
HAL Id: hal-03941814
https://hal.science/hal-03941814v1

Submitted on 16 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling and Verification of Natural Language
Requirements based on States and Modes

Yinling Liu, Jean-Michel Bruel

To cite this version:
Yinling Liu, Jean-Michel Bruel. Modelling and Verification of Natural Language Requirements based
on States and Modes. 30th International Requirements Engineering Conference Workshops (REW
2022), IEEE, Aug 2022, Melbourne, Australia. �10.1109/REW56159.2022.00043�. �hal-03941814�

https://hal.science/hal-03941814v1
https://hal.archives-ouvertes.fr

Modelling and Verification of Natural Language
Requirements based on States and Modes

Abstract

Natural language requirements (NLRs) modeling and verification allow us to

detect errors in requirements as early as possible in an effective way. The NLRs

of system development usually involve states and modes either explicitly or

implicitly. Different stakeholders have different understandings of these two

terms. The misunderstanding of states and modes in NLRs severely impedes

requirements modeling and validation. For example, conflicts in system vali-

dation may occur when users and developers do not share a consensus on the

terms. Modeling and verification of requirements from the viewpoint of states

and modes have never been investigated. Thus, in this paper, an innovative

approach to analyzing requirements is proposed. To this end, an overview of

states and modes in literature is performed to help us understand the relation-

ship between them. The MoSt language (a Domain Specific Language, DSL) is

then designed for requirements modeling and implemented by Xtext frame-

work. Meanwhile, a model validator is realized to define user-defined rules,

in order to statically check requirements. In the following, a code generator

is also accomplished to realize the automatic model transformation from the

MoSt model to the NuSMV model, which aims at the dynamic checks of requi-

rements. The grammar, the model validator, and the code generator are inte-

grated into an Eclipse-based tool which is available on GitHub. A case study

on requirements for designing cars has been conducted to illustrate the fea-

sibility of our approach. In this case study, we injected 11 errors. The results

show that 6, 4, and 1 were detected in the static analysis, traceability analy-

sis, and completeness analysis of the model respectively. Finally, the feasibility

Preprint submitted to Elsevier 2 juin 2021

of our approach to reducing conflicts between user and developers has been

illustrated in validation analysis.

Keywords: States and Modes, Requirements Modeling and Verification,

Domain Specific Language, Model checking.

1. Introduction

Writing complete, unambiguous, and conflict-free requirements is not an

easy thing. This demands not only effective approaches to model and verify the

written requirements but appropriate perspectives to analyse requirements.

Two terms ”states” and ”modes” have been widely used in expressing require-

ments. For example, the description of systems usually involves various states

and modes, according to many system development methodologies (Olver and

Ryan 2014). Systems engineering standards (DI-IPSC-81431A 2000; DFS 2007;

DMO 2011) require the use of states and modes in formal systems engineering.

However, little guidance has been proposed to distinguish states and modes.

As Wasson said, ”System modes and states are perhaps one of the most contro-

versial topics in Engineering and SE. Every industry, profession, Enterprise,

and Engineer has their own view as to what a mode and a state are.” (Wasson

2015). Poor usage of the terms severely impedes the modeling and verification

of requirements. This is because views on states and modes vary from person

to person, which gives rise to conflicts when analyzing requirements. There-

fore, in this paper, we focus on how to model and verify requirements extrac-

ted from requirements documents using the viewpoint of states and modes, in

order to write high-quality requirements.

Various aspects have been emphasized to analyse requirements, including

context (Ali, Dalpiaz, and Giorgini 2013; Ahmad, Belloir, and Bruel 2015), the

failures and successes of other requirements (Silva Souza et al. 2011), and re-

quirements evolution (Whittle et al. 2009). However, to the best of our know-

ledge, no one performs the modeling and verification of requirements based

on states and modes. The requirement analysis benefits a lot from the pro-

2

per usage of states and modes. They enable us to describe requirements that

exist outside the normal operating environment (Olver and Ryan 2014). They

also help translate the user’s version into the physical realization of the sys-

tem (Wasson 2010). They can be used as a medium to reduce misunderstan-

dings between stakeholders such as users, acquirers, and developers as well

(Edwards 2003).

Domain-Specific Languages (DSLs) are programming languages or specifi-

cation languages that target a specific problem domain Bettini (2016). When

the domain of one problem is covered by a particular DSL, we will solve that

problem in an easier and faster way via using that DSL rather than a general-

purpose language like Java or C, etc. In our case, we aim to create a new DSL

to help us write requirements in a controlled natural language. In this way, re-

quirements can be better organized, expressed, and understood. On the other

hand, writing requirements in natural languages is easier and more acceptable

for stakeholders.

Proper DSLs are helpful in writing ”correct” requirements. They are just

the requirements that satisfy syntactic rules and validator rules. Validator rules

are self-defined. For example, naming rules of the elements in requirements

can be defined in the validator then the requirements can be checked by the

defined naming rules. Several problems still remain unsolved. For instance,

how to check the internal logic between requirements? How to verify the satis-

faction of property specifications regarding systems? To solve these problems,

the symbolic model checking technique can be used to further improve the

quality of the written requirements. This technique is capable of demonstra-

ting the correctness of system behaviours. The problem of model checking is

formally expressed by M |= ϕ, where M represents the system model, ϕ is a

property, and |= is the satisfaction symbol to check whether the model M sa-

tisfies the property ϕ. If the property is not satisfied by the system, a counte-

rexample is produced. NuSVM 1 is a symbolic model checker designed to allow

1. https://nusmv.fbk.eu/ (accessed in May 2021)

3

https://nusmv.fbk.eu/

for the description of Finite State Machine (FSM) which ranges from comple-

tely synchronous to completely asynchronous, and from the detailed to the

abstract (Cimatti et al. 2002). The primary purpose of NuSMV input language

is to describe the transition relation of the FSM, which is quite suitable for

describing the state information in requirements. Therefore, in this paper, we

choose NuSMV as the model checker.

Furthermore, a framework for the modeling and verification of require-

ments is firstly provided, in order to explain how to improve the quality of

requirements in an iterative way. Based on this framework, a new DSL is desi-

gned to better describe requirements from the viewpoint of states and modes.

A code generator is then implemented to transform the DSL model into the

NuSMV program. In the end, the requirements of designing a car are used to

carry out the requirement verification, which illustrates the feasibility of the

proposed approach. The main contributions of this paper are listed as follows :

— Proposing an innovative framework fully supporting the modeling and

verification of requirements based on states and modes ;

— Designing the MoSt modeling language, including the language meta-

model, formal syntax, and semantics to formalize the requirements ba-

sed on states and modes easier ;

— Accomplishing algorithms to automatically perform the model transfor-

mation from the MoSt model to the NuSVM model ;

— Implementing an Eclipse-based tool to enable us to write the MoSt mo-

del, generate the NuSMV model and conduct the static and dynamic

requirement analysis.

Based on the tool, requirements engineers can use the MoSt modeling lan-

guage to formalize requirements, so as to better organize, accurately express,

and effectively manage requirements. The extracted information on states and

modes can serve as ”standard” terms when team members communicate with

each other. So, unnecessary conflicts on the system description can be avoided.

In addition, clients can be encouraged to expect the most suitable performance

of the future systems since the MoSt language supports the description of the

4

specification in CTL and LTL logic, and these specifications can be verified in

the NuSMV model checker.

The remainder of this paper is structured as follows. Section 2 reviews the

main related work. Section 3 introduces the framework for requirements ana-

lysis and presents all the elements about how to design the MoSt modeling

language. Section 4 realizes the algorithms to perform the model transforma-

tion from the MoSt model to the NuSMV model. Section 5 conducts static and

dynamic requirements verification to illustrate the feasibility of the proposed

approach. Section 6 concludes the paper with future perspectives.

2. Literature Review

2.1. States and Modes

This subsection provides a comprehensive literature review on the defini-

tion of states and modes. As one of our purposes is to differentiate states and

modes, we exclude the references (Committee et al. 1990; DI-IPSC-81431A

2000; Edwards 2003; DMO 2011) which are self-inconsistent in terms of the

description of states and modes. For example, DI-IPSC-81431A (2000) offers

the following guidance : The distinction between states and modes is arbitrary. A

system may be described in terms of states only, modes only, states within modes,

modes within states, or any other scheme that is useful. Edwards (2003) shares the

similar idea of the relationship between states and modes. Obviously, this gui-

dance creates more conflicts in differentiating states and modes. Fortunately,

they finally cancel this data item. On the other hand, DMO (2011) provides an

example of a state transition diagram which does not depict any states at all.

The synthesis analysis of the reviewed references is concluded in Table 1. A set

of aspects have been proposed to analyse the definitions of states and modes,

include state (information, abstraction level, conditions, capabilities, dynamics,

constraints) and mode (abstract concept, abstraction level, conditions, capabilities,

dynamics, objectives). It should be noted that abstract concept and abstraction le-

vel are different. The former implies denoting an idea of a thing rather than

a concrete object ; the latter means the explanation will be changed due to the

5

concerns on the level of the abstraction of the system. Furthermore, “involved”

implies the term has been just mentioned without any other details.

According to this table, the concepts of states and modes had been widely

used from 2000 to 2010. However, it seems that researchers didn’t pay enough

attention to the difference between them. For example, Andrey (2002); Feiler,

Lewis, and Vestal (2006) have simply emphasised states and modes respecti-

vely. Since 2010, the issue of the difference between states and modes has been

gradually addressed, but opinions on states and modes still vary from person

to person. In terms of states, researchers principally concentrate on the aspects

of conditions, dynamics and constraints. They focus less on information and abs-

traction level. The aspect of capabilities is seldom addressed. When comparing

states with modes, capabilities, on the contrary, is the most important aspect

in defining modes. Researchers are also concerned with abstraction level, condi-

tions, dynamics and objectives for modes. It seems that they do not care whether

“mode” is an abstract concept or not. This analysis helps us gain important

insights into the meaning of states and modes, which lays the foundation for

designing a DSL containing these two concepts.

2.2. Requirements Modeling and Verification

Requirements analysis has been recognized as the first phase of the sys-

tem development process (Royce 1987). The later errors in the requirements

are discovered, the higher the cost of the system development. Hence, the im-

portance of requirements modeling and verification has been well addressed

in systems engineering and software engineering. A considerable amount of

work on how to model and verify requirements has been performed. Nume-

rous approaches have been proposed to improve the quality of requirements,

including designing a new language, using a goal-based model, manipulating

tools, and implementing a tool, etc. The following will conduct a comprehen-

sive analysis of the literature.

Leveson et al. (1994) develop a Requirements State Machine Language (RSML)

to describe requirements of real-time process control systems via a combina-

6

T
a
b
l
e

1:
A

n
ov

er
vi

ew
of

th
e

d
efi

ni
ti

on
s

of
st

at
es

an
d

m
od

es
w

he
re

“-
”

an
d

“N
M

”
m

ea
ns

“N
ot

in
cl

u
d

ed
”

an
d

“N
ot

M
en

ti
on

ed
”

re
sp

ec
ti

ve
ly

A
nd

re
y

(2
00

2)
D

av
is

et
al

.
(2

00
5)

Fe
il

er
,

L
ew

is
,

an
d

V
es

ta
l

(2
00

6)

D
FS

(2
00

7)
.

IE
E

E
24

76
5

et
al

.
(2

01
0)

W
as

so
n

(2
01

0)
Je

nn
ey

(2
01

1)
B

u
ed

e
an

d
M

il
le

r
(2

01
6)

B
on

ne
t

et
al

.
(2

01
7)

B
ad

u
el

(2
01

9)

St
at

e
in

fo
rm

at
io

n
an

ob
-

je
ct

N
M

-
N

M
va

ri
ab

le
s,

sy
st

em
sy

st
em

N
M

in
vo

lv
ed

N
M

ty
p

e
of

in
-

fo
rm

at
io

n
ab

st
ra

ct
io

n
le

ve
l

N
M

sy
st

em
,

su
bs

ys
-

te
m

-
sy

st
em

,
su

bs
ys

-
te

m
.

N
M

el
em

en
t,

su
bs

ys
-

te
m

,
sy

st
em

N
M

N
M

N
M

re
la

te
s

to
in

fo
rm

a-
ti

on

co
nd

it
io

ns
N

M
sy

st
em

co
nd

it
io

n
-

sy
st

em
co

nd
i-

ti
on

s.

a
co

nd
i-

ti
on

to
a

be
ha

vi
ou

r

p
er

fo
rm

an
ce

,
p

hy
si

ca
l

op
er

at
in

g
a

se
t

of
m

e-
tr

ic
s

op
er

at
in

g,
p

hy
si

ca
l

in
vo

lv
ed

ca
p

ab
il

it
ie

s
N

M
in

vo
lv

ed
-

N
M

.
m

u
lt

ip
le

fu
nc

ti
on

s
in

vo
lv

ed
N

M
in

vo
lv

ed
N

M
N

M

d
yn

am
ic

s
N

M
N

M
-

in
vo

lv
ed

N
M

in
vo

lv
ed

st
at

e
tr

an
-

si
ti

on
st

at
e

tr
an

-
si

ti
on

st
at

e
tr

an
-

si
ti

on
in

vo
lv

ed

co
ns

tr
ai

nt
s

ti
m

e,
sp

ac
e

N
M

-
ti

m
e

N
M

in
vo

lv
ed

N
M

ti
m

e
en

vi
ro

nm
en

t
ti

m
e

M
od

e
ab

st
ra

ct
co

nc
ep

t
-

N
M

d
et

ai
le

d
in

vo
lv

ed
N

M
ab

st
ra

ct
la

be
l

N
M

N
M

N
M

ab
st

ra
ct

ab
st

ra
ct

io
n

le
ve

l
-

N
M

sy
st

em
,

su
bs

ys
te

m
su

b-
m

od
e

N
M

sy
st

em
,

p
ro

du
ct

,
se

rv
ic

e

to
p

,l
ow

er
N

M
N

M
li

nk
to

ca
-

p
ab

il
it

ie
s

co
nd

it
io

ns
-

sy
st

em
co

nd
it

io
n

sp
ec

ifi
c

co
nd

it
io

ns
N

M
N

M
tr

ig
ge

ri
ng

ev
en

ts
a

co
nd

i-
ti

on
of

a
sy

st
em

N
M

sp
ec

ifi
c

co
nd

it
io

ns
in

va
ri

an
t

co
nd

it
io

ns

ca
p

ab
il

it
ie

s
-

m
u

lt
ip

le
ca

p
ab

il
i-

ti
es

N
M

op
er

at
io

ns
m

u
lt

ip
le

ca
p

ab
il

i-
ti

es

u
se

ca
se

m
u

lt
ip

le
ca

p
ab

il
i-

ti
es

op
er

at
io

na
l

sp
ec

ifi
c

fu
nc

ti
o-

ni
ng

m
u

lt
ip

le
ca

p
ab

il
it

ie
s

d
yn

am
ic

s
-

N
M

m
od

e
tr

an
si

ti
on

m
od

e
tr

an
si

-
ti

on

N
M

m
od

e
tr

an
si

ti
on

N
M

N
M

m
od

e
tr

an
-

si
ti

on
m

od
e

tr
an

-
si

ti
on

ob
je

ct
iv

es
-

fu
nc

ti
on

N
M

N
M

N
M

m
is

si
on

N
M

fu
nc

ti
on

ex
p

ec
te

d
be

ha
vi

ou
r

ex
p

ec
te

d
be

ha
vi

ou
r

7

tion of graphical and tabular notations. The graphical notation of RSML is

principally derived from Statecharts (Harel 1987). A number of definitions

have been mentioned in RSML, including Interface, Input, Output, Transition,

Macro and Function. The tables in RSML describe the conditions under which

the corresponding state transitions can happen. Indeed, they analyze require-

ments from the viewpoint of states but their way of expressing requirements

complicates requirements analysis.

Heitmeyer, Jeffords, and Labaw (1996) demonstrate the feasibility of for-

mal methods for requirements modeling and analysis via three case studies.

They choose different formal methods for the requirements of different case

studies. They have successfully detected errors in requirements, thanks to re-

quirements modeling, testing, verification, and initial human reading. Even

though a number of errors have been identified, this work is done by experts

in formal methods. Their approach requires a lot of knowledge in formal me-

thods, which limits its use.

Goldsby et al. (2008) analyse requirements from the viewpoint of four types

of developers : the system developer, the adaptation scenario developer, the

adaptation infrastructure developer, and the dynamically adaptive system. They

use i∗ goal models (Yu 1997) to describe the requirements of different types of

developers. They detail the viewpoint of the developer for requirements ana-

lysis, but the graphic representation of requirements is hard to be formally

verified.

Mavin et al. (2009) focus on the problem of how to design a structured

natural language to improve the quality of requirements written by stakehol-

ders. For this purpose, they develop five specific Easy Approach Requirements

Syntax (EARS) templates to facilitate requirements expressing. The results of

their case study show qualitative and quantitative improvements compared

with a conventional textual requirements specification. However, their work

remains on requirements expressing and further requirements analysis inclu-

ding conflicting requirements and traceability links, etc., has not been mentio-

ned.

8

Silva Souza et al. (2011) present a new type of requirements called AW

(Awareness Requirements). The requirements are associated with other requi-

rements and their success/failures, constituting requirements for such feed-

back loops. They formalize AW by a variant of OCL (Object Constraint Lan-

guage) called OCLTM and validate them using a monitoring framework. Since

the modeling process with OCLTM is not a trivial task, they provide AW pat-

terns and graphic representation to facilitate the elicitation and analysis of

AW. However, in our case, we consider the facility of eliciting requirements by

creating our own modeling language directly.

Requirements uncertainty has been studied in certain work. Some focus on

uncertainty, assuming all the uncertain conditions are unknown and enume-

rated at design time (Letier and Van Lamsweerde 2004; Goldsby et al. 2008).

Some address that some uncertain conditions are still unanticipated (Whit-

tle et al. 2009). Whittle et al. (2009) design a new requirements specification

language called RELAX to explicitly emphasize uncertainty without knowing

all the uncertain conditions. RELAX is based on FBTL (Fuzzy Branching Tem-

poral Logic), which can describe a branching temporal model with uncertain

temporal and logical information. So, its expressive power on uncertainty is

stronger than some other languages. The idea of designing a DSL to write cer-

tain requirements is similar to ours, but we are not specifically concentrated

on requirements uncertainty.

Badger, Throop, and Claunch (2014) argue that a simple way to improve the

quality of requirements written at various levels by different groups of people

would be to standardize the design process using a set of tools and widely

accepted requirements design constraints. They make full use of appropriate

tools to realize the automatic requirements elicitation, formalization, analysis,

and verification. However, they do provide us with a concrete case study. The

limits of used tools have not been discussed.

Ahmad, Belloir, and Bruel (2015) propose a model-based requirements mo-

deling and verification process for addressing uncertainty in the requirements

of self-adaptive systems. They combine the proposed language RELAX with

9

the concepts of Goal-oriented Requirements Engineering for requirements eli-

citing and modeling. Since various tools have been used like RELAX editor,

SysML/KAOS, and OMEGA2, requirements traceability is not sufficiently em-

phasized.

Moitra et al. (2019) implement a tool ASSERTTM to perform requirements

modeling and verification. The requirements are captured by a structured na-

tural language and formal analysis is based on an automated theorem prover.

They conduct a set of formal requirements analysis, including completeness

analysis. The completeness analysis of ASSERTTM is simply involved with va-

lues of monitored variables and all pairs of values for controlled variables.

They do not consider the reachability of all states of a system. Their comple-

teness analysis should be categorized because there is no need to write requi-

rements about different combinations of values of variables when a system in

OFF state. On the other hand, their viewpoint of analyzing requirements is

dependant on data instead of states and modes.

Recently, Nalchigar, Yu, and Keshavjee (2021) are interested in machine

learning requirements (the processes for requirements elicitation, design, de-

velopment involve machine learning). They analyze these requirements from

the viewpoint of business people, data scientists, and data engineers. They use

the case study method to perform requirements modeling. Their approach is

suitable for testing theories and artifacts in complex settings, however, it is

principally a manual approach, which is difficult to be sufficiently validated.

Giannakopoulou et al. (2021) present a compositional approach to gene-

rating and verifying the formalization of structured natural language. They

develop a Formal Requirements Elicitation Tool (FRET) to write, understand,

formalize and analyze requirements. They also develop an automated verifica-

tion framework for the fmLTL (future-time LTL) and pmLTL (past-time LTL)

formulas. However, requirements consistency checks are missing. They just

use EQUIVALENCE CHECKER to check the consistency between different for-

malizations of the same template key. It seems that they treat requirements

independently. The relationship between requirements should be addressed.

10

Clearly, a majority of work focuses on how to design a new language to

facilitate requirements analysis. The new languages proposed include RSML,

EARS, OCLTM , RELAX, FRET, etc. Most of the languages are dedicated to

better requirements eliciting and verification. Different viewpoints of analy-

zing requirements have been considered, including developers (Goldsby et al.

2008), uncertainty (Whittle et al. 2009; Ahmad, Belloir, and Bruel 2015), awa-

reness requirements (Silva Souza et al. 2011), machine learning requirements

(Nalchigar, Yu, and Keshavjee 2021), etc. Some other researchers are also concen-

trated on data warehouse requirements (Zepeda et al. 2010; El Beggar, Le-

trache, and Ramdani 2020). To the best of our knowledge, none of the work

analyzes requirements from both users and developers. In other words, the

viewpoint of states and modes has not been sufficiently addressed in analyzing

requirements. This may lead to misunderstandings between users and deve-

lopers, which can cause conflicts in systems validation. Inconsistency could

happen in development teams as well, which gives rise to conflicts in system

design. As a result, we are so motivated to conduct requirements analysis from

the viewpoint of states and modes.

3. MoSt Modeling Language

3.1. Relationship between States and Modes

Section 2.1 made a comprehensive analysis on the concepts of states and

modes, in this section, we will discuss the relationship between states and

modes in detail.

The relationship between states and modes has been discussed in the li-

terature. For example, the explanation of Edwards (Edwards 2003) may be

confusing, but the example on the relationship between states and modes im-

plies modes control states. In other words, modes can actively influence system

states. Modes show more capabilities. While states are changed when condi-

tions are satisfied. It seems that Wasson (Wasson 2015) shares the same idea.

He argues states are observable and measurable physical attributes of a system

or entity. It means states represent the attributes of a system or entity. And

11

he suggests modes enable us to accomplish objectives that produce results you

can observe and measure. The activeness of modes is again recognized. The

characteristics of modes and states are the basis for us to propose the relation-

ship between them.

In this paper, we propose our proper definitions of modes and states. We

argue modes are the abstraction of use cases as Wasson (2015) mentioned.

Modes transitions happen when the corresponding signals from the system

are received. Modes own capabilities to change the values of certain attributes.

The values of these attributes are ones of conditions inside states. States hold

certain conditions. States transitions happen when the corresponding condi-

tions are satisfied. Fig .1 illustrates the relationship between states and modes.

Figure 1: The Relationship between States and Modes

3.2. Our Analysis Framework

This framework aims to explain our approach to modeling and verifying

requirements. Three steps are involved, including requirements formalization,

model transformation, and model verification. In the first step, we will design

12

a DSL called MoSt to formalize requirements from requirements documents.

Meanwhile, a code validator is implemented to impose self-defined rules on

this language so that requirements can be statically checked in the MoSt edi-

tor. In the second step, a code generator will be accomplished to automatically

realize the model transformation from the MoSt model into the NuSMV mo-

del. This step provides the foundation for dynamically checking requirements.

The last step is to conduct model verification. The errors or counter-examples

proposed by the model checker will be traced back to the MoSt model. Thus,

we can improve the quality of requirements with the information proposed by

the model checker.

Our framework for requirements modeling and verification clarifies the va-

lue of our work. Firstly, it offers a general approach to integrating states and

modes into requirement modeling and verification in the early phase of system

design. System designers who are accustomed to using terms like states and

modes will benefit a lot from this work because the relationship between states

and modes will be precisely explained. Secondly, system designers who are in-

tended for getting a sense of what the future system will look like will profit

from this work because modes and the combination of modes can be checked

with model checkers. Finally, it allows system designers to better communicate

with clients since “mode” is a common term which is easier to be accepted by

clients when discussing the specific needs.

13

Figure 2: The framework for modelling and verifying natural language requirements based on
states and modes

As mentioned in Section 1, the requirements of designing a car are analy-

zed as a case study. They are inspired from Dusan Rodina 2. Since few engineers

analyse requirements from our perspective, it is hard to find the existing re-

quirements without reformulating them. On the other hand, states and modes

are sometimes intertwined in requirements, which makes it difficult to use the

existing requirements. Thus, we finally choose to design our proper require-

ments that are based on the correct logic. These requirements will apply to the

following requirements modeling and verification.

2. https://www.softwareideas.net/a/1539/Car-States--UML-State-Machine-Diagram-
(accessed in May 2021)

14

https://www.softwareideas.net/a/1539/Car-States--UML-State-Machine-Diagram-

3.3. MoSt Meta-model

The MoSt meta-model highlights the properties of the MoSt Modelling Lan-

guage (MoStML). As shown in Fig. 3, MoStML is capable of describing NLRs

and formal requirements. Even though formal requirements are also modelled

by the natural language, this natural language should conform to certain rules.

The NLRs enable us to capture the important information from the require-

ment documents as much as possible, in order to serve traceability in case of

troubleshooting. Note that extracting important information from free natural

languages is out of our scope.

MoStML focuses on describe functional requirements and non-functional

requirement. MoStML-based formal requirements consist of concepts Mode,

State, Constraint and EnvironmentRequirement. The concepts of Mode, State, and

Constraint describe functional requirements. Non-functional requirements can

only be expressed via Constraint concept. More specifically, concepts Proper-

tyConstraint depicts functional and non-function requirements to be checked.

On the other hand, EnvironmentRequirement concept initializes values and ranges

of system attributes.

Concept Condition is one of the most important concepts in this meta-

model, which includes ConjunctionCondition and DisjunctionCondition. These

two types of conditions enrich the expressive power of MoStML. For example,

the precondition of one state transition can be any of conjunction, disjunc-

tion, and conjunction and disjunction of conditions ModeCondition, StateCon-

dition, AttributeCondition, SignalCondition and ArithmaticCondition. However,

concepts of ModeTransition and EnvironmentRequirement are exceptional, which

are directly associated with specific conditions. The reasons have been mentio-

ned in section 3.1.

3.4. MoSt Grammar

A grammar is a set of rules that describe the form of the elements that are

valid according to the language syntax (Bettini 2016). The MoSt grammar illus-

trates the rules describing how to write different types of requirements. The

15

Figure 3: The Meta-model of MoSt Modelling Language

complete grammar is shown in the annex (Figs. 14 - 18). Every rule contains a

name, a colon, a syntactic form, and a semicolon. The first rule of the grammar

defines where the parser starts and the type of the root element of the MoSt

model is MoSt. The shape of MoSt elements is expressed in its own rule :

16

MoSt : models+=(Requirement | NLRequirement)* ;

A collection of Requirement or NLRequirement elements are stored in feature

models of a MoSt object. Formal requirements are stored in Requirement objects.

NLRs are stored in NLRequirement objects. Note that += and * operators mean

it is a collection and the number of elements is arbitrary respectively.

3.4.1. Natural Language Requirements

The natural language requirement rule is illustrated as follows :

NLRequirement : nlReqID=ReqID ID (ID)* ’.’ ;

ReqID :’[’ reqID+=INT (’.’ reqID+=INT)* ’]’ ;

It implies that NLRs begin with the ReqID (the identity of requirements) like

”[1.2.3...N]”. So this naming rule of ReqID signifies there is no limit to the

number of NLRs. This rule applies to all the other requirements as well. As

for ID, there is no rule defining it because that is one of the rules from the

Terminals (mentioned in Xtext). It allows us to write any words as we want.

As a result, the rule of NLRs is just to write natural language sentences with

identities.

3.4.2. Formal Requirements

Formal requirements include Environment, MODE, STATE, ATTRIBUTE,

and PROPERTY. The rule of formal requirements is represented as follows :

Requirement : ENVIRONMENT |MODE | STATE | ATTRIBUTE | PROPERTY;

1). Environment Requirements

Environment requirements are dedicated to describing initial statuses of

variables, including the initialized values and the ranges of variables. That’s

why the rules of environment requirements involve ATTRIBUTEVALUE, UNIT

and RANGE, which are shown as follows :

ENVIRONMENT :

envirReqID=ReqID ID envirVariable=ID (ID)* ((’initialised’ ’to’ envirAttributeVa-

lue=ATTRIBUTEVALUE envirUnit=UNIT | range=RANGE)) (ID)* ’.’ ;

In terms of ATTRIBUTEVALUE, three common data types are employed, in-

cluding INT, String and Boolean. As for UNIT, the units of weight, time, speed,

17

and accelerate speed are applied. The rule of RANGE indicates the lower and

upper bounds for the variables. This rule concerns the comparison operators,

which limit the bounds and include GREATER, GREATEREQUAL, LESS, and

LESSEQUAL rules. The details of the rules ATTRIBUTEVALUE, UNIT, RANGE,

and COMPARISONOPERATOR are shown in Figs 16 and 18.

Table 2 lists the values of the attributes for two environment requirements

(Reqs 1 and 2). Req 1 initializes variable ”accSpeed”. Req 2 provides the scope

for this variable. Note that variables must be named as compound nouns (like

”accSpeed” instead of ”accelerate speed”) if they involve several nouns. This

rule will apply to other attributes of the MoSt grammar.

Table 2: Instances of Two Environment Requirements
Req 1 envirReqID = ”2.2.1” envirVariable = ”accSpeed”

envirUnit = ”m/s2” envirAttributeValue = ”0”
Req 2 envirReqID = ”2.2.2” envirVariable = ”accSpeed”

compOperator1 = ”greater or equal to” bound 1 = ”0”
compOperator2 = ”less or equal to” bound2 = ”10”
envirUnit = ”m/s2”

The corresponding MoSt code can be written as follows :

Req 1 : [2.2.1] The accSpeed should be initialised to 0 m/s2.

Req 2 : [2.2.2] The accSpeed should be greater or equal to 0 less or equal to

10 m/s2.

2). Mode Requirements

Mode requirements explain mode transitions, which are expressed by the

sentence pattern ”when..., then...”. This sentence pattern applies to state, pro-

perty and constraint requirements. Mode transitions are associated with mode

and signal conditions. Mode conditions indicate which mode the system is

in. Signal conditions imply the condition for triggering mode transitions. The

rules of mode requirements are listed as follows :

MODE :

modeReqID=ReqID ’when’ preModeConditions+=MODECONDITION relation=

RELATION preModeConditions+=SIGNALCONDITION ’,’ ’then’ postModeCon-

dition = MODECONDITION’.’ ;

18

The details of MODECONDITION, SIGNALCONDITION and RELATION are

shown in Figs. 15 and 18. Note that since Figs. 15 - 18 list the details of the ba-

sic rules of each requirement rule, we avoid repeating them in the following.

Table 3 lists the values of the attributes for mode requirement Req 3. This re-

quirement describes the transition between modes Economic and Sportive.

Table 3: Instance of Mode Requirement Req 3
Req 3 modeReqID = ”6.2” preModeCondition[1] = ”mode = economic”

relation = ”and” preModeCondition[2] = ”signal = Ac”
postModeCondition = ”mode = sportive”

The corresponding MoSt code can be written as follows :

Req 3 : [6.2] when the car is in mode economic and it receives Ac signal,

then it is in mode sportive.

3). State Requirements

State requirements describe system functional requirements via state tran-

sitions. Three conditions are able to trigger state transitions, including attri-

bute, mode, signal conditions. The rules of state requirements are illustrated

as follows :

STATE :

stateReqID=ReqID ’when’ preStateConditions+=STATECONDITON (relations+=RELATION

preStateConditions += (ATTRIBUTECONDITION | MODECONDITION | SI-

GNALCONDITION))* ’,’ ’then’ postStateCondition = STATECONDITON ’.’ ;

Table 4 gives the attribute values of the state requirement Req 4. It depicts

the transition between states Accelerate and Autonomy.

Table 4: Instance of State Requirement Req 4
Req 4 stateReqID = ”1.4” preStateCondition[1] = ”state = accelerate”

relations[1] = ”and” preStateCondition[2] = ”signal = Auto”
relations[2] = ”and” preStateCondition[3] = ”accSpeed = 10 m/s2”

postStateCondition = ”state = autonomy”

The corresponding MoSt code can be written as follows :

Req 4 : [1.4] when the car is in state accelerate and it receives Auto signal

and its accSpeed is equal to 10 m/s2, then it will be in state autonomy.

19

4). Attribute Requirements

Attribute requirements aim at determining the values of attributes under

different conditions. The conditions can be any of the combination of state,

mode, signal, and attribute conditions. The value can be an arithmetic equa-

tion as well. The rules of attribute requirements are depicted as follows :

ATTRIBUTE :

attributeReqID=ReqID ’when’ preAttributeConditions += (STATECONDITON |

ATTRIBUTECONTION | MODECONDITION | SIGNALCONDITION)* (rela-

tions += RELATION preAttributeConditions += (STATECONDITON | ATTRIBU-

TECONTION |MODECONDITION | SIGNALCONDITION))* ’,’ ’then’ postAttri-

buteCondition = (ATTRIBUTECONTION | ARITHMETICCONDITION) ’.’ ;

Table 5 shows the values of attributes for attribute requirement Req 5. This

requirement explains how the mode and the speed of a car influence the func-

tion of displaying speed.

Table 5: Instance of Attribute Requirement Req 5
Req 5 attributeReqID = ”1.4” preAttributeCondition[1] = ”mode = economic”

relations[1] = ”and” preAttributeCondition[2] = ”speed > 80 km/h”
postAttributeCondition = ”displaySpeed = TRUE”

The corresponding MoSt code can be written as follows :

Req 5 : [5.2] when the car is in mode economic and its speed is greater than

80 km/h, then its displaySpeed is equal to TRUE.

5). Property Requirements

Property requirements support the description of functional requirements

and non-functional requirements. They will be used as properties that need

to be checked. They are often involved with temporal issues. Classic temporal

logics are considered in our language. The expressive power of the language

is significantly increased by introducing CTL (Computational Temporal Logic)

and LTL (Linear Temporal Logic). The rules of property requirements are ex-

pressed as follows :

PROPERTY :

propertyReqID=ReqID ’when’ preOperator= (CTLOperator | LTLOperator) prePro-

20

pertyConditions += (STATECONDITON | ATTRIBUTECONTION |MODECON-

DITION)* (preRelations+=RELATION prePropertyConditions += (STATECON-

DITON | ATTRIBUTECONTION | MODECONDITION))* ’,’ ’then’ postOperator

= (CTLOperator | LTLOperator) postPropertyConditions += (STATECONDITON

| ATTRIBUTECONTION | MODECONDITION)* (postRelations+=RELATION

postPropertyConditions += (STATECONDITON | ATTRIBUTECONTION | MO-

DECONDITION))* ’.’ ;

Table 6 lists all the values of the property requirement attributes. This re-

quirement provides a CTL specification to check the function of the car.

Table 6: Instance of Property Requirement Req 6
Req 6 attributeReqID = ”7.1” preOperater = ”all globally”

prePropertyConditions[1] = ”state = autonomy” preRelations[1] = ”and”
prePropertyConditions[2] = ”mode = economic” postOperator = ”all next”
postPropertyConditions[1] = ”state != accelerate”

The corresponding MoSt code can be written as follows :

Req 6 : [7.1] when all globally the car is state autonomy and it is in mode

economic, then all next it is not in state accelerate.

3.5. MoSt Semantics

The meta-model of the MoSt modeling language is expressed by the UML

class diagram. However, the semantics of models written in UML is not pre-

cisely defined(Szlenk 2006). This issue may give rise to concerns about the

quality of the model. The OCL (Object Constraint Language) is a declarative

language describing rules applying to UML models 3. Thus, in this paper, the

OCL will be used to describe the static semantics of the MoSt modeling lan-

guage. OCL statements consist of four parts :

— a context that defines the limited situation in which the statement is

valid ;

— a property that represents some characteristics of the context ;

— an operation that manipulates or qualifies a property ;

3. https://en.wikipedia.org/wiki/Object Constraint Language/ (accessed in April 2021)

21

https://en.wikipedia.org/wiki/Object_Constraint_Language/

— keywords that are used to specify conditional expressions.

The MoSt formal semantics in OCL is shown in Fig. 4. The OCL rules are

based on the meta-model of the MoSt modeling language (Fig. 3). It means all

the elements constituting the OCL rules are derived from the meta-model ex-

cept for the names of invariants (”inv” in Fig .4). Five rules are mentioned to

express the MoSt formal semantics, including environment, mode, state, attri-

bute, property requirement rules.

1). EnvironmentRequirement OCL rule

The rule for environment requirements (lines 3-6) defines if one require-

ment is an environment requirement, it will contain a post-condition of type

AttributeCondition. Note that the type of the post-condition is not Attribute-

Condition from the grammar point of view. We apply AttributeCondition to the

post-condition, because the precise meaning of the post-condition is equal to

AttributeCondition.

2). ModeTransition OCL rule

The semantics of mode requirements is represented by ModeTransition rule

(lines 7-12). This rule indicates the types of precondition and the post-condition

of mode requirements are both ModeCondition. Only condition SignalCondition

is permitted as the guard of mode transitions.

3). StateTransition OCL rule

The rule for state requirements is shown in lines 13-20. Similar to mode

requirements, the types of the precondition and the post-condition of state

requirements are both StateCondition. The guard of the requirements is the

combination of the conjunction and disjunction of all the conditions except for

arithmetic and state conditions.

4). AttributeConstraint OCL rule

As shown in lines 21-27, no guard constraint is imposed on attribute requi-

rements. The precondition can be any of the conjunction and disjunction of all

the conditions except for the arithmetic condition. The post-condition is either

the attribute condition or arithmetic condition.

5). PropertyConstraint OCL rule

22

The rule for property requirements is listed in lines 28-38. The precondi-

tion and the post-condition share the same constraints, that is, the conjunc-

tion and disjunction of all the conditions except for signal and arithmetic

conditions. Property requirements contain logic operators (”preOperator” and

”postOperator”) for preconditions and post-conditions. Both operators are any

of the sub-types of LogicOperator, that is, CTL and LTL logic operators.

23

Figure 4: MoStML Formal Semantics

24

4. Model Transformation

The NuSMV model checker enables us to write the NuSMV code in dif-

ferent ways. It is essential to identify one of the most appropriate forms of

NuSMV models, which corresponds to the MoSt model. Therefore, the map-

ping between modules of the MoSt model and the NuSMV model is provided,

as shown in Fig. 5. The implementation of the process for the automatic model

transformation is based on this mapping. The process is realized in Algos. 1 -

5, which will be discussed in the following.

Figure 5: Mapping Between Modules of the MoSt Model and the NuSMV Model

As mentioned in section 3, the MoSt modeling language consists of mode,

state, environment, property, attribute modules. Mode modules are able to ac-

tively and passively intervene in the behaviors of the system. The active in-

tervention implies modes can change the values of variables that influence the

state transitions. The passive intervention means the mode itself can be re-

25

garded as the trigger. At the same time, the mode owns its mode transitions

impacted by signals. Therefore, the type of the mode variable can be defined

as enumeration. The mode requirement transformation is implemented in Algo.

1.

Algorithm 1: Mode Requirement Transformation
input : root
output: modeTransitions

1 ArrayList<String> modeTransitions = new ArrayList<String>() ;
2 String temp=”” ;
3 int indexMode = 0 ;
4 for modeReq : root.model.filter(MODE) do
5 indexMode = 0 ;
6 temp =”” ;
7 for preModeCondition : modeReq.preModeConditions do
8 temp+=preModeCondition.condition ;
9 if indexMode <= modeReq.relation.size - 1 then

10 temp+=modeReq.relation.get(indexMode++).relation ;
11 end
12 end

// Post-mode conditions look like "mode = A", the value of the mode is

just required, conforming to NuSMV code rules.

13 temp+=postModeCondition.condition.split(”=”).get(1) ;
14 modeTransitions.add(temp) ;
15 end

The NuSMV model naturally approves state modules. The input language

of NuSMV supports the description of Finite State Machines (FSMs) which

range from completely synchronous to completely asynchronous, and from the

detailed to the abstract(Cavada et al. 2019). Thus, state modules can be trans-

formed into the corresponding NuSMV code. The state requirement transfor-

mation is performed in Algo. 2.

In terms of other elements of the MoSt model, Environment and attribute

modules are associated with the variable statement and the variable constraint.

So, they can also be transformed into the NuSMV model. Since CTL and LTL

specifications can be checked in the NuSMV model checker, the transforma-

tion of the specification module is feasible as well. The processes for the mo-

del transformation for specification, environment, and attribute modules are

achieved in Algos. 3 - 5 respectively.

In order to make the process clearer, the car requirements have been forma-

26

Algorithm 2: State Requirement Transformation
input : root
output: stateTransitions
// The variable root represents the root of the MoSt model.

1 ArrayList<String> stateTransitions = new ArrayList<String>() ;
2 String temp=”” ;
3 int indexState = 0 ;
4 for stateReq : root.model.filter(STATE) do
5 indexState = 0 ;
6 temp =”” ;
7 for preStateCondition : stateReq.preStateConditions do
8 temp+=preStateCondition.condition ;
9 if indexState <= stateReq.relation.size - 1 then

10 temp+=stateReq.relation.get(indexState++).relation ;
11 end
12 end

// Post-state conditions look like "state = A", the value of the state

is just required, conforming to NuSMV code rules.

13 temp+=postStateCondition.condition.split(”=”).get(1) ;
14 stateTransitions.add(temp) ;
15 end

lised in Fig. 6. Five kinds of requirements have been elicited to illustrate the

transformation process. Note that the complete NuSMV code is shown in the

annex.

27

Algorithm 3: Environment Requirement Transformation
input : root
output: variableConstraints, variables

1 HashMap<String,String> variableConstraints = new HashMap<String,String>() ;
2 HashMap<String,String> variables = new HashMap<String,String>() ;
3 String key=”” ;
4 String pre=”” ;
5 double max,min ;
6 max=min=0 ;
7 for environmentReq : root.model.filter(ENVIRONMENT) do
8 key = environmentReq.envirVariable ;

// initializing variables

9 if environmentReq.range == null then
10 pre = variableConstraints.get(key) ;
11 if pre == null then
12 pre=”” ;
13 end

// The initial value of variables is stored in the left part of @
of pre.

14 pre = environmentReq.envirAttributeValue.attributeValue + ”@” + pre ;
15 variableConstraints.put(key,pre) ;
16 end

// setting the scope for variables

17 else
18 if environmentReq.range.bound1.attributeValue <=

environmentReq.range.bound2.attributeValue then
19 min=environmentReq.range.bound1.attributeValue ;
20 max=environmentReq.range.bound2.attributeValue ;
21 end
22 else
23 min=environmentReq.range.bound2.attributeValue ;
24 max=environmentReq.range.bound1.attributeValue ;
25 end
26 variables.put(key,min+ ”..”+max) ;
27 end
28 end

28

Algorithm 4: Attribute Requirement Transformation
input : root
output: variableConstraints

1 HashMap<String,String> variableConstraints = new HashMap<String,String>() ;
2 String temp=”” ;
3 String pre, key ;
4 int indexAttribute = 0 ;
5 for attributeReq : root.model.filter(ATTRIBUTE) do
6 indexAttribute = 0 ;
7 temp =”” ;
8 for preAttributeCondition : attributeReq.preAttributeConditions do
9 temp+=preAttributeCondition.condition ;

10 if indexAttribute <= modeReq.relation.size - 1 then
11 temp+=attributeReq.relation.get(indexAttribute++).relation ;
12 end
13 end
14 key=attributeReq.postAttributeCondition.condition.split(”=”).get(0) ;
15 temp+=” :”+attributeReq.postAttributeCondition.condition.split(”=”.get(1))+” ;” ;
16 pre=attributeConstraints.get(key) ; if pre !=null then
17 temp+=pre ;
18 end
19 if pre !=temp then
20 attributeConstraints.put(key,temp) ;
21 end
22 end

Algorithm 5: Property Requirement Transformation
input : root
output: propertySpecifications

1 ArraryList<String> propertySpecifications = new ArraryList<String>() ;
2 String temp=”” ;
3 int indexPreProperty, indexPostProperty ;
4 for propertyReq : root.model.filter(PROPERTY) do
5 indexPreProperty = 0 ;
6 indexPostProperty = 0 ;
7 temp = propertyReq.preOperator.logicOperator ;
8 for prePropertyCondition : propertyReq.prePropertyConditions do
9 temp+=prePropertyCondition.condition ;

10 if indexPreProperty <= propertyReq.preRelation.size - 1 then
11 temp+=propertyReq.preRelations.get(indexPreProperty++).relation ;
12 end
13 end
14 temp += propertyReq.postOperator.logicOperator ;
15 for postPropertyCondition : propertyReq.postPropertyConditions do
16 temp+=postPropertyCondition.condition ;
17 if indexPostProperty <= propertyReq.postRelation.size - 1 then
18 temp+=propertyReq.postRelations.get(indexPostProperty++).relation ;
19 end
20 end
21 propertySpecifications.add(temp) ;
22 end

29

Figure 6: An Example of the Model Transformation

5. Requirements Verification

5.1. MoSt Modeling Tool

The MoSt modeling tool is implemented by the Xtext framework in Eclipse.

The screenshot of the tool is shown in Fig. 7. After correctly writing the MoSt

code, the corresponding NuSMV model will be generated automatically. Mul-

tiple checking can be performed in this tool. Requirements static checking is

accomplished in the MoStMLValidator by using the Xtend language. For example,

names and requirement consistency can be checked. Requirements in the MoSt

model can also be traced in the NuSMV model, thanks to the IDs of require-

ments. On the other hand, the completeness of requirements can be analysed

with the help of the model checker NuSMV. The details of the requirement

checking will be discussed in the next sections. This project is available on

30

GitHub 4.

Figure 7: Screenshot of the MoSt Modeling Tool

5.2. Requirements Static Checking

Requirements static checking aims at verifying the names of the MoSt mo-

del elements and ensuring the requirement consistency from the user-defined

standards. Requirement static checks are triggered while writing the MoSt

code. If the user-defined standards are violated, errors will be prompted in

the MoSt modeling editor.

The naming checks (NC)in the MoSt model concerning states, modes and

signals are : the names of states and modes should be starting with a lower case

(NC1) ; the name of signals should be beginning with an upper case (NC2).

The requirement consistency checks (CC) include :

CC1 : Non-integer variables should only be initialised once ;

CC2 : The variables mentioned in attribute requirements should be initia-

lized ;

CC3 : The variable of INT should be given the scope ;

4. https://github.com/liuyinling/MoSt-Modeling-Tool.git

31

https://github.com/liuyinling/MoSt-Modeling-Tool.git

CC4 : The repetition of requirement IDs is not allowed ;

CC5 : The repetition of requirements is not allowed ;

CC6 : Different post-conditions of one type of requirements cannot have

the same preconditions.

Figure 8: Results of Requirement Static Checks

Fig. 8 shows the results of requirement static checks. These checks help us

write a proper MoSt model. However, they cannot guarantee that the generated

32

NuSMV model is correctly executable. Therefore, requirement dynamic checks

should be carried out.

5.3. Requirements Dynamic Checking

Requirement dynamic checks rely on the model checker NuSMV. The simu-

lation results will just be shown in the console of the model checker. Thus, it

is important to trace the NuSMV code to the requirements in the MoSt model.

After that, if errors are prompted when running the simulation, the NuSMV

model checker will localise the errors by mentioning the line number of the

code. With the proposed line number, we are able to trace the potential er-

rors in the requirements. These errors are involved with the correctness of the

NuSMV model and the underlying problems in the requirements. The suc-

cessful running of the NuSMV simulation verifies its correctness. Underlying

problems may be found when counter-examples are proposed.

5.3.1. Traceability Analysis

Since every requirement starts with a unique ID in the MoSt model, these

IDs can be served as the medium to ensure traceability between requirements

and the NuSMV code. To avoid the impact of the IDs in the code, the correspon-

ding lines of the code are commented by the IDs. A screenshot of the NuSMV

code with IDs is shown in Fig. 9.

33

Figure 9: Screenshot of the NuSMV Code with IDs

In order to illustrate the feasibility of the traceability analysis, we manually

inject four errors in the MoSt model, including an undefined identifier, di-

vision by zero, illegal operand type, and illegal type of ”case” list element.

Fig. 10 provides the results of the simulation of model checking. Four trace

links between the NuSMV code and the corresponding requirement have been

identified. The process for the traceability analysis includes four steps : Er-

ror Analysis, Localising NuSMV Code, Localising Requirement and Correcting Re-

quirements. We will firstly use Error 1 (undefined identifier) as an example to

illustrate a trace link as follows :

Error analysis The ”autonmy” is undefined in line 3 of ”Car1.smv” file.

Localising NuSMV code The model checker shows line 3 of the NuSMV

code corresponds to requirement [7.1] ;

Localising requirements Search requirement [7.1] in the MoSt Model ;

Correct requirements Replace ”autonmy” with ”autonomy”.

34

This link not only precisely localises the error hidden in the MoSt model but

provides the cause of the error. It helps improve the quality of requirements

quickly and efficiently. The other three links are drawn in Fig. 10 and the de-

tails of four links are also shown in Table 7. Thus, we have finally identified

all the errors injected. So far, we have realised two types of error checking. The

one can be found with the help of the rules defined in Validator of the tool

when writing the MoSt code in the editor. The other can be traced with requi-

rement IDs when launching the simulation of the NuSMV code. However, the

logic of the requirements is not able to be checked. In other words, the success-

ful compiling of the NuSMV code does not necessarily mean the requirements

are complete. As a result, the completeness analysis will be introduced in the

next sub-section.

35

Figure 10: The Checking Results of the NuSMV Code Generated from the MoSt Model with Four
Injected Errors

Table 7: The Details of Four Trace Links
Error Line ID Correction
undefined identifier ’autonmy’ 3 [7.1] ’autonmy’ − > ’autonomy’
division by zero 37 [2.1.4] ’0’ − > ’x’ (x! =0)
illegal operand types of ”+” 38 [2.1.3] ’displaySpeed’ − > variable of Integer
illegal types of ”case” list elements 65 [2.2.3] ’TRUE’ − > ’Integer’

5.3.2. Completeness Analysis

Completeness analysis offers the possibility to check the logic of the requi-

rements. This step further improves the correctness of the requirements. This

36

analysis is performed by proposing additional CTL specifications. The speci-

fication is conformed to the form φ = EF (state = X) to check the reachability

of each state. To facilitate the process of completeness analysis, additional spe-

cifications for the reachability of each state are generated automatically from

the previous model transformation. Fig. 11 shows the automatically generated

CTL specifications.

Figure 11: Automated Specification Generation for Completeness Analysis

To demonstrate the feasibility of the completeness analysis, we voluntarily

delete requirement [1.4] (”[1.4] when the car is in state accelerate and it re-

ceives Auto signal and its accSpeed is equal to 10 m/s2, then it will be in state

autonomy.”). This requirement describes the state transition between state Ac-

celerate and state Autonomy. Then, we add the CTL specification SP EC EF state =

autonomy to the NuSMV code. After launching the simulation, the counter-

example is shown in Fig. 12. This CTL specification can not pass, which means

the car can never reach state Autonomy. The result of the completeness result

implies the transitions related to state Autonomy should be checked. There-

37

fore, the completeness analysis can check the completeness of the state transi-

tions.

Figure 12: An Example of Completeness Analysis

5.3.3. Validation analysis

Validation analysis checks the satisfaction of property requirements. Pro-

perty requirements are transformed into the CLT/LTL specifications in the

NuSMV model. Thus, validation analysis checks the satisfaction of CTL/LTL

specifications regarding the NuSMV model. This analysis enables customers to

gain a global understanding of how the system will work. Requirements engi-

neers should conduct validation analysis from the requirements level. Because

the requirements that will never be satisfied should be modified or deleted as

early as possible. This can avoid conflicts between developers and customers

when the system is delivered.

Let’s take requirement [7.2] as an example. This requirement said, ”when

all globally the car is in state autonomy and it is in mode economic, then all

next it is not in state autonomy”. This requirement focuses on the relationship

38

between autonomy state and economic mode. The code generator will translate

this requirement into a CTL specification SP EC AG((state = autonomy&mode =

economic)− > AX(state! = autonomy)). The verification result of this specifica-

tion is false, shown in Fig. 13. The counter-example implies when the car is

autonomy state and we change the working mode of the car into economic

mode, the state of the car will not be changed.

This experiment shows that requirement [7.2] will not be satisfied when

the car is delivered. Based on this analysis result, requirements engineers can

negotiate with customers to either modify this requirement or delete it. On

the other hand, even though the customers do not necessarily understand the

counterexample in this figure, to some extent, they do understand this spe-

cification can not pass in the simulation. This serves as strong evidence why

requirements engineers ask them to at least modify it.

39

Figure 13: An Example of Validation Analysis

5.4. Discussion

In this paper, a ”new” and ”old” viewpoint (states and modes) has been in-

troduced to requirements modeling and verification. The viewpoint is new be-

40

cause no one really conducts requirements analysis from the viewpoint. Since

the terms of states and modes have been using in the industry, this point of

view is also old. To make our approach clear, we propose an innovative ap-

proach to emphasize states and modes in requirements. This approach is divi-

ded into three steps.

The first step is to design a DSL. Our DSL is a controlled natural language

with its proper grammar and semantics, which not only facilitates require-

ments expressing for both users and developers but enables us to capture the

information of states and modes. In this paper, we suppose the requirements

described by our DSL should be as precise as possible. In other words, the infor-

mation of states and modes is supposed to be recognized in advance in requi-

rements. This hypothesis is reasonable because they indeed exist. On the other

hand, the requirements mentioned in many papers (Leveson et al. 1994; Ah-

mad, Belloir, and Bruel 2015; Moitra et al. 2019; Giannakopoulou et al. 2021)

provide accurate information of the systems. For example, the range limits of

every variable are clearly given.

Secondly, the algorithms have been designed to realize the automatic mo-

del transformation. We choose to use the NuSMV model to conduct model che-

cking. In order to connect states and modes, they are both defined as variables.

Thus, in the NuSMV model, mode transitions will cause the value of the cor-

responding variables to change. This change can provoke state transitions. The

relationship between states and modes is strictly derived from that mentioned

in section 3.1.

The last step of our approach is involved with requirements verification.

We implemented a validator to statically check requirements. This validator

is user-defined static verification ”tool”, which helps not only check the na-

ming rules for variables but check the consistency. This ”tool” can be highly

effective in detecting errors in requirements specifications. For example, it is

capable of checking whether the same variable is initialized several times. So-

metimes, it may help requirements engineers understand requirements better.

Let’s take consistency check CC6 in Fig. 8 as an example, this ”tool” can pro-

41

pose errors when requirements [1.1] and [1.1.1] with different post-conditions

own the same preconditions. This error shows non-determinism in state tran-

sitions. Different solutions can be raised to solve this issue. For example, states

are mistakenly written. Or, some underlying information between state tran-

sitions is ignored. These ideas can liberate people from the tedious and error-

prone task of checking specifications for consistency.

Our approach is helpful for conducting dynamic requirements verification

thanks to the NuSMV model checker. Since the MoSt-expressed requirements

are able to be transformed into the NuSMV model, we will get full use of this

model checker to help us dynamically check requirements. However, the issue

is how we can trace back to requirements from counter-examples proposed by

the model checker. A certain level of traceability has been preserved thanks to

the definition of requirement ID. Each line of code of the transformed NuSMV

model is associated with its specific requirement ID in the form of comments,

except for the auto-generated test code. So, the code of the NuSMV model is

not influenced when executed. Note that counter-examples concerning speci-

fications are not necessarily easily understandable for users without formal

verification experience but at least they will know these specifications are not

ensured.

Finally, our approach facilitates the validation process. The validation ana-

lysis mentioned in section 5.3.3 has avoided conflicts between customers and

developers from the requirements level, to some extend. Conflicts in requi-

rements should be found as early as possible. On the other hand, the expla-

nations about why conflicts exist in requirements play an important role in

solving conflicts. As we retain the terms familiar to customers throughout the

analysis process, this makes the complex and difficult to understand results of

the verification easier to understand and accept by customers.

6. Conclusion and future work

NLRs modeling and verification are never an easy thing. In this paper, we

discussed how to model and verify NLRs from the viewpoint of states and

42

modes. The emphasis on these two terms helps reduce the conflicts in the pro-

cess of system development and validation. Customers’ expectations can be

expressed with their familiar terms - states and modes, in requirements. These

terms will be kept and the corresponding expectations will finally be verified

in requirements analysis. This provides direct feedback on customers’ expecta-

tions so that customers will gain more confidence and satisfaction in obtaining

the systems with their proper interests.

For this purpose, an innovative approach was proposed to conduct require-

ments modeling and verification from the viewpoint of states and modes. The

relationship between states and modes was firstly proposed to lay the founda-

tion for the next requirements analysis. A DSL called MoSt was designed for

requirements modeling and implemented by Xtext framework. We provided

this DSL with the meta-model, grammar, and semantics. In the following, a

code generator was accomplished to realize the automatic model transforma-

tion from the MoSt model to the NuSMV model. A model validator was also

implemented to statically check the requirements. Finally, an Eclipse-based

tool was developed to perform requirements modeling and verification.

Our requirements documents are supposed to have all the information of

states and modes highlighted. However, this is not always the case. Therefore,

our future work will focus on how to extract the information of states and

modes from requirements documents in an automatic way. This work necessi-

tates the techniques of text processing and artificial intelligence. We are going

to spend a lot of effort on this aspect. Another perspective is to integrate the

identification, modeling, and verification processes into a unified process so

that we will be able to provide a solution for analyzing requirements from the

viewpoint of states and modes.

Acknowledgements

This work was supported by the Labex CIMI.

43

Appendices

Figure 14: The Grammar of the Types of Formal Requirements

44

Figure 15: The Grammar of the Conditions of Formal Requirements

Figure 16: The Grammar of the Arithmetic and Comparison Operators of Formal Requirements

45

Figure 17: The Grammar of the Logic Operators of Formal Requirements

Figure 18: The Grammar of miscellaneous elements

46

Références

Ahmad, Manzoor, Nicolas Belloir, and Jean-Michel Bruel. 2015. “Modeling and
verification of functional and non-functional requirements of ambient self-
adaptive systems.” Journal of Systems and Software 107 : 50–70.

Ali, Raian, Fabiano Dalpiaz, and Paolo Giorgini. 2013. “Reasoning with contex-
tual requirements : Detecting inconsistency and conflicts.” Information and
Software Technology 55 (1) : 35–57.

Andrey, NAUMENKO. 2002. “a paradigm for General System Modeling and its
applications for UML and RM-ODP.” PhD diss., Ph. D thesis.

Badger, Julia, David Throop, and Charles Claunch. 2014. “Vared : verification
and analysis of requirements and early designs.” In 2014 IEEE 22nd Interna-
tional Requirements Engineering Conference (RE), 325–326. IEEE.

Baduel, Ronan. 2019. “An integrated model-based early validation approach
for railway systems.” PhD diss., Toulouse 2.

Bettini, Lorenzo. 2016. Implementing domain-specific languages with Xtext and
Xtend. Packt Publishing Ltd.

Bonnet, Stéphane, Jean-Luc Voirin, Daniel Exertier, and Véronique Normand.
2017. “Modeling system modes, states, configurations with Arcadia and Ca-
pella : method and tool perspectives.” In INCOSE International Symposium,
Vol. 27, 548–562. Wiley Online Library.

Buede, Dennis M, and William D Miller. 2016. The engineering design of sys-
tems : models and methods. John Wiley & Sons.

Cavada, Roberto, Alessandro Cimatti, Gavin Keighren, Emanuele Olivetti,
Marco Pistor, and Marco Roveri. 2019. “NuSMV 2.5 Tutorial.” Accessed
2019-03-1. http://nusmv.fbk.eu/NuSMV/tutorial/v25/tutorial.pdf.

Cimatti, Alessandro, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia,
Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella.
2002. “NuSMV 2 : An opensource tool for symbolic model checking.” In
International Conference on Computer Aided Verification, 359–364. Springer.
http://nusmv.fbk.eu/.

Committee, IEEE Standards Coordinating, et al. 1990. “IEEE Standard Glos-
sary of Software Engineering Terminology (IEEE Std 610.12-1990). Los Ala-
mitos.” CA : IEEE Computer Society 169.

Davis, D, et al. 2005. “SMC Systems Engineering Primer & Handbook.” United
States Air Force Space & Missile Systems Center 13–17.

47

http://nusmv.fbk.eu/NuSMV/tutorial/v25/tutorial.pdf
http://nusmv.fbk.eu/

DFS. 2007. “UNMANNED SYSTEMS SAFETY GUIDE FOR DOD ACQUISI-
TION.” https://www.dau.edu/cop/esoh/DAU%20Sponsored%20Documents/
Unmanned%20Systems%20Safety%20Guide%20forDOD%20Acquisition%

2027June%202007.pdf.

DI-IPSC-81431A. 2000. “MIL-STD-498B (Cancelled) Data Item Description,
System/Subsystem Specification.” .

DMO. 2011. “Defence Materiel Organisation, DMH (ENG) 12-3-005 Function
and Performance (FPS) Development Guide.” .

Edwards, MT. 2003. “A Practical Approach to State and Mode Definitions
for the Specification and Design of Complex Systems.” In Systems Enginee-
ring Test and Evaluation. Practical Approaches for Complex Systems Conference,
Rydges Capital Hill, Canberra, Australia, .

El Beggar, Omar, Khadija Letrache, and Mohammed Ramdani. 2020. “DAREF :
MDA framework for modelling data warehouse requirements and deducing
the multidimensional schema.” Requirements Engineering 1–23.

Feiler, Peter H, Bruce A Lewis, and Steve Vestal. 2006. “The SAE Architec-
ture Analysis & Design Language (AADL) a standard for engineering perfor-
mance critical systems.” In 2006 IEEE Conference on Computer Aided Control
System Design, 2006 IEEE International Conference on Control Applications,
2006 IEEE International Symposium on Intelligent Control, 1206–1211. IEEE.

Giannakopoulou, Dimitra, Thomas Pressburger, Anastasia Mavridou, and Jo-
hann Schumann. 2021. “Automated formalization of structured natural lan-
guage requirements.” Information and Software Technology 106590.

Goldsby, Heather J, Pete Sawyer, Nelly Bencomo, Betty HC Cheng, and Danny
Hughes. 2008. “Goal-based modeling of dynamically adaptive system requi-
rements.” In 15Th annual IEEE international conference and workshop on the
engineering of computer based systems (ecbs 2008), 36–45. IEEE.

Harel, David. 1987. “Statecharts : A visual formalism for complex systems.”
Science of computer programming 8 (3) : 231–274.

Heitmeyer, Constance L, Ralph D Jeffords, and Bruce G Labaw. 1996. “Automa-
ted consistency checking of requirements specifications.” ACM Transactions
on Software Engineering and Methodology (TOSEM) 5 (3) : 231–261.

IEEE 24765, IEEE Standards Association, et al. 2010. “ISO/IEC/IEEE 24765 :
2010 Systems and software engineering-Vocabulary. Iso/Iec/Ieee 24765 :
2010 25021.” Institute of Electrical and Electronics Engineers, Inc .

Jenney, J. 2011. “Define Life Cycle System Modes.” Accessed on 25/11/2020,
http://themanagersguide.blogspot.com/2011/01/6322-define-life-
cycle-system-modes.html.

48

https://www.dau.edu/cop/esoh/DAU%20Sponsored%20Documents/Unmanned%20Systems%20Safety%20Guide%20forDOD%20Acquisition%2027June%202007.pdf
https://www.dau.edu/cop/esoh/DAU%20Sponsored%20Documents/Unmanned%20Systems%20Safety%20Guide%20forDOD%20Acquisition%2027June%202007.pdf
https://www.dau.edu/cop/esoh/DAU%20Sponsored%20Documents/Unmanned%20Systems%20Safety%20Guide%20forDOD%20Acquisition%2027June%202007.pdf
http://themanagersguide.blogspot.com/2011/01/6322-define-life-cycle-system-modes.html
http://themanagersguide.blogspot.com/2011/01/6322-define-life-cycle-system-modes.html

Letier, Emmanuel, and Axel Van Lamsweerde. 2004. “Reasoning about partial
goal satisfaction for requirements and design engineering.” In Proceedings
of the 12th ACM SIGSOFT twelfth international symposium on Foundations of
software engineering, 53–62.

Leveson, Nancy G, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon
Reese. 1994. “Requirements specification for process-control systems.” IEEE
transactions on software engineering 20 (9) : 684–707.

Mavin, Alistair, Philip Wilkinson, Adrian Harwood, and Mark Novak. 2009.
“Easy approach to requirements syntax (EARS).” In 2009 17th IEEE Interna-
tional Requirements Engineering Conference, 317–322. IEEE.

Moitra, Abha, Kit Siu, Andrew W Crapo, Michael Durling, Meng Li, Panagiotis
Manolios, Michael Meiners, and Craig McMillan. 2019. “Automating requi-
rements analysis and test case generation.” Requirements Engineering 24 (3) :
341–364.

Nalchigar, Soroosh, Eric Yu, and Karim Keshavjee. 2021. “Modeling machine
learning requirements from three perspectives : a case report from the heal-
thcare domain.” Requirements Engineering 1–18.

Olver, Anthony M, and Michael J Ryan. 2014. “On a useful taxonomy of Phases,
Modes, and States in Systems Engineering.” In Systems Engineering/Test and
Evaluation Conference, Adelaı̈de, Australia, .

Royce, Winston W. 1987. “Managing the development of large software sys-
tems : concepts and techniques.” In Proceedings of the 9th international confe-
rence on Software Engineering, 328–338.

Silva Souza, Vı́tor E, Alexei Lapouchnian, William N Robinson, and John My-
lopoulos. 2011. “Awareness requirements for adaptive systems.” In Procee-
dings of the 6th international symposium on Software engineering for adaptive
and self-managing systems, 60–69.

Szlenk, Marcin. 2006. “Formal semantics and reasoning about uml class dia-
gram.” In 2006 International Conference on Dependability of Computer Systems,
51–59. IEEE.

Wasson, Charles S. 2010. “System Phases, Modes, and States Solutions to
Controversial Issues.” Wasson Strategics, LLC. http ://www. wassonstrategics.
com .

Wasson, Charles S. 2015. System engineering analysis, design, and development :
Concepts, principles, and practices. John Wiley & Sons.

Whittle, Jon, Pete Sawyer, Nelly Bencomo, Betty HC Cheng, and Jean-Michel
Bruel. 2009. “Relax : Incorporating uncertainty into the specification of self-
adaptive systems.” In 2009 17th IEEE International Requirements Engineering
Conference, 79–88. IEEE.

49

Yu, Eric SK. 1997. “Towards modelling and reasoning support for early-phase
requirements engineering.” In Proceedings of ISRE’97 : 3rd IEEE International
Symposium on Requirements Engineering, 226–235. IEEE.

Zepeda, Leopoldo, Elizabeth Ceceña, R Quintero, Ramón Zatarain, Liliana
Vega, Z Mora, and Garcia Gerardo Clemente. 2010. “A MDA tool for data
warehouse.” In 2010 International Conference on Computational Science and
Its Applications, 261–265. IEEE.

50

	Introduction
	Literature Review
	States and Modes
	Requirements Modeling and Verification

	MoSt Modeling Language
	Relationship between States and Modes
	Our Analysis Framework
	MoSt Meta-model
	MoSt Grammar
	Natural Language Requirements
	Formal Requirements

	MoSt Semantics

	Model Transformation
	Requirements Verification
	MoSt Modeling Tool
	Requirements Static Checking
	Requirements Dynamic Checking
	Traceability Analysis
	Completeness Analysis
	Validation analysis

	Discussion

	Conclusion and future work
	Appendices

