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Maxwell equations derived from (Coulomb's Law + velocity), Maxwell-type Gravity derived from (Newton Law + velocity), Spin-Electromagnetism derived from (Coulomb' Law + spin) ---by Universal Mathematical Field Theory (UMFT)
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A Universal Mathematical Field Theory (UMFT) is established, which states that the combination of the operations of both gradient and divergence of vector fields, such as electric field and velocity field, create the curl of an axial vector field, such as magnetic field. Utilizing UMFT, we mathematically: (1) derive the Extended-Maxwell equations and the Lorentz force from Coulomb's law and the velocity of the source; (2) establish Maxwell-type gravitational equations and Lorentz-type gravitational force (Gravito-EM) from Newton's law and velocity of gravitational source; (3) establish Classical-Spin-Electromagnetism (Spin-EM) from the Coulomb's law and the spin of the spin angular velocity; (4) predicate the Spin related force. For a source moving with non-spatially-varying velocity the Extended-Maxwell equations reduce to Maxwell equations, which justifies UMFT and shows that the experiments-based Maxwell equations have mathematical origin. This derivation mathematically explains how a moving electric charge creates magnetic field, and shows that there is no magnetic monopole charge. UMFT shows that mathematical identities lead to physical dualities including duality between EM and Gravito-EM. The concepts, effects and phenomena of EM may be directly converted to that of gravity. The Gravito-EM are employed to study the accelerating universe, rotation curve and gravitation waves. The Gravito-EM can be quantized, along the line of quantizing EM, and unified with EM force. We derive, for the first time, the Spin-Lorentz-type force and Lagrangian-Lorentz-type force. If experimentally proved, the Spin-related force may be the 5 th force. UMFT provides mathematical origins of physical dualities between Extended EM, Gravito-EM and Spin-EM.

Introduction

Historically, Maxwell equations were established based on series experiments, except the introduction of the term of the displacement current. Consider a situation of a stationary electric charge (referred as e-charge). The Coulomb's law states that a stationary e-charge Q ! induces a static vector electric field E. The created electric field is determined by only one quantity, e-charge. A heuristic phenomenon is that an observer moving relative to the same e-charge and its electric field (or the e-charge moves relative to the observer) will observe not only the electric field but also a magnetic field. The static magnetic field is determined by two quantities, e-charge and its velocity v (Table 1.1), which will be demonstrated in Section 3. Let's first review the fundamental differences between a static electric field E and a static magnetic field B, as shown in Table 1.1: Table 1.1: Differences between static electric field and static magnetic field Static electric field Magnetic field Table 1.1 strongly suggests that the magnetic field must be derived from Coulomb' law and velocity of the source. Since the magnetic phenomena are related with the motion of the e-charge and are inevitable, we suggest that the Ampere's law, Faraday's law and Gauss's law of magnetism, which are all related with the motion of echarges, should be derivable mathematically.

A physics student may ask questions: Why the motion of an e-charge creates magnetic fields? Does the generation of magnetic fields relate with the Coulomb's law? The regular answer is that magnetism is the combination of an electric field and Special Relativity (SR) and does not relate with the Coulomb's law. The answer is not enough to explain the above four fundamental differences. Now we ask a further question: Is the generation of magnetic fields by a moving e-charge inevitable? The answer is yes. Thus, we argue that:

(1) The Coulomb's law can be established only by experiments and thus, is a primary law;

(2) Maxwell equations related with magnetic fields should be mathematically derivable from velocity of echarge and Coulomb's law, and thus, are secondary laws. Universal Mathematical Field Theory (UMFT): To mathematically derive Maxwell equations from the Coulomb's law and velocity of an e-charge, we establish Universal Mathematical Field Theory. Extended-Maxwell equations (EM): the extended EM is derived from UMFT, Coulomb's law and the velocity of the source, which demonstrates the validity of UMFT (Section 3). Recently, Faraday's law has been derived by curling the Lienard-Wiechert potential [START_REF] Feng | A Theoretical Derivation of Faraday's Second Law of Electromagnetic Induction[END_REF]. Ampere's law was derived from the Biot-Savart law [START_REF] Luo | Theoretical Derivation of Ampere's Circuital Law[END_REF]. Gravito-electromagnetism (Gravito-EM): Based on the similarity between the Coulomb's law and Newton's law, naturally, the same UMFT can be employed to derive Maxwell-type gravitational equations from Newton's law and the motion of a source, denoted as Gravito-electromagnetics or Gravito-EM, which provides a clear physical picture of gravity. We show that both theories, Maxwell theory and Gravito-EM are convertible to each other by converting the e-charge to gravitational charge (g-charge), and vice versa, which we denote as "Ultrasymmetry" (Section 4).

Historically, Maxwell-type vector field theories of gravity were studied, which described gravity as a physical field. However, physicists gave up this direction before Einstein's General Relativity (GR), because they thought that such vector theories faced the issue: the potential energy of Newton field is negative. After SR was established, second issue raised that those vector theories of gravity did not comply with SR.

The benefits of the Gravito-EM are: (1) Address the long-standing issues of negative potential energy; (2) comply with SR; [START_REF] Peng | Gravity: WEP, Gauge Theory, Quantization, Unification[END_REF] to explain the accelerating expansion of the universe and to predict a jerking expansion of the universe. Thus, we argue that the Gravito-EM provides, at least, a "bridge" between the Newton's theory and an ultimate theory of gravity. To understand and describe all of forces in one framework, a possible and simple way is to treat gravity as a physical field.

Recently, a gauge theory of gravity has been proposed, quantized and unified with other forces. The Gravito-EM is consistent with this gauge theory of gravity. Classical-Spin-electromagnetism (Spin-EM): Considering spin of an e-charge as an axial vector, utilizing UMFT, e-charge and spin of the e-charge, Spin-EM is derived. Spin-EM provide classical foundations of variety phenomena of spintronics (Section 5).

Universal Mathematical Field Theory (UMFT) 2.1. Motivation

Motivation: To address above differences between a static electric field E and a magnetic field B inspires us to establish UMFT. The UMFT is equally applicable to derive Electromagnetism (EM), Gravito-EM and Spin-EM. Thus, there is duality between EM, Gravito-EM and Spin-EM, so that many concepts and effects of the well-established EM can be transferred directly to gravity and Spin-EM. Most important, gravity, EM and Spin-EM are linked together clearly and closely.

The significances of UMFT are the following. (A) combining UMFT, the Coulomb's law and the velocity of e-charge re-derives mathematically Maxwell's equations, which addresses the above-mentioned differences related with EM (Table 1.1), shows that the experiments-based Maxwell equations have their mathematical origin, and justifys UMFT. (B) combining UMFT, the Newton's law and the velocity of a source derives mathematically Gravito-EM. (C) combining UMFT, the Coulomb's law and spin derives mathematically Spin-EM.

(D) UMFT provides the mathematic origin of dualities between different physic fields derived from it, such as duality between electricity and magnetism, duality between EM and Gravito-EM, and duality between EM and Spin-EM. Duality is a powerful tool to find intrinsic similarities between apparently different phenomena, and predict new effects. "It turns out that most of the important concepts and theories of physics can be unified and understood by their common attribute of duality" (Damian P Hampshire).

General UMFT

To establish UMFT, we need to find a mathematical identity that connecting divergences of either a vector or an axial vector with curls of induced axial vectors. For this aim, the following vector analysis identity is the most significant foundation of UMFT, ∇ × (𝐒 × 𝐓) = 𝐒(∇ • 𝐓) -𝐓(∇ • 𝐒) + (𝐓 • ∇)𝐒 -(𝐒 • ∇)𝐓, (2.1) which indicates that the combination of gradient and divergence of two arbitrary vectors induces inevitably an axial vector (𝐒 × 𝐓). One of two terms, (∇ • 𝐓) and (∇ • 𝐒), represents fundamental inverse-square laws, and introduce a "charge". Now there are three quantities, S, T and "charge" in Eq. (2.1).

It is useful to write Eq. (2.1) in a different but equivalent form. By using another mathematical identity, (𝐓 • 𝛁)𝐒 = 𝛁(𝐒 • 𝐓) -(𝐒 • 𝛁)𝐓 -𝐒 × (𝛁 × 𝐓) -𝐓 × (𝛁 × 𝐒), Eq. (2.1) can be rewritten as an identity, ∇ × (𝐒 × 𝐓) = 𝐒(∇ • 𝐓) -𝐓(∇ • 𝐒) -∇(𝐒 • 𝐓) + 2(𝐓 • ∇)𝐒 + 𝐒 × (∇ × 𝐓) + 𝐓 × (∇ × 𝐒). (2.2) Eq. (2.1) and Eq. (2.2) are mathematical equivalent. When apply UMFT to describe physical fields, the "S" and "T" in Eq. (2.1) and Eq. (2.2) represent different physical quantities respectively.

UMFT Related with Velocity of Charges

The basic concept is that the combination of the inverse-square laws and the motion of charges must induce axial vector fields. To show it, we set the "S" being motion parameters, velocity v, 𝐒 = 𝐯 (vector).

(2.3) Note: the physical quantities the S represents are not limited to velocity and spin.

Substituting Eq. (2.3) into Eq. (2.1) and Eq. (2.2) respectively, we obtain, ∇ × (𝐯 × 𝐓) = 𝐯(∇ • 𝐓) -𝐓(∇ • 𝐯) + (𝐓 • ∇)𝐯 -(𝐯 • ∇)𝐓, (2.4) ∇ × (𝐯 × 𝐓) = 𝐯(∇ • 𝐓) -𝐓(∇ • 𝐯) -∇(𝐯 • 𝐓) + 2(𝐓 • ∇)𝐯 + 𝐯 × (∇ × 𝐓) + 𝐓 × (∇ × 𝐯). (2.5) Fortunately, Eq. (2.4) links both the motion of source and the inverse-square law to an axial vector field. In this section we start with Eq. (2.4) to derive the Maxwell-type equations for the fields induced by the velocity of sources.

Note in Eq. (2.4), the velocity is spatially varying, e.g., 𝐓(∇ • 𝐯) ≠ 0, (𝐓 • ∇)𝐯 ≠ 0, and is instantaneous velocity at a given space point. Eq. (2.4) implies that a velocity and its spatial variations induce the axial vector (𝐯 × 𝐓) field equally.

Ampere-Maxwell-type UMFT

We derive the Ampere-Maxwell-type UMFT. Let's assume the "T" is an arbitrary vector field G: (2.10)

∇ • 𝐆 ≠ 0. (2.6) Since -(𝐯 • ∇)𝐆 = -<v " # #" + v $ # #$ + v % # #% = 𝐆 = #𝐆 #' -
All terms on the right-hand side of Eq. (2.10) induce equally the axial vector field M. The interpretations for those terms are,

1) The term, 𝐯(∇ • 𝐆), plays the role of the "current";

2) The term,

#𝐆 #'
, plays the role of the "displacement current";

3) The term, 𝐆(∇ • 𝐯), describes stretching of the G field due to source velocity compressibility; 4) The term, (𝐆 • ∇)𝐯, describes the stretching or tilting of the G field due to the velocity gradients;

5) The terms, #𝐆 #' and 𝐆(∇ • 𝐯), have the same direction; while the terms, 𝐯(∇ • 𝐆) and (𝐆 • ∇)𝐯, have the same direction.

The Ampere-Maxwell-type UMFT, Eq. (2.7), Eq. (2.9), Eq. (2.10), can be written respectively in the integral form as,

∮(𝐯 × 𝐆) • d𝐥 + ( (' ∬ 𝐆 • ds = ∬ <𝐯(∇ • 𝐆) + #𝐆 #' -𝐆(∇ • 𝐯) + (𝐆 • ∇)𝐯= • ds, (2.11) 
∮ 𝐌 • d𝐥 = ∫[𝐯(∇ • 𝐆) -𝐆(∇ • 𝐯) + (𝐆 • ∇)𝐯 -(𝐯 • ∇)𝐆] • ds, (2.12 
)

∮ 𝐌 • d𝐥 + ( (' ∬ 𝐆 • ds = ∫ <𝐯(∇ • 𝐆) + #𝐆 #' -𝐆(∇ • 𝐯) + (𝐆 • ∇)𝐯= • ds.
(2.13)

Faraday-type UMFT

For deriving the Faraday-type UMFT, taking the T field as the First level axial vector field M defined by Eq. (2.8), 𝐓 = 𝐌. For the M field, we have, 

-(𝐯 • ∇)𝐌 = -<v " # #" + v $ # #$ + v % # #% = 𝐌 = #𝐌 #' - (𝐌 (' . ( 2 
= -𝐯(∇ • 𝐌) - #𝐌 #' + 𝐌(∇ • 𝐯) -(𝐌 • ∇)𝐯.
(2.17)

The Faraday-type UMFT, Eq. (2.15) and Eq. (2.17 The term 𝐯(∇ • 𝐌) is the source term. We still keep the source term in Eq. (2.15), (2.17), (2.18) and (2.19), because this source term leaves a door open for a possible existence of a monopole physically, although, mathematically, the monopole of the M field does not exist.

The interpretations of those right-hand side terms of Eq. (2.17) are, 1) The term, 𝐯(∇ • 𝐌), plays the role of the "current", which is mathematically zero;

2) The term, #𝐌 #' , describes the time change of the M fields as the source;

3) The term, 𝐌(∇ • 𝐯), describes stretching of the M field due to source velocity compressibility; 4) The term, (𝐌 • ∇)𝐯, describes the stretching or tilting of the M field due to the velocity gradients;

5) The terms,

#𝐌 #'
and 𝐌(∇ • 𝐯), have the same direction; while the terms, 𝐯(∇ • 𝐌) and (𝐌 • ∇)𝐯, have the same direction. Next, substituting Eq. (2.8), ∇ • 𝐌 = 0, into Eq. (2.15), Eq. (2.17), Eq. (2.18) and Eq. (2. 19) respectively, we obtain source-free Faraday-type UMFT,

∇ × (𝐯 × 𝐌) + 𝐝𝐌 𝐝𝐭 = 𝛛𝐌 𝛛𝐭 -𝐌(∇ • 𝐯) + (𝐌 • ∇)𝐯, (2.20) ∇ × 𝐍 - 𝐝𝐌 𝐝𝐭 = - 𝛛𝐌 𝛛𝐭 + 𝐌(∇ • 𝐯) -(𝐌 • ∇)𝐯. (2.21) ∮(𝐯 × 𝐌) • d𝐥 + ( (' ∬ 𝐌 • ds = ∬ < 𝛛𝐌 𝛛𝐭 -𝐌(∇ • 𝐯) + (𝐌 • ∇)𝐯= • ds. (2.22) ∮ 𝐍 • d𝐥 - ( (' ∬ 𝐌 • ds = -∬ < 𝛛𝐌 𝛛𝐭 -𝐌(∇ • 𝐯) + (𝐌 • ∇)𝐯= • ds.
(2.23)

Type-2 Duality

The M field is a First level axial vector field, while the N field is a Second level axial vector field. The M field and the N field are determined respectively by Eq. (2.8) and Eq. (2.16), which have the same form. Thus, there is type-2 duality between the First level axial vector field M and the Second level axial vector field N, which is pre-determined mathematically. For different types of dualities, different levels of axial vector, see Appendix A2.

We have derived the basic UMFT for the fields induced by velocity of sources.

UMFT Related with Non-Spatially-Varying Velocity

For non-spatially-varying velocity, we have 𝐌(∇ • 𝐯) = (𝐌 • ∇)𝐯 = 𝛁 × 𝐯 = 0, (2.24) Substituting Eq. (2.24) into Eq. (2.10), we obtain Ampere-Maxwell-type UMFT for the M field,

∇ × 𝐌 + (𝐆 (' = 𝐯(∇ • 𝐆) + #𝐆 #' .
(2.25)

Or in the integral forms, Or in the integral forms,

∮ 𝐌 • d𝐥 + ( (' ∬ 𝐆 • ds = ∬ <𝐯(∇ • 𝐆) + 𝛛𝐆 𝛛𝐭 = • ds. ( 2 
∮ 𝐍 • d𝐥 - ( (' ∬ 𝐌 • ds = -∬ #𝐌 #'
• ds.

(2.28)

Electromagnetics Mathematically Derived from UMFT, Coulomb's Law and Velocity of Source

In this Section, the Extended-Maxwell equations are derived mathematically from the combination of UMFT, the Coulomb's law and velocity of the source. Under condition of uniformly moving electric charge (echarge), Extended-Maxwell equations reduce to regular Maxwell equations, which demonstrates that UMFT is valid for studying physic fields. Thus, leads us to apply UMFT to study other physical fields, such as gravity and spin related phenomena [4].

Extended-Faraday's Law

Starting from the Faraday-type UMFT, Eq. (2.18). Let the M field is a magnetic field B, 𝐌 ≡ 𝐁, Eq. (2.18) gives,

∮ -(𝐯 × 𝐁) • d𝐥 - ( (' ∬ 𝐁 • ds = -∬ <𝐯(∇ • 𝐁) + 𝛛𝐁 𝛛𝐭 -𝐁(∇ • 𝐯) + (𝐁 • ∇)𝐯= • ds. (3.1)
The definition of M, Eq. (2.8), gives mathematically Gauss' s law of magnetism, ∇ • 𝐁 ≡ 0.

(3.2) Let's show that Eq. (3.1) is consistent with Faraday's law. The Faraday's law gives

( (' ∬ 𝐁 • ds = -∮ 𝐄′ • d𝐥 , (3.3) 
where 𝐄′ is the electric field at the circuit dl in a reference frame in which dl is at rest. The B is a magnetic field at the neighborhood of the circuit. Applying Eq. (3.3), Eq. (3.1) becomes the Extended-Faraday law,

∮(𝐄 . -𝐯 × 𝐁) • d𝐥 = -∬ <𝐯(∇ • 𝐁) + 𝛛𝐁 𝛛𝐭 -𝐁(∇ • 𝐯) + (𝐁 • ∇)𝐯= • ds, (3.4) 
where the v is the velocity of the circuit d𝐥 relative to a laboratory frame. Let's define an electric field E in the laboratory frame, 𝐄 ≡ 𝐄 . -𝐯 × 𝐁.

(3.5) Applying Eq. (3.5), Eq. (3.4) gives the integral and differential forms of Extended-Faraday's law,

∮ 𝐄 • 𝑑𝑙 = -∬ <𝐯(∇ • 𝐁) + 𝛛𝐁 𝛛𝐭 -𝐁(∇ • 𝐯) + (𝐁 • ∇)𝐯= • ds, (3.6) 
∇ × 𝐄 = -𝐯(∇ • 𝐁) - #𝐁 #' + 𝐁(∇ • 𝐯) -(𝐁 • ∇)𝐯. (3.7) 
In order to show the duality between the Extended-Faraday's and Extended-Ampere-Maxwell's law, we still keep the term ∇ • 𝐁 in Eq. (3.7), although it is equal to zero. The interpretations of terms of the righthand side of Eq. (3.7) are, 1) The term, 𝐁(∇ • 𝐯), describes stretching of the B field due to source velocity compressibility;

2) The term, (𝐁 • ∇)𝐯 , describes the stretching or tilting of the B field due to the velocity gradients.

Let's define a "current" generating induced electric field,

𝐣 𝐯0𝐄 ≡ 𝐯(∇ • 𝐁) -𝐁(∇ • 𝐯) + (𝐁 • ∇)𝐯.
(3.8) Where the subscripts "v-E" represent the quantities related with velocity and electric field respectively. Then Extended-Faraday's law, Eq. (3.7), may be rewritten as,

∇ × 𝐄 = -𝐣 𝐯0𝐄 - #𝐁 #' .
(3.9)

Eq. (3.9) shows the equation of continuity as

∇ • M𝐣 𝐯0𝐄 + #𝐁 #' N = 0. (3.10)
For the situation in which, (1) ∇ • 𝐁 = 0; and (2) the velocity is non-spatially-varying, i.e., 𝐁(∇ • 𝐯) = (𝐁 • ∇)𝐯 = 0, Extended-Faraday's law, Eq. (3.7), gives the Faraday's law,

∇ × 𝐄 = - #𝐁 #' , (3.11) 
where the 𝐄 field is an axial vector field and 𝐣 𝐯0𝐄 = 0. Therefore, Extended-Faraday's law, Eq. (3.1), is consistent with Faraday's law. Extended-Faraday's law predicts that the spatially-varying velocity, via terms 𝐁(∇ • 𝐯) and (𝐁 • ∇)𝐯, create axial vector E fields.

Detecting the effects of the terms, 𝐁(∇ • 𝐯) and (𝐁 • ∇)𝐯, will show whether Extended-Faraday's law and thus, UMFT, are correct.

Indeed, by the definition of the axial vector field B, its divergence is zero mathematically, i.e., from the perspective of the UMFT and Coulomb's law, there is no "magnetic monopole charge".

Extended-Ampere-Maxwell's Law (1)

The combination of UMFT and Coulomb's law leads us to let 𝐆 ≡ 𝐄. Then Eq. (2.11) provides,

∮(𝐯 × 𝐄) • d𝐥 + ( (' ∬ 𝐄 • ds = ∬ <𝐯(∇ • 𝐄) + #𝐄 #' -𝐄(∇ • 𝐯) + (𝐄 • ∇)𝐯= • ds. (3.12a) 
Substituting the Coulomb's law, Eq. 3.12 becomes,

∮(𝐯 × 𝐄) • d𝐥 + ( (' ∬ 𝐄 • ds = ∬ <Q ! 𝐯 + #𝐄 #' -𝐄(∇ • 𝐯) + (𝐄 • ∇)𝐯= • ds. (3.12b)
Eq. (3.12b) shows that it is three quantities, Q ! , 𝐄, 𝐯, that create magnetic field.

Type-2 Duality between Electric and Magnetic Fields

The First level axial vector field (𝐯 × 𝐄) and Eq. (3.12) are the type-2 dual to the Second level axial vector field (𝐯 × 𝐁) and Eq. (3.1) respectively. Moreover, Eq. (3.6) is equivalent to Eq. (3.1). Based on the Transfer Rules between dualities (Appendix A2), there is a dual of Eq. (3.6), i.e., under transformation, 𝐄 ↔ 𝐁 and 𝐁 ↔ -𝐄, we have type-2 duals of Eq. (3.5) and Eq. (3.6) respectively, which are,

𝐄 ≡ 𝐄 . -𝐯 × 𝐁 ↔ 𝐁 ≡ 𝐁 . + 𝐯 × 𝐄, ∮ 𝐁 • 𝑑𝑙 = ∬ <𝐯(∇ • 𝐄) + 𝛛𝐄 𝛛𝐭 -𝐄(∇ • 𝐯) + (𝐄 • ∇)𝐯= • ds, (3.13) 
which are equivalent to Eq. (3.6) and Eq. (3.12). With distinguishable feature of "type-1 duality" and "type-2 duality", the duality between induced electric field determined by the Faraday's law and magnetic field determined by Ampere-Maxwell's equation is actually a type-2 duality. UMFT provides the mathematical originations of the type-2 duality between axial electric field and magnetic field.

Extended-Ampere-Maxwell's Law (2)

Eq. (3.13) gives Extended-Ampere-Maxwell law,

∇ × 𝐁 = 𝐯(∇ • 𝐄) + 𝛛𝐄 𝛛𝐭 -𝐄(∇ • 𝐯) + (𝐄 • ∇)𝐯. (3.14)
The magnetic field B is, in the laboratory frame, 𝐁 = 𝐁 . + 𝐯 × 𝐄.

(3.15) Where 𝐁′ is the magnetic field at the circuit dl in a reference frame in which dl is at rest. The E is an electric field at the neighborhood of the circuit. The v is the velocity of the circuit relative to a laboratory frame. Note there is no negative sign in front of the 𝛛𝐄 𝛛𝐭 , because that the time change of the E field through the circuit dl purely induces a magnetic field 𝐁′ that does not accumulate e-particles to against the time change of the E field.

Equation of Continuity

Utilizing Coulomb's law, ∇ • 𝐄 = ρ ! , let's define a "current" generating magnetic field, 𝐣 𝐯0𝐁 , 𝐣 𝐯0𝐁 ≡ ρ ! 𝐯 -𝐄(∇ • 𝐯) + (𝐄 • ∇)𝐯.

(3.16) Where the subscripts "v-B" represent the quantity related with velocity and magnetic field respectively. Then Eq. (3.14) becomes,

∇ × 𝐁 = 𝐣 𝐯0𝐁 + 𝛛𝐄 𝛛𝐭 .
(3.17)

The current 𝐣 𝐯0𝐁 satisfies the equation of continuity,

∇ • 𝐣 𝐯0𝐁 + 𝛛2 ! 𝛛𝐭 = 𝟎. (3.18)
For the situation of the non-spatially-varying velocity, i.e., 𝐄(∇ • 𝐯) = (𝐄 • ∇)𝐯 = 0, we have 𝐣 𝐯0𝐁 = ρ ! 𝐯. The extended-Ampere-Maxwell equation, Eq. (3.14), becomes the Ampere-Maxwell law, , create inevitably magnetic fields.

∇ × 𝐁 = 𝐯(∇ • 𝐄) + #𝐄 #' . ( 3 

Extended-Maxwell Equations

Now, from UMFT and Coulomb's law, we obtain Extended-Maxwell equations,

∇ • 𝐄 = ρ ! , ∇ × 𝐁 = 𝐯(∇ • 𝐄) + 𝛛𝐄 𝛛𝐭 -𝐄(∇ • 𝐯) + (𝐄 • ∇)𝐯, (3.14) 
∇ • 𝐁 ≡ 0, ∇ × 𝐄 = -𝐯(∇ • 𝐁) - #𝐁 #' + 𝐁(∇ • 𝐯) -(𝐁 • ∇)𝐯, (3.7) 
Where the E field is a combination of vector field (Coulomb's field) and axial vector field, 𝐄 = 𝐄 

Extended-Maxwell Equations Reducing to Maxwell Equations for Uniform Motion

Note the Extended-Maxwell equations are not compatible with SR, the main reason is that SR was derive from and applied for inertial frames. So, when we ignore the non-inertial term, (∇ • 𝐯), (𝐄 • ∇)𝐯, (𝐁 • ∇)𝐯, the extended-Maxwell equations reduce to standard Maxwell equation,

∇ • 𝐄 = ρ ! , ∇ • 𝐁 = 0, ∇ × 𝐁 = 𝐯(∇ • 𝐄) + 𝛛𝐄 𝛛𝐭 , ∇ × 𝐄 = - #𝐁 #' (3.20) 
Writing Eq. (3.20) in tensor form,

#: ! "# ;< $ = J ! = , #: ! "# ;< % + #: ! #& ;< ' + #: ! &" ;< $ = 0, J ! = = J !> = + J !0 = = (ρ ! , 𝐉 ! ), (3.21) 
Where

F ! =? = ∂ = A ! ? -∂ ? A ! =
is the field strength tensor, A ! = is four-vector potential, J ! = is four-current. Eq. (3.20) and Eq. (3.21) satisfy Lorentz transformation and comply with Special Relativity.

Lorentz Force Derived from Coulomb Force

In a reference frame S' in which a test e-particle q ! is at rest, an electric field is denote as E'. The force acting on the test e-particle is the Coulomb force, 𝐅 = q ! 𝐄 . . (3.22) Transferring to a laboratory frame in which the test e-particle is moving with velocity v, Eq. (3.5) gives,

𝐄 . = 𝐄 + 𝐯 × 𝐁, (3.23) 
where the electric field E is measured in the laboratory frame. The magnetic field B is measure in the Laboratory frame at the neighborhood of the test e-particle. Substituting Eq. (3.23) into Eq. (3.22), the Coulomb force extended to the Lorentz force measured in the laboratory frame, 𝐅 = q ! 𝐄 + q ! 𝐯 × 𝐁.

(3.24)

Positive and Negative Energy of Electromagnetic Field

To form an assemble of e-charges with the same signs, an external force is needed to bring those same sign e-charges together, namely the external force done the work W @"'!6A79 and transfer the energy to the electric field of the assemble. The work W @"'!6A79 done by an external force to assemble a volume configuration with a e-charge density ρ ! is

W @"'!6A79 = B C ∫ ρ ! V ! dτ. (3.25)
Thus, the change of the energy of an electric field is defined as positive, ∆U ! = W @"'!6A79 > 0, (3.26) Which represents the energy stored in the configuration, which is also considered conventionally as the potential energy of the electric field.

On the contrary, for bring e-charges with opposite signs together, no external force is needed, and the electric field of e-charges done the work, i.e., the electric field losses energy. The change of the potential energy is defined as the negative of the work done by the electric field, i.e., the electric field loss energy, ∆U ! = -W D8!9( < 0.

(3.27) Where the potentials of positive and negative e-charges are respectively,

V !> = E !( 6 > 0, V !0 = E !) 6 < 0. (3.28)
Therefore, the definition of the positive or negative potential energy of an electric field is a matter of bookkeeping [START_REF] Griffiths | Introduction to Electrodynamics[END_REF]. Using Coulomb's law and vector formula, Eq. (3.25) gives

∆U ! = W @"'!6A79 = B C ∫ E C dτ. (3.29) 
Similarly, the work done to retain the e-current going is, setting

𝜖 F = 𝜇 F = 1, W G = B C ∫ B C dτ, (3.30) 
Which is also considered as the energy stored in a magnetic field. The total energy, W @H , stored in electromagnetic field is the sum of energies of both electric field and magnetic field, 

W @H = B C ∫(E C + B C )dτ. ( 3 
𝐄 • 𝐉 = 𝐄 • (∇ × 𝐁) -𝐄 • 𝛛𝐄 𝛛𝐭 + E C (∇ • 𝐯) -𝐄 • [(𝐄 • ∇)𝐯]. (3.33) 
The formula of vector analysis gives 𝐄 • (∇ × 𝐁) ≡ 𝐁 • (∇ × 𝐄) -∇ • (𝐄 × 𝐁). Substituting Eq. (3.7) into it, then

𝐄 • (∇ × 𝐁) = 𝐁 • <- #𝐁 #' + 𝐁(∇ • 𝐯) -(𝐁 • ∇)𝐯= -∇ • (𝐄 × 𝐁), or 𝐄 • (∇ × 𝐁) = - B C #G 𝟐 #' + B C (∇ • 𝐯) -𝐁 • [(𝐁 • ∇)𝐯] -∇ • (𝐄 × 𝐁).
(3.34) Substituting Eq. (3.34) into Eq. (3.33), we obtain 

𝐄 • 𝐉 = - B C # #' (B 𝟐 + E 𝟐 ) -∇ • (𝐄 × 𝐁) + (B 𝟐 + E 𝟐 )(∇ • 𝐯) -𝐁 • [(𝐁 • ∇)𝐯] -𝐄 • [(𝐄 • ∇)𝐯].
-∯ 𝐒 • d𝐚 + ∫{(B 𝟐 + E 𝟐 )(∇ • 𝐯) -𝐁 • [(𝐁 • ∇)𝐯] -𝐄 • [(𝐄 • ∇)𝐯]} dτ, (3.36) 
Where the Poynting's vector S is defined as, 𝐒 ≡ 𝐄 × 𝐁.

(3.37) For the special situation of non-spatially-varying velocity, ∇ • 𝐯 = (𝐁 • ∇)𝐯 = (𝐄 • ∇)𝐯 = 0, the extended-Poynting theorem deduces to the Poynting's theorem.

Origin of Differences between Static Electric Field and Magnetic Field

In the Section of Motivation, we have mentioned several fundamental differences: "A magnetic field is completely different from a static electric field in the following senses: (1) "e-charge" vs. "e-current"; (2) "∇ • 𝐄" vs. "∇ × 𝐁"; (3) "vector field E" vs. "axial vector field B"; (4) "q ! 𝐄" vs. "q ! 𝐯 × 𝐁".

In this Section we explain those differences: Comparison of Eq. (3.7) and Eq. (3.14) explains the first, second and third differences as the following: e-charge ρ ! induces E via ∇ • 𝐄 = 4πρ ! ; it is UMFT combining with the Coulomb law that makes the term, 𝐯(∇ • 𝐄) = 4πρ ! 𝐯, induces 𝐁 field via ∇ × 𝐁; Coulomb e-field E is a vector field, and 𝐁~𝐯 × 𝐄 is a first level axial vector field. Eq. (3.22) to Eq. (3.23) show that due to the fact that motion of e-charge creates magnetic field, thus, transferring the Coulomb's force in an e-charge-rest frame to the Lorentz force in an e-charge-moving frame Eq. (3.24).

All of above-mentioned differences between static electric field and magnetic field have a mathematical origin, Eq. (2.1), which shows how a divergence field creates a curl field.

No Magnetic Monopole Charge Mathematically

In the derivation of Extended-Ampere-Maxwell equation, magnetic field is defined in Eq. (3.1) as an axial vector field, 𝐁 ≡ 𝐯 × 𝐄. By the mathematical definition, the divergence of an axial vector is identically to zero, which is represented as Eq. (3.2), ∇ • 𝐁 ≡ 0.

Indeed, mathematically, there is no magnetic monopole charge in vector electromagnetic theory, as long as the magnetic field is an axial vector field.

Conclusion and Suggestion

We, in Section 3, have mathematically shown that the magnetic field exists due to movement of e-charge. Namely its existence is inevitable. The effects of the magnetic field were discovered experimentally started in 1860s. Historically, the vector analysis was established in the same era, 1860s [START_REF] Michael | A History of Vector Analysis[END_REF]. It is reasonable to assume that physicists were not familiar with vector analysis. We argue that this might be the reason why UMFT was not developed when Maxwell equations were established. Moreover, then Maxwell equations were well applied to variety of areas, so no mathematical derivation of Maxwell equations was focused.

Gravito-Electromagnetic (Gravito-EM) Derived from UMFT and Newton's Law

We apply the UMFT to gravity in this Section to derive a Maxwell-type vector theory, Gravito-EM, for gravity, which is one step further than Newton's theory to understand gravity, although may not be the ultimate theory of gravity. Indeed, since the Gravito-EM is derived mathematically, thus, any further theory of gravity should have not only Newton's law but Gravito-EM as approximations under certain condition. Moreover, we have shown that Gravito-EM has other fundamental benefits that it can be quantized and unified with other interaction without difficulty [START_REF] Peng | Gravity: Gauge theory, quantization, unification[END_REF].

Positive and Negative Gravitational Charge (g-Charge)

Two paths of studying gravity are: First path is to treat gravity and other three forces as physical fields; Second path is to treat gravity and other forces as geometric phenomena. Along the first path, other three forces, except gravity, were physically understood, quantized and unified successfully. Along the second path, to geometrize gravity was quite successful, but not other three forces. Tremendous efforts have been devoted on to quantize geometric theory of gravity and unify it with theories of other three forces, so far, without commonly accepted approach. Facing the tremendous difficulties in quantizing geometric theory of gravity and unification, Extended-Maxwell equations have been derived mathematically in Section 3 from the combination of UMFT and the Coulomb's law.

The fact that the Newton's law is the dual to the Coulomb's law strongly suggests to study whether and under what condition, one can mathematically derived a counterpart of Extended-Maxwell equation from the UMFT, the Newton's law and the motion of the gravitational source. For this aim, let's compare the Newton's law and Coulomb's law at the level of the classical field theory. Table 4.1 shows the comparison and suggests that it is the fact, two kinds of e-charge vs. one kind of gravitational charge (denoted as g-charge), that leads to that attractive/repulsive electric force vs. attractive gravitation force. The significant differences are in three aspects. Table 4.

Comparison between Newton's law and Coulomb's law Coulomb's law Newton's law Force

Long-range inverse-square-law 𝐅 = q ! 𝐄 Attractive/repulsive Long-range inverse-square-law 𝐅 = m𝐠 Attractive/?

Coulomb's law/ Newton's law

∇ • 𝐄 = ρ ! ∇ • 𝐠 = -ρ K

Charge

Two kinds e-charge: Positive/negative One kind g-charge:

Positive/? Firstly: forces: The Coulomb's forces are either attractive or repulsive, while conventional gravity force is only attractive. However, this understanding of gravitational force was changed. In 1998, scientists reported that the universe is expanded with acceleration [START_REF] Perlmutter | [END_REF] [9] [10], even the acceleration is accelerating (to date, not confirmed yet), which indicates the existence of repulsive gravitational force. Astronomers invoke dark energy for this repulsive force that creates a constant acceleration.

An effective dynamic model for explaining the accelerated expansion of the universe was proposed [START_REF] Peng | A Dynamic Model of Accelerated Expansion of Universe[END_REF]. The model is based on a hypothesis of the existence of the negative g-charges. The results of this model contain those of the dark energy models and consistent with the observations. Moreover, an alternative physical interpretation of the cosmological constant is that it is equivalent to the negative g-charges as a source of gravitational fields. This interpretation avoids the fine-tuning problem of the cosmological constant.

We suggest that the accelerated expansion of the normal universe is observational evidence of the existence of the negative g-charges. On the other hand, this model predicts that a sub-universe filled with negative g-charges is accelerated collapse and thus, that the equation of state and the acceleration of the expansion of the universe are time dependent, namely the acceleration of the expansion of the universe is accelerating, called jerking.

Although GR is now a hundred-year-old theory, it remains powerful in cosmology. It is one of the basic assumptions behind the current cosmological model: a model that is both very successful in matching observations but implies the existence of both dark matter and dark energy. These indicates that our understanding of gravity is incomplete. We will likely need a new profound idea to explain these mysteries and require more powerful observations and experiments to light the path toward our new insights. Secondly: charges. There are positive and negative e-charges in EM, while in gravity only one positive gravitational mass. To establish a perfect duality between the Coulomb's law and Newton's law, we need the concept of g-charge. The positive g-charge, Q K> ≡ +√Gm, was introduced [START_REF] Motz | The Quantization of Mass (or G-charge)[END_REF]. After the discovery of the accelerating universe, the repel force emerged. We proposed that the origin of the repulsive force is gravity, and introduced the concept of negative g-charge [START_REF] Peng | Generalized Einstein's Theory, Gravitodynamics, and Generalized Newton's Theory of Negative Gravitational Mass/Gravitational Charge[END_REF] to explain the universe expansion.

Before introducing negative g-charge into the theories of gravity, let's postulate two hypotheses: Hypothesis 1: An object having rest mass, m F > 0 (m F = ∫ ρ LF d M x), may carry either positive or negative gcharge defined as,

Q K> ≡ +√Gm F , ρ K> = +√Gρ LF , Q K0 ≡ -√Gm F , ρ K0 = -√Gρ LF . (4.1) Q K± ≡ ±√Gm F , ρ K± = ±√Gρ LF . Q KO!' = Q K> + Q K0 , ρ KO!' = ρ K> + ρ K0 . (4.2)
Where "G" is the Newton constant; the quantities with subscript "+", "-", "±" and "Net" are related with positive, negative, either positive or negative, and Net g-charges, respectively. When one kind of g-charges is defined as positive, then g-charges that repels it is defined as negative. For convenience, let's define the g-charges carried by the ordinary matters in the our world as the positive gcharges.

The existence of negative g-charge has been justified at quantum level [START_REF] Peng | Gravity: WEP, Gauge Theory, Quantization, Unification[END_REF]. Thirdly: Duality: When one converts e-charge Q ! to negative g-charge (-Q K ), and the electric field strength E to the Newton gravitational field strength g, then the Coulomb's field equation converts to Newton's field equation, and vice versa. However, duality between force laws is different, one needs to converts e-charge Q ! to g-charge, Q K , and the electric field strength E converted to the Newton gravitational field strength g, then the Coulomb's force law converts to Newton's force law, and vice versa.

Interaction between Positive and Negative g-Charges

We propose a positive/negative g-charge conjugation, which leads to: Hypothesis 2: the laws governing gravitational interaction generated respectively by positive and negative gcharges have the same form.

By analogy to e-charge conjugation, the g-charge conjugation is that under transformation of g-charge conjugation, gravitation laws are unchanged. Repulsive gravity then exists, since that would imply the existence of g-charges with opposite sign.

According to Hypothesis 2, the Newton's law and the force,

∇ • 𝐠 > = -Q K> = -√Gm F> , 𝐅 > = q K> 𝐠 > , (4.3) is extended to contain that of negative g-charge, ∇ • 𝐠 0 = -Q K0 = √Gm F0 , 𝐅 0 = q K0 𝐠 0 . ( 4 
.4) Combining Eq. ( 4.3) and Eq. (4.4) leads to the Extended-Newton's law,

∇ • 𝐠 = -Q K , 𝐅 ± = q K± 𝐠. 𝐠 ≡ 𝐠 > + 𝐠 0 , Q K = Q K> + Q K0 . (4.5) Q K> /Q K0
and q K> /q K0 are g-charges of source and of test-object respectively. Accordingly, two "negative gcharges" attract each other in the same way that two "positive g-charge" do, while a negative g-charge and a positive g-charge repel each other. Now the Extended-Newton's law, Eq. (4.5), is perfect dual to the Coulomb's law. Thus, following the same procedure, we can apply UMFT and the Extended-Newton's law to derive vector field equations for gravitational fields, with moving sources.

For a point g-charge as a source, the solutions of Eq. ( 4.3), Eq. ( 4.4) and Eq. (4.5) are respectively,

𝐠 > = - E -( 6 . 𝐫 t, 𝐠 0 = - E -) 6 . 𝐫 t, 𝐠 = - E -( > E -) 6 . 𝐫 t, (4.6) 
where 𝐫 t is the unit vector and points radially outward.

The field lines of gravitational fields, 𝐠 > and 𝐠 0 , are shown in Fig. 4.1 and Fig. 4.2, respectively [START_REF] Peng | Positive Energy, Negative Energy, Energy-Momentum Tensor and Negative Charge of G-field[END_REF]. Thus, two positive g-charges are attractive to each other (Fig. 4.3):

𝐅 > = q K> 𝐠 > = q K> (- E -( 6 . 𝐫 t). (4.7)
Two negative g-charges are attractive to each other (Fig. 4.4):

𝐅 > = q K0 𝐠 0 = q K0 (- E -) 6 . 𝐫 t). (4.8)
A positive and a negative g-charges repel each other (Fig. 4.5): 

𝐅 0 = q K> 𝐠 0 = q K> (- E -) 6 . 𝐫 t), 𝐅 0 = q K0 𝐠 > = q K0 (- E -( 6 
Q !! ! Q !! ! Q !! ! Fig. 4.1. Field line of Q !" Fig. 4.2. Field line of Q !# Fig. 1: field line of Q !! Fig. 2: field line of Q !! ! Q !! ! Q !! !
-! -! F" F" -! -! F" F" -! +! F" -! +! F" F" -! -! F" F" -! -! F" -! +! F" F" -! +! F" F"
It has been shown that, by introducing negative g-charge, the Extended-Newton's theory and Extended-Einstein's equation can explain the accelerated expansion of the Universe and predict that the acceleration of universe is accelerating, which distinguishes negative g-charge model from that of dark energy model and cosmology constant model [13] [14].

Let's assume that objects in our Universe: (1) have positive mass; (2) carry either positive or negative g-charges, and form positive or negative sub-Universe, respectively. (4.10) Where ρ K0 ≡ -√G ρ LF0 and ρ K> ≡ √G ρ LF> are negative g-charge density and positive g-charge density respectively. And ρ LF0 ( > 0) and ρ LF> ( > 0) are the mass densities of objects with negative g-charge in negative sub-Universe and with positive g-charge in positive sub-Universe, respectively. Eq. (4.10) gives the gravitational field at r,

𝐠 = - √R ∫[2 /0( (6,')0 2 /0) (6,')]( 1 " 6 . 𝐫 t. (4.11) 
For uniform distribution of positive and negative sub-Universes, the gravitational field 𝐠 at r is,

𝐠 = - YZ√[ M [ρ LF> (t) -ρ LF0 (t)] 𝐫. (4.12) 
The motion of a non-relativistic object carrying positive g-charge at a given r is described by Eq. (4.5): This case corresponds to static positive and negative sub-Universes. Third situation: ρ LF0 > ρ LF> , we obtain

𝐠 = YZ[ M 𝐫 [ ρ LF0 (t) -ρ LF> (t)] 𝐫 > 0. (4.16)
For a non-relativistic object of positive g-charge, Eq. (4.13) give,

B 6 ( . 6 (' . = YZ[ M [ ρ FL0 (t) -ρ LF> (𝑡)] > 0. (4.17)
This result agrees with observation data of the accelerating expansion of the Universe, without needing of negative pressure and cosmological constant. Eq. (4.16) and Eq. (4.17) implies that an object carrying positive g-charge is pushed away with acceleration from the distribution, i.e., the negative g-charge provides physics mechanism for the accelerating expansion of positive sub-Universe. For a non-relativistic object of negative g-charge, for the third situation, Eq. (4.13) and Eq. (4.16) give,

B 6 ( . 6 (' . = - YZ[ M ρ L0 (t) + YZ[ M ρ L> (t) < 0. (4.18)
Eq. (4.18) implies that an object carrying negative g-charge is attracted toward to the distribution, which leads to the accelerated collapse of the negative sub-Universe. The mass density, ρ LF> , of objects carrying positive g-charges in the ball of radius r decreases continuously, while the mass density, ρ LF0 , of objects carrying negative g-charges in the ball of radius r increase continuously. As the consequence, the gravitational field 𝐠 > decreases and the gravitational field 𝐠 0 r" increases. The net effects of the combination of decreasing gravitational field 𝐠 > and increasing gravitational field 𝐠 0 , is that the acceleration of the expansion of objects with positive g-charge is increase, namely the acceleration of the expanded regular observed Universe is accelerating, so we have a jerking universe,

B 6 ( 1 6 (' 1 = YZ[ M < (2 /) (') \] - (2 /( (') \] = > 0. (4.19)
Eq. (4.10) to Eq. (4. 19) form a dynamical model that explains the accelerated expansion of our observed positive sub-Universe and predict that the acceleration is increase with time, which may distinguish negative gcharge model from dark energy/cosmological constant model. We argue that this dynamical model plays a role of indirect evidence of existence of negative g-charge [START_REF] Peng | Generalized Einstein's Theory, Gravitodynamics, and Generalized Newton's Theory of Negative Gravitational Mass/Gravitational Charge[END_REF].

Extended-Einstein's Theory (GR) with Negative g-Charges

It has been shown that, similar to the dark energy or Einstein's cosmology constant Λ, the negative gcharges can naturally explain the accelerating expansion of the universe [START_REF] Peng | Generalized Einstein's Theory, Gravitodynamics, and Generalized Newton's Theory of Negative Gravitational Mass/Gravitational Charge[END_REF]. Moreover, the negative g-charges can resolve the fine-tuning problem encountered by Einstein's cosmology constant Λ when explaining the accelerating expansion of the universe. Einstein's equation,

R ^_ - B C g ^_ R = `Z[ a 2 T ^_, (4.20) 
describes spacetime, R ^_, curved by sources, T ^_, of only positive gravitation mass.

Introducing the concept of g-charge, for a system containing positive g-charges only, Einstein's equation, Eq. (4.20) can be rewritten as, We postulate that for a source of two-compound system, by analogy to electrodynamics, its gravitational field should be determined by net g-charges. In geometric term, even there are positive and negative g-charges, spacetime is still described by one metric. Next let's consider a two-compound system containing first and second kinds of object(s). The former has positive energy-momentum pseudo-tensor T B ^_ and carrying positive g-charge T K> ^_; the latter has positive energy-momentum pseudo-tensor T C ^_ and carrying negative g-charge T K0 ^_. To describe this two-compound system, we propose Extended-Einstein equation,

R > ^_ - B C g > ^_ R > = `Z√[ a 2 T K> ^_. ( 4 
R A!' ^_ - B C g A!' ^_ R A!' = `Z√[ a 2 T K,A!' ^_ = `Z[ a 2 (T B ^_ -T C ^_). (4.23) 
Where

T K,A!' ^_ ≡ T K> ^_ + T K0 ^_, T K> ^_ ≡ +√𝐺T B ^_, T K0 ^_ ≡ -√𝐺T C ^_.
There are also three situations:

1) T K> ^_ > T K0 ^_, spacetime R A!'
^_ is the same as R > ^_, thus Eq. (4.23) can be written as

R > ^_ - B C g > ^_ R > = `Z[ a 2 (T B ^_ -T C ^_); (4.24)
2) T K> ^_ < T K0 ^_, spacetime R A!' ^_ is the same as R 0 ^_, thus Eq. (4.23) can be written as

R 0 ^_ - B C g 0 ^_ R 0 = - `Z[ a 2 (T C ^_ -T B ^_). (4.25)
3) T K> ^_ = T K0 ^_, spacetime is flat Minkowski spacetime. Now let's apply the Extended-Einstein equation to explain the accelerated expansion of Universe. Assume that there are negative g-charge and positive g-charges in Universe, the former forms negative sub-Universe, and the latter forms positive sub-Universe. Eq. (4.23) gives

R A!' ^_ - B C g A!' ^_ R A!' = 8π√G (T K> ^_ + T K0 ^_). (4.26)
Applying the FRW metric,

ds C = -dt C + a C (t) < (6 . B0b6 . + r C (dθ C + sin C θdϕ C =, (4.27) 
where a(t) is the scale factor; K is a constant. Substituting Eq. (4.27) into Eq. (4.26), we obtain 77 = -

YZ√[ M ƒ"ρ K> + 3p K> ‡ -(ρ K0 + 3p K0 )ˆ, (4.28) 
and Hubble parameter,

H C = M 77 N C = `Z√[ M ƒρ K> -ρ K0 ˆ-b 7 . . (4.29)
In the case of 3p K> ≪ ρ K> and 3p K0 ≪ ρ K0 , then we obtain, 77 = -

YZ[ M [ρ L> (t) -ρ L0 (t)]. (4.30) 
Where p K> and p K0 are the pressures due to the positive and negative g-charges respectively. Eq. (4.30) implies that for ρ K0 > ρ K> , the positive g-charges carried by regular objects will be repelled away. With negative gcharge, the Extended-Einstein equation can explain the accelerated expansion of the universe without the need of either "negative pressure" or "dark energy" or the cosmological constant that has issue of fine-turn.

As in Extended-Newton's law, the density of negative g-charge is increasing,

(2 /) (') \]
> 0, and the density of positive g-charge is decreasing,

(2 /) (') \]
< 0, therefore the acceleration of the expansion of the universe is increasing with time, i.e., the universe is a jerking universe,

B 7 ( 1 7 (' 1 = YZ[ M < (2 /) (') \] - (2 /( (') \] = > 0. (4.31)
To compare with Hubble's Constance, H, we calculate the velocity, ṙ = ∫ r̈dt =

[ 2 /) M ∫ r(t)dt. Then H = 66 = [ 2 /) M6 ∫ r(t)dt, and 
H ̇= [ 2 /) M - [ 2 /) M6 . ṙ∫ r(t)dt = [ 2 /) M - B 6 . < [ 2 /) M ∫ r(t)dt= C .
To summarize, by introducing the negative g-charge, both Extended-Newton's theory and Extended-Einstein's theory can explain the acceleration of the expansion of the universe and predict the jerking universe. Thus, we argue that the accelerating expansion of the universe is indirect evidence of the existence of negative g-charge.

Extended-Dirac Sea: Negative g-Charge Carrier

In order to explain the negative energy states, Dirac introduced the concept of Dirac Sea. An interpretation is that the positive operators add a positive energy particle and the negative operators annihilate a positive energy particle. Now we generalize this concept to include the g-charges, we denote it as the Extended-Dirac Sea, which states that the positive operator adds a positive rest mass particle and the negative operator annihilates a positive rest mass particle, i.e., Extended-Dirac Sea exchanges g-charges with particles during the processes of creation and annihilation.

An example: let's consider electron-positron annihilation, e 0 + e > → γ + γ. We divide this process into 3 separate processes relating with mass/energy, e-charge, and g-charge, correspondingly,

m !9!4'65A + m e5f8'65A → γ + γ Q ! 0 + Q ! > → Extended -Dirac Sea Q K 0 + Q K > → Extended -Dirac Sea ', (4.32a) 
where

m !9!4'65A , Q ! 0 , Q K > , and m e5f8'65A , Q ! > , Q K 0
, are the rest mass, e-charge, and g-charge of electron and positron, respectively. In this process, 1) Electron carries positive g-charge, while positron carries negative g-charge, such that the net g-charge is zero; 2) the electron's and positron's rest masses convert to radiation energy of gamma ray; 3) their negative and positive e-charges transport to and store in Extended-Dirac Sea; 4) their negative and positive g-charges transport to and store in Extended-Dirac Sea, which implies that the gcharge and inertial rest mass are two different entities. Another example: the process of the creation of electron-positron pair, which is expressed as γ → e 0 + e > . We divide this process into 3 separate processes,

γ → m !9!4'65A + m e5f8'65A Extended -Dirac Sea → Q ! 0 + Q ! > Extended -Dirac Sea → Q K 0 + Q K > '. (4.32b) 
The gamma ray's energy converts to electron and positron's rest masses, respectively. The created electron and positron gain e-charge and g-charges from Extended-Dirac Sea, respectively.

Gravito-Electromagnetics (Gravito-EM): Vector Theory 4.2.1. Introduction

Historically, based on the similarity between the Coulomb's and Newton's laws and, by close analogy to electromagnetism (EM), Maxwell, Heaviside and others proposed the vector theory of gravity which has the form same to that of EM without either mathematical derivation or experimental confirmation, as earlier as year 1865 [START_REF] Maxwell | [END_REF] [16] [17] [18] [19] [START_REF] Heaviside | Electromagnetic Theory[END_REF] [21] after Maxwell's theory was proposed (1861). However, they stopped further investigation, because they concluded that there was an issue that the potential energy density of static Newtonian gravitational field was negative. In spite of the issue, many scientists still work along this line [START_REF] Kolbenstvedt | Gravitomagnetism in Special Relativity[END_REF] [23] [START_REF] Peters | [END_REF] [25] [START_REF] Guth | The Inflationary Universe: The Quest for a New Theory of Cosmic Origins[END_REF].

In 1905, SR was established, which predicted that the inertial mass is a function of velocity, m 8A!6'879 = γm F , where m F is the rest mass, γ = 1/'1 -v C /c C is the Lorentz factor. Now those vector theories faced another issue that is related with none-complying with SR. According to the Weak Equivalence Principle (WEP), the gravitational mass, m K , is equal to the inertial mass, m 8A!6'879 , m K = m 8A!6'879 = γm F . The gravitational mass "current" of a point g-charge has the form,

𝐣 K = m K v = γm F 𝐯.
Therefore, the gravitational mass density and the gravitational current density cannot construct a four-current. Namely, unlike Electromagnetic theory in which e-charge Q ! is a constant and 𝐣 ! = Q ! 𝐯, those vector theories of gravity do not satisfy Lorentz transformation.

Based on the Original Weak Equivalent Principle (Original-WEP), the U (1) gauge theory of gravity is proposed, which is consistent with Gravito-EM [START_REF] Peng | Gravity: WEP, Gauge Theory, Quantization, Unification[END_REF] [START_REF] Peng | Gauge Theory of Gravity with Internal U (1) Symmetry and Unification of Gravitational and Electromagnetic Fields[END_REF]. As a vector field theory, Gravito-EM therefore needs to address: (1) the negative energy issue and (2) the lack of Lorentz invariance issue.

Indeed, it has been shown that the exchanged energy of gravitation fields is always positive, i.e., transported energy in and out of gravitation field is always positive [START_REF] Peng | Positive Energy, Negative Energy, Energy-Momentum Tensor and Negative Charge of G-field[END_REF]. Therefore, the total energy of gravitation fields being defined as either negative or positive is only a matter of bookkeeping. The energy issue of the vector field theory of gravity is addressed. There is no negative energy issue in Gravito-EM.

On the other hand, theory of gravity should inevitable contain magnetic-type gravitation. Actually, in 1983, Einstein's equation has been written in Maxwell-type form with second rank tensor fields [START_REF] Peng | On Calculation of Magnetic-type Gravitation and Experiments[END_REF],

#[ 345 #" 5 = -(T ^_ + t ^_), G =^_,g + G =_g,^+ G =g^,_ = 0, (4.34) 
where t ^_ is non-linear term represent self-interaction of gravitation field. Following EM, scalar potential V K/[i , vector potential 𝐀 K/[i , field strengths 𝐠 [i , and

𝐁 K/[i or G FF8
and G F8j , were introduced. For the situation of slow motion of a point source, ignore non-linear terms, we have

V K/[i ≡ B Y h • FF , A K/[i 8 ≡ B Y h • F8 , 𝐀 K/[i = (A K B , A K C , A K M ), G F8j = A K/[i 8,j -A K/[i j,8
, 

𝐠 [i = (g [i B , g [i C , g [i M ), g [i k = G FF8 , 𝐁 K/[i = ∇ × 𝐀 K/[i , 𝐁 K/[i = (B K/[i B , B K/[i C , B K/[i M ), B K/[i B = G FCM , B K/[i C = G FMB , B K/[i M = G FBC . T FF ≈ ρ K , T F8 ≈ ρ K v 8 , T 8j ≈ 0. ( 4 
[i = -ρ K , ∇ • 𝐁 K/[i ≡ 0, ∇ × 𝐁 K/[i = 𝐯(∇ • 𝐠 [i ) + 𝛛𝐠 67 𝛛𝐭 , ∇ × 𝐠 [i = -𝐯"∇ • 𝐁 K/[i ‡ - #𝐁 𝐠/67 #' , (4.36) 
The subscript "GR" represents the quantities related with "General Relativity", which will distinguish above equations from the Maxwell-type Gravito-EM. Eq. (4.36) indicates that, mathematically, there is no Gravitomagnetic monopole charge in GR of gravity. Many effects of magnetic-type gravitational field have been proposed [29] [30] [31] [32] [33] [34] [35]. The Lense-thirring effect [34] has been explained as the effect of magnetic-type g-field of the rotating Earth [START_REF] Peng | On Calculation of Magnetic-type Gravitation and Experiments[END_REF], and the positive results have been obtained experimentally [35]. Most significant result is that the gravitational wave, denoted as G-Wave, is detected [START_REF] Castelvecchi | Einstein's G-WAVE found at last[END_REF] [START_REF] Abbott | Observation of G-WAVE from a Binary Black Hole Merger[END_REF]. We argue that, theoretically, the detection of G-Wave indicates the existence of time varying gravito-magnetic fields [START_REF] Peng | Wave-Particle Duality of Gravitational Wave and Designed Experiment[END_REF], just as "electromagnetic wave is equivalent to time varying magnetic field". Experimentally, gravito-magnetic field exists.

Gravito-EM Field Equations

Let's derive Gravito-EM. Starting from UMFT, Eq. (2.11). Following what we did in section 3, let 𝐆 = 𝐠, then Eq. (2.11) gives Extended-Ampere-Maxwell-type Gravito-magnetic field equation,

∮(𝐯 × 𝐠) • d𝐥 + ( (' ∬ 𝐠 • ds = ∬ <𝐯(∇ • 𝐠) + #𝐠 #' -𝐠(∇ • 𝐯) + (𝐠 • ∇)𝐯= • ds.
(4.37)

The gravito-magnetic field equation, Eq. (4.37), is type-1 dual to the extended-Ampere-Maxwell equation, (3.12a). Namely when we convert between g and E, 𝐠 ↔ 𝐄, gravitation Eq. (4.37) converts to EM Eq. (3.12a), and vice versa. Next let's start from the Faraday-type UMFT, Eq. (2.18). Let the 𝐌 field is a gravito-magnetic field 𝐁 K , 𝐌 = 𝐁 K , Eq. (2.18) gives,

∮ -"𝐯 × 𝐁 K ‡ • d𝐥 - ( (' ∬ 𝐁 K • ds = -∬ <𝐯"∇ • 𝐁 K ‡ + 𝛛𝐁 - 𝛛𝐭 -𝐁 K (∇ • 𝐯) + "𝐁 K • ∇ ‡𝐯= • ds. (4.38)
The Faraday-type gravitation field equation, Eq. (4.38), is type-1 dual to the extended-Faraday EM equation, Eq. (3.1). Converting between 𝐁 K ↔ 𝐁, Eq. (4.38) converts to EM Eq. (3.1), and vice versa.

Eq. (2.8) gives mathematically, ∇ • 𝐁 K ≡ 0, (4.39) Which is the type-1 dual to Eq. (3.2).

We have shown that the Extended-Newton's law and Newton's force law are type-1 duals of Coulomb's law and Coulomb's force law respectively.

According to the transferring law of dualities (Appendix A2), mathematical duality can be transferred to physical duality and thus, by transferring 𝐄 ↔ 𝐠 and 𝐁 ↔ 𝐁 𝐠 , the Extended-Maxwell equations, Eq. (3.14), Eq. (3.7) and Eq. (3.24), convert to the Extended Gravito-EM equations, Eq. (4.40) and Eq. (4.41) and Eq. (4.42) respectively:

∇ • 𝐠 = -ρ K , ∇ × 𝐁 𝐠 = 𝐯(∇ • 𝐠) + 𝛛𝐠 𝛛𝐭 -𝐠(∇ • 𝐯) + (𝐠 • ∇)𝐯, (4.40) 
∇ • 𝐁 𝐠 = 0, ∇ × 𝐠 = -𝐯"∇ • 𝐁 𝐠 ‡ - #𝐁 𝐠 #' + 𝐁 𝐠 (∇ • 𝐯) -"𝐁 𝐠 • ∇ ‡𝐯, (4.41) 𝐅 = q K 𝐠 + q K 𝐯 × 𝐁 K , (4.42) 𝐠 = 𝐠 3!4'56 + 𝐠 7"87903!4'56 , ∇ • 𝐠 = ∇ • 𝐠 3!4'56 , ∇ × 𝐠 = ∇ × 𝐠 7"87903!4'56 . (4.43) 𝐁 𝐠 = 𝐁 K/7"87903!4'56 , ∇ • 𝐁 𝐠 = 0 ∇ × 𝐁 𝐠 = ∇ × 𝐁 K/7"87903!4'56 (4.
44) Therefore, it is 𝐠 7"87903!4'56 that is the dual to 𝐁 K07"87903!4'56 . The 𝐠 3!4'56 is the regular vector Newton gravitational field. The Extended Newton's field described by Eq. (4.40) contain two parts, vector field and axial vector field, Eq. (4.43).

Note Gravito-EM field equations, Eq. Extended-Ampare-Maxwell-type gravitational law, Eq. (4.40), predicts that the spatially-varying velocity, such as particles distributing and moving in space, terms 𝐠(∇ • 𝐯) and (𝐠 • ∇)𝐯 create axial vector 𝐁 𝐠 fields.

Similarly, the interpretations of terms of the right-hand side of Eq. (4.41) are, 1) The term, 𝐁 K (∇ • 𝐯), describes stretching of the 𝐁 K field due to source velocity compressibility;

2) The term, "𝐁 K • ∇ ‡𝐯, describes the stretching or tilting of the 𝐁 K field due to the velocity gradients.

Extended-Faraday-type gravitational law, Eq. (4.41), predicts that the spatially-varying velocity, such as particles distributing and moving in space, terms 𝐁 K (∇ • 𝐯) and "𝐁 K • ∇ ‡𝐯 induce axial vector g fields.

Detecting the effects of the terms, 𝐠(∇ • 𝐯), (𝐠 • ∇)𝐯, 𝐁 K (∇ • 𝐯) and "𝐁 K • ∇ ‡𝐯, will confirm whether Extended-Maxwell-type gravitation equations are correct.

For non-spatially-dependent velocity, (∇ • 𝐯) = (𝐠 • ∇)𝐯 = "𝐁 𝐠 • ∇ ‡𝐯 = 0, the Extended-Gravito-EM (Eq. (4.40) and Eq. (4.41)) is simplified to Gravito-EM as

∇ • 𝐠 = -ρ K , ∇ × 𝐁 𝐠 = 𝐯(∇ • 𝐠) + 𝛛𝐠 𝛛𝐭 , (4.45) 
∇ • 𝐁 𝐠 = 0, ∇ × 𝐠 = -𝐯"∇ • 𝐁 𝐠 ‡ - #𝐁 𝐠 #' , (4.46) 
Due to the duality between EM equation and Gravito-EM equation, the Gravito-EM field strengths can be expressed in terms of scalar and vector potentials,

𝐁 K = 𝛁 × 𝐀 𝐠 , 𝐠 = -∇V K - #𝐀 - #' , (4.47) 

Type-1 Duality between Field Equations of Positive and Negative g-Charges

Due to the positive and negative g-charge conjugate, the Gravito-EM equations derived above can be applied to Gravito-EM fields created by either positive g-charge/g-current or negative g-charges/g-current with the same forms:

∇ • 𝐠 ± = -ρ K± , ∇ × 𝐁 𝐠± = 𝐯(∇ • 𝐠 ± ) + #𝐠 ± #' -(𝐠 ± )(∇ • 𝐯) + (𝐠 ± • ∇)𝐯, (4.48) 
∇ • 𝐁 𝐠± = 0, ∇ × 𝐠 ± = -𝐯"∇ • 𝐁 𝐠± ‡ - #𝐁 𝐠± #'
+ "𝐁 𝐠± ‡(∇ • 𝐯) -"𝐁 𝐠± • ∇ ‡𝐯, (4.49) 𝐅 = (q K> )𝐠 ± + (q K> )(𝐯 × 𝐁 K± ), 𝐅 = (q K0 )𝐠 ± + (q K0 )(𝐯 × 𝐁 K± ), (4.50) where 𝐠 ± and 𝐁 K± are the Extended-Newton gravitational field and magnetic-type gravitational field created by either positive or negative g-charge and either positive or negative g-current respectively: 

𝐠 ± = 𝐠 ±/3!4'56 + 𝐠 ±/7"87903!4'56 , ∇ • 𝐠 ± = ∇ • 𝐠 ±/3!4'56 , ∇ × 𝐠 ± = ∇ × 𝐠 ±/7"
𝐁 K± = 𝛁 × 𝐀 𝐠± , 𝐠 ± = -∇V K± - #𝐀 -± #' (4.53)
It is 𝐠 ±/7"87903!4'56 that is type-2 dual to 𝐁 K± . The 𝐠 ±/3!4'56 is the vector Newton gravitational field.

For the situations of non-spatially-varying velocity, the extended-Gravito-EM equation become:

∇ • 𝐠 ± = -ρ K± , ∇ × 𝐁 𝐠± = 𝐯(∇ • 𝐠 ± ) + #𝐠 ± #' , (4.54) 
∇ • 𝐁 𝐠± = 0, ∇ × 𝐠 ± = -𝐯"∇ • 𝐁 𝐠± ‡ - #𝐁 𝐠± #' , (4.55) 
For simplicity, hereafter, we will drop the subscript sign "±".

Type-2 Duality between Newton fields and Magnetic-type Gravitational Fields

Based on the Transfer Rules of Appendix A2, there is a duality between Eq. (4.54) and Eq. (4.55), i.e., under transformation 𝐠 ↔ 𝐁 K and 𝐁 K ↔ -𝐠, Eq. (4.54) and Eq. (4.55) convert to each other. With distinguishable feature of "type-1 duality" and "type-2 duality", the duality between induced gravitational field determined by the Faraday-type gravitational law, Eq. (4.55), and magnetic-type gravitational field determined by Ampere-Maxwell-type gravitational equation, Eq. (4.54), is actually a type-2 duality, as well as Eq. (4.48) and Eq. (4.49). UMFT provides the mathematical origin of the type-2 duality between axial vector induced gravitational field and magnetic-type axial vector gravitational field.

Origin of Differences between standard Newton Fields and Gravito-Magnetic Fields

A magnetic-type gravitational field is completely different from a standard Newton field in the following senses:

(1) sources: "g-charge" vs. "g-current";

(2) way the fields are generated: "∇ • 𝐠" vs. "∇ × 𝐁 K ";

(3) nature of fields: "vector field g" vs. "axial vector field 𝐁 K "; (4) forces acting on a test g-charge: "q K 𝐠" vs. "q K 𝐯 × 𝐁 K ".

The origin of those differences is the same as that of differences between the Coulomb electric field and the magnetic field. All of above-mentioned differences between the standard Newton field and the magnetictype gravitation field have a mathematical origin that is Eq. (2.1).

Gravito-EM shows that gravity is a local physical field like the EM field and thus, can be quantizable and renormalizable [START_REF] Peng | Gravity: WEP, Gauge Theory, Quantization, Unification[END_REF].

Moreover, Gravito-EM have the same form as that of linearized GR, Eq. (4.34) and Eq. (4.36), which implies that all of phenomena of linearized GR can also be obtained from the Gravito-EM, including gravitation wave (G-Wave). The existences of time-varying-gravito-magnetic field and G-Wave are equivalent. So now, there are either magnetic or magnetic-type fields in all of four interactions in nature.

Type-1 Duality between EM and Gravito-EM

So far, we have encountered and proposed several dualities: 1) positive and negative e-charges Conjugate; 2) positive and negative g-charges conjugate (proposed in this article); 3) duality between e-charge and g-charge; 4) duality between Coulomb's law and Newton's law, which is perfect after introducing duality (3); 5) duality between EM and Gravito-EM (proposed based on UMFT and duality [START_REF] Peng | Gravity: WEP, Gauge Theory, Quantization, Unification[END_REF].

Based on the above dualities, the phenomena in EM, such as wave, quantization, renormalization and unification, can be transferred into the Gravito-EM directly without complex calculation.

Next, let us compare different theories of gravity (Table 4.2). 

𝜕𝑥 n = -J o = Q ! is invariant j ! ^= (ρ ! , 𝐣 ! ) Gravito-EM ∂F K± =? 𝜕𝑥 n = -J K± = Q K = √Gm F : Q K is invariant m F : rest mass, j K± ^= (ρ K , 𝐣 K ) Linearized GR ∂G K =?∂ 𝑥 p = -T K =? m K = γm F No
Other vector theories of gravity

∂F K =? 𝜕𝑥 n = -m K U = m K = γm F : No

Equation of Continuity 4.2.7.1. g-Current Creating Gravito-Magnetic Field

Utilizing Newton's law, ∇ • 𝐠 = -ρ K , let's define a "current", 𝐣 𝐯0𝐁 -, that generates magnetic-type

gravitational field 𝐁 K , 𝐣 𝐯0𝐁 -= -ρ K 𝐯 -𝐠(∇ • 𝐯) + (𝐠 • ∇)𝐯. (4.56)
Where the subscripts "𝐯 -𝐁 K " represent the quantity generating the gravit-magnetic field 𝐁 K . Then Eq. (4.40) becomes,

∇ × 𝐁 K = 𝐣 𝐯0𝐁 -+ #𝐠 #' . ( 4 

.57)

The current 𝐣 𝐯0𝐁 -satisfies the equation of continuity,

∇ • 𝐣 𝐯0𝐁 -+ #(∇•𝐠) #' = 0. (4.58)
For the situation of the non-spatially-varying velocity, 𝐠(∇ • 𝐯) = (𝐠 • ∇)𝐯 = 0, the Extended-Ampere-Maxwelltype gravitational equation, Eq. (4.40), becomes the Ampere-Maxwell-type gravitational law,

∇ × 𝐁 K = -ρ K 𝐯 + #𝐠 #' . ( 4 

.59)

The Ampere-Maxwell-type gravitation law Eq. (4.59) and Eq. (4.59) shows that a g-current, ρ K 𝐯, and displacement-current, 𝛛𝐠 𝛛𝐭 , mathematically create inevitably the gravito-magnetic fields.

G-Current Creating Induced Gravito-Electric Field

Let's define a "current" generating induced gravitation field, as

𝐣 𝐯0𝐠 ≡ 𝐯"∇ • 𝐁 K ‡ -𝐁 K (∇ • 𝐯) + "𝐁 K • ∇ ‡𝐯.
(4.60) Where the subscripts "v-g" represent the quantity generating the induced axial vector gravitational field. Then Extended-Faraday-type gravitational law, Eq. (4.41), may be rewritten as,

∇ × 𝐠 = -𝐣 𝐯0𝐠 - #𝐁 - #' .
(4.61)

Eq. (4.61) shows the equation of continuity as

∇ • 𝐣 𝐯0𝐠 + #(∇•𝐁 -) #' = 0. (4.62)
For the situation in which, the velocity is non-spatially-varying, i.e., 𝐁 K (∇ • 𝐯) = "𝐁 K • ∇ ‡𝐯 = 0, the Extended-Faraday-type gravitation law, Eq. (4.61), becomes,

∇ × 𝐠 = - #𝐁 - #' , ∇ • 𝐁 K = 0, 𝐣 𝐯0𝐠 = 0 (4.63)
where the 𝐠 field is an axial vector field.

Gravito-Magnetic Field of Steady g-Current 4.3.1. Gravito-magnetic Field Line

The gravito-magnetic field lines of a steady g-current are determined by Eq. ( 4.72), which can be written as the following, with

𝐁 𝐠 = 𝐁 𝐠> + 𝐁 𝐠0 , ρ LF0 > 0, ρ LF> > 0, ∇ × 𝐁 𝐠> = -ρ K> 𝐯 = -ρ LF> 𝐯, ∇ × 𝐁 𝐠0 = -ρ K0 𝐯 = ρ LF0 𝐯, (4.64) 
Figure . 4.7: "The left-hand rule" for gravito-magnetic field 𝐁 𝐠> To determine the directions of the steady positive/negative g-currents and their gravito-magnetic fields, Eq. (4.64) indicates to use "the left-hand rule". The "left-hand rule" states: if one's thumb of left-hand points to the direction of a g-current, for example a positive g-current, the fingers point to the direction of the gravitomagnetic field, say 𝐁 𝐠> (Fig. 4.7).

Interaction between Two Steady g-Currents

Two positive g-currents 𝐈 K> in same directions repel to each other (Fig. 4.8). Two positive g-currents 𝐈 K> in opposite directions attract to each other (Fig. 4.9). 
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Rotation Curve: Dark Matter

Considering a spiral galaxy with a rotation symmetry. The rotating motion of the galaxy generates a gravito-magnetic field 𝐁 K . A moving star with g-charge, q K , at a radius R to the center of the galaxy, will experience a Lorentz-type gravitational force, 𝐅 = q K 𝐠 + q K 𝐯 × 𝐁 K , which consists of two parts, the Newtonian force, g = √[H i . , and the gravito-magnetic force and 𝐯 ⊥ 𝐁 K , both have the same direction. The Lorentz-type force keeps the star moves around the center of the galaxy,

3 . i = [H i 𝟐 + √GvB K , (4. 65) 
where M(R) is the mass interior to the radius R, 𝐁 K is determined by the model of distribution of stars in the galaxy.

Virial Theorem in EM and Gravito-Magnetics Field

Let's review the concept and then extend the virial theorem to include Gravito-magnetic field. The scalar momentum of inertial I of a system containing "n" particles is, 

I = ∑ m s r s C A stB , ( 4 
• 𝐫 s = 2G, ([ (' = 2T + ∑ 𝐅 s A stB • 𝐫 s , T = B C ∑ m s v s C A stB , 𝐅 s = ∑ 𝐅 js A jtB . ( 4.68) 
Where m s , 𝐫 s , 𝐯 s and 𝐩 s are the mass, position, velocity and momentum of the kth particle respectively. The 𝐅 js is the force of the particle j acting on the particle k. The 𝐅 s is the total force acting on the kth particle. The "T" is the total kinetic energy of the system, which is the common notation in the virial theorem, and is represented as the K K .

In the situation of equilibrium of a system consisting of equal mass particles with spherical distribution, the virial theorem states that 2T + W K/O = 0, (4.69) where W K/O is the total potential energy of the Newton's gravitational field. Then, for the situation of presence of magnetic field, it has been extended to include the energy of heat and the total energy of the magnetic field [START_REF] Chandrasekhar | Problem of Gravitational Stability in the Presence of a Magnetic Field[END_REF] [40], as, 2T + 3(γ -1)W w!7' + W G + W K/O = 0, (4.70) where 𝛾 is the ration of the specific heat, W w!7' and W G are the heat energy and the total energy of the magnetic field, respectively.

Note that based on Gravito-EM, the total potential energy of the static gravitational field can be represented in terms of field strength g as

W K/O = B C ∫ g C dτ.
Now, with the presence of the Gravito-magnetic field, we propose to extend the virial theorem, Eq. (4.69), as,

2T + W K/O + W G -= 0, W G -= B C ∫ B K C dτ, (4.71) 
W G -is the total energy of the gravito-magnetic field. Moreover extending Eq. ( 4.70) to include the total energy of the gravito-magnetic field, we obtain the extended-virial theorem

2T + 3(γ -1)W w!7' + W G + W G -+ W K/O = 0, (4.72)
To get a taste of how to apply the virial theorem of the Gravito-EM to build a modified rotation curve, let's consider a simplest situation, for which, Eq. and interacting with gravito-electric and gravito-magnetic fields. The gravitational field changes the kinematic energy of g-charges, i.e., does the work, so decrease its field energy. The change of the kinetic energy K K of g-charges is negative of the work done by the gravitational field, which implies that the increase of kinematic energy of g-charges is equal to the decrease of gravitational field energy, dK K = -𝐅 • d𝐥. where d𝐥 = 𝐯dt, q K = ∫ ρ K dτ and 𝐣 𝐠 = -ρ K 𝐯.

Substituting, ∇ × 𝐁 𝐠 = 𝐣 𝐠 + 𝛛𝐠 𝛛𝐭 -𝐠(∇ • 𝐯) + (𝐠 • ∇)𝐯, we obtain 𝐠 • 𝐣 𝐠 = 𝐠 • (∇ × 𝐁 K ) -𝐠 • 𝛛𝐠 𝛛𝐭 + g C (∇ • 𝐯) -𝐠 • [(𝐠 • ∇)𝐯] (4.76)
The formula of vector analysis gives𝐠

• "∇ × 𝐁 K ‡ ≡ 𝐁 K • (∇ × 𝐠) -∇ • (𝐠 × 𝐁 K ). Substituting, ∇ × 𝐠 = - #𝐁 𝐠 #' + 𝐁 K (∇ • 𝐯) -"𝐁 K • ∇ ‡𝐯, into it, we obtain, 𝐠 • "∇ × 𝐁 K ‡ = - B C #G - . #' + B K C (∇ • 𝐯) -𝐁 K • ƒ"𝐁 K • ∇ ‡𝐯ˆ-∇ • (𝐠 × 𝐁 K ). (4.77)
Substituting Eq. ( 4.77) into Eq. ( 4.76), we obtain

𝐠 • 𝐣 𝐠 = - B C # #' "B K C + g 𝟐 ‡ -∇ • "𝐠 × 𝐁 K ‡ + "B K C + g 𝟐 ‡(∇ • 𝐯) -𝐁 K • ƒ"𝐁 K • ∇ ‡𝐯ˆ-𝐠 • [(𝐠 • ∇)𝐯].
Substituting it into Eq. ( 4.75), we derived the extended-Poynting-type theorem of gravity,

(b - (' = - (I - (' -∯ 𝐒 K • d𝐚 + ∫¡"B K C + g 𝟐 ‡(∇ • 𝐯) -𝐁 K • ƒ"𝐁 K • ∇ ‡𝐯ˆ-𝐠 • [(𝐠 • ∇)𝐯]¢ dτ, (4.78)
Where the Poynting's vector S is defined as, K K is the kinetic energy of all of the g-charges in the volume V. The 𝐒 K is the gravitational counterpart of the Poynting vector in EM. We interpret Eq. ( 4.80) as, the increase of the kinetic energy of all of the g-charges in certain volume is equal to the decrease of the energy the gravitational field lost, less the energy that flowed out through the surface.

𝐒 K ≡ 𝐠 × 𝐁 K . ( 4 
When the kinetic energy of the g-charges is negligible, Eq. (4.80) indicates that the change of energy of the gravitational field is equivalent to the energy flowed out through the surface,

( (' ∫ 𝐁 𝐠 𝟐 >𝐠 𝟐 C dτ = -∮ 𝐒 K • d𝐚. (4.81)
The density of momentum of the gravitational field store in the field is,

𝐩 K = 𝐒 K = B YZ 𝐠 × 𝐁 K . (4.82)
The gravitational field also carries angular momentum, 𝐥 K = 𝐫 × 𝐩 K . (4.83)

Energy-Momentum Tensor of Gravito-EM Fields

For this aim, let's introduce the Lagrangian density Λ of the vector Gravito-EM fields,

Λ = - B BxZ F K=? F K =? , (4.84)
and define the energy-momentum tensor of Gravito-EM fields as

T K= ? = #y -& #" " #z #{ <= -& <> # | -δ = ? Λ. (4.85)
Substituting Eq. (4.84) into Eq. (4.85), we obtain the symmetric energy-momentum tensor of Gravito-EM field,

T K =? = B YZ <-F K =} F K} ? + B Y η =? F K}~FK }~= , T K= = = 0. (4.86)
Note here: (1)The energy-momentum of vector Gravito-EM fields, T K =? , is a tensor; on the contrary, T =? in GR is a pseudo-tensor, which is considered as one of issue of GR; (2) T K =? represents either T K> =? related with positive g-charge/g-current, or T K0 =? related with negative g-charge/g-current, or T KO =? related with net g-charge/g-current;

(3) Zero trace, T K^= 0; (4) T K ^_ is symmetric, T K ^_ = T K _^;

(5) Positive energy density, T K FF > 0; (6) Conserved, ;• -4 3

;< ?

= 0; (7) Localizable.

Retarded Gravitational Potentials

The gravito-retarded potentials of a point g-charge moving arbitrarily are,

V K = - E - i(B0𝛃•𝐧) , 𝐀 K = - E -𝛃 i(B0𝛃•𝐧) = 𝛃V K (4.87)
We denote Eq. ( 4.87) as the Lienard-Wiechert-type potentials.

Gravitational Radiation

Lienard-type formula (1):

The total radiation power of a non-relativistic single g-charge is proportional to the square of the acceleration of the charge,

I = C[L . M4 1 𝐚 C . (4.88)
Where the non-radiation term, ~1/R C , have been ignored. We denote Eq. ( 4.88) as the Larmor-type formula of Gravitational wave (G-Wave).

Lienard-type formula ( 2): Now let's consider a relativistic g-charge moving with velocity, 𝐕 ~C, and acceleration, "a", relative to an observer. According to SR, transferring to the observer's system, we obtain the energy of radiation,

W = C[L . Ma 1 ∫ B (B0? . ) 1 [a C -(𝛃 × 𝐚) C ]dt ' 0' . ( 4 

.89)

We denote Eq. ( 4.89) as the Lienard-type formula. In terms of the gravitational field strength, we obtain,

W = C[ . L . Ma 1 ∫ B (B0? . ) . <"𝐠 + 𝛃 × 𝐁 𝐠 ‡ C -(𝛃 • 𝐠) C = dt ' 0' . ( 4 

.90)

Bremsstrahlung-type radiation: For the angular distribution of the radiation energy at a long-distance R, by keeping only the lowest term in 1/R, we obtain the intensity radiated into the solid angle 𝑑Ω, dI =

[ƒ . YZa 1 © 𝐚 . (B0𝛃•𝐧) 2 + C(𝐧•𝐚)(𝛃•𝐚) (B0𝛃•𝐧) @ - (B0? . )(𝐧•𝐚) . (B0𝛃•𝐧) A ª dΩ. (4.91)
When the velocity and acceleration of a relativistic g-charge are collinear, i.e., 𝐯 × 𝐚 = 0, we obtain the bremsstrahlung-type radiation,

I = C[L . 7 .
Ma 1 (B0? . ) 1 . (4.92)

Synchrotron-type radiation:

Let's consider G-Wave radiation of a star orbiting around a rotating massive neutron star or a rotating black hole that generates a gravito-magnetic field 𝐁 K around itself. The radius r of the orbit, the cyclic frequency ω f of the motion, the gravito-magnetic field 𝐁 K , and the velocity v of the star are related by,

r = a… √[G - †B0? . , ω Kf = √[G - a '1 -β C (4.93)
When ignoring the time integral for simplicity as well as setting g = 0 and 𝐁 𝐠 ⊥v, we have the total intensity of radiation,

I = C[ . G - . e .
Ma @ , (4.94)

where 𝐩 = m𝐯/'1 -β C is the momentum of the star. The total intensity of radiation is proportional to the square of momentum p. This radiation is the synchrotron-type radiation or gravito-magnetic bremsstrahlung.

Transformation Law of Energy Density of G-Wave

From SR, the transformation law of the energy density,

W [0I73! = B `Z "g C + B K C ‡
, of a plane G-Wave from one inertial reference system K to another system K . is

W [0I73! = ‡B>?45f= B ˆ. B0? . W [0I73! . . ( 4 

.95)

The α . is the angle in the K . system between the direction of velocity v and the direction of propagation of G-Wave; β = v/c.

Doppler-type Effect of G-Wave

Now let's derive the Doppler-type effect for G-Wave. As mentioned above, Gravito-EM is compatible with SR. An important conclusion is that the redshifts of G-Wave follows the rule same as that of EM-Wave. According to the rule of transformation of the four-vector from a source-rest system K f to an observer system K 5 moving with velocity "-v" relative to the system K f , we obtain the Doppler-type effect, ω K5 = ω Kf †B0? .

B0?45f=

, λ K5 = λ Kf B0?45f= †B0? .

(4.96)

where ω Kf (λ Kf ) and ω K5 (λ K5 ) are, respectively, the frequencies (wavelength) of G-Wave in the source-rest system 𝐾 ‰ and in the observer system 𝐾 Š , respectively; α is the angle, in the 𝐾 Š system, between the direction of emission of G-Wave and the direction of motion of the source. Eq. (4.96) is the gravitational counterpart of the Doppler effect of EM-Wave. Now we can find the frequency/wavelength of emitted G-Wave from observed G-Wave.

The formulas describing both EM-Wave Doppler effect and the gravito-Doppler effect have the same form. The redshifts of EM-Wave and G-Wave radiated by the same source carrying both e-charge and g-charge are the same. Therefore, by measuring the redshift, ℤ @H0I , of EM-Wave, we obtain the "redshift velocity" of the source of both EM-Wave and G-Wave from the following formula,

ℤ [0I73! = ℤ @H0I73! ≡ B0?45f= †B0? . -1.
(4.97)

Returning back to G-Wave, substituting Eq. ( 4.97) into Eq. ( 4.96), we obtain

ω Kf = ω KF (1 + ℤ @H0I73! ), λ Kf = g -C B>ℤ +,)DEF! (4.98)
By Eq. ( 4.98), we can obtain the emitted frequency and wavelength of G-Wave from the redshift of EM-Wave. For α = 90 F , Eq. ( 4.98) gives the transverse Doppler-type effect of G-Wave,

λ Kf = λ K5 '1 -β C , ω Kf = ω K5
B †B0? . . (4.99) For the case of v ≪ c and α not close to 90 F , Eqs. (4.98) becomes respectively,

ω Kf ≅ ω K5 (1 -βcosα), λ Kf ≅ g -C (B0?45f=) . (4.100) 
Eqs. (4.98) to (4.100) give the relations between wavelength/frequency and the velocity of the source of G-Wave.

Hubble Constant and Redshift of G-Wave

For a source radiating only G-Wave, how can we find redshift of G-Wave? For this aim, we need to find the relations between frequency/wavelength and the distance of the source of G-Wave. For the time scale measuring G-Wave, we only consider the constant Hubble parameter. An expression for Hubble's Law is,

v = H F R F , (4.101 
) where H0 is Hubble's constant, R F is the proper distance. Substituting Eq. (4.101) into Eq. (4.97), we obtain the redshift,

ℤ [0I73! ≡ B0 G 0 7 0 H 45f= OE B0• G 0 7 0 H Ž . -1. (4.102) 
Substituting Eq. (4.155) into Eq. (4.148) and Eq. (4.149), we obtain the emitted frequency ω Kf and wavelength λ Kf , respectively,

ω Kf = ω KF B0 G 0 7 0 H 45f= OE B0• G 0 7 0 H Ž . , λ Kf = g -C OE B0• G 0 7 0 H Ž . B0 G 0 7 0 H 45f= . ( 4.103) 
Eq. (4.103) is a useful tool to determine the emitted G-Wave's frequency and wavelength once we know the distance of a G-Wave source in the universe. We need to distinguish emitted frequency/wavelength of G-Wave from measured frequency/wavelength on Earth. The calculations of detected G-Wave's parameters related with frequency, e.g., those in the pocket formulae, such as Scaling amplitude, Chirp/Chirp waveform, Chirp mass, G-Wave phase, G-Wave form, and Luminosity distance, etc., need to include the effects of redshift of G-Wave.

Tully-Fisher-type law of G-Wave

Substituting v = ωr and a = ω C r into the Larmor-type formula, Eq. (4.88), we obtain the Tully-Fisher-type law for G-Wave,

I = C[L . Ma 1 • . v Y . ( 4.104) 
Eq. (4.104) shows that the intensity of G-Wave is proportional to the v Y . The Tully-Fisher-type relation is a correlation for spiral galaxies between their total energy of G-Wave emitted by the spiral galaxies per unit time and how fast they are rotating.

Dipole Radiation of Non-Relativistic Binary System

As an example, let's consider a non-relativistic binary system. For a system of two-point positive gcharges, Q KB> and Q KC> , e.g., a system of regular binary stars, moving with low velocities, v k ≪ c, we choose the origin of the reference system at the center of masses. Then the gravitational dipole moment has the form,

𝐝 𝐓 = Q KB> 𝐫 𝟏 + Q KC> 𝐫 𝟐 = µ M E -I( L 0I - E -.( L 0. N 𝐫. (4.105) 
Where 𝐫 = 𝐫 𝟏 -𝐫 𝟐 and µ = ƒ 0I ƒ 0.

ƒ 0I >ƒ 0.

. Substituting the definition of positive g-charge, Q K> = √𝐺𝑚 F , into Eq.

(4.105), we have 𝐝 𝐓 = 0, i.e., the gravitational dipole moment vanishes, no G-wave.

Dipole Radiation of Relativistic Binary System

For a system of two relativistic g-charges, v k ~c, we obtain the generalized Lienard-type equation,

I • = ∑ I s s = ∑ C[L ;
.

Ma 1 (B0? ;

.

) 1 [a s C -(𝛃 𝐤 × 𝐚 𝐤 ) C ] s . ( 4.106) 
For a binary system, we have,

I • = C[ Ma 1 • ƒ I . 7 I . (B0? I . ) 1 + ƒ . . 7 . 
.

(B0? . . ) 1 - ƒ I . |𝛃 𝟏 ×𝐚 𝟏 | . ‡B0? I . ˆ1 - ƒ . . |𝛃 𝟐 ×𝐚 𝟐 | . ‡B0? . . ˆ1 ¸. (4.107) 
For a special situation where two g-charges are equal, then 𝑚 B = 𝑚 C , 𝑎 B = 𝑎 C , 𝛽 B = 𝛽 C , we have the intensity of G-Wave radiated by the dipole momentum of the binary system,

I • = Y[ƒ . Ma 1 (B0? . ) 1 [𝑎 C -|𝛃 × 𝐚| C ]. (4.108) 

Quadrupole Radiation of Relativistic Binary System

Let's consider a binary system of gravitational charges having equal charges, Q KB = Q KC , and moving circularly. At a starting time, the velocities of two gravitational charges are slow. We have

⟨𝐼⟩ = Bx[ 2 L @ •a @ i @ = C[L .
•a @ 7 2

-. = C[ •a @ L . -. M (𝐏 (' • (𝐏 (' N C , (4.109) 
where a (= ω C r) is the acceleration of the g-charge.

Since two stars lose energy by G-Wave radiation, their orbits shrink and speeds become faster and closer to that of light. To deriving the intensity of the G-Wave quadruple radiation of this relativistic binary system, we write the Lorentz invariant generalization of Eq. (4.109),

⟨𝐼⟩ = [ CFa @ ¿D À L=? C Á = C[ •a @ L . -. M (˜? (™ (˜? (™ N C , (4.110) 
where dτ = dt/γ. We obtain the intensity of G-Wave radiated by the gravitational quadrupole momentum of the relativistic binary system,

⟨𝐼⟩ = [ CFa @ ¿D À L=? C Á = C[L . •a 1 -. B (B0? . ) A [a C -(𝛃 × 𝐚) C ] C . (4.111)
The change rate of quadrupole radiation intensity with respect to velocity is,

(u KLEMNLOCP!,N!PERSFSTRSU (… = `[L . •i . M ? B0? . N M . (4.112)

Gravito-Bremsstrahlung-type Radiation of Two Relativistic Stars Collision

For a special case of head-on collision of two relativistic g-charges, e.g., two relativistic stars, carrying similar g-charges, the generalized gravitational bremsstrahlung-type radiation is,

I • = ∑ I b b = C[ Ma 1 < ƒ I . 7 I . (B0? I . ) 1 + ƒ . . 7 . 
. (B0? .

. ) 1 =.

(4.113)

In the case of two relativistic star merge, we need to take into account the generalized gravitational bremsstrahlung.

Energy Loss by Radiation: Non-Relativistic Binary System

Let's consider a simple example of the radiation damping, a system of two equal g-charges attracting each other and slowly moving circularly. Here we are not use the conventional dipole method, since it will give zero dipole radiation incorrectly. Instead, we use the particle approach developed in this article, i.e., treat the dipole radiation of each g-charge independently, and the quadrupole radiation of the system as a whole. The total energy loss due to the dipole and quadrupole radiation is the summation,

W • = C Ma 1 ∑ Q Kb C 𝐚 Kb C ••••• b + [ CFa @ D À L=? C ••••••• . (4.114)
For a binary non-relativistic system of equal g-charges, then the total lost energy is obtained,

W • = W (8e59! + W š›7(6›e59! = Y[L . Ma 1 𝐚 C + Bx[ 2 L @
•a @ i @ . (4.115)

Energy Loss by Radiation: Relativistic Binary System

For a binary relativistic system of equal g-charges, the total lost energy is,

W • = W (8e59! + W š›7(6›e59! = Yx[L . B•a 1 B (B0? . ) 1 [a C -(𝛃 × 𝐚) C ]. (4.116) 
We have systematically study G-Wave in the framework of Gravito-EM theoretically and shown the following:

1) The physical characteristics of G-WAVE have been studied by following Electrodynamics and, especially, in terms of the field strengths, g and 𝐁 K ; thus, the directions of looking for new effects of G-WAVE are conceptually clear, and the related calculations are simple.

2) The concept of gravitational field strength has been introduced into GR. For the components of T FF and T F8 , the linearized Einstein equation has been written as [START_REF] Peng | On Calculation of Magnetic-type Gravitation and Experiments[END_REF],

∇ • 𝐠 = -4πρ K , ∇ × 𝐁 𝐠 = - Yoe • 𝐉 K + B • 𝛛𝐠 𝛛𝐭 . ∇ • 𝐁 𝐠 = 0, ∇ × 𝐠 = - B • 𝛛𝐁 𝐠 𝛛𝐭 , 𝐅 = Q K 𝐠 + 4Q K 𝐕 × 𝐁 K .
This set of linearized Einstein equations has the form same to that of Gravito-EM. All of conclusions in this section are derived from Gravito-EM. The linearized GR, therefore, will give the same results, except a factor of 4 in the expression of gravitational force.

3) There is gravitational synchrotron radiation from a relativistic star moving in the gravitomagnetic field of a rotating massive object, such as black hole. 4) There is gravitational Bremsstrahlung-type radiation from a head-on collision of two relativistic stars. 5) The gravitational Doppler-type effect is derived, which needs to be considered in the detection of G-Wave, especially for a faraway source. 6) The correlation between the redshifts of both G-Wave and EM-Wave is derived.

Resolving Negative Energy Issue of Vector Gravity

We define the work done by an external force to dismantle a collection of same signs of g-charge, which converts to the energy of the gravitational field as the potential energy of gravitational field. The energy, W K , stored in the Gravito-EM field is positive, denoted as "energy" of gravito-EM fields,

W K = B C ∫(𝐠 C + 𝐁 K C )dτ. (4.117) 
Where g and 𝐁 K are the gravito-electric and gravito-magnetic field strengths respectively, which are created by g-charges and g-current respectively. The negative energy issue of the vector gravito-magnetic field is resolved. The Lagrangian for Gravito-EM is

L K = B `Z "g C -B K C ‡. (4.118)

Perihelion Precession of Mercury

we can rewrite the equation of motion for a g-charge in external fields. At the "zero approximation", the Newtonian Lagrangian is,

L K8 (F) = B C m 8 𝐯 8 C -Q K8 V K , (4.119) 
where 𝐯 8 is the velocity of the i th g-charge of a system of g-charges; V K is the potential of the external field. Since the existence of gravito-magnetic field 𝐀 K in Gravito-EM, the relativistic Lagrangian is

L K8 = -m 8 c C '1 -β 8 C -Q K8 V K + B a Q K8 𝐀 K • 𝐯 𝐢 . (4.120)
Expanding the term m 8 c C '1 -β 8 C in power of v 8 /𝑐 and keeping the terms of second order, and substituting the retarded potentials, we obtain the Darwin-type gravitational Lagrangian for the whole system, from Eq. (4.120),

L K = ∑ M B C m 8 v 8 C + B `4. m 8 v 8 Y N 8 -∑ Ä E -S E -V i SV - E -S E -V C4 . i SV ƒ𝐯 𝐢 • 𝐯 𝐣 + (𝐯 𝐢 • 𝐧 𝐢𝐣 )(𝐯 𝐣 • 𝐧 𝐢𝐣 ˆAE 8 j , (4.121) 
where

𝐀 K = E -S [𝐯>(𝐯•𝐧)𝐧]
C4i has been used.

From a vector theory of gravity and taking into account vector potential, Borodikhin [START_REF] Borodikhin | Vector Theory of Gravity[END_REF] proposed a Lagrange function,

L K = B C m B V B C + B C m C V C C + RL I L . i I.
+ RL I L . ¡ .

4 . i I.

, (4.122) and show that the Lagrange function can explain the perihelion precession of Mercury. For a binary system, the gravito-Darwin-type Lagrangian, Eq. (4.121), gives Borodikhin's Lagrange function, Eq. (4.122), which implies that Gravito-EM explains the perihelion precession of Mercury.

Lorentz Transformation of Gravito-EM Field

Writing Eq. (4.40) and Eq. (4.41) in tensor form,

#: - "# ;< $ = J K = , #: - "# ;< % + #: - #& ;< ' + #: - &" ;< $ = 0, (4.123) 
Where

F K =? = ∂ = A K ? -∂ ? A K = is the field strength tensor, A K = is four-vector gravitational potential, J K = = J K> = + J K0 = = (ρ K , 𝐉 K
) is gravitational four-current. Eq. (4.123) satisfy Lorentz transformation and comply with Special Relativity.

In analogy to the transformation of EM fields in SR, we have the same rule for the transformation of Gravito-EM fields, including extended-Newtonian gravitational field and gravito-magnetic fields. In the tensor form. The gravitational fields in one inertial frame S . can be expressed in terms of gravitational fields in another frame S, In the vector form, the gravitational field strengths transfer as,

𝐠 ± . = γ"𝐠 ± + 𝛃 × 𝐁 K± ‡ - } . B>} 𝛃(𝛃 • 𝐠 ± ) 𝐁 K± . = γ"𝐁 K± -𝛃 × 𝐠 ± ‡ - } . B>} 𝛃(𝛃 • 𝐁 K± ) ' (4.125)
When the velocity is slow, γ ≈ 1, in the laboratory frame, Eq. (4.125) gives 𝐁 K ≈ 𝐁 K . + 𝐯 × 𝐠. 𝐠 ≈ 𝐠 . -𝐯 × 𝐁 K (4.126) For a special situation of the gravito-electric field, 𝐠 . , and gravito-magnetic, 𝐁 K . , do not exist in the circuit dl rest frame, we have transformation law, 𝐁 K = 𝐯 × 𝐠, 𝐠 = -𝐯 × 𝐁 K . (4.127) Eq. (4.127) implies that a gravito-magnetic field must accompany with a moving g-charge.

Following EM, the invariant quantities of the Gravito-EM of positive g-charge are,

F K>=? F K> =? = invariant, ϵ =?}~FK> =? F K> }~= invariant, (4.128) B K> C -g > C = invariant, 𝐠 > • 𝐁 K> = invariant. ( 4 
.129) where ϵ =?}~ is the completely anti-symmetry unit tensor of fourth-rank.

For the gravitational fields created by negative g-charge/g-current, we have the same invariants, F K0=? F K0 =? = invariant, ϵ =?}~FK0 =? F K0 }~= invariant, (4.130)

Extended-Doppler Effect of G-Wave of Accelerating Source

The stars are acceleratingly receding from each other. We suggest that the acceleration causes the redshift of gwave, denoted it as "Acceleration-Redshift". Both receding velocity and acceleration of source cause the wavelength of g-wave shifted to red. The total redshift is a summation of Doppler-type redshift and Acceleration-Redshift. Moreover, we derived General Redshift and General Blueshift formulas that show that not only velocity, but also acceleration, jerk, and higher order derivative shift wavelength. The General Redshift formula is identical with the cosmological redshift, which implies that the cosmological redshift intrinsically includes Acceleration-Redshift. We believe that to describe the accelerating universe, physics laws should include acceleration for accuracy and completeness. The acceleration-redshift of electromagnetic wave has been derived [43]. Due to the duality between EM and Gravito-EM, we directly copy the results of EM-wave here for several situations. Situation A: Source of G-wave is receding with acceleration.

A source emitting g-wave of wavelength λ s is receding with velocity v s and constant acceleration a s relative to an observer on the earth. The observed wavelength λ o and acceleration-velocity-redshift z of g-wave are, respectively,

𝜆 Š¢‰o•£o\ = 𝜆 ‰Š¤•¥o <1 + £ X ¥ + ¦ X § X C¥ . = 𝑐𝑧 ≡ £ X ¥ + ¦ X § X C¥ . 𝑐 \‰ ] = 𝑎 ‰ . (4.131)
Eq. ( 4.131 implies that, the acceleration of a receding source does shift the wavelength. The first terms on the right-hand sides is the regular Doppler-type redshift for g-wave; the second term is redshift due to acceleration, "Acceleration-redshift". A significant difference between redshifts of constantly moving source and accelerating source is that the observed wavelength and redshift are time dependent: Situation B: Source of G-wave is receding with deceleration 𝑑 ‰ .

𝜆 Š¢‰o•£o\ = 𝜆 ‰Š¤•¥o <1 + £ X ¥ - \ X § X C¥ . = , 𝑐𝑧 ≡ £ X ¥ - \ X § X C¥ . , 𝑐 \\ ] = -𝑑 ‰ . (4.132)

Extended-Hubble Law for Accelerating Universe

In the 1998, Scientists reported the observations that the expansion of the universe is accelerating, r̈ > 0, and the acceleration is assumed to be uniform, 𝑟 ⃛ (t). In the 2016, Scientists report that even that acceleration is faster than expected. If the 2016 observation is confirmed, which could mean that the acceleration is accelerating, 𝑟 ⃛ (t)> 0, there is a discrepancy in Hubble constant obtained from the 2016 observation and from the 2013 data of European Planck spacecraft. Following classical mechanics, call 𝑟 ⃛ (t) the "jerk". There is no evidence showing whether the jerk is uniform or not.

To describe an accelerating system, the physics laws should contain the term of the acceleration of the system for accuracy and completeness.

Thus, Hubble law should be extended to fit the accelerating and jerking universe. For this aim, we generalize the linear distance-velocity and distance-redshift relations of Hubble law to a non-linear distancemovement and a distance-redshift-movement relation of the extended Hubble law [44]. We suggest that the Extended-Hubble law is worth to pursue and may be tested by introducing it into cosmological study. The extended-Hubble law is expressed in different forms as the following [44],

•

• = 𝐻 <1 + B C •• B © . =. (4.133) 
Note that with acceleration, 𝐻 ≠ 

= 𝑟Ḣ 𝑍 = 𝑍 © 0 = 𝐻 F 𝑟(𝑡 F ) 𝑐 Accelerating universe 𝑟 = 𝑟Ḣ - 𝑟2 𝐻 C 𝑍 = 𝑍 © 0 - 𝑟(𝑡 F )𝑟(𝑡 F ) 2𝑟̇C(𝑡 F ) 𝑍 © 0 C Jerking universe 𝑟 = 𝑟Ḣ - 𝑟2 𝐻 C + 𝑟 ⃛ 3! 𝐻 M 𝑍 = 𝑍 © 0 - 𝑟(𝑡 F )𝑟(𝑡 F ) 2𝑟̇C(𝑡 F ) 𝑍 © 0 C + 𝑟 ⃛(𝑡 F )𝑟 C (𝑡 F ) 3! 𝑟̇M(𝑡 F )
Remark: Eq. (5.19) shows that the spin angular velocity q ! plays the role of "velocity" generating the Classical spin-magnetic field, which is conceptually different from that of the Quantum-Spin-EM ( Q-Spin-EM).

Equations of Continuity of Spin Currents

The 𝐣 𝐬0𝐁 and 𝐣 𝐬0𝐄 should satisfy the equation of continuity respectively. Taking divergence of Eq. (5.13) and Eq.

(5.14) respectively, we obtain

∇ • (∇ × 𝐁 𝐬 ) = ∇ • (𝐣 𝐬0𝐁 ) + #(∇•𝐄 𝐬 ) #' , (5.23) 
∇ • (∇ × 𝐄 𝐬 ) = -∇ • (𝐣 𝐬0𝐄 ) - #(∇•𝐁 𝐬 ) #' . (5.24) 
We face two situations: exist 

∇ • (𝐣 𝐬0𝐁 ) + #(∇•𝐄 𝐬 ) #' = 0, ∇ • (𝐣 𝐬0𝐄 ) + #(∇•𝐁 𝐬 ) #' = 0.
Secondly. if we don't have spin-charge and spin-monopoles, equations of continuity are

∇ • (𝐣 𝐬0𝐁 ) = 0, ∇ • (𝐣 𝐬0𝐄 ) = 0.
To obtain the familiar format of Equations of Continuity, let's take a different approach. Let's restudy situations, in which, e-particles carry both e-charge and spin, i.e., e-charge and spin are bound together always.

Therefore the number density of e-charges is that of spin, namely, the time change and space varying of number density of e-charges are that of spin. Spin current is associated with e-current. The equation of continuity of ecurrents, Eq. (3.18), is

∇ • 𝐣 𝐯0𝐁 + 𝛛2 ! 𝛛𝐭 = 𝟎, (3.18 
)

𝐣 𝐯0𝐁 = 4πnq ! 𝐯 -𝐄(∇ • 𝐯) + (𝐄 • ∇)𝐯, ρ ! = nq ! , (3.16) 
where "n" is the number density of e-charge, and thus of spin; q ! is the e-charge of each individual e-particle.

To get the equations of continuity of spin currents, we propose to attach spin to velocity, and to convert e-charge density ρ ! to spin density ρ f . Eq. (3.18) and Eq. (3.16) give

∇ • 𝐣 f0G + #2 T #' = 𝟎, (5.25 
)

𝐣 𝐬0𝐁 = 4πnq ! 𝛚 𝒔 -𝐄[∇ • (𝛚 𝒔 )] + (𝐄 • ∇)(𝛚 𝒔 ), (5.26) 
ρ f = 𝛚 𝒔 q ! n. (5.27) 
Note that spin 𝐒 4 has different orientations, the term, 4πn𝐒 4 𝐯, need to be expressed as a pseudo-tensor spinmagnetic-current,

j f0G,8j = 4πq ! n𝛚 𝒔 8 𝛚 𝒔 j -E 8 ƒ∇ s • (𝛚 𝒔 𝛚 𝒔 ) js ˆ+ (𝐄 • ∇)(𝛚 𝒔 𝛚 𝒔 ) 8j , (5.28) 
ρ f8 = 𝛚 𝒔 8 q ! n.

(5.29)

The generally accepted definition of the spin current pseudo-tensor is,

j 8j ~B C ¡v j v 8 + v 8 v j ¢.
(5.30)

Remark: the pseudo-tensor spin current represented by Eq. (5.28) is a counterpart of the spin current pseudotensor represented by Eq. (5.30).

Scalar and Vector Potentials

Based on duality, defining spin-scalar-potential, φ f , and spin-vector-potential, 𝐀 f , as,

𝐄 𝐬 ≡ -∇φ f - #𝐀 T #' , 𝐁 𝐬 ≡ ∇ × 𝐀 f . (5.31)
Under the gauge transformation,

𝐀 f → 𝐀 f + ∇Λ ‰ , φ f → φ f - ;z X ;] , (5.32) 
the spin-electric and spin-magnetic fields, 𝐄 𝐬 and 𝐁 𝐬 , are invariant.

Spin-EM potentials can be written in terms of EM potentials. Combining Eq. (5.4) and Eq. (5.31), we obtain

∇ × 𝐀 f = -𝛚 𝒔 × ∇φ -𝛚 𝒔 × #𝐀 #' , (5.33) 
-∇φ f -

#𝐀 T #'
= -𝛚 𝒔 × (∇ × 𝐀).

(5.34)

Spin Wave

Spin-EM predicts spin waves described by,

𝛛 𝟐 𝐁 𝐬 𝛛𝐭 𝟐 -∇ C 𝐁 𝐬 = ∇ × 𝐣 𝐬0𝐁 - # #' 𝐣 𝐬0𝐄 , (5.35 
)

𝛛 𝟐 𝐄 𝐬 𝛛𝐭 𝟐 -∇ C 𝐄 𝐬 = -∇ × 𝐣 𝐬0𝐄 - 𝛛 𝛛𝐭 𝐣 𝐬0𝐁 .
(5.36)

Remark: [START_REF] Feng | A Theoretical Derivation of Faraday's Second Law of Electromagnetic Induction[END_REF] By duality between EM and Spin-EM, the spin waves should be able to be quantized and the quanta are spin-one Bosons. (2) The propagation speed of spin wave is to be determined.

Classical Spin-EM vs. Q-Spin-EM

Let's study the similarity and difference between Classical Spin-EM (C-Spin-EM) and Quantum-Spin-EM (Q-Spin-EM). To convert to quantum theory, we need to introduce the concept of phase. Eq. (5.31) gives,

∮ 𝐄 f • dl = - # #' ∮ 𝐀 f • d𝐥, (5.37) 
∬ 𝐁 𝐬 • 𝐝𝐬 = ∮ 𝐀 f • d𝐥.

(5.38)

We define,

∮ 𝐀 f • d𝐥 ≡ Φ f , (5.39) 
then have

Φ f = ∬ 𝐁 𝐬 • 𝐝𝐬, (5.40) 
Φ ̇f = -∮ 𝐄 f • d𝐥.

(5.41)

Defining Φ f as the phase, e 8¬ T . Spin-electric field 𝐄 f and Spin-magnetic field 𝐁 f of C-Sin-EM have the same form as that of Spin motive force 𝐄 Ef and Berry curvature 𝐁 Ef of Q-Spin-EM.

However, the fundamental differences between the C-Spin-EM and Q-Spin-EM are the definitions of spin-electric field and spin-magnetic field, as well the field equations.

There are analogies between quantities of EM and quantum anholonomy. Since the type-2 dualities between EM and C-Spin-EM, we propose that there are analogies between quantities of C-Spin-EM and quantum anholonomy, Table 1. 

Lagrangian and Hamiltonian

For a non-relativistic non-spinning e-particle Q ! in EM field, the regular Lagrangian and Hamiltonian are respectively,

ℒ 6!K = B C mv C + Q ! 𝐀 • 𝐯 -Q ! φ, H 6!K = B CL (p -Q ! 𝐀) C + Q ! φ.
(5.42)

For a spin rotation e-particle, the Lagrangian contains its rotation energy,

KE fe8A = 1 2 Iω ‰ C = (𝐼𝜔 ‰ ) C 2I = (𝐋 f ) C 2I We postulate that the angular momentum 𝐋 f = I𝛚 f is proportional to "spin" 𝐒, (𝐋 T ) . u ≡ a ℒ (𝐒) C
(5.43) the spinning kinetic energy becomes,

KE fe8A ≡ B C a ℒ (𝐒) C , ( 5.44) 
By the duality between Extended EM and C-Spin-EM, let's introduce Lagrangian,

ℒ fe8A = B C a ℒ (𝐒) C + Q ! 𝐀 𝐬 • 𝛚 𝐬 -Q ! φ f . (5.45)
The total Lagrangian of a spinning e-particle in EM and Spin-EM fields is

ℒ '5'79 = B C mv C + Q ! 𝐀 • 𝐯 -Q ! φ + B C I𝛚 ‰ C + Q ! 𝐀 𝐬 • 𝛚 𝐬 -Q ! φ f (5.46)
In the derivation of the C-Spin-EM, we have replaced velocity v by spin angular velocity 𝛚 𝐬 in UMFT. Now we use 𝛚 𝐬 as a "generalized velocity", substituting it into Hamiltonian,

H = ∑ 𝑞̇k #ℒ RCREP ;¯̇Z -ℒ '5'79 = 𝐯 #ℒ RCREP #3 + 𝛚 𝐬 #ℒ RCREP #𝛚 𝐬 -ℒ '5'79 , (5.47) 
we obtain the Hamiltonian for spinning e-particles,

H = (𝐩0E ! 𝐀0E ! 𝐀 𝐬 ) . Cƒ + (𝐩 T 0E ! 𝐀 T 0E ! y) . C7 ℒ + Q ! φ + Q ! φ f , (5.48) 
which describes dynamics of spinning e-particles in both Extended EM and C-Spin-EM fields. Where the 𝐩 f is a conjugate momentum corresponding to the "generalized velocity"𝛚 𝐬 . Next we will study the effects of the following terms of Eq. (5.48),

(𝐩0E ! 𝐀0E ! 𝐀 𝐬 ) . Cƒ ≈ (𝐩) . Cƒ - E ! 𝐩•𝐀 ƒ - E ! 𝐩•𝐀 𝐬 ƒ , (5.49) 
(𝐩 T 0E ! 𝐀 T 0E ! y) . C7 ℒ ≈ (𝐩 T ) . C7 ℒ - E ! 𝐩 T •𝐀 T 7 ℒ - E ! 𝐩 T •y 7 ℒ . ( 5.50) 
where non-linear terms have been ignored. In the following applications, both uniform magnetic field B and uniform spin-magnetic field 𝐁 f are in z-direction, vector potential A and spin-vector-potential 𝐀 f have similar form,

𝐀 = B C 𝐁 × 𝐫, (5.51 
)

𝐀 f = B C 𝐁 f × 𝐫.
(5.52)

Eq. (5.52) shows the relation between spin-vector potential and spin-magnetic field induced by spin, which has the same form as that induced by magnetic momentum. Remark: Hamiltonian of Eq. (5.48) not only provides counterparts/origins of several quantum phenomena, but also predicts several new effects.

Predictions and Effects of Hamiltonian

Let us start with Eq. (5.48, 5.49, 5.50):

H ≈ - E ! 𝐩•𝐀 ƒ - E ! 𝐩•𝐀 𝐬 ƒ - E ! 𝐩 T •𝐀 T 7 ℒ - E ! 𝐩 T •y 7 ℒ
.

(5.53) Substituting Eq. (5.51 and 5.52) into it, we obtain

H ≈ - E ! Cƒ 𝐁 • 𝐋 - E ! ƒ 𝐁 𝒔 • 𝐋 - E ! C7 ℒ 𝐁 f • 𝐋 f - E ! C7 ℒ 𝐁 • 𝐋 f . (5.54)
1) The first term on the right hand side of Eq. (5.54) is the Zeeman effect,

H 𝐩0𝐀 ≈ - E ! Cƒ 𝐁 • 𝐋. (5.55)
2) applying the definition, 𝐁 f = 𝛚 𝐬 × 𝐄, the second term becomes

H 𝐩0𝐀 𝐬 ≈ - E ! ƒ 𝐁 𝒔 • 𝐋 = E ! ƒ 𝐄 • (𝛚 𝐬 × 𝐋).
(5.56)

We refer Eq. (5.54) as Extended-Rashba-SOC. Comparing with the regular H i7fw²7 = α ³ 𝐄 • (𝛔 × 𝐩).

Remark:

The p represents a linear motion; 𝐋 = 𝐫 × 𝐩 represents an orbiting motion; thus, the term, 𝛚 𝒔 × 𝐋, represents indeed a Spin-Orbit-coupling. Actually, when Rashba SOC is applied to several situations, the momentum p is replaced by angular momentum L, which indicates that Rashba SOC is not exactly the Spin-Orbit-coupling.

3) The third term shows the conjugate angular momentum 𝐋 f coupling to Spin-magnetic field 𝐁 f .

H 𝐩 T 0𝐀 T = - E ! 𝐩 T •𝐀 T 7 ℒ = - E ! C7 ℒ 𝐁 f • 𝐋 f = - E ! C7 ℒ (𝛚 𝐬 × 𝐄) • 𝐋 f = E ! C7 ℒ 𝐄 • (𝛚 𝐬 × 𝐋 f ) (5.57)
where "conjugate angular momentum" 𝐋 f ≡ 𝐫 × 𝐩 f .

4) The fourth term shows the conjugate angular momentum 𝐋 f coupling to magnetic field 𝐁.

H 𝐩 T 0y = - E ! C7 ℒ 𝐁 • 𝐋 f .
(5.58)

Total angular Momentum Coupling to Electromagnetic Field

A spin e-charge orbitally moving in an external electromagnetic field can be descripted by

𝑯 = - E ! C 𝐁 • M B ƒ 𝐋 + B 7 ℒ 𝐋 𝐬 N - E ! C (𝛚 𝒔 × 𝐄) • M B ƒ 𝐋 + B 7 ℒ 𝐋 𝐬 N. (5.59) Or 𝑯 = - E ! Cƒ [𝐁 × 𝐫 -(𝛚 𝒔 × 𝐄) × 𝐫] • 𝐏 - E ! C7 ℒ [𝐁 × 𝐫 -(𝛚 𝒔 × 𝐄) × 𝐫] • 𝐩 f .
(5.60)

Spin-Lorentz-type Force

Based on the type-2 duality between Extended EM and C-Spin-EM, we postulate that, beside the dualities between fields and field equations, there is a type-2 duality between Lorentz force and a spin related force, denoted as spin-Lorentz-type force, i.e., under the transformation, 𝐄 ↔ 𝐄 𝐬 , 𝐁 ↔ 𝐁 𝐬 , 𝐯 ↔ 𝛚 𝐬 , Lorentz force, 𝐅 𝐋56!A'% (abbreviate 𝐅 𝐋 ), converts to Spin-Lorentz-type force, 𝐅 𝐬e8A0´56!A'% (abbreviate 𝐅 µ´) , and vice versa,

𝐅 µ´= m (𝐯 (' = Q ! 𝐄 𝐬 + Q ! 𝛚 𝐬 × 𝐁 𝐬 . (5.61) 
We refer "Q ! 𝐄 𝐬 " as spin-electric force, "Q ! 𝛚 𝐬 × 𝐁 𝐬 " as spin-magnetic force.

A moving spinning e-particle Q ! experiences both Lorentz force and Spin-Lorentz-type forces, denoted as

Total-Lorentz-type force, 𝐅 •5'790´56!A'% (abbreviated 𝐅 •´) , 𝐅 •´= 𝐅 𝐋 + 𝐅 𝐬𝐋 = Q ! 𝐄 + Q ! 𝐯 × 𝐁 + Q ! 𝐄 𝐬 + Q ! 𝛚 𝐬 × 𝐁 𝐬 . (5.62)
Using definitions of 𝐄 𝐬 and 𝐁 𝐬 in terms of electric E and magnetic B fields, we obtain,

𝐅 •´= Q ! 𝐄 + Q ! 𝐯 × 𝐁 -aQ ! [𝛚 𝐬 × 𝐁] + aQ ! 𝛚 𝐬 × [𝛚 𝐬 × 𝐄].
(5.63)

The "a" is a coefficient, such that aQ ! [𝛚 𝐬 × 𝐁] and aQ ! 𝛚 𝐬 × [(𝛚 𝐬 ) × 𝐄] have the unit of force. Here after, absorbing "a" into 𝛚 𝐬 . (5.65)

Extended Landau

Where the spin has been replaced by the magnetization M, and 𝐁 → 𝐇 !DD , 𝐄 → 𝐃 !DD ; the "α" is coefficient.

Lagrangian-Lorentz-type Force

Starting with Lagrangian's equation,

( (' #ℒ RCREP #3 = #ℒ RCREP #6
, where ℒ '5'79 is,

ℒ '5'79 = 1 2 mv C + Q ! 𝐀 • 𝐯 -Q ! φ + 1 2 a ℒ (𝐒 𝐜 ) C + Q ! 𝐀 𝐬 • 𝛚 𝐬 -Q ! φ f
we derive a force, denoted it as the Lagrangian-Lorentz-type Force 𝐅 ´´, B E ! 𝐅 ´´= 𝐄 + 𝐯 × 𝐁 + 𝐯 × (𝛚 𝐬 × 𝐄) + 𝛚 𝐬 × (𝛚 𝐬 × 𝐄).

(5.66)

Summary and Discussion

Euclidean geometry is the first self-consistent mathematical systems established based on few axioms, and deriving other theorems from axioms. Based on mathematical vector we establish self-consistent UMFT that universally describes classical physical fields induced respectively by velocity and the spin angular velocity of a source.

Combining UMFT, Coulomb's law and linear velocity, we derived Extended EM, which: (1) justifies UMFT; [START_REF] Luo | Theoretical Derivation of Ampere's Circuital Law[END_REF] shows that the experiments-based EM have their mathematical origin; and (3) the uniform motion of an e-particle inevitably induces an axial vector magnetic field, which is predetermined mathematically.

Moreover, the Extended EM predicts new effects that the spatially varying velocity of e-particle induces axial magnetic field and axial induced electric field.

Combining UMFT, Newton's law and linear velocity, we derived the Gravito-EM that is a vector theory, and is a duality of EM. Thus, the EM effects can be transformed to gravity. More significant, the Gravito-EM can be quantized, along the line of quantizing EM, and unified with EM force.

Combining UMFT, Coulomb's law and the spin angular velocity, we derived the Spin-EM in the perspective of fundamental physics. The Spin-EM is powerful and fruitful, and achieves the following: (1) derives spin wave; (2) derives, for the first time, the Spin-Lorentz-type force and Lagrangian-Lorentz-type force. The Lagrangian-Lorentz-type force and the Hamiltonian are derived from the same Lagrangian. We suggest that there is a duality between the Lagrangian-Lorentz-type force and the Hamiltonian, i.e., an effect of Hamiltonian corresponds to an effect of Lagrangian-Lorentz-type force, and vice versa, which is heuristic for exploring new effects. If experimentally proved, the Spin-Lorentz-type force and Lagrangian-Lorentz-type force may be the 5 th force.

We argue that the mathematical identities lead to the physical dualities. UMFT provides mathematical origins of physical dualities between Extended EM, Gravito-EM and Spin-EM. The extent of validity of C-Spin-EM is its extent to correctly predict and agree with experimental results.

Appendix: Duality

In Mathematics, duality is one of the most fruitful ideas, is a 'principle' and is very powerful and useful [START_REF] Michael | Duality in Mathematics and Physics[END_REF]. In physics, the concept of duality has played an important role in the development of physical theories. The underlying idea is that the analogy between different phenomena in Nature is not a mere coincidence.

Moreover, duality gives one point of view of looking at the different objects, which, in principle, are all duals. When equations/theories are mathematically equivalent, then they are dual to each other. We argue that: "Mathematical identities lead to mathematical duality that led to physical duality. Duality discloses the similarity of intrinsic nature of apparently different physical interactions and leads to unification". We show that this point of view of duality is powerful, fruitful and guidance.

'Duality' may be advanced to 'symmetry', e.g., the duality between EM and Gravito-EM leads to the echarge/g-charge symmetry, ultra-symmetry.

Let's study mathematical duality between different quantities.

A1. Type-1 duality and Type-2 duality

For studying dualities clearly and conveniently, let's introduce different level axial vector fields: First level axial vector field (abbreviated FAF) "𝐜" : defined as the cross product of 𝐚 and b, 𝐜 ≡ 𝐚 × 𝐛, where both the "𝐚" and "𝐛" are vector field. Second level axial vector field (abbreviated SAF) "𝐝": defined as the cross product of 𝐞 and f, 𝐝 ≡ 𝐞 × 𝐟, where the "𝐞" is a vector field and "𝐟" is a first level axial vector field. Third level axial vector field (abbreviated TAF) "𝐧": defined as the cross product of 𝐪 and p, 𝐧 ≡ 𝐪 × 𝐩, where both the "𝐪" and "𝐩" are first level axial vector fields. Now let's introduce two categories of dualities as following: Type-1 duality: for an axial field 𝐖 ²!D56! ≡ 𝐒 × 𝐓, under transformation(s) of either 𝐒 or 𝐓 or both 𝐒 and 𝐓, the field 𝐖 ²!D56! transfers to 𝐖 7D'!6 . Under two conditions: (1) 𝐖 7D'!6 and 𝐖 ²!D56! are same level axial vector field;

(2) the field equations describing respectively 𝐖 7D'!6 and 𝐖 ²!D56! have either the same form or are mathematically equivalent; then there is a Type-1 duality between 𝐖 7D'!6 and 𝐖 ²!D56! . Type-2 duality: for an axial field 𝐖 ²!D56! ≡ 𝐒 × 𝐓, under transformation(s) of either 𝐒 or 𝐓 or both 𝐒 and 𝐓, the field 𝐖 ²!D56! transfers to 𝐖 7D'!6 . Under two conditions: (1) 𝐖 7D'!6 and 𝐖 ²!D56! are different level axial vector fields; (2) the field equations describing respectively 𝐖 7D'!6 and 𝐖 ²!D56! have either the same form or are mathematically equivalent; then there is a Type-2 duality between 𝐖 7D'!6 and 𝐖 ²!D56! . Where the "T" is either a vector field 𝐓 3!4'56 (abbreviated 𝐓 𝐯 ) or an axial vector field 𝐓 7"87903!4'56 (abbreviated 𝐓 𝐚𝐯 ) or a field 𝐓 𝐜5L²8A7'85A (abbreviated 𝐓 𝐜 ) that is the combination of a vector and an axial vector 𝐓 𝐜 = 𝐓 𝐯 + 𝐓 𝐚𝐯 . The "S" may be either a vector field 𝐒 3!4'56 (abbreviated 𝐒 𝐯 ) or an axial vector field 𝐒 7"87903!4'56 (abbreviated 𝐒 𝐚𝐯 ).

Note: A special situation is that, during the transformation, one term in equation becomes zero. For keeping the same form of equations, we still keep the zero-term for the purpose of discussing duality. Then, in later calculation, ignore those zero-terms.

Examples of type-1 duality: In the following examples, "n" is an integer and n = 1, 2, 3…. Example 1: Corresponding to different axial vector fields 𝐓 𝐚𝐯/A , the fields 𝐯 × 𝐓 𝐚𝐯/A are SAF, where v is a vector. Dualities between those SAFs are type-1 duality, i.e., under transformation, 𝐓 𝐚𝐯/B ↔ ⋯ ↔ 𝐓 𝐚𝐯/A there are conversions between the SAFs, 𝐯 × 𝐓 𝐚𝐯/B ↔ ⋯ ↔ 𝐯 × 𝐓 𝐚𝐯/A , (n ≠ 1) and between UMFTs describing them. Here "v" is velocity. Example 2: Corresponding to different axial vector fields 𝐓 𝐚𝐯/A , the fields 𝐒 𝐯 × 𝐓 𝐚𝐯/A are TAF. Dualities between those TAFs are type-1 dualities, i.e., under transformation, 𝐓 𝐚𝐯/B ↔ ⋯ ↔ 𝐓 𝐚𝐯/A , we have conversions between the TAFs, 𝐒 𝐯 × 𝐓 𝐚𝐯/B ↔ ⋯ ↔ 𝐒 𝐯 × 𝐓 𝐚𝐯/A , (n ≠ 1), and between UMFT describing them.

Examples of type-2 duality: Example 1: Corresponding to a vector field 𝐓 𝐯/A and an axial vector field 𝐓 𝐚𝐯/A , the fields 𝐯 × 𝐓 𝐯/A and fields 𝐯 × 𝐓 𝐚𝐯/A are FAF and SAF respectively. Duality between 𝐯 × 𝐓 𝐯/A and 𝐯 × 𝐓 𝐚𝐯/A is type-2 duality. Example 2: same as Example 1, but replace vector v with vector 𝐒 𝐯 . Example 3: Corresponding to a vector field 𝐓 𝐯/A , the field 𝐯 × 𝐓 𝐯/A and field 𝐒 𝐚𝐯 × 𝐓 𝐯/𝐧 are FAF and SAF respectively. Duality between 𝐯 × 𝐓 𝐯/A and 𝐒 𝐚𝐯 × 𝐓 𝐯/A is type-2 duality. Example 4: same as Example 3, but replace 𝐓 𝐯/A with 𝐓 𝐚𝐯/A .

A2. Transferability between Dualities of Same Type

The mathematical type-1 duality and type-2 duality can be transferred. We propose Transfer Rules: 1) There are type-1 dualities between A and B and between C and D. If the duality between A and C is type-1, then the duality between B and D is type-1, and vice versa; 2) There are type-2 dualities between A and B and between C and D. If the duality between A and C is type-1, and if B and D are the same lever axial fields, then the duality between B and D is type-1, and vice versa; 3) There are type-1 (or type 2) dualities between A and B; and C is mathematical equivalent to A. There is D that is mathematical equivalent to B, and thus is type-1 (or type 2) dual to C. 4) There is type-1 (or type 2) duality between A and B; and C is mathematical equivalent to A. There is a type-1 (or type 2) dual of C, which is mathematical equivalent to B.

A3. Duality and Quasi-Duality between Physical Theories

The conventional duality is a one-to-one mapping and equivalence between two physical theories, which have similar formulations but have different values of corresponding physical quantities, so that we should describe different interactions with one theory, rather than with two theories.

To study the above topics further, we restudy the concept of duality: Duality between two theories should satisfy the following requirements: Requirement 1: both theories have corresponding symmetries. Requirement 2: both theories have the formulas of same forms and corresponding quantities of different values, e.g., linear-to-linear and non-linear-to-non-linear theories. Requirement 3: each theory has charge conjugation.

In physics, duality with same kind of symmetries will disclose deeper relation between two theories. Based on Noether's theorem, Requirement 1 leads to Requirement 2. But Requirement 2 does not necessarily lead to Requirement 1 before proving.

In physics of gravity, the conventional Gauge/Gravity Duality doesn't satisfy Requirement 1. The gauge theories are dictated by internal and CPT symmetries. On the contrary, there are no such symmetries in conventional Einstein theory of General Relativity (GR). Thus, we introduce a new less-restrict concept of Quasi-Duality: Quasi-Duality: two theories satisfy part of Requirements of Duality, e.g., both theories with either noncorresponding symmetries or one of theories with unknown symmetry of the kind that other theory has.

A4. Theory-independent and Transferability of Duality and Quasi-Duality

With theory-to-theory Duality (Quasi-Duality), we postulate following conjectures: Conjecture 1: the intrinsic nature of quantities disclosed by a Duality (Quasi-Duality) must be theoryindependent. Conjecture 2: Dualities (Quasi-Dualities) are transferable. Conjecture 3: Quasi-Duality should advance to Duality eventually; otherwise, at least, one of theories needs to be modified.

Duality reflects intrinsic nature of the real world, while Quasi-Duality reflects only partial nature of the real world. A theory attempting to describe Nature is limited by present knowledge. Thus, a Duality, as well as a Quasi-Duality, should not depend on theories, since theory will be modified eventually. Conjecture 1 reflects this fact. An example of Conjecture 2 is that if there are theory-A/theory-B Duality (Quasi-Duality) and theory-B/theory-C Duality (Quasi-Duality), we must have theory-A/theory-C Duality (Quasi-Duality). Conjecture 3 implies that our limited understanding of Nature will gradually progress and reach, hopefully, full understanding ultimately.

The general goals of understanding gravity are: (1) Find out the internal symmetry associates with gravity; (2) Suggest a gravitational charge conjugate; (3) Reformulate gravity in the same terms as that of other forces. We have completed the above tasks, so gravity and other three force are on the same footing. We have accomplished the tasks: (1) Quantize gravity; (2) unify gravity with other forces. Gravity is a physical field as other three interactions in real world 4-dimention spacetime.

-

  substituting it into Eq. (2.4), we obtain the Ampere-Maxwell-type UMFT,∇ × (𝐯 × 𝐆) + (𝐆 (' = 𝐯(∇ • 𝐆) + #𝐆 #' -𝐆(∇ • 𝐯) + (𝐆 • ∇)𝐯. (2.7) Defining a First level axial vector field M, and by mathematical definition, we have, 𝐌 ≡ 𝐯 × 𝐆 ∇ • 𝐌 ≡ 0. (2.8) Substituting Eq. (2.8) into Eq. (2.4) and Eq. (2.7) respectively, we obtain ∇ × 𝐌 = 𝐯(∇ • 𝐆) -𝐆(∇ • 𝐯) + (𝐆 • ∇)𝐯 -(𝐯 • ∇)𝐆, (2.9) 𝐆(∇ • 𝐯) + (𝐆 • ∇)𝐯.

  ), can be written respectively in the integral form as, ∮(𝐯 × 𝐌) • d𝐥 + ( (' ∬ 𝐌 • ds = ∬ <𝐯(∇ • 𝐌) + 𝛛𝐌 𝛛𝐭 -𝐌(∇ • 𝐯) + (𝐌 • ∇)𝐯= • ds. (2.18) ∮ 𝐍 • d𝐥 -( (' ∬ 𝐌 • ds = -∬ <𝐯(∇ • 𝐌) + 𝛛𝐌 𝛛𝐭 -𝐌(∇ • 𝐯) + (𝐌 • ∇)𝐯= • ds. (2.19)

(3. 35 )

 35 Substituting Eq. (3.31) and Eq. (3.35) into Eq. (3.32), we derived the extended-Poynting's theorem,

Fig. 1 :

 1 Fig. 4.1. Field line of Q !" Fig. 4.2. Field line of Q !# Fig. 1: field line of Q !! Fig. 2: field line of Q !! !

Fig. 4 . 3 :Fig. 4 . 4 :

 4344 Fig. 4.3: two positive g-charges are attractive to each other

Fig. 4 . 6 :

 46 Fig. 4.6: Accelerating Expansion of Universe Let's consider gravitational fields of a spherical distribution (Fig. 4.6) of mixed negative and positive g-charges. Eq. (4.5) gives ∇ • 𝐠 = -√𝐺[ρ LF> (r, t) -ρ LF0 (r, t)].(4.10) Where ρ K0 ≡ -√G ρ LF0 and ρ K> ≡ √G ρ LF> are negative g-charge density and positive g-charge density respectively. And ρ LF0 ( > 0) and ρ LF> ( > 0) are the mass densities of objects with negative g-charge in negative sub-Universe and with positive g-charge in positive sub-Universe, respectively. Eq. (4.10) gives the gravitational field at r,

  To solve Eq. (4.13), we consider three different situations: First situation: ρ LF> > ρ LF0 , Eq. (4.13) yields, (t) -ρ LF> (𝑡)] < 0, (4.14)Which implies that the positive (negative) sub-Universe is in accelerated collapse (expansion).Second situation: ρ LF0 = ρ LF> , 𝐠 = 0, Eq. (4.13) yields, (t) -ρ LF> (𝑡)] = 0. (4.15)

( 4 .

 4 [START_REF] Chandrasekhar | The Virial Theorem in Hydro-magnetics[END_REF] to Eq. (4.42), need empirical confirmation. The interpretations of terms of the right-hand side of Eq. (4.40) are, 1) The term, 𝐠(∇ • 𝐯), describes stretching of the 𝐠 field due to source velocity compressibility;2)The term, (𝐠 • ∇)𝐯, describes the stretching or tilting of the 𝐠 field due to the velocity gradients.

Fig. 4 . 8 Fig. 4 . 9

 4849 Fig. 4.8 Fig. 4.9 Two negative g-currents 𝐈 K0 in same directions repel to each other (Fig. 4.10). Two negative g-currents 𝐈 K0 in opposite directions attract to each other (Fig. 4.11).

Fig. 4 . 10 Fig. 4

 4104 Fig. 4.10 Fig. 4.11 A negative g-current 𝐈 K0 and a positive g-current𝐈 K> in same directions attract to each other (Fig. 4.12). A negative g-current and a positive g-current in opposite directions repel to each other (Fig. 4.13).

Fig. 4 . 12 Fig. 4 . 13

 412413 Fig. 4.12 Fig. 4.13

( 4 .

 4 72) only have gravitation related terms, 2T + W G -+ W K/O = 0. (4.73) 4.6. Poynting-type Theorem in Gravito-EM Let's consider g-charges moving with velocity ∑ 𝐯 8 8

  -Lorentz-type force, then 𝐅 • d𝐥 = q K "𝐠 + 𝐯 × 𝐁 𝐠 ‡ • 𝐯dt = -∫(𝐠 • 𝐣 𝐠 )dτdt, (b - (' = ∫(𝐠 • 𝐣 𝐠 )dτ.(4.75)

  .79) For the special situation of non-spatially-varying velocity, ∇ • 𝐯 = "𝐁 K • ∇ ‡𝐯 = (𝐠 • ∇)𝐯 = 0, the extended-Poynting-type theorem simplifies to the Poynting-type theorem of gravity,

Firstly.

  If spin-charge and spin-monopole exist, then ∇ • 𝐄 𝐬 ≠ 𝟎, ∇ • 𝐁 𝐬 ≠ 𝟎. We have familiar form of Equations of Continuity of Spin Currents,

-

  Lifshitz and Landau-Lifshitz-Gilbert Equations Combining Eq. (5.61) with the Landau-Lifshitz equation (LL equation) and Landau-Lifshitz-Gilbert equations LLG equation) respectively, we obtain Extended LL equation and Extended LLG equations, (𝐌 (' = -γ𝐌 × 𝐇 !DD -λ𝐌 × (𝐌 × 𝐇 !DD ) + α𝐌 × (𝐌 × 𝐃 !DD ), (5.64) (𝐌 (' = -γ𝐌 × 𝐇 !DD + β𝐌 × (𝐌 (' + α𝐌 × (𝐌 × 𝐃 !DD ).

.31) 3.10. Extended-Poynting Theorem Now

  

	let's calculate the rate at which work "W" done to move e-changes under the influence of electric
	and magnetic fields, dW = 𝐅 • d𝐥. Substituting Lorentz-force, Eq. (3.24), then
	(I ('	= ∫(𝐄 • 𝐉)dτ.	(3.32)
	Substituting Eq. (3.14) into Eq. (3.32), we obtain	

Table 4 .

 4 

		2. Significant Differences between Theories of Gravity
		Field equation	Source	Four-current
	EM	∂F ! =?	

  •• , i.e., the original definition of Hubble parameter is no longer valid. Eq.

	(4.134)		
	𝐻 =	B C	•• Í1 + Î1 -2

Table 5 .

 5 

		1: Analogies	
	Quantum Anholonomy	EM	Spin-EM
	Berry connection	𝐀	𝐀 𝐬
	Berry curvature	𝐁	𝐁 f
	Berry phase	Magnetic flux	Spin-magnetic flux Φ f

Spin-Electromagnetics (Spin-EM) Derived from UMFT, Coulomb's Law and Spin of Source (page #) 5.1. Spin-EM (#);

When apply UMFT to describe physical fields, the "S" and "T" in Eq. (2.1) and Eq. (2.2) represent any physical quantity. For establish Spin-EM, we set the "S" as spin angular velocity 𝝎 𝒔 of a rotating matter, 𝐒 = 𝝎 𝒔 (axial vector).

(5.1) Substituting Eq. (5.1) into Eq. (2.1) and Eq. (2.2) respectively, we obtain,

Applying UMFT, we re-derive Maxwell equations in Section 3, which justifies UMFT and shows that the experiments-based Maxwell equations have their mathematical origin. Now let's establish Spin-Electromagnetics (referred as Spin-EM). The Spin-EM is powerful and fruitful in the perspective of fundamental physics: (1) predicts new forces, the Lorentz-type force, Lagrangian-Lorentz-type force, which are spin related force; (2) UMFT shows that mathematical identities lead to physical dualities including duality between EM and Spin-EM.

mathematically establish Spin-EM.

Definitions of Spin-electric Field and Spin-magnetic Field

Let's consider an e-particle characterized by e-charge Q ! and the spin angular velocity 𝛚 𝐬 . To applying UMFT to the spin of the e-particle, let 𝐆 = 𝐄, 𝐌 = 𝐁, and define the spin-electric field 𝐄 𝐬 and spin-magnetic field 𝐁 𝐬 :

Subscript "s" indicates the quantity related to the spin. The electric (magnetic) field can be either an externally applied electric (magnetic) field or a local electric (magnetic) field induced by nearby/lattice e-particles in the material. The 𝐁 𝐬 and 𝐄 𝐬 are type-2 dual to the B and E fields (Appendix), respectively.

The 𝐁 𝐬 and 𝐄 𝐬 are SAF and TAF respectively, and mathematically satisfy,

We still keep those divergence terms in some of equations of Spin-EM, as well the magnetic monopole term ∇ • 𝐁, which shows the nature and the breaking mechanism of duality.

If there are "spin-charges" and "Spin-monopole", then we have,

The definitions, Eq. (5.4), predict two categories of phenomena.

First phenomena: by interacting with an electric field E or a magnetic field 𝐁, the spin of e-particles induces an effective spin-magnetic field 𝐁 𝐬 or effective spin-electric field 𝐄 𝐬 , respectively.

Second phenomena: the spin of an e-particle in an electric field E or magnetic field 𝐁 will experience a spinmagnetic field 𝐁 𝐬 or a spin-electric field 𝐄 𝐬 .

Remark: the definitions of 𝐁 𝐬 and 𝐄 𝐬 are conceptually different from that of Quantum-Spin-EM (Section 5.2).

Classical Spin-EM Derived from UMFT and Coulomb Law

We can derive the Classical Spin-EM with different approaches: from Eq. (5.2), from Eq. (5.3) and, based on duality, from Extended EM. The so derived three Classical Spin-EMs are mathematically equivalent.

We start with Eq. (5.3). Combination of Eq. ( 5.3) and Eq. (5.4) gives Ampere-type equations for fields induced by spin of the e-particle respectively,

Substituting Eq. (3.6) and Eq. (3.13) into Eq. (5.7) and Eq. (5.8) respectively, we obtain the Classical Spin-EM which includes Ampere-Maxwell-type equation and Faraday-type equations,

(5.9)

(5.10)

By analogy to "electric current", let's define the "spin-magnetic-current 𝐣 𝐬0G " and the "spin-electric-current 𝐣 𝐬0𝐄 ", which induce the spin-magnetic field and the spin-electric field respectively, as

Eq. (5.9) and Eq. (5.10) become respectively,

For the situations, in which the angular velocity 𝛚 𝐬 is non-spatial-varying, i.e., (𝐄 The 𝐁 𝐬 field and 𝐣 𝐬0𝐁 are type-2 dual of the 𝐄 𝐬 field and 𝐣 𝐬0𝐄 respectively.

For the situations of non-spatial-varying velocity, (∇ • 𝛚 𝐬 ) = (𝐁 • ∇)𝛚 𝐬 = (𝐄 • ∇)𝛚 𝐬 = 𝟎, Classical Spin-EM, Eq. (5.15) to Eq. (5.18), are further simplified to,

(5.20)

) 2) The gradient of the angular velocity-electric field coupling, 𝛁(𝛚 𝐬 • 𝐄), induces the 𝐁 𝐬 field.

3) The 𝐄 𝐬 field is induced by the time change of the 𝐁 𝐬 field, #𝐁 𝐬 #' , as well 4πq ! 𝛚 𝐬 × 𝛚 𝐬 . 4) The gradient of the angular velocity-magnetic field coupling, 𝛁(𝛚 𝐬 • 𝐁), induces the 𝐄 𝐬 field.