn

`

1 ´ rpx0q2
˘
ˇ

ˇ “ OλÑ0pλ log λq.

The set Eε is the set of values of x0 for which the vectors Fx0
are uniformly large

enough for the Euclidean norm. This is interpreted by saying that the elements x0 of
Eε are potential source positions for which the chosen sensor locations should capture a
signal with sufficient L2 energy (at least ε across all sensors) over the window r0, T s, in
the case where the source is indeed located at x0. Loosely speaking, such locations x0

are ”visible” source positions. From a covariance perspective, we have that ρpKreg
x0

q “

||Fx0
||2Rn , where ρ denotes the spectral radius.

Proof of Proposition 6. Suppose first that ||Fx0
||2Rn “ 0. Then by definition, rpx0q “ 0

and Lregpx0, λq “ ||W ||2Rn{λ ` n log λ which indeed shows that

ˇ

ˇλLregpx0, λq ´ ||W ||2Rn

ˇ

ˇ “ OλÑ0pλ log λq. (3.41)
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Now, let ε ą 0 and assume that ||Fx0
||2Rn ě ε. We first deal with the first term in

equation (3.40). Using the Sherman–Morrison formula ([39], Section 2.7.1), we may
invert pKreg

x0
` λInq explicitly:

pKreg
x0

` λInq´1 “
1

λ
In ´

1

λ2

Fx0F
T
x0

1 ` 1
λF

T
x0
Fx0

“
1

λ

´

In ´
Fx0F

T
x0

λ ` ||Fx0
||2Rn

¯

.

The determinant term in equation (3.40) is also easily derived. Indeed, Fx0F
T
x0

has
only one non zero eigenvalue equal to ||Fx0 ||2Rn , since pFx0F

T
x0

qFx0 “ Fx0pFT
x0
Fx0q “

||Fx0
||2RnFx0

:

log detpKreg
x0

` λInq “ pn ´ 1q log λ ` logpλ ` ||Fx0
||2Rnq. (3.42)

(The same argument shows that ρpKreg
x0

q “ ||Fx0
||2Rn .) Thus,

Lregpx0, λq “ WT pKreg
x0

` λInq´1W ` log detpKreg
x0

` λInq

“
1

λ

ˆ

||W ||2Rn ´
xFx0

,W y2Rn

λ ` ||Fx0 ||2Rn

˙

` pn ´ 1q log λ ` logpλ ` ||Fx0 ||2Rnq

“
||W ||2Rn

λ

ˆ

1 ´
xFx0 ,W y2Rn

||W ||2Rnpλ ` ||Fx0
||2Rnq

˙

` pn ´ 1q log λ ` logpλ ` ||Fx0 ||2Rnq.

Therefore,

λLregpx0, λq ´ ||W ||2Rnp1 ´ rpx0q2q

“ ||W ||2Rn

ˆ

xFx0
,W y2Rn

||W ||2Rn ||Fx0
||2Rn

´
xFx0

,W y2Rn

||W ||2Rnpλ ` ||Fx0
||2Rnq

˙

(3.43)

` pn ´ 1qλ log λ ` λ logpλ ` ||Fx0
||2Rnq.

Moreover, for the term in equation (3.43) which is multiplied by ||W ||2Rn ,

xFx0
,W y2Rn

||W ||2Rn ||Fx0
||2Rn

´
xFx0

,W y2Rn

||W ||2Rnpλ ` ||Fx0
||2Rnq

“
xFx0

,W y2Rn

||W ||2Rn

ˆ

1

||Fx0
||2Rn

´
1

λ ` ||Fx0
||2Rn

˙

“
xFx0

,W y2Rn

||W ||2Rn

λ

||Fx0 ||2Rnpλ ` ||Fx0 ||2Rnq

ďrpx0q2
λ

λ ` ||Fx0 ||2Rn

ď
λ

||Fx0 ||2Rn

ď
λ

ε
, (3.44)

and obviously, since λ ě 0,

xFx0
,W y2Rn

||W ||2Rn ||Fx0 ||2Rn

´
xFx0

,W y2Rn

||W ||2Rnpλ ` ||Fx0 ||2Rnq
ě 0. (3.45)

Also, one sees that Fx0 “ 0 as soon as supi |x0 ´ xi| ą cT ` R, ie x0 is too far from
the receivers for them to capture non zero signal during the time interval r0, T s. Thus
the function x0 ÞÝÑ ||Fx0

||2Rn is zero outside of a compact set. It is obviously continuous
on R3 and is thus bounded on R3 by some constant M ą 0. Using this together with
equations (3.44) and (3.45) inside equation (3.43), and assuming that λ ď 1 yields

ˇ

ˇλLregpx0, λq ´ ||W ||2Rnp1 ´ rpx0q2q
ˇ

ˇ ď
λ

ε
||W ||2Rn ` pn ´ 1q|λ log λ| ` λ logpM ` 1q,
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which shows the uniform convergence statement as well as the pointwise one (together
with (3.41)).

Remark 3.3. In the proof of Proposition 6, the determinant term in (3.40) has no influ-
ence in the limit object and only pollutes the rate of convergence. Discarding it leads to
a OλÑ0pλq rate of convergence.

It also makes sense to inspect the case N Ñ 8, which is the content of the next
proposition; the obtained limit object is similar to that of Proposition 6. The limit
N Ñ 8 corresponds to having the sampling frequency of the sensors go to infinity. In
this case, the discrete objects in Proposition 6 behave as Riemann sums if the time steps
tk are equally spaced and we obtain integrals in the limit N Ñ 8. Notation wise, we
highlight the dependence in N in Lregpx0, λq by noting it instead LN

regpx0, λq.

Proposition 7 (Asymptotic behaviour of LN
regpx0, λq when N Ñ 8). Define the follow-

ing vector valued functions in L2pr0, T s,Rqq:

@t P r0, T s, Iwptq :“
`

w̃px1, tq, ..., w̃pxq, tq
˘T

,

@t P r0, T s, Ix0
ptq :“

`

fR
t px1 ´ x0q, ..., fR

t pxq ´ x0q
˘T

.

Denote || ¨ ||L2 and x, yL2 the norm and the dot product of the usual Euclidean structure
of L2pr0, T s,Rqq. Assume that the observations are such that ||Iw||L2 ą 0. Introduce
then the correlation function, defined whenever ||Ix0 ||L2 ą 0:

r8px0q :“
xIw, Ix0

yL2

||Iw||L2 ||Ix0
||L2

. (3.46)

Assume that for all k P t1, ..., Nu, tk “ T pk ´ 1q{pN ´ 1q, i.e. the tk are equally
spaced in r0, T s. Then for all x0 such that ||Ix0

||L2 ‰ 0, we have the following pointwise
convergence at x0

λ

N
LN
regpx0, λq ÝÝÝÝÑ

NÑ8
||Iw||2L2

`

1 ´ r8px0q2
˘

` qλ log λ. (3.47)

Proof of Proposition 7. In all concerned mathematical objects, we highlight the N de-
pendency with an exponent, i.e. WN , FN

x0
, etc. We use the exact same tools as in the

previous proof, namely that we the following equality holds:

LN
regpx0, λq “

||WN ||2Rn

λ

ˆ

1 ´
xFN

x0
,WN y2Rn

||WN ||2Rn

`

λ ` ||FN
x0

||2Rn

˘

˙

` pn ´ 1q log λ ` logpλ ` ||FN
x0

||2Rnq.

But we also have ||WN ||2Rn “
řq

i“1

řN
k“1 w̃pxi, tkq2, ||FN

x0
||2Rn “

řq
i“1

řN
k“1 f

R
tk

pxi ´ x0q2

and xFN
x0
,WN yRn “

řq
i“1

řN
k“1 f

R
tk

pxi ´ x0qw̃pxi, tkq. Since the time steps are equally
spaced, we can study the limit N Ñ 8 of the above objects thanks to Riemann sums.
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When N Ñ 8,

1

N
||WN ||2Rn ÝÑ

q
ÿ

i“1

ż T

0

w̃pxi, tq
2dt “ ||Iw||2L2 , (3.48)

1

N
||FN

x0
||2Rn ÝÑ

q
ÿ

i“1

ż T

0

ftpxi ´ x0q2dt “ ||Ix0
||2L2 , (3.49)

1

N
xWN , FN

x0
yRn ÝÑ

q
ÿ

i“1

ż T

0

w̃pxi, tqftpxi ´ x0qdt “ xIw, Ix0
yL2 . (3.50)

Assume that x0 is such that ||Ix0
||L2 ‰ 0, then because of equation (3.49), the quantity

||FN
x0

||Rn is bounded from below by a constant C ą 0 for sufficiently large N (say C “

||Ix0
||L2{2). From the three equations above, we then have the following convergence:

xFN
x0
,WN y2Rn

||WN ||2Rnpλ ` ||FN
x0

||2Rnq
“

p 1
N xFN

x0
,WN yRnq2

1
N ||WN ||2Rnp λ

N ` 1
N ||FN

x0
||2Rnq

ÝÝÝÝÑ
NÑ8

r8px0q. (3.51)

Likewise, since n “ qN , when N Ñ 8 we have that

pn ´ 1q log λ

N
`

1

N
logpλ ` ||Fx0

||2Rnq

“
pNq ´ 1q log λ

N
`

logN

N
`

1

N
log

´ λ

N
`

1

N
||Fx0

||2Rn

¯

ÝÝÝÝÑ
NÑ8

q log λ.

which, together with equation (3.51), shows the announced result.

3.3.4 Discussion: location of the point source. Propositions 6 and 7 enable us to
explain the patterns observed in Figure 1 where the correct source position is located at
the intersection of spheres centered on receivers.

For that purpose, we analyze the limit term in Proposition 6 (or the one in Proposition
7). We denote Lpx0q the said limit object from Proposition 6:

Lpx0q “ ||W ||2Rn

`

1 ´ rpx0q2
˘

“ ||W ||2Rn

˜

1 ´

`
řq

i“1xF i
x0
,WiyRn

˘2

||W ||2Rn ||Fx0
||2Rn

¸

.

Note Ti the time of arrival of the point source wave at sensor i: |xi ´ x˚
0 | “ c˚Ti.

Define also Si :“ Spxi, cTiq, the sphere centered on xi, and Ai the thin spherical shell of
thickness 2R that surrounds Si, given by Ai :“ Bpx0, cTi ` RqzBpx0, cTi ´ Rq. Then:

(i) Lpx0q reaches a local minima over the whole sphere Si. When x0 is located inside Ai,
the subvectors Wi and F i

x0
of W and Fx0

respectively become almost colinear because
fR
t is radially symmetric. They become exactly colinear when x0 P Si. This maximizes
the term xF i

x0
,Wiy in virtue of the Cauchy-Schwarz inequality. When x0 lies on one and

only one of those spherical shells Ai, the other terms xF j
x0
,Wjy are all zero.

(ii) The local minima of Lpx0q located at the intersection of 2 or more spheres Si are
smaller. More generally, when I is a subset of t1, ..., qu and when x0 P

Ş

iPI Aiz
Ş

jRI Aj ,

the term
ř

iPIxF i
x0
,Wiy is (almost) maximized while

ř

jRIxF j
x0
,Wjy “ 0, which explains

why the intersection of spheres are darker coloured than the other parts of the spheres
in Figure 1.
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(iii) The spheres Si intersect at a single point, which is exactly x˚
0 as well as the global

minima of Lpx0q. The quantity rpx0q reaches a global maximum when all subvectors Wi

and F i
x0

are colinear, which is the case only when x0 P
Ş

i Si. When there are at least 4
sensors, the intersection of all the spheres

Ş

i Si is reduced to at most one point. Recall
that we have assumed that c “ c˚: this implies that x˚

0 P
Ş

i Si, and thus the minimum
of Lpx0q is located at x0 “ x˚

0 .

Note that if the speed c in kRx0
does not correspond to the real speed c˚, the intersec-

tion
Ş

i Si will be empty. Additionally, from an optimization point of view, numerically
solving infx0 Lpx0, λq is obviously highly non convex and none of our numerical experi-
ments lead to the correct solution.

3.4 Initial condition reconstruction and error bounds

3.4.1 Initial condition reconstruction procedure. Consider a set of space loca-
tions pxiq1ďiďq and moments ptjq1ďjďN (imagine q sensors each collecting measurements
at time tj for all j). Consider now the following inverse problem

Build and approximation of u0 and v0 from a finite set of measurements

twpxi, tjqui,j where pw, u0, v0q are subject to (3.1).
(3.52)

We now show that WIGPR provides an answer to the problem (3.52). This is not
surprising, because the covariance models described in the previous section were derived
by putting GP priors over u0 and v0. As already observed in Section 3.2.1, performing
GPR on any data with kernel (3.8) automatically produces a prediction m̃ that verifies
lm̃ “ 0 in the sense of distributions. Therefore, this function m̃ is the solution ofthe
Cauchy problem (3.1) for some initial conditions ũ0 and ṽ0:

m̃px, tq “ pFt ˚ ṽ0qpxq ` p 9Ft ˚ ũ0qpxq. (3.53)

These initial conditions are simply given by ũ0pxq “ m̃px, 0q and ṽ0pxq “ Btm̃px, 0q.
If the data twpxi, tjqui,j on which GPR is performed is comprised of observations of a
function w that is another solution of problem (3.1), the initial conditions pũ0, ṽ0q can
be understood as approximations of the initial conditions pu0, v0q corresponding to w.
More precisely, following Section 2.2.3, we have m̃ “ pF pwq and thus

ũ0pxq “ m̃px, 0q “ pF pwqpx, 0q @x P R3, (3.54)

ṽ0pxq “ Btm̃px, 0q “ BtpF pwqpx, 0q “ pF pBtwqpx, 0q @x P R3, (3.55)

where F denotes the finite dimensional space Spanpkwpz1, ¨q, ..., kwpzn, ¨qq and pF is the
orthogonal projector on F w.r.t. the Hilbert space structure of Hkw . Here, zm is of the
form zm “ pxi, tkq P R4. This use of WIGPR provides a flexible framework for tackling
the problem (3.52), as the sensors are not constrained in number or location by any
integration formula such as Radon transforms. Taking a look at equations (3.54) and
(3.55), we can qualitatively discuss the matter of optimal sensor locations for WIGPR.
Indeed, we expect that m̃ will provide a better approximation of w when the functions
kwpzi, ¨qi“1,...,n are as orthogonal as possible in Hkw

, since m̃ is an orthogonal projection

22



on F w.r.t. the Hkw
inner product. The optimal situation is when given two different

sensors xi and xj , the following should hold for most times tk, tl:

xkwppxi, tkq, ¨q, kwppxj , tlq, ¨qyHkw
“ kwppxi, tkq, pxj , tlqq ! 1. (3.56)

A close inspection of the explicit covariance expressions (equations p52q and p53q from
[25]) shows that the property (3.56) can be obtained for most times tk and tl when the
sensors are far apart from each other, as soon as the kernels ku and kv are such that
kpx, x1q ÝÑ 0 when |x ´ x1| ÝÑ `8 (which is common, see e.g. the kernel (4.1)). Com-
puting optimal sensor locations and obtaining quantitative guaranties of the accuracy of
the reconstruction provided by WIGPR is a hard question left for future research.

3.4.2 Time-dependent error bounds in terms of the initial condition recon-
structions. Now that we have showed that WIGPR provides approximations of the
initial conditions of (3.1), we underline the fact that these initial condition reconstruc-
tions induce a control of the spatial error between the target function u and the Kriging
mean m̃, at all times. Indeed, we have the following Lp control in terms of the initial
condition reconstruction error. Given p P r1,`8s, denote W 1,ppR3q the Sobolev space
of functions f P LppR3q whose weak derivatives Bxi

f, 1 ď i ď d, exist and lie in LppR3q.

Proposition 8. For any p P r1,`8s and any pair v0 P LppR3q, u0 P W 1,ppR3q we have
the following Lp estimates for all t P R:

||Ft ˚ v0||p ď |t| ||v0||p, (3.57)

|| 9Ft ˚ u0||p ď ||u0||p ` Cpc|t| ||∇u0||p, (3.58)

where Cp “

´

ş

S
|γ|pq dΩ{4π

¯1{p

ď 31{q ď 3, 1{p ` 1{q “ 1 pC8 “ 1, C1 ď 1q. Assume

that the correct speed c is known and plugged in kw, equations (3.57) and (3.58) then
lead to the following Lp error estimate between the target w and its approximant m̃:

||wp¨, tq ´ m̃p¨, tq||p ď |t| ||v0 ´ ṽ0||p ` ||u0 ´ ũ0||p ` Cpc|t| ||∇pu0 ´ ũ0q||p, (3.59)

where ũ0 and ṽ0 are defined in (3.54) and (3.55), and m̃ is given in equation (3.53).

Equations (3.57) and (3.58) are simple stability estimates for the 3D wave equation,
although we have not found them in that form in the literature (notably the explicit
control constants |t| and Cpc|t|). They fall in the category of Strichartz estimates with
Lp control for the space variable and L8 control for the time variable. We thus provide
a proof of the Proposition 8.

Proof of Proposition 8. We have pFt ˚ v0qpxq “ t
ş

S
v0px ´ c|t|γqdΩ{4π, where dΩ{4π is

the normalized Lebesgue measure on the unit sphere S. Assume first that p P r1,`8r.
Jensen’s inequality on the function t ÞÝÑ |t|p yields

||Ft ˚ v0||pp “ tp
ż

R3

|pFt ˚ v0qpxq|pdx “ |t|p
ż

R3

ˇ

ˇ

ˇ

ˇ

ż

S

v0px ´ c|t|γq
dΩ

4π

ˇ

ˇ

ˇ

ˇ

p

dx

ď |t|p
ż

R3

ż

S

|v0px ´ c|t|γq|p
dΩ

4π
dx “ |t|p

ż

S

ż

R3

|v0px ´ c|t|γq|pdx
dΩ

4π

ď

ż

S

||v0||pp
dΩ

4π
“ |t|p||v0||pp, (3.60)
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which yields equation (3.57). Next,

p 9Ft ˚ u0qpxq “ BtpFt ˚ u0qpxq “ Bt

˜

t

ż

S

u0px ´ c|t|γq
dΩ

4π

¸

“

ż

S

u0px ´ c|t|γq
dΩ

4π
` t

ż

S

´cγ ¨ ∇u0px ´ c|t|γq
dΩ

4π
“: I1pxq ` I2pxq.

The functions I1 and I2 are defined in the equation above. We have || 9Ft ˚ u0||p “

||I1 ` I2||p ď ||I1||p ` ||I2||p. As in (3.60), ||I1||p ď ||u0||p. From Jensen’s inequality,

||I2||pp “ |ct|p
ż

R3

ˇ

ˇ

ˇ

ˇ

ˇ

ż

S

γ ¨ ∇u0px ´ c|t|γq
dΩ

4π

ˇ

ˇ

ˇ

ˇ

ˇ

p

dx ď |ct|p
ż

R3

ż

S

|γ ¨ ∇u0px ´ c|t|γq|p
dΩ

4π
dx.

Next, we use Hölder’s inequality in R3: |γ ¨ ∇u0| ď |∇u0|p ˆ |γ|q with 1{p ` 1{q “ 1,
where |v|p “ p|v1|p ` |v2|p ` |v3|pq1{p and likewise for |v|q. Thus,

||I2||pp ď cp|t|p
ż

R3

ż

S

|∇u0px ´ c|t|γq|pp ˆ |γ|pq
dΩ

4π
dx

ď cp|t|p
ż

S

|γ|pq

ż

R3

|∇u0px ´ c|t|γq|ppdx
dΩ

4π
“ cp|t|p

˜

ż

S

|γ|pq
dΩ

4π

¸

||∇u0||pp.

which yields equation (3.57). Finally, the case p “ `8 is trivial. Equation (3.59) is then
the result of equations (3.57) and (3.58) applied to the function

wpx, tq ´ m̃px, tq “ rFt ˚ pv0 ´ ṽ0qspxq ` r 9Ft ˚ pu0 ´ ũ0qspxq.

This finishes the proof.

Equation (3.59) shows that Lp approximations of the initial conditions provide an
Lp control between the solution w and the approximation m̃, for any time t. This is
one reason why in our numerical applications (Section 4), we focus on initial condition
reconstruction.

When c is unknown and estimated by ĉ through maximizing the log marginal likeli-
hood, we have instead (highlighting the dependence in c by writing F c

t “ σc|t|{4πc
2t)

||wp¨, tq´m̃p¨, tq||p “ ||F c
t ˚ u0 ´ F ĉ

t ˚ ũ0 ` 9F c
t ˚ v0 ´ 9F ĉ

t ˚ ṽ0||p

“ ||F c
t ˚ pu0 ´ ũ0q ` pF c

t ´ F ĉ
t q ˚ ũ0 ` 9F c

t ˚ pv0 ´ ṽ0q ` p 9F c
t ´ 9F ĉ

t q ˚ ṽ0||p,

and thus

||wp¨, tq ´ m̃p¨, tq||p ď|t| ||v0 ´ ṽ0||p ` ||u0 ´ ũ0||p ` Cpc|t| ||∇pu0 ´ ũ0q||p

` ||pF c
t ´ F ĉ

t q ˚ ũ0||p ` ||p 9F c
t ´ 9F ĉ

t q ˚ ṽ0||p. (3.61)

The terms containing F c
t ´F ĉ

t and 9F c
t ´ 9F ĉ

t may be further controlled in terms of |c´ĉ| with
additional assumptions such as Lipschitz continuity of u0 and v0. Likewise, the quantity
||wp¨, tq ´ m̃p¨, tq||p may be further controlled if additional assumptions are made on u0

and/or v0. We leave such results to the interested reader.
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4 Numerical experiments

In this section, we showcase WIGPR on functions w that are solutions of Problem (3.1),
using the kernels (3.34) and (3.35) separately as well as together, as in equation (3.8).
The goal is twofold: reconstructing the target function w, which more or less amounts to
reconstructing its initial conditions (Proposition 8), and estimating the physical param-
eters attached. Note that with badly estimated physical parameters, the reconstruction
step is more or less bound to fail, especially with inaccurate wave speed c and/or source
centers xu

0 and xv
0.

Running an extensive numerical study of the capabilities and limitations of WIGPR is
a large task in itself. For the time being we will settle for simple test cases; in particular
we only consider compactly supported and radially symmetric initial conditions, for
which we can use the formulas (3.34) and (3.35) which can be evaluated numerically
with a low computational cost. We will denote with a star the corresponding true
source position x˚

0 and celerity c˚. whereas their starless counterpart will denote the
hyperparameters of the WIGPR kernels. The estimated hyperparameters will be denoted
with a hat, e.g. ĉ.

Two test cases for WIGPR are considered here. A first test case for kwave
u described

in Subsection 4.1, for which u0 ‰ 0 and v0 “ 0. This would correspond to PAT, though
real life PAT test cases would be very unlikely to enjoy radial symmetry properties. A
second test case for kwave

u ` kwave
v described in Subsection 4.2, for which u0 ‰ 0 and

v0 ‰ 0. For each test case, the full procedure described below is performed.

Numerical simulation and database generation Given initial conditions u0 and
v0, we numerically simulate the solution w over a given time period. We use a basic
two step explicit finite difference time domain (FDTD) numerical scheme for the wave
equation as described in [6], equation A.24, over the cube r0, 1s3. We also use first order
Engquist-Majda transparent boundary conditions [15], in order to mimic a full space
simulation. We use a sample rate SR “ 200 Hz (time step ∆t “ 1{200 s), a space step
∆x “ 43 mm, and a wave speed c˚ “ 0.5 m{s. The simulation duration is T “ 1.5 s.

30 sensors are scattered in the cube r0.2, 0.8s3 using a Latin hypercube repartition
and a minimax space filling algorithm. Signal outputs correspond to time series for each
sensor, with a sample rate of 50 Hz, so 75 data points altogether spanned over the time
interval r0, T s for each sensor. This leads to 30 ˆ 75 “ 2250 observations. Each signal is
then polluted by a centered Gaussian white noise with standard deviation σnoise “ 0.45
(resp. 0.09) for the test case #1 (resp. test case #2). These values correspond to around
10% of the maximal amplitude of the signals, see Figures 2a and 4c.

Perform WIGPR on simulated data We perform WIGPR on portions of the
dataset obtained above, using the kergp package [12] from R [42]. For that we use kernels
(3.34) and/or (3.35) which are “fast” to evaluate, with Kv and k0u both 1D 5{2´Matérn
kernels. This Matérn kernel is stationary and writes, in term of the increment h “ x´x1,

k5{2phq “ σ2
`

1 ` |h|{ρ ` |h|2{3ρ2
˘

exp
`

´ |h|{ρ
˘

. (4.1)

It has two hyperparameters on its own, ρ and σ2. ρ is the length scale of the kernel (4.1)
and should correspond to the typical variation length scale of the function approximated
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with GPR; σ2 is the variance of the kernel. We tackle two different questions related to
WIGPR which are respectively the estimation of physical parameters and the sensitivity
to sensor locations.

(P1) We first study how well the physical parameters pc˚, x˚
0 , R

˚q can be estimated with
WIGPR. For this, we first select Ns time series corresponding to the first Ns sensors with
Ns P t3, 5, 10, 15, 20, 25, 30u. The corresponding Kriging database contains 75ˆNs data
points. For this database, we perform negative log marginal likelihood minimization to
estimate the corresponding hyperparameters, which are

θ “

#

pxu
0 , Ru, θk0

u
, c, λq P R8 if v0 “ 0 and u0 ‰ 0,

pxu
0 , Ru, θk0

u
, xv

0, Rv, θk0
v
, c, λq P R14 if v0 ‰ 0 and u0 ‰ 0.

λ corresponds to σ2 in Section 2.2.2, and is viewed as an additional hyperparameter
in the log marginal likelihood. We use a COBYLA optimization algorithm to optimize
Lpθ, λq and a multistart procedure with nmult “ 100 different starting points. That is,
100 different values of θ0 are scattered over an hypercube H Ă R8 or H Ă R14, and the
COBYLA log marginal likelihood optimization procedure is run using each value of θ0
as a starting point. The resulting hyperparameter value providing the minimal negative
log marginal likelihood is selected. The multistart procedure mitigates the risk of getting
stuck in local maxima. COBYLA is a gradient-free optimization method used in kergp

and is available in the nloptr package from R. We then reconstruct the initial conditions
using WIGPR, which we evaluate in terms of the indicators in equation (4.2).

(P2) Next, we study the sensibility of the reconstruction step with respect to the sen-
sor locations. Consider 40 different Latin hypercube layouts of the 30 sensors, each
obtained with a minimax space filling algorithm. For each layout, we provide the
correct set of hyperparameter values to the model; these values are described in each
test case. We then reconstruct the initial conditions using GPR and Ns sensors, with
Ns P t3, 5, 10, 15, 20, 25, 30u. Lp relative errors (see equation (4.2)) are computed be-
tween the reconstructed initial condition and the real initial condition. For each number
of sensors Ns, statistics over the 40 different datasets for these Lp errors are summarized
in boxplots (see e.g. Figure 3a). Each box plot shows the median, the first and the
third quartiles of a dataset corresponding to results obtained on the 40 different receiver
dispositions. The dots inside a circle correspond to the median of each boxplot. The
black crosses are the mean of each box plot, which are linked together with the dashed
line. The circles are outliers.

In both cases, the approximated initial position ũ0 is recovered by evaluating the WIGPR
Kriging mean at t “ 0 over a 3D grid and the initial speed ṽ0 is recovered by evaluating
the Kriging mean at t “ 0 and t “ ∆t “ 10´7 over the same 3D grid: ṽ0 » pm̃p¨,∆tq ´

m̃p¨, 0qq{∆t. Figures are displayed using MATLAB [34].

Numerical indicators For (P1), we indicate in Tables 1 and 2 the distances between
the true physical parameters and the estimated ones, depending on the number of sensors
used. Additionally, for every p P t1, 2,8u, we indicate relative Lp reconstruction errors
ep,rel defined below depending on the number of sensors used:

eup,rel “ ||u0 ´ ũ0||p{||u0||p and evp,rel “ ||v0 ´ ṽ0||p{||v0||p. (4.2)
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(a) Test case #1, excerpt of captured signals
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(b) Test case #1: True u0 (left column) vs WIGPR u0 (right column). 15 sensors were used.
The images correspond to the 3D functions evaluated at z “ 0.5.

Figure 2: Visualization of signal and WIGPR results for the test case #1

A relative error of over 100% means that ||u0 ´ ũ0||p ě ||u0||p, in which case the trivial
estimator û0 “ 0 performs better than the estimator ũ0, in the Lp sense. Note that
we deal with three dimensional functions, for which approximation errors are typically
larger than for their one dimensional counterpart. Thus, relatively large errors may still
correspond to pertinent approximations. For (P2) are plotted boxplots of the relative
Lp errors over the 40 different sensor layouts, depending on the number of sensors used.
Integrals for the Lp error plots are approximated using Riemann sums over a sufficiently
large 3D grid with space step dx “ 0.01.

The datasets, the code for generating the datasets and the code for performing
WIGPR are available at the following address:

https://github.com/iain-pl-henderson/wave gpr

4.1 Test case for kwave
u

In this test case, v0 is assumed null and thus we set kv “ 0, which yields kwave
v “ 0.

We thus use kwave
u defined in (3.35) for GPR. We use the 1D Matérn kernel (4.1) for k0u

in equation (3.35). The initial condition u0 is a radial ring cosine described as follows.
We set x˚

0 “ p0.5, 0.5, 0.5qT , R1 “ 0.15, R2 “ 0.3 and A “ 5, the corresponding initial
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conditions (IC) are given by v0pxq “ 0 and

u0pxq “ A1rR1,R2sp|x ´ x˚
0 |q

˜

1 ` cos

ˆ

2πp|x ´ x˚
0 | ´ R1`R2

2 q

R2 ´ R1

˙

¸

.

See Figure 2b, left column, for a graphical representation of u0. See Figure 2a for
an excerpt of the corresponding Kriging database. For problem (P1), the optimization
domain is chosen to be the following hypercube of R8

θ “ px0, R, ρ, σ2, c, λq

P r0, 1s3 ˆ r0.03, 0.5s ˆ r0.02, 2s ˆ r0.1, 5s ˆ r0.2, 0.8s ˆ r10´8, 1s. (4.3)

For problem (P2), the hyperparameter θ0 provided to the model is

θ0 “ px0, R, pρ, σ2q, c, λq “ pp0.65, 0.3, 0.5q, 0.3, p0.2, 3q, 0.5, σ2
noiseq, (4.4)

with σ2
noise “ 0.452 “ 0.2025. The value of 0.2 provided for ρ is a visual estimation of

the length scale of u0 based on Figure 2b.

4.1.1 Discussion on the numerical results. For problem (P1), Table 1 shows that
the physical parameters x0 and c are well estimated. The source size parameter R is
overestimated, as could be expected from Section 3.2.5. The relative errors show that
the overall function reconstruction is overall satisfying, with relative errors below 15%
for Ns “ 20, 25. The noise level is often overestimated. For problem (P2) (figures 3a, 3b
and 3c), the relative errors stagnate below 10%. The IQR (interquartile range, i.e. the
difference between the 3rd and the 1st quartiles) remains below 2%. This means that for
this test case, the reconstruction step is not very sensitive to the sensors layout when
they are scattered as a Latin hypercube.

Nsensors 3 5 10 15 20 25 30 Target

|x̂0 ´ x˚
0 | 0.204 0.003 0.004 0.008 0.003 0.004 0.015 0

R̂u 0.386 0.432 0.462 0.431 0.414 0.471 0.452 0.25
|ĉ ´ c˚

| 0.084 0.004 0.005 0.005 0.006 0.001 0.004 0
σ̂2
noise 0.917 0.879 0.93 0.99 0.361 0.988 0.377 0.2025

ρ̂ 0.02 0.02 0.025 0.02 0.035 0.024 0.032 „ 0.05
σ̂2 2.367 3.513 4.903 3.168 4.446 4.619 4.79 ?

eu1,rel 1.275 0.157 0.128 0.168 0.11 0.103 0.248 0
eu2,rel 1.056 0.095 0.082 0.124 0.088 0.064 0.213 0
eu8,rel 1.037 0.132 0.128 0.198 0.136 0.101 0.321 0

Table 1: Hyperparameter estimation and relative errors, test case #1
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(a) L2 rel. error for u0 (test case #1) (b) L8 rel. error for u0 (test case #1)

(c) L1 rel. error for u0 (test case #1)

Figure 3: Box plots for the sensibility analysis, test case #1
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4.2 Test case for kwave
u ` kwave

v

For this test case, the initial position is a raised cosine, while the initial speed is a ring
cosine. We set xu˚

0 “ p0.65, 0.3, 0.5qT , Ru “ 0.25, Au “ 2.5, xv˚
0 “ p0.3, 0.6, 0.7qT ,

Rv
1 “ 0.05, Rv

2 “ 0.15 and Av “ 30. The corresponding IC are given by

$

’

’

’

’

&

’

’

’

’

%

u0pxq “ Au1r0,Rusp|x ´ xu˚
0 |q

˜

1 ` cos

ˆ

π|x´xu˚
0 |

Ru

˙

¸

,

v0pxq “ Av1rRv
1 ,R

v
2sp|x ´ xv˚

0 |q

˜

1 ` cos

ˆ

2π
`

|x´xv˚
0 |´

Rv
1`Rv

2
2

˘

Rv
2´Rv

1

˙

¸

.

See Figures 4a and 4b, left columns, for graphical representations of u0 and v0. See
Figure 4c for a visualization of the database. For problem (P1), the optimization domain
is chosen to be the following hypercube

θ “pxu
0 , Ru, pρu, σ

2
uq, xv

0, Rv, pρv, σ
2
vq, c, λq

Pr0, 1s3 ˆ r0.05, 0.4s ˆ r0.02, 2s ˆ r0.1, 5s

ˆr0, 1s3 ˆ r0.05, 0.4s ˆ r0.02, 2s ˆ r0.1, 5s ˆ r0.2, 0.8s ˆ r10´8, 2 ˆ 10´2s. (4.5)

For problem (P2), the hyperparameter value θ0 provided to the model is

θ0 “ pp0.65, 0.3, 0.5q, 0.3, p0.06, 3q, p0.3, 0.6, 0.7q, 0.15, p0.025, 3.5q, 0.5, σ2
noiseq, (4.6)

with σ2
noise “ 0.0081. The provided values for pρu, σ

2
uq and pρv, σ

2
vq are the estimated

values from (P1).

4.2.1 Discussion of the numerical results. Table 2 shows that the physical param-
eters xu

0 , x
v
0 and c are well estimated. The source radii Ru and Rv are overestimated, as

expected from Section 3.2.5. The noise level is generally overestimated. The reconstruc-
tion of the initial position u0 yielded satisfactory results with L2 and L8 relative errors
below 25%, and an L1 relative error below 35% (Ns “ 10, 15, 20, 25, 30). The higher
L1 relative error means that the reconstructed function ũ0 is supported on a larger set
than the true function u0, as the L1 norm favours sparsity. For the initial speed v0, the
numerical indicators are not as good, reaching minimal values for Ns “ 25. The corre-
sponding errors for the L1, L2 and L8 errors are 64%, 28% and 64% respectively. Note
though that Figure 4b (corresponding to Ns “ 20) shows that WIGPR still managed
to capture the ring structure of v0; the corresponding L1 error for Ns “ 20 is 150%
(Table 2), confirming that the misestimated support radius Rv is heavily penalized by
the L1 norm. The reconstruction of v0 for Ns “ 30 failed (Table 2). For problem (P2),
the numerical indicators are better. For u0, Figures 5a, 5c and 5e show that relative
error medians stagnate below 5% for Ns ě 15. The corresponding IQR are around 2%.
For v0 (Figures 5b, 5d and 5f), the L1, L2 and L8 relative error medians stagnate at
30%, 25% and 40% respectively. The corresponding IQR stagnate at 10%, 5% and 10%
respectively.
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(a) True u0 vs WIGPR u0. The images correspond to the 3D solutions evaluated at z “ 0.5.
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(b) True v0 vs WIGPR v0. The images correspond to the 3D solutions evaluated at z “ 0.7.

(c) Test case #1, excerpt of captured signals

Figure 4: Test case #2: top and lateral view of the reconstructions of u0 (Figure 4a)
and v0 (Figure 4b) provided by WIGPR, in comparison with u0 and v0. Left columns:
true IC. Right columns: WIGPR IC reconstructions. 20 sensors were used.
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(a) L2 rel. error for u0 (test case #2) (b) L2 rel. error for v0 (test case #2)

(c) L8 rel. error for u0 (test case #2) (d) L8 rel. error for v0 (test case #2)

(e) L1 rel. error for u0 (test case #2) (f) L1 rel. error for v0 (test case #2)

Figure 5: Box plots for the sensibility analysis, test case#2
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Nsensors 3 5 10 15 20 25 30 Target

|x̂u
0 ´ xu

0
˚

| 0.163 0.144 0.013 0.024 0.023 0.033 0.015 0

R̂u 0.4 0.274 0.384 0.309 0.352 0.286 0.313 0.25
|x̂v

0 ´ xv
0

˚
| 0.163 0.18 0.035 0.028 0.037 0.006 0.05 0

R̂v 0.252 0.166 0.313 0.356 0.348 0.266 0.339 0.15
|ĉ ´ c˚

| 0.165 0.156 0.028 0.036 0.042 0.011 0.04 0
σ̂2
noise 0.0178 0.0184 0.0188 0.0161 0.0187 0.0145 0.0116 0.0081

ρ̂u 0.034 0.069 0.102 0.027 0.031 0.061 0.034 „ 0.05
σ̂2
u 4.649 4.472 4.575 2.493 0.678 3.272 2.541 ?

ρ̂v 0.057 0.027 0.044 0.053 0.085 0.022 0.012 „ 0.02
σ̂2
v 3.91 2.538 3.05 1.545 4.886 3.575 4.346 ?

eu1,rel 2.414 1.676 0.243 0.311 0.358 0.315 0.317 0
eu2,rel 1.276 1.053 0.174 0.223 0.228 0.261 0.205 0
eu8,rel 0.732 0.608 0.136 0.174 0.231 0.212 0.228 0
ev1,rel 2.865 2.796 1.315 1.42 1.51 0.645 9.784 0
ev2,rel 1.492 1.812 0.694 0.616 0.736 0.284 35.75 0
ev8,rel 1.083 1.608 0.817 0.763 0.845 0.635 2416.682 0

Table 2: Hyperparameter estimation and relative errors, test case #2

5 Conclusion and perspectives

In Section 3, we described several Gaussian process priors tailored to the wave equation,
which may then be used in the context of Gaussian process regression (WIGPR). These
priors are particular cases of general covariance formulas which were first derived in a
previous work. The priors we have studied in this article correspond to the cases where
either stationarity or radial symmetry assumptions over the initial conditions hold. In
that framework, the physical parameter of the PDE system (e.g. source location or wave
celerity) can be interpreted as hyperparameters of the WIGPR prior, as in [43]. We
then showed that in the limit of the small source radius, the multilateration method for
point source localization was naturally recovered by the hyperparameter estimation step
of WIGPR. We furthermore showed that WIGPR naturally provides a reconstruction of
the initial conditions of the wave equation, as should be expected when putting priors
over them.

The radial symmetry WIGPR formulas from Section 3 were then showcased in Section
4, where two practical questions were tackled. First, WIGPR can correctly estimate
certain physical parameters attached to the corresponding wave equation, namely the
wave speed and source position. When these parameters are well estimated, WIGPR is
capable of providing non trivial reconstructions of the initial condition, which we studied
in terms of L1, L2 and L8 relative errors. The second question consisted in studying the
sensibility of the reconstruction step of WIGPR w.r.t. the sensor locations. we observed
that when the sensors are spread according to a Latin hypercube, the reconstruction
step is not very sensitive to the layout of the sensors, assuming that the correct set of
hyperparameters is provided to the model.

Future possible investigations concern the practical use of the more general formula
(3.8) without any radial symmetry assumptions, e.g. for PAT applications. To compute
the convolutions efficiently, one may then resort to multidimensional fast Fourier trans-
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forms. Moreover, in this first study, we have only used simple methods for GP numerical
evaluation. More advanced GP techniques such as inducing points [41] should now be
used to handle large size datasets such as the ones we have used in Section 4.

The case of the two dimensional wave equation is also of practical interest, e.g. in
oceanography [32], and presents many different properties than its 3D counterpart ([16],
p. 80). It would thus deserve a theoretical and practical study in its own right when
coupled with GPR.
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Boston, 2010.

[15] B. Engquist and A. Majda. Absorbing boundary conditions for the numerical simulation
of waves. Math. Comp., 31(139):629–651, July 1977.

34



[16] L. Evans. Partial Differential Equations. Graduate studies in mathematics. American
Mathematical Society, 1998.

[17] L. C. Evans and R. F. Garzepy. Measure theory and fine properties of functions, Revised
Edition (1st ed.). Chapman and Hall/CRC, 2015.

[18] B. T. Fang. Trilateration and extension to global positioning system navigation. J. Guid.
Control Dyn., 9(6):715–717, 1986.

[19] G. Fasshauer. Meshfree approximation methods with MATLAB. In Interdisciplinary Math-
ematical Sciences, 2007.

[20] E. J. Fuselier Jr. Refined error estimates for matrix-valued radial basis functions. PhD
thesis, Texas A&M University, 2007.

[21] D. Ginsbourger, O. Roustant, and N. Durrande. On degeneracy and invariances of random
fields paths with applications in Gaussian process modelling. J. Statist. Plann. Inference,
page 170 :117 – 128, 2016.

[22] T. Graepel. Solving Noisy Linear Operator Equations by Gaussian Processes: Application
to Ordinary and Partial Differential Equations. In Proc. 20th Int. Conf. Mach. Learn.,
pages 234–241. AAAI Press, 2003.

[23] C. Grossmann, H.-G. Roos, and M. Stynes. Numerical treatment of partial differential
equations. Springer, 2007.

[24] M. Gulian, A. Frankel, and L. Swiler. Gaussian process regression constrained by boundary
value problems. Comput. Methods Appl. Mech. Engrg., 388:114117, 2022.

[25] I. Henderson, P. Noble, and O. Roustant. Characterization of the second order random
fields subject to linear distributional PDE constraints. preprint, Sept. 2022.

[26] S. Janson. Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics. Cambridge Uni-
versity Press, 1997.

[27] C. Jidling, J. Hendriks, N. Wahlstrom, A. Gregg, T. Schon, C. Wensrich, and A. Wills.
Probabilistic modelling and reconstruction of strain. Nucl. Instrum. Methods Phys. Res.
B: Beam Interact. Mater. At., 436:141–155, 2018.

[28] C. Jidling, N. Wahlström, A. Wills, and T. B. Schön. Linearly constrained Gaussian
processes. In Adv. Neural Inf. Process. Syst., volume 30. Curran Associates, Inc., 2017.

[29] P. Kuchment and L. Kunyansky. Mathematics of photoacoustic and thermoacoustic tomog-
raphy. In Handbook of mathematical methods in imaging. Vol. 1, 2, 3, pages 1117–1167.
Springer, New York, 2015.

[30] M. Lange-Hegermann. Algorithmic linearly constrained Gaussian processes. In Adv. Neural
Inf. Process. Syst., volume 31. Curran Associates, Inc., 2018.

[31] M. Lange-Hegermann. Linearly constrained Gaussian processes with boundary conditions.
In Proc. of The 24th Int. Conf. Artif. Intell. Stat., volume 130 of Proc. of Mach. Learn.
Res., pages 1090–1098. PMLR, 13–15 Apr 2021.

[32] D. Lannes and P. Bonneton. Derivation of asymptotic two-dimensional time-dependent
equations for surface water wave propagation. Phys. Fluids, 21(1):016601, 2009.
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