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Abstract. The relative importance of river solid discharge,
deposited sediment remobilisation, and atmospheric dust as
sources of neodymium (Nd) to the ocean is the subject of on-
going debate, the magnitudes of these fluxes being associated
with a significant uncertainty. The Mediterranean basin is a
specific basin; it receives a vast amount of emissions from
different sources and is surrounded by continental margins,
with a significant input of dust as compared to the global
ocean. Furthermore, it is largely impacted by the Atlantic
water inflow via the Strait of Gibraltar. Here, we present the
first simulation of dissolved Nd concentration ([Nd]) and Nd
isotopic composition (εNd) using a high-resolution regional
model (NEMO/MED12/PISCES) with an explicit represen-
tation of all Nd inputs, and the internal cycle, i.e. the inter-
actions between the particulate and dissolved phases. The
high resolution of the oceanic model (at 1/12◦), essential
to the simulation of a realistic Mediterranean circulation in
present-day conditions, gives a unique opportunity to better
apprehend the processes governing the Nd distribution in the
marine environment. The model succeeds in simulating the
main features of εNd and produces a realistic distribution
of [Nd] in the Mediterranean Sea. We estimated the bound-
ary exchange (BE, which represents the transfer of elements
from the margin to the sea and their removal by scaveng-
ing) flux at 89.43× 106 g(Nd) yr−1, representing ∼ 84.4 %
of the total external Nd source to the Mediterranean basin.
The river discharge provided 3.66× 106 g(Nd) yr−1, or 3.5 %

of the total Nd flow into the Mediterranean. The flux of Nd
from partially dissolved atmospheric dusts was estimated at
5.2× 106 g(Nd) yr−1, representing 5 % of the total Nd input,
and 7.62× 106 g(Nd) yr−1 comes from the Atlantic across
the Strait of Gibraltar, i.e. 7.1 % of the total Nd input. The
total quantity of Nd in the Mediterranean Sea was estimated
to 7.28× 109 g(Nd); this leads to a new calculated Nd resi-
dence time of∼ 68 year. This work highlights that the impact
of river discharge on [Nd] is localised near the catchments
of the main rivers. In contrast, the atmospheric dust input
has a basin-wide influence, correcting for a too-radiogenic
εNd when only the BE input is considered and improving
the agreement of simulated dissolved Nd concentration with
field data. This work also suggests that εNd is sensitive to the
spatial distribution of Nd in the atmospheric dust, and that the
parameterisation of the vertical cycling (scavenging/reminer-
alisation) considerably constrains the ability of the model to
simulate the vertical profile of εNd.

1 Introduction

The Nd isotopic composition (εNd) is one of the most
useful tracers to fingerprint water mass provenance (see
Tachikawa et al. 2017, for a review). Substantial progress
has been made during the last few decades in our knowl-
edge of processes/mechanisms controlling the Nd oceanic
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cycle, through coordinated high-quality sampling and mea-
surements (e.g. GEOTRACES programme) and modelling
efforts (e.g. Tachikawa et al., 2003; Arsouze et al., 2007;
Siddall et al., 2008; Arsouze et al., 2009; Jones et al., 2008;
Rempfer et al., 2011). However, the use of εNd as a water
mass tracer is hampered by the lack of adequate quantifica-
tion of the external sources, including inputs from river dis-
charge, atmospheric dusts, benthic fluxes, submarine ground
water discharge, hydrothermal sources, and exchange with
the sediments at the continental margins (Fig. 1) (e.g. Gold-
stein and O’nions, 1981; Piepgras and Wasserburg, 1987;
Frank, 2002; Goldstein and Hemming, 2003; Lacan and Je-
andel, 2005; Johannesson and Burdige, 2007; Abbott et al.,
2015; Morrison et al., 2019; Pöppelmeier et al., 2019).

The Mediterranean basin provides an excellent opportu-
nity to improve our understanding of the Nd oceanic cycle
and further develop the existing modelling approach. The
Mediterranean Sea is a semi-enclosed basin with a relatively
short water residence time (∼ 100 years; Millot and Taupier-
Letage, 2005). The Mediterranean is a concentration basin
in which evaporation exceeds precipitation and river runoff.
Warmer, fresher water enters at the surface from the At-
lantic (Atlantic water – AW) through Gibraltar, and colder
saline water leaves below. Spreading at intermediate depths
throughout the Mediterranean Sea (150–700 m, Pinardi and
Masetti, 2000), the Levantine intermediate water (LIW) rep-
resents one of the main water masses of the Mediterranean
Sea. The LIW participates in the deep convection processes
of the western Mediterranean deep water (WMDW) occur-
ring in the Gulf of Lion and in the Adriatic sub-basin for
the eastern Mediterranean deep water (EMDW) (Millot and
Taupier-Letage, 2005). The Mediterranean basin is strongly
connected to continental margins, receiving vast amounts of
inputs from various sources with a coastline of more than
45 000 km and significant freshwater inputs compared with
the open ocean (Ludwig et al., 2009; Ayache et al., 2020).
Many studies have shown that dust deposition from the Sa-
hara and Middle East is a significant source of dissolved trace
elements to the upper layers of the Mediterranean Sea (e.g.
Dulac et al., 1989; Guieu et al., 2002; Richon et al., 2018).
The impacts of dust deposition on the Nd distribution are not
fully understood and may change in the future as a result of
the effects of climate change on land and sea (e.g. Peñue-
las et al., 2013). The vertical profile of dissolved Nd in the
Mediterranean Sea is atypical, with a high concentration in
the surface water that suggests a significant impact of exter-
nal sources. Thus, the Mediterranean Sea is ideal to examine
the influence of external sources of Nd versus that of the in-
ternal cycle (i.e. scavenging/remineralisation). Recently, the
Meteor and MedBlack/GEOTRACES projects have led to a
large increase in the number of observations of Nd in the
Mediterranean basin (Tachikawa et al., 2004; Garcia-Solsona
and Jeandel, 2020; Montagna et al., 2022). These authors
have shown that seawater εNd values behave overall conser-
vatively in the open Mediterranean Sea and confirmed that

water masses are distinguishable by their Nd isotope signa-
ture (Tachikawa et al., 2004; Montagna et al., 2022). This
data set provides a unique opportunity to test models describ-
ing the cycling of Nd in the Mediterranean Sea. Modelling
represents an interesting approach to investigate the impact
of external inputs on the oceanic Nd cycle, and we dispose
of a high spatial resolution regional model (NEMO-MED12),
essential to the simulation of a realistic Mediterranean Sea
circulation.

Many modelling studies contributed to improve our un-
derstanding of the Nd oceanic cycle. Arsouze et al. (2007)
highlighted the importance of boundary exchange (BE) as
a source/sink of Nd; however, in their simplified prelimi-
nary study, they neglected the Nd inputs from river and at-
mospheric dust. Jones et al. (2008) used in situ observa-
tions to prescribe surface εNd (i.e. they considered no ex-
ternal inputs) and εNd as a quasi-conservative tracer of mix-
ing on a global oceanic scale. Siddall et al. (2008) explic-
itly simulated the [Nd] and εNd using a reversible scaveng-
ing model and fixed surface boundary conditions. They con-
cluded that reversible scavenging is an active and important
component in the cycling of Nd and should be considered
a necessary component in explaining the Nd paradox1. Ar-
souze et al. (2009) simulated [Nd] and εNd simultaneously
using a fully coupled dynamical/biogeochemical model and
a reversible scavenging model. They also explicitly repre-
sented the BE, river, and dust deposition Nd sources. Their
study confirmed that sediment dissolution is the main Nd
source to the oceanic reservoir, representing 95% of the to-
tal Nd source, with the associated boundary scavenging pro-
cess representing up to 64 % of the total Nd sink. In this
global study, river discharge (2.6× 108 g(Nd) yr−1) and dust
atmospheric inputs (1.0× 108 g(Nd) yr−1) are significantly
lower than the Nd BE inputs. Using a similar approach, Gu
et al. (2019) assessed the response of the Nd cycle to fresh-
water forcing. Ayache et al. (2021) explores the impact of
drastic changes in Mediterranean thermohaline circulation
on the north Atlantic circulation, using the simplified ver-
sion of the εNd modelling approach (Arsouze et al. 2007)
with idealised hosing experiments implemented in the IPSL-
CM5 model. Pöppelmeier et al. (2020) used the Nd-enabled
Bern3D model and included a parameterisation of the ben-
thic Nd source extended over all water depths. This study
suggested that the contributions of the Nd sources are∼ 60 %
boundary/benthic source, ∼ 32 % riverine source, and ∼ 9 %
dust; however, the coarse resolution of this model limits its
ability to sufficiently resolve the processes affecting the Nd
oceanic cycle. Later, the same authors investigated the evolu-
tion of the AMOC as it responds to freshwater perturbations

1Nd paradox: define decoupling of εNd and [Nd] in the water
column, i.e. εNd behave quasi-conservatively, while [Nd] in the
water column generally increase with depth, showing a broadly
nutrient-like behaviour (Tachikawa et al., 2003; Goldstein and
Hemming, 2003; Lacan and Jeandel, 2005)
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Figure 1. Presentation of the main Nd oceanic modelling approach in the Mediterranean Sea. (a) Modelling only the Nd isotopic composition
(εNd), focused on the role of boundary exchange with the continental margin (on the first 540 m) using a relaxing term (Ayache et al., 2016;
Arsouze et al., 2007). (b) Explicitly representing the different sources of Nd to the ocean, e.g. sediment remobilisation (which implicitly
represents the boundary exchange process), fluvial discharge, and atmospheric dust as done in Arsouze et al. (2009).

under improved LGM boundary conditions in the Bern3D
intermediate complexity model (Pöppelmeier et al., 2021).
Pasquier et al. (2022) presented the first inverse model of the
global marine biogeochemical cycle of Nd using the Global
Neodymium Ocean Model (GNOM) v1.0. This relatively
simple model compares well to previous models; however,
the GNOM model does not represent scavenging by calcium
carbonate (CaCO3) which could have a very important im-
pact on the vertical cycle of Nd.

A large proportion of BE is thought to occur predomi-
nantly within estuarine sediments and on continental margins
(Rousseau et al., 2015). Thus, the dissolution of only a small
proportion (1 %–3 %) of particulate material and bottom sed-
iments deposited on continental margins can have a large im-
pact on marine Nd budgets and cycling (Jeandel and Oelk-
ers, 2015). Arsouze et al. (2007) suggested that the BE rate
is poorly sensitive to the lithology of the margin sediments
(e.g. granitic vs. basaltic). Contrastingly, it is suspected to
be enhanced when the local dynamic is intensified, which
is the case at the land–ocean contact and in the upper lay-
ers. Nevertheless, the magnitudes and variations of Nd fluxes
related to the partial dissolution of river particles and atmo-
spheric dust still bear a significant uncertainty because the
estimated dissolution rates of Nd from dust vary from 2 % to
50 % (Tachikawa et al., 1999; Greaves et al., 1994; van de
Flierdt et al., 2004). Nd concentration in the river discharge
is generally prescribed in modelling experiments using a sub-

traction percentage of dissolved Nd, which varies from 30 %
to 70 % (Rempfer et al., 2011; Gu et al., 2019; Arsouze et al.,
2009; Nozaki and Zhang, 1995; Sholkovitz et al., 1994; El-
derfield et al., 1990).

The Nd influx brought by the Atlantic inflow through the
Strait of Gibraltar is smaller than the Nd outflux exiting with
the Mediterranean outflow (16, 23 pmol kg−1 respectively),
and the εNd value of the Mediterranean outflow is higher
than that of Atlantic inflow water (−9.4, −11.8 respectively,
Tachikawa et al., 2004; Henry et al., 1994, Greaves et al.,
1991; Spivack and Wasserburg, 1988). Thus, a source of ra-
diogenic Nd in the Mediterranean Sea is required to balance
these fluxes. The first Nd budget for the Mediterranean Sea
was proposed by Frost et al. (1986) and Spivack and Wasser-
burg (1988). These authors suggested that the additional Nd
source could be river particles and/or dust particles. Greaves
et al. (1991), using the rare earth elements (REE) patterns of
seawater, argued that the missing source might rather be of
marine origin. Schijf et al. (1991) proposed that the Black
Sea was a net source to the Mediterranean Sea. Based on
a two-box model, Henry et al. (1994) highlighted that the
εNd in the North West deep waters required an exchange
involving 30± 20 % of the sinking particles of atmospheric
origin. More recently, Tachikawa et al. (2004) proposed that
the missing term could be partially dissolved Nile river par-
ticles. Montagna et al. (2022) suggest that the relative im-
portance of dust in modifying the εNd signature of surface
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waters in the Mediterranean Sea is minor, and they associate
the very radiogenic εNd signature in the Levantine sub-basin
to the dispersion of Nile river particles in the surface layer.
However, the Nile water discharge was drastically reduced
after the construction of the Aswan High Dam in 1964. Fur-
thermore, the few existing estimations of Nd in atmospheric
dusts are based on local observations that are not necessar-
ily representative of the whole basin. River inputs and water
exchange with the Black Sea (via the Dardanelles strait) are
still not fully constrained as a whole.

Ayache et al. (2016) proposed the first simulation of εNd
using a regional high-resolution dynamical model (at 1/12◦

of horizontal resolution) of the Mediterranean including only
BE and using a relaxing term applied to the first 540 m of the
continental margin. Their work confirms previous findings
that boundary exchange is a major process in the Nd oceanic
cycle, even at the regional scale and in a semi-enclosed basin
such as the Mediterranean basin. Nevertheless, this simpli-
fied approach yields too-high (too radiogenic) εNd values
compared to the modern Mediterranean Sea water values and
did not represent the Nd inputs from river and atmospheric
dust. In the present study, we extend this Nd cycle mod-
elling effort in the Mediterranean Sea by simulating both
εNd and the Nd concentration following the protocol pro-
posed by Arsouze et al. (2009) for the global ocean. We use
a high-resolution regional model with an explicit represen-
tation of all Nd sources (i.e. margin sediment re-dissolution,
dissolved river fluxes, and atmospheric dusts) and sinks (i.e.
scavenging). Vertical cycling is simulated using a reversible
scavenging model developed for the simulation of trace ele-
ments using the biogeochemical circulation model NEMO–
PISCES (Dutay et al., 2009; Arsouze et al., 2009; van Hulten
et al., 2018). We performed several sensitivity tests to better
understand how the internal cycle (scavenging/remineralisa-
tion) and the various external sources affect the Nd cycle in
the Mediterranean Sea, and particularly assess how it is im-
pacted by atmospheric inputs in this region, where desert dust
deposition events are more frequent affecting a large spatial
domain compared to the global ocean.

2 Methods

2.1 Circulation via NEMO-MED12 model

The dynamical model used in this work is the NEMO
(nucleus for European modelling of the ocean) free sur-
face ocean general circulation model (Madec and NEMO-
Team., 2008) in a regional high-resolution configuration
(at 1/12◦ =∼ 7 km) called NEMO-MED12 (Beuvier et al.,
2012a). The NEMO-MED12 domain covers the whole
Mediterranean Sea and includes part of the Atlantic Ocean
west of Gibraltar (buffer zone) from 30–47◦ N in latitude
and from 11◦W–36◦ E in longitude, where temperature and
salinity (3-D fields) are relaxed to the observed climatology

(Beuvier et al., 2012b). Water exchange with the Black Sea
is represented as a two-layer flow with net budget estimates
from Stanev and Peneva (2002).

The NEMO-MED12 model is forced at the surface by
the momentum, evaporation, and heat fluxes over the period
1958–2013 from the ARPERA model (Herrmann and So-
mot, 2008; Herrmann et al., 2010). The sea-surface temper-
ature (SST) and water-flux correction term are applied using
ERA-40 (Beuvier et al., 2012b). River and runoff discharge
are derived from the model of Ludwig et al. (2009) and the
inter-annual data set of Vörösmarty et al. (1996). The ini-
tial conditions (salinity and temperature) are provided by the
MedAtlas-II (MEDAR-MedAtlas-group, 2002; Rixen et al.,
2005). The initial state in the buffer zone is prescribed from
the World Ocean Atlas 2005 (Locarnini et al., 2006; Antonov
et al., 2006). The sea-surface height (SSH) is restored in the
buffer zone toward the GLORYS1 reanalysis (Ferry et al.,
2010) in order to conserve the total volume of water in the
Mediterranean Sea.

The NEMO-MED12 model has been used previously for
many oceanic investigations in the Mediterranean Sea (e.g.
Brossier et al., 2011; Beuvier et al., 2012b; Soto-Navarro
et al., 2014; Ayache et al., 2015a, b, 2016, 2017; Palmiéri
et al., 2015; Guyennon et al., 2015; Richon et al., 2018).
The NEMO-MED12 model simulates the main structures of
the thermohaline circulation of the Mediterranean Sea, with
mechanisms having a realistic timescale compared to obser-
vations (Ayache et al., 2015a). However, some aspects of the
model still need to be improved: for instance, the too weak
formation of Adriatic deep water (AdDW) as shown by Ay-
ache et al. (2015a) using anthropogenic tritium simulations.
In the western basin, the production of WMDW is well repro-
duced, but the spreading of the recently ventilated deep water
to the south of the basin is too weak (Ayache et al., 2015a).
Full details of the model and its parameterisations are de-
scribed by Beuvier et al. (2012a, b); Palmiéri et al. (2015);
Ayache et al. (2015a).

2.2 Particle dynamics via PISCES model

The biogeochemical model PISCES (Aumont and Bopp,
2006; Aumont et al., 2015) is coupled to the regional physical
model NEMO-MED12 (Palmiéri, 2014; Richon et al., 2018).
PISCES simulates the biogeochemical cycles of carbon, oxy-
gen, and five nutrients (nitrates, phosphates, ammonium, sil-
icates, and iron) that can limit phytoplankton growth. It ex-
plicitly simulates two trophic levels: phytoplankton groups
(nanophytoplankton and diatoms) and zooplankton groups
(microzooplankton and mesozooplankton). PISCES is a Red-
fieldian model where the C : N : P ratio used for plankton
growth is fixed to 122 : 16 : 1.

There are three non-living compartments simulated by
PISCES: dissolved organic carbon (DOC), large particles,
and small particles, the latter two differing by their sink-
ing velocities. The large particle pool includes particulate
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organic carbon with a diameter larger than 100 µm (POCb),
biogenic silica (BSi), carbonate (CaCO3), and lithogenic
particles (atmospheric dust), sinking with a velocity of
50 m d−1. Small particles consist of particulate organic car-
bon between 2 and 100 µm in size (POCs) and a sinking ve-
locity of 3 m d−1. The small particle pool represents the prin-
cipal stock of particles at the surface (Dutay et al., 2009). The
content of the particulate pools is controlled by mineralisa-
tion, mortality, grazing, and the two POC classes interact via
the processes of disaggregation and aggregation (see Aumont
and Bopp, 2006 and Dutay et al., 2009). We use PISCES
in its offline mode, where biogeochemical tracers are trans-
ported using an advection–diffusion scheme driven by dy-
namical variables (velocities, pressure, mixing coefficients)
previously calculated by the oceanic model NEMO-MED12
(Palmiéri et al., 2015).

2.3 The reversible scavenging model

Observations indicate that Nd concentrations generally in-
crease in the ocean with depth (Baar et al., 1985) as a conse-
quence of a continuous and reversible exchange between the
particulate and dissolved phases (Nozaki and Alibo, 2003).
This process is called the reversible scavenging, i.e. isotope
adsorption onto sinking particles in the surface and redis-
solution at depth. The equilibrium scavenging approach is
commonly used in Nd and Pa/Th modelling (Siddall et al.,
2005; Dutay et al., 2009; Arsouze et al., 2009; Gu and Liu,
2017; van Hulten et al., 2018). It allows the model to use
partition coefficients that can be directly constrained by ob-
servations (although consensus values for these coefficients
are still not available). This approach considers that the par-
tition between dissolved and particulate phase is in equilib-
rium, as suggested by observations (e.g. Roy-Barman et al.,
1996), and their relative contribution is set using an equilib-
rium partition coefficient K , defined as

K =
Ndp

NddCp
, (1)

where Cp is the mass of particles per mass of water. This co-
efficientK is defined for each type of particles represented in
the model: big (POCb) and small (POCs) particulate organic
carbon, calcite (CaCO3), biogenic silica (BSi), and lithogenic
atmospheric dust (litho). Following Arsouze et al. (2009) we
simulate the two 144Nd and 143Nd isotopes independently
(simulated as two tracers) then we calculate the total Nd con-
centration and εNd as a diagnostic parameters in the model. In
situ observation do not suggest any fractionation between the
two isotopes of Nd (i.e. 144Nd and 143Nd), and their masses
are quite similar (Dahlqvist et al., 2005). Hence, partition co-
efficients (K) are assumed as being identical for the two iso-
topes for each particle type (Arsouze et al., 2009).

The total concentration (NdT), defined as the sum of large
(Ndpg: POCb, CaCO3, BSi, litho), small (Ndps: POCs) par-

ticulate concentration, and dissolved concentration (Ndd).

NdT = Ndps+Ndpb+Ndd (2)

Applying Eq. (1) to the particulate pools in Eq. (2) to ex-
press total concentration as a function of dissolved Nd con-
centration, we obtain

NdT = (KPOCs×CPOCs+KPOCb×CPOCb+KBSi×CBSi

+KCaCO3 ×CCaCO3 +Klitho×Clitho+ 1)×Ndd . (3)

From that we can calculate the Nd in small particulate con-
centration by (Eq. 4):

Ndps =

KPOCs ×CPOCs

KPOCs ×CPOCs +KPOCb ×CPOCb +KBSi ×CBSi +KCaCO3 ×CCaCO3 +Klitho ×Clitho + 1

×NdT ,

(4)

and the Nd in large particulate concentration by Eq. 5):

Ndpb =

KPOCb ×CPOCb +KBSi ×CBSi +KCaCO3 ×CCaCO3 +Klitho ×Clitho

KPOCs ×CPOCs +KPOCb ×CPOCb +KBSi ×CBSi +KCaCO3 ×CCaCO3 +Klitho ×Clitho + 1

×NdT .

(5)

This approach allows us to define the [Nd] in large and
small particles as a function of the total Nd concentration
(NdT) and the partition coefficients (K). This method con-
fers a great advantage in that only the two isotopes of Nd
(144Nd and 143Nd) are transported by the model, rather than
concentration in every phase (all large particles, small par-
ticles, and dissolved phase, i.e. 12 tracers), which implies a
substantial gain of computational cost.

The evolution of the simulated total Nd concentration
(NdT) is equal to the sum of all sources of Nd, the impact
of vertical cycling (Eq. 6), and the three-dimensional advec-
tion and diffusion (i.e. physical transport).

δNdT

δt
=

(Source of Nd)︷ ︸︸ ︷
S(NdT) −

(Vertical cycling)︷ ︸︸ ︷
δ(ωsNdps)

δz
+
δ(ωbNdpb)

δz︷ ︸︸ ︷
−U · ∇NdT+∇ · (K∇NdT )

(3-D advection and diffusion), (6)

where S(NdT) represents the Source term of the Nd in the
model (cf. Sect. 2.4).

The vertical cycling represents the scavenging of Nd by
the large and small particles (ωs and ωb are the sinking ve-
locities of small and large particles, respectively, cf. Table 1).
Moreover the simulations are performed in offline mode
using the pre-computed transport fields and particle fields
(POCs, POCb, CaCO3, and BSi) at the monthly timescale.
This method requires considerably lower computational cost,
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Table 1. List of variables and units and presentation of all simulations used in this study.

Variable Presentation Unit

εNd Nd isotopic composition unit of εNd
[Nd] Total Nd concentration pmol kg −1

K Equilibrium partition coefficient –
Ndd Nd dissolved concentrations pm kg−1

Ndp Nd particulate concentrations pm kg−1

Cp Mass of particles per mass of water kg
POCb Large particulate organic Carbon –
POCs Small particulate organic Carbon –
CaCO3 Calcite –
BSi Biogenic silica –
litho Lithogenic atmospheric dust –
NdT Total concentration of Nd pm kg−1

Ndps Small particulate concentration pm kg−1

Ndpb large particulate concentration pm kg−1

S(NdT) Source term of the Nd in the model g yr−1

ωs Sinking velocities of small and large particles m yr−1

ωb Sinking velocities of large particles m yr−1

S(NdT)sed Source of BE (boundary exchange) g yr−1

Fsed Source flux of sedimentary Nd to the ocean g m−2 yr−1

maskmargin Percentage of continental margin in the grid box
S(NdT)surf Total source of Nd from river and from atmospheric dust g yr−1

Fsurf Nd flux of Nd from river discharge and from atmospheric dusts g m−2 yr−1

Simulations Description

SedOnly Considers sediment remobilisation (i.e. boundary exchange) as the unique source of Nd.
SedRiv Considers the dissolved fluvial material discharge in addition to sediment remobilisation.
SedRivDust Represents the three main inputs of Nd (i.e. boundary exchange, river discharge, and atmospheric dust).
Dust-Cst Same as RivSedDust run but with [Nd] and εNd constant in atmospheric dust.
Dust-EWbasin Same as RivSedDust run but with [Nd] and εNd constant in atmospheric dust from eastern and western basins.

which allowed it to run a relatively long simulation with a
high-resolution regional model and to perform some sensi-
tivity tests on Nd values in atmospheric dusts and the values
of the partition coefficients.

2.4 External inputs and boundary conditions of Nd

Our main goal is to tackle the issue of the Nd inputs to the
Mediterranean Sea and to contribute to the active debate ex-
posed in Sect. 1. To do so, we first used the map of published
[Nd] and εNd for the whole Mediterranean basin, based on
various types of samples: river discharge, sedimentary ma-
terial, and/or geological material outcropping above or close
to a margin established by Ayache et al. (2016). We therefore
use this database to explicitly represent the various sources
of Nd in the Mediterranean Sea.

The BE source is implemented in the model as the Nd in-
put from sediment remobilisation following the parameteri-
sation proposed by Arsouze et al. (2009). This source is im-
posed in the model as an input flux (S(NdT)sed, cf. Eq. 7) for
each grid point of the continental shelf:

S(NdT)sed=
∫

sFsed×maskmargin, (7)

where Fsed is the source flux of sedimentary Nd to the ocean
and maskmargin is the percentage of continental margin in the
grid box and represents the proportion of the surface in the
grid where the BE process occurs. We computed Fsed for
both 144Nd and 143Nd by using the Nd concentration and the
isotopic composition along the margin presented in Fig. 2
(Fig. 2a, b, see Sect. 1). The oceanic margin extension of
the Mediterranean Sea has been chosen to be between 0 and
∼540 m following the margin definition used to model the
biogeochemical cycles in the Mediterranean Sea by Palmiéri
(2014). To date, there was no estimate of the Nd flux from the
sediment (i.e. the boundary source) in the Mediterranean Sea
so far. Based on our modelling approach, we estimate an in-
put resulting from BE processes at 89.43×106 g(Nd) yr−1 for
the whole Mediterranean basin (as presented above, see Ta-
ble 2). Investigating the role of the variability of the lithology
of margin sediments would require more laboratory experi-
ments, targeted on the nature and reactivity of the sediments.
Hence, we assume the sediment flux as geographically con-
stant with a uniform dissolution rate as first approximation
after many sensitivity simulations on the representation of
this flux; the same assumptions were used in other modelling
study (e.g. Arsouze et al., 2009).
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Table 2. Main characteristics of source fluxes and equilibrium partition coefficients for each simulation. Residence time of Nd in the ocean
is calculated using the sum of flux (source or sink) and the total quantity of Nd simulated in the ocean: τ =QNd/(S(NdT)).

Experiences SedOnly SedRiv SedRivDust Dust-Cst Dust-EWbasin

Quantity of Nd from each source (g(Nd)) Sediment 4.9× 109 4.9× 109 4.9× 109 4.9× 109 4.9× 109

River discharge 0 8.3× 108 8.3× 108 8.3× 108 8.3× 108

Atmospheric dusts 0 0 1.55× 109 1.53× 109 1.52× 109

Equilibrium partition coef. KPOMs 1.4× 108 – – – –
KPOMb 5.2× 104 – – – –
KBSi 3.6× 104 – – – -
KCaCO3 1.6× 105 – – – –
Klith 4.6× 105 – – – –

Total flux of Nd g(Nd) yr−1 Sediment 89.4× 106 89.4× 106 89.4× 106 89.4× 106 89.4× 106

River discharge 0 3.66× 106 3.66× 106 3.66× 106 3.66× 106

Atmospheric dusts 0 0 5.3× 106 5.25× 106 5.2× 106

Atlantic inflow 7.62× 106 7.62× 106 7.62× 106 7.62× 106 7.62× 106

Total quantity of Nd (g(Nd)) 4.9× 109 5.73× 109 7.28× 109 7.28× 109 7.25× 109

Residence time (τ in years) 46 54 68 67.4 69

We compared the compilation of [Nd] (Fig. 2a) and εNd
(Fig. 2b) along the Mediterranean continental margin pro-
posed by Ayache et al. (2016) with the new global database
of Nd provided by Blanchet (2019) and the recent update of
global continental and marine Nd by Robinson et al. (2021).
Margin Nd isotopic signatures vary from radiogenic values
(up to+6) in the Aegean and Levantine sub-basins to less ra-
diogenic values in the Gulf of Lion, (∼−11), and [Nd] glob-
ally varies from low [Nd] in the western basin (∼ 25 µg g−1)
to a higher [Nd] in the southeastern basin (∼ 40 µg g−1).
The two maps of εNd and [Nd] provided by Ayache et al.
(2016) are in good agreement with the new database (Robin-
son et al., 2021), except on the Libyan coast where the new
update suggests a less radiogenic εNd (∼−13) and a rela-
tively lower [Nd] of ∼ 35 µg g−1 (Robinson et al., 2021).

In addition to the sediment remobilisation source, we im-
plemented the Nd inputs from river/runoff discharge and at-
mospheric dusts deposition in surface waters as follows:

S(NdT)surf=
∫

sFsurf, (8)

where Fsurf is the Nd flux from river discharge and atmo-
spheric dusts (in g(Nd) m2 yr−1) as presented in Fig. 2.

River discharge is derived from the inter-annual data sets
of Ludwig et al. (2009) and Vörösmarty et al. (1996), and we
used the runoff estimation provided by the NEMO-MED12
model in Beuvier et al. (2010, 2012b) and Palmiéri et al.
(2015). [Nd] (Fig. 2c) and εNd (Fig. 2d) in river inputs are
from Ayache et al. (2016). The main river systems of the
Mediterranean basin are the Nile, Po, and Rhone. The Nile
river is the largest source of radiogenic Nd to the eastern
basin as suggested by Tachikawa et al. (2004). The Rhone
river accounts for most of the riverine discharge in the north-
western basin. Based on the runoff estimation of the NEMO-

MED12 model, we obtain a dissolved Nd flux from river wa-
ters of 3.66× 106 g(Nd) yr−1 (see Table 3).

Atmospheric deposition forcing of dust is provided by
the monthly maps from the ALADIN climate model (Nabat
et al., 2015) used by (Richon et al., 2018) to simulate the
impacts of atmospheric deposition of nitrogen and desert
dust-derived phosphorus on the biological budgets of the
Mediterranean Sea (Fig. 2g). εNd values were extracted from
Scheuvens et al. (2013) and Blanchet (2019) (Fig. 2e, f). In
the areas where no data were available, εNd and [Nd] of the
atmospheric dust were determined based on the average val-
ues estimated by Tachikawa et al. (2004) for African dust and
the value for the region of origin of the dusts provided by
Scheuvens et al. (2013). The regional distribution of the εNd
values shows that these values are relatively high (∼−9.2)
in the eastern part of northern Africa (e.g. Egypt), compared
with the central and western parts of northern Africa, where
εNd ranges from −17.9 to −11.8 (Scheuvens et al., 2013).
Atmospheric dust deposits are taken into account as Nd in-
puts in surface waters (first vertical level). As the Nd solu-
bility is uncertain, we performed many sensitivity test sim-
ulations on the dissolution rates of particulate Nd from at-
mospheric dusts and on the spatial distribution of Nd con-
centration and isotopic composition in atmospheric dust (cf.
Sect. 2.5).

2.5 Simulations and sensitivity tests

The main objective of this study was to identify and quantify
the various sources involved in the Nd cycle in the Mediter-
ranean Sea. With this aim, five distinct simulations were per-
formed (SedOnly, SedRiv, SedRivDust, Dust-CST, and Dust-
EWbasin; Table 2). The SedOnly experiment considered sed-
iment remobilisation as the unique source of Nd. The SedRiv
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Figure 2. Boundary conditions and input maps applied to the model. (a) Nd concentration ([Nd], in µg g−1) along continental margin
determined by Ayache et al. (2016); squares and hexagons represent in situ data from the new global database of Nd provided by Blanchet
(2019). (b) Nd isotopic composition (εNd in εNd unit) along the continental margin determined by Ayache et al. (2016); squares and hexagons
represent in situ data from the new global database of Nd provided by Blanchet (2019). (c) [Nd] of river runoff (in µg g−1) from Ayache et al.
(2016) with in situ data from the new global database of Nd provided by Blanchet (2019). (d) εNd of river runoff (in εNd unit) presented in
Ayache et al. (2016) with in situ data from the new global database of Nd provided by Blanchet (2019). (e) [Nd] dust particle fields from the
global database of (Blanchet, 2019; Robinson et al., 2021). (f) ε Nd dust particle fields from the global database Blanchet (2019); Robinson
et al. (2021). (g) Average deposition fluxes of dust (in g m−2) from the ALADIN climate model (Nabat et al., 2015) (106 kg m−2 s−1).
(h) Runoff map prescribed by the NEMO-MED12 model (in 105 g m−2 s−1).

Table 3. Estimation of the Nd flux from different sources in the Mediterranean Sea in comparison with the global ocean.

Med Sea % Global ocean %
sum of flux in g((Nd) yr−1) sum of flux in g((Nd) yr−1)

Arsouze et al. (2009)

Global flux boundary source 89.4× 106 84.44 1.1 ×1010 96.7
Dissolve fluvial material 3.7× 106 3.46 2.6× 108 2.3
Atmospheric dusts 5.2× 106 4.91 1.0× 108 0.96
Atlantic inflow 7.62× 106 7.19 – –
Total 10.6× 107 1.136× 1010

simulation considered dissolved river discharge in addition to
sediment remobilisation. In the SedRivDust simulation, we
explicitly represented the three main inputs of Nd (i.e. sedi-
ment remobilisation, river discharge, and atmospheric dust).
In order to explore the sensitivity of simulated Mediterranean
water Nd concentration and isotopic composition to the spa-

tial distribution of the atmospheric Nd flux, we performed
two more simulations under different dust supplies. In the
Dust-CST simulation, the conditions were the same as in
SedRivDust except that εNd and [Nd] in atmospheric dusts
were set constant at −12 and 30 µg g−1, respectively (esti-
mated as the average values of previously published data
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Figure 3. Horizontal maps of Nd concentration (in pmol/mol) averaged over the depth ranges of surface layer (0–200 m; left column),
intermediate layer (250–600 m; middle column), and deep layer (600–3500 m; right column). Results from SedOnly experiment with only
sediment remobilisation (a, b, c), SedRiv experiment with sediment and river input (d, e, f), and SedRivDust experiment with inputs from
sediment, river, and atmospheric dusts (g, h, i). Colour-filled dots represent in situ observations from (Tachikawa et al., 2004; Vance et al.,
2004; Henry et al., 1994; Dubois-Dauphin et al., 2017; Garcia-Solsona and Jeandel, 2020; Montagna et al., 2022). Both model and in situ
data use the same colour scale.

over the whole Mediterranean basin). In the Dust-EWbasin
simulation, we applied constant values of εNd and [Nd] in
each basin (i.e. average value for each basin): εNd=−11 and
[Nd]= 31 µg g−1 in the eastern basin, and εNd=−12.5 and
[Nd]= 27.5 µg g−1 in the western basin.

Yet, significant uncertainty remains about the dissolution
rates of particulate Nd from atmospheric dusts, which are
suggested to vary from 2 % to 50 % (e.g. Greaves et al., 1994;
Tachikawa et al., 1999). More recently, Zhang (2008) esti-
mated that this percentage does not exceed 10 %. Arsouze
et al. (2009) and Gu et al. (2019) used a ratio of 2 % for
the global Nd budget, i.e. only 2 % of Nd brought by aeo-
lian dusts are dissolved by contact with seawater and 98 %
sinks directly with the particles to the seafloor. Arsouze et al.
(2009) performed sensitivity tests on the dissolution rate of
Nd in atmospheric dusts, which did not significantly change
the results of the simulation at the global scale. In order to
examine the impact of greater dust dissolution on the Nd dis-
tribution at the regional scale, we performed an additional
simulation in which we increased the Nd dissolution rate in

the atmospheric dusts from 2 % to 10 % (i.e. the maximum
value as suggested by Zhang, 2008).

In the present study, we use equilibrium partition coeffi-
cients, “K”, from previous modelling studies (Arsouze et al.,
2009; Rempfer et al., 2011; Gu et al., 2019). However, the
K values of the partition coefficients are still difficult to con-
strain because the very limited data are available and because
all the modelling studies were made at the global scale. We
first used the partition coefficient previously considered in
previous Nd modelling studies in the global ocean with the
PISCES model, and we performed some sensitivity simula-
tions on the K values (see Sect. 4.3 and Figs. A1 and A2 in
the Appendix).

3 Results

3.1 Nd concentration

We performed a series of simulations sequentially integrating
the various external sources: SedOnly, SedRiv, and SedRiv-
Dust. The resulting horizontal distributions of [Nd] in the
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Figure 4. E–W vertical section of [Nd] (in pmol kg−1) in the western Mediterranean basin from SedOnly (a), SedRiv (c), and SedRivDust (e).
E–W vertical section of [Nd] (in pmol kg−1) in the western Mediterranean basin from SedOnly (b), SedRiv (d), and SedRivDust (f); colour-
filled dots represent in situ observations from Tachikawa et al. (2004); Vance et al. (2004); Henry et al. (1994); Dubois-Dauphin et al. (2017);
Garcia-Solsona and Jeandel (2020); Montagna et al. (2022). Both model and in situ data use the same colour scale.

surface (0–200 m), intermediate (200–600 m), and deep wa-
ters (600–3500 m) are represented in Fig. 3, together with a
compilation of in situ observations from Spivack and Wasser-
burg (1988), Greaves et al. (1991), Tachikawa et al. (2004),
Vance et al. (2004), Henry et al. (1994), Dubois-Dauphin
et al. (2017), Gacic et al. (2010), and Montagna et al. (2022).

Figure 4 shows the Nd concentrations along a longitudi-
nal transect in both the eastern (EMed) and western (WMed)
basins for the three experiments. Without atmospheric dust
(SedOnly and SedRiv), the simulated Nd concentrations are
globally similar, homogeneous, and very low compared to
observations in the whole water column (Figs. 3, 4). More
particularly, in surface waters the simulated Nd concentra-
tions are lower than 4 pmol kg−1, while observations in-
dicate values of ∼ 30 pmol kg−1 (Tachikawa et al., 2004).
Nd concentration is increasing with depth in these two ex-
periments; however, simulated concentrations only amount
to roughly half the observed concentrations in intermedi-
ate waters. Adding atmospheric deposition in the SedRiv-
Dust experiment considerably enhances Nd concentrations
and improves the modelling results. Simulated [Nd] are in-
creasing in the whole water column, towards levels sim-

ilar to the observations (Fig. 3g, h, and i). However, the
surface layer Nd concentration increase leads to values up
to 10 pmol kg−1 in the western basin and of the order of
25 pmol kg−1 on average in the eastern basin (Fig. 4e); these
values are more comparable to but still lower than the ob-
servations of 30 pmol kg−1 on average in the whole basin.
Including the atmospheric dust inputs in the SedRivDust ex-
periment also changes drastically the vertical distribution of
the tracer. It is particularly well illustrated by the averaged
vertical profiles against in situ observations constructed in
the eastern and western basin and the whole Mediterranean
Sea (Fig. 5). The consideration of atmospheric dust inputs
generates a more realistic vertical profile and produces a Nd
concentration maximum in the subsurface layer (200–800 m
depth) detected in the observations that was not simulated in
the first two experiments. The two experiments, with a con-
stant [Nd] value for the whole basin (Dust-CST) and with
constant [Nd] values for each basin (Dust-EWbasin), lead to
relatively similar results for [Nd] in the surface water and
average [Nd] vertical profiles to those of the SedRivDust ex-
periment, as shown in Fig. 5.
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Figure 5. Upper panel is the comparison of average vertical profiles of [Nd] (in pmol kg−1) in the western basin (a), eastern basin (b), and
whole Mediterranean Sea (c), presenting model results against in situ data from (Tachikawa et al., 2004; Vance et al., 2004; Henry et al.,
1994; Dubois-Dauphin et al., 2017; Garcia-Solsona and Jeandel, 2020; Montagna et al., 2022). Lower panel is the same as in upper panel for
εNd (in ε unit).

3.2 Isotopic composition

In surface waters, the three experiments generate an E–W
gradient in εNd, with more radiogenic values in the eastern
basin than in the western basin. This is consistent with the
observations (Fig. 6). However, the first two simulations, Se-
dOnly and SedRiv, globally overestimate the surface isotopic
signatures with unrealistic radiogenic values in the Aegean
Sea and around the Egyptian coast. In intermediate and deep
waters, modelled Nd isotopic composition values are glob-
ally in agreement with the observations in the eastern basin
(Figs. 5, 6, and 7) but largely too radiogenic in the west-
ern basin. Considering atmospheric deposition (SedRivDust)
again significantly improves the results, producing more re-
alistic Nd isotopic signatures in the surface water of the west-
ern basin (Fig. 6g).

The SedRivDust model simulates the observed εNd east–
west gradient characterising the surface waters (Fig. 6g),
with unradiogenic waters from the Atlantic progressively
shifting toward more radiogenic values in the Levantine basin
(Tachikawa et al., 2004). The extrema in the Aegean sub-
basin and along the Egyptian coast that are simulated in Se-
dOnly and SedRiv are reduced toward more realistic values.

The modelled isotopic composition now reproduces more
correctly the observed E–W gradients in the intermediate and
deep waters, which are less pronounced than in the surface
water (Figs. 6 and 7). Overall, the average vertical profile of
εNd simulated in the SedRivDust experiment is more con-
sistent with the observed vertical profile (Fig. 5f) in the sur-
face and intermediate water, especially in the western basin
where SeOnly and SedRiv largely overestimate the observa-
tions (Fig. 5d). This larger impact in the western basin is due
to an input of dust with a low isotopic value in the south-
western basin (εNd=∼−14) while in the eastern basin, the
dust input has a value more comparable with in situ observa-
tions (εNd=∼−12 for both). The Nd isotopic composition
is largely affected by the εNd value in the atmospheric dusts,
as shown by the Dust-CST and Dust-EWbasin experiments,
which largely underestimate εNd in the Mediterranean Sea
as compared with in situ data and the SedRivDust experi-
ment (Fig. 5).
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Figure 6. Same as Fig. 3 but for εNd (in εNd unit).

Figure 7. Same as Fig. 4 but for εNd (in εNd unit).

Biogeosciences, 20, 205–227, 2023 https://doi.org/10.5194/bg-20-205-2023



M. Ayache et al.: Neodymium budget in the Mediterranean Sea 217

4 Discussion

We simultaneously modelled εNd and [Nd] and explicitly
represented all sources of Nd in the Mediterranean Sea by
using a high-resolution coupled model (NEMO-MED12-
PISCES), which includes the transport of Nd both by ocean
dynamics and particle scavenging. This modelling study con-
fronted with observations provided new insights on the im-
pact of the various sources of Nd on the εNd distribution and
Nd budget in the Mediterranean Sea.

4.1 The Nd budget in the Mediterranean Sea

The SedRivDust experiment provided the best agreements
between simulation and in situ observations and allowed us
to derive a global Nd budget in the Mediterranean Sea. In this
simulation, the total BE input (the flux of Nd resulting from
BE processes) is estimated at 89.43× 106 g(Nd) yr−1 and
represents∼ 84.44 % of the total flux of Nd into the Mediter-
ranean basin. This estimation is relatively low but compa-
rable to the estimation of the net Nd release from the sedi-
ment by BE processes at the global scale (96.7 %, Arsouze
et al., 2009). This result confirms that sediment deposited
at the ocean boundaries (i.e. margins) should be considered
as a major Nd source to the ocean and must be considered
to simulate a realistic Nd oceanic cycle. Dissolved Nd input
by rivers amounts to 3.6× 106 g(Nd) yr−1, which represents
3.46 % of the total Nd input to the Mediterranean Sea (2.3%
at the global scale, Arsouze et al., 2009). The atmospheric Nd
input simulated here is 5.2× 106 g(Nd) yr−1, representing
5 % of the total Nd input. This flux is more than 5 times the
global ocean one (0.96 % of the total Nd flux, Arsouze et al.,
2009). Although significant, the relative contribution of the
atmospheric source to the Mediterranean basin remains low
compared to the BE input. Yet, it was essential to simulate
more realistic Nd concentrations and isotopic compositions
in the Mediterranean basin. Finally, 7.62× 106 g(Nd) yr−1

comes from the Atlantic across the Strait of Gibraltar, rep-
resenting 7 % of the total Nd input to the Mediterranean Sea.
The residence time of Nd in the Mediterranean Sea was cal-
culated using the sum of flux and the total quantity of Nd sim-
ulated in the sea (τ =QNd/S(NdT)) for each experiment (see
Table 2). The residence time of SedRivDust experiment is 68
years, which is shorter than the residence time of Mediter-
ranean Sea water (up to ∼ 150 years, Roether et al., 1996),
and consistent with the variations of εNd between the major
oceanic water masses. The simulated Nd concentrations are
too low in the surface water of Gibraltar strait (Figs. 3 and
4), leading to an underestimation of Nd inflow from the At-
lantic ocean. Hence, the residence time calculated here could
be overestimated and provides a upper limit of Nd residence
time in the Mediterranean Sea.

4.2 Evaluation of the impact of the external sources on
the Nd Mediterranean Sea cycle

The first simulation, considering only sediment remobili-
sation effects along the continental margin (i.e. boundary
source, SedOnly experiment), generates some characteristics
of large-scale distribution of [Nd] and εNd and confirms sed-
iment remobilisation as the major source of Nd in the ma-
rine environment. It reinforces previous conclusions derived
from the global ocean that BE is a major process in the Nd
oceanic cycle. Nevertheless, on its own, sediment remobilisa-
tion leads to a too-radiogenic isotopic Nd signature in the sur-
face and intermediate waters as compared with in situ obser-
vations, as was previously observed by Ayache et al. (2016)
and more recently by Vadsaria et al. (2019), both using more
simplified modelling approaches. The results of this exper-
iment also generated low and homogeneous Nd concentra-
tions in the surface waters that largely underestimated in situ
observations. This suggests that this unique source could not
control alone the general distribution of [Nd] in the Mediter-
ranean Sea.

Adding the dissolved river discharge in the second experi-
ment (SedRiv) is not significantly affecting the modelling re-
sults. The main river systems of the Mediterranean basin (i.e.
the Nile, Po, and Rhone) are characterised by [Nd] of ∼34
ppm for the Nile, 25.77 ppm for the Rhone, and 26.85 ppm
for the Po river (Frost et al., 1986). They also display a wide
range of Nd isotopic signatures, with an average εNd value of
−10.2 for the Rhone, and more radiogenic Nd isotopic ratios
for the Nile (εNd∼−4). The SedRiv experiment generated
εNd values very close to those of the SedOnly experiment,
as the river source has a very similar isotopic signature to
its neighbouring continental margin. Moreover, the impact
of river discharge on Nd concentration are limited to the ar-
eas near the catchment of the main rivers, i.e. the Rhone river
where the impact is clear in the surface water (see Fig. A6).
Almost all the main rivers presented a significant discharge
decreases (Ludwig et al., 2009) as a consequence of massive
dam constructions (e.g. Aswan high dam for Nile river). Fi-
nally, it is worth noting that the influence of river sediments
is implicitly integrated in the BE term.

The Saharan and Middle East deserts located south and
east of the Mediterranean Sea are sources of intense dust de-
position events that affect the whole basin (Guerzoni et al.,
1997). The Nd isotopic signatures of aerosols generated by
these deserts range from −9.2 in the eastern part of northern
Africa to −16 in the central and western parts of northern
Africa (Grousset and Biscaye, 2005; Scheuvens et al., 2013).
Previous studies suggest that the εNd distribution at the near
surface largely reflects river and aerosol inputs (Piepgras and
Wasserburg, 1987; Jones et al., 2008; Arsouze et al., 2009).
Including the atmospheric dust input in the SedRivDust ex-
periment greatly improved our simulation of the Nd Mediter-
ranean cycle, with a more realistic simulation of εNd of the
main water masses of the Mediterranean Sea, and corrected
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globally the too-radiogenic bias simulated in the first two ex-
periments (i.e. SedOnly and SedRiv). Even if the Nd iso-
topic compositions appear relatively too low in the Eastern
Basin surface waters, they are more realistic in subsurface
and deep-water masses. In addition, including aeolian dust
added a significant amount of dissolved Nd to the surface
water in all sub-basins, which greatly improved the simu-
lated [Nd] concentrations toward the range of observed val-
ues. This increase in surface concentration also allows us
to reproduce a more realistic average vertical profile, with a
subsurface maximum detected in some in situ data, as shown
in Fig. A7, especially in the Ionian and Algerian sub-basins
(see Fig. A7). This signal corresponds to the presence of
a well-documented deep chlorophyll maximum (DCM) in
the Mediterranean Sea (Cullen, 1982), whose associated pri-
mary production generates maxima in particle concentration
(Fig. A5) where Nd molecules can be absorbed and main-
tained in the water column.

The fundamental difference between the dust and river wa-
ter flux is the fact that the atmospheric input contributes Nd
to the whole Mediterranean surface water whereas the river-
ine influence is geographically localised. Spatial extension
of the external source influence can be determined by the
balance between water advection that transports the source
signal from the source region and scavenging that removes
added Nd from the water column. When the scavenging ef-
fect is dominant, the influence of external source would be
localised. This could be the case for riverine inputs with vis-
ible influence is limited to river mouths. In contrast, the dust
inputs affect the whole Mediterranean surface water includ-
ing areas with low marine particle concentrations (Fig. A5),
allowing wider spatial extension of the source influence. This
hypothesis is supported by the strong increase in total Nd
amount in the Mediterranean Sea reflecting dust contribution
(Table 2). The Nd added from dust source is vertically trans-
ported, leading to an increase in Nd concentration in the in-
termediate and deep waters, leading to better agreement with
the field observation (Fig. A7). In addition, the contribution
of unradiogenic Nd from dust corrects the positive bias of
seawater Nd isotopic composition induced by strong BE in-
fluence (Fig. 5).

Although the Nd flux associated with atmospheric deposi-
tion is much smaller than the BE flux (Tables 2 and 3), the
results of our simulations show a significant impact of at-
mospheric dust on the Nd distribution in the whole basin. It
seems paradoxical, because dust input represents only∼ 5 %
of the total Nd input to the Mediterranean Sea. Sensitivity
tests performed to better understand the influence of this
source on the Nd oceanic cycle show that an increasing
dust dissolution ratio give a globally higher Nd concentra-
tion (Fig. A3) and less radiogenic water in the surface water
(Fig. A4) as a consequence of a more efficient scavenging,
i.e. a more efficient transfer of tracer to the intermediate and
deep waters. Hence, the best model–data fit is obtained when
applying a solubility of 2 % as suggested in many previously

published studies (e.g. Tachikawa et al., 1999; Lacan and
Jeandel, 2001; Arraes-Mescoff et al., 2001; Arsouze et al.,
2009; Rempfer et al., 2011; Gu et al., 2019; Pöppelmeier
et al., 2019). Considering various spatial distributions of Nd
dust input led to similar results for surface water [Nd] as well
as Nd vertical profiles (Fig. 5). This was however not the
case for the Nd isotopic composition. Low dust εNd values
characterise the western basin (−14), while they are more
radiogenic in the eastern basin (Fig. 2f). As the magnitude
of dust deposition is globally larger in the eastern than in
the western basin (Fig. 2g), imposing constant values or av-
eraged basin values (eastern and western basins) to the dust
Nd isotopic composition led to unrealistically low radiogenic
values suggesting that considering the spatial distribution of
the Nd isotopic composition in dust is essential. These re-
sults underlined that the modelled Mediterranean seawater
Nd isotopic composition distribution is more sensitive than
the modelled Nd concentration to the spatial characteristics
of εNd in the atmospheric dust.

4.3 Internal cycle

The internal cycle also has a crucial role in the vertical distri-
bution of Nd, reversible scavenging being the major process
to transfer the tracer into the deep layers (Nozaki et al., 1981;
Siddall et al., 2005; Dutay et al., 2009; Arsouze et al., 2009).
Internal Nd cycle depends on several parameters, particle
fields (POCs, POCb, CaCO3, and BSi), partition coefficients
(K), and settling velocities (w). Running many simulations
for tuning these parameters is out of reach with the high com-
putational cost of our high-resolution model. The scavenging
process is controlled by the partition coefficients and particle
concentration. PISCES includes two categories of particles,
small POC particles with a low sinking speed (3 m d−1) and
large particles with a larger sinking speed (50 m d−1). The
pool of large particles contains three types of particles: POC,
CaCO3, and BSi. There is currently not enough data to con-
strain the partition coefficients for all these kinds of particles.
We carried out sensitivity tests to assess the impact of the in-
ternal cycle on the Nd distribution and try to reach a better
agreement with the observations. The best compromise was
found by increasing the partition coefficient for the small par-
ticles only (cf. Fig. A1). This result agrees with our previous
modelling studies on various tracers indicating that the inter-
nal cycle and vertical transport of Nd are mainly controlled
by the small particle pool (Arsouze et al., 2009), as was ob-
served for 231Pa and 230Th (Dutay et al., 2009) and also in
classical analytical studies (Nozaki et al., 1981; Bacon and
Anderson, 1982). The scavenging process also affects the
vertical profile of the Nd isotopic composition, lowering the
Nd isotopic value in the water column. This study illustrates
the role of scavenging in regulating the vertical distribution
of Nd in the Mediterranean basin. Our objective is not to esti-
mate the most realistic values of K for our simulation, as the
simplification of our model could also be revisited and con-
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sidered in the interpretation of our results. The parameter-
isation of the vertical cycling (scavenging/remineralisation)
considerably constrains the ability of the model to simulate
the vertical profile of Nd concentrations, as shown in Fig. 5
the model underestimates the [Nd] of surface water as a con-
sequence of an important transfer of tracer to the interme-
diate and deep water. For instance, the equilibrium hypothe-
sis between the dissolved and particulate phases may not be
always valid, especially for the large particles, whose rapid
sinking may not lead to equilibrium between the two phases.

Additionally, the concentration of particles is an important
parameter to consider. An evaluation of the particle fields
simulated by PISCES at the global scale revealed that the
small particles field (POCs) is largely underestimated in deep
water (up to factor 4) and by a factor 2 for CaCO3 concen-
tration as compared to observations (Dutay et al., 2009; van
Hulten et al., 2018). This issue highlights the need to con-
sider more carefully the representation of the various parti-
cle fields, for the regional configuration of the Mediterranean
basin (NEMO-MED12/PISCES) as well, but this work is out
of the scope of this preliminary study.

5 Conclusions

This study proposes the first high-resolution simulation
of both Nd concentration and isotopic composition in the
Mediterranean Sea, using a regional coupled dynamical/bio-
geochemical model and a reversible scavenging model to
represent the exchange between the particulate and dissolved
phases. We explicitly represented the main Nd sources from
sedimentary remobilisation along continental margins (i.e.
boundary exchange) as well as river discharge and atmo-
spheric deposition at the surface water. The objective was
to determine and quantify the various sources involved in the
Nd cycle and to explore the sensitivity to atmospheric dust
deposition in the Mediterranean Sea.

It was confirmed that the sediment deposited on the mar-
gins is a major source of Nd to the ocean and is fundamen-
tal to simulating a realistic Nd oceanic cycle. We estimated
the BE flux at 89.43× 106 g(Nd) yr−1, which represents ∼
84.4 % of total flux of Nd entering the Mediterranean basin
but is relatively lower than that estimated at the global scale
(96.7 %). The rivers provide 3.66× 106 g(Nd) yr−1, which
represents 3.5 % of the total flow into the Mediterranean,
compared with 2.3 % on the global scale. The flux of Nd
from atmospheric dusts is estimated at 5.2× 106 g(Nd) yr−1,
representing 5 % of the total Nd input, higher than in the
global ocean, with only 0.96 % of the total Nd flux. The At-
lantic inflow adds 7.62× 106 g(Nd) yr−1 across the Strait of
Gibraltar, which constitutes 7.1 % of the total Nd input. The
total quantity of Nd in Mediterranean Sea was estimated to
7.28× 109 g(Nd); this leads to a new calculated Nd residence
time of ∼ 68 year. The Nd residence time calculated here
could be overestimated and provides a higher limit because

the simulated [Nd] are too low in the surface water of Gibral-
tar strait.

The impacts of river discharge on Nd concentration are
limited to the areas near the catchments of the main rivers,
e.g. the Rhone river, and lead to very low [Nd] in the sur-
face water and too-radiogenic εNd as compared with in situ
data. Considering atmospheric dust inputs largely improved
our simulation of the Nd oceanic cycle, with more realistic
simulations of εNd in the main water masses of the Mediter-
ranean Sea, and corrected the too-radiogenic bias simulated
in our first two experiments (considering only the BE and
river inputs), especially in the western basin. It also greatly
improved the simulation of [Nd], generating values closer to
the observed data, as well as a characteristic specific to the
Mediterranean basin, a maximum in subsurface associated to
the DCM that was detected in the observations also. Based on
the results of these sensitivity experiments, we suggest that
the Nd cycle in the Mediterranean Sea is more impacted by
atmospheric dust as compared to the global ocean due to its
almost landlocked situation highly affected by dust deposi-
tion from the Sahara and Middle East deserts. This work also
suggests that εNd is more sensitive to the spatial distribution
of Nd in the atmospheric dust and confirmed that more in situ
data and a better constraint of Nd fluxes from dissolved aeo-
lian particles are necessary to improve our knowledge of the
cycles of Nd in the Mediterranean Sea.

Atmospheric dusts are only deposited in the surface layer
(first model level) with a solubility ratio of 2 %, but uncer-
tainty remains significant regarding their dissolution rates; a
better constraint of this process would contribute to improve
our constraint on the Nd cycle, especially in the Mediter-
ranean basin where atmospheric deposition has a relatively
greater influence. Additionally, more constraints on the K
partition coefficient for the various types of particles will
help to refine the representation of the scavenging processes
in the water column that control the transfer of the tracer into
the intermediate and deep layers.

Clearly, more simulations, laboratory experiments, and
field observations are needed to better assess the influence
of external sources (e.g. atmospheric dust, river, etc.) versus
that of the internal cycle (i.e. scavenging/remineralisation).
For instance, it would be useful to conduct similar analyses
using other tracers (e.g. Sr, Si, etc.), or to use a more sta-
tistical analysis (e.g. TMM method) based on a multi-tracer
approach. We demonstrated here the significant impact of at-
mospheric dusts on the Nd oceanic cycle; it may be worth
investigating in future studies their impact in other regions
strongly affected by atmospheric input.
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Appendix A

Figure A1. Left panel is the E–W vertical section of [Nd] (in pmol kg−1) in the entire Mediterranean Sea using the kd value from (Arsouze
et al., 2008) (a), using the kd value from this study (b) and the difference between the two (c). Right panel is the comparison of average
vertical profiles of [Nd] (in pmol kg−1) in the whole Mediterranean Sea from the two experiments (the experiment of kd value from (Arsouze
et al., 2008) in green, the experiment using kd value from this study in blue and the experience with increased Kd in red) against in situ data
(black line) from Tachikawa et al. (2004); Vance et al. (2004); Henry et al. (1994); Dubois-Dauphin et al. (2017); Garcia-Solsona and Jeandel
(2020); Montagna et al. (2022).

Figure A2. Same as Fig. A1 but for εNd (in εNd unit).
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Figure A3. Left panel is the E–W vertical section of [Nd] (in pmol kg−1) in the entire Mediterranean Sea based on a 10 % of dust solu-
bility (a), a 2 % of dust solubility (b), and the difference between the two (c). Right panel is the comparison of average vertical profiles of
[Nd] (in pmol kg−1) in the whole Mediterranean Sea from the two experiments (the experiment of 2 % of dust solubility in blue and the
experiment based on a 10 % of dust solubility in green) against in situ data (black line) from Tachikawa et al. (2004); Vance et al. (2004);
Henry et al. (1994); Dubois-Dauphin et al. (2017); Garcia-Solsona and Jeandel (2020); Montagna et al. (2022).

Figure A4. Same as Fig. A3 but for εNd (in εNd unit).
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Figure A5. E–W vertical section in the eastern Mediterranean basin (left panel) and comparison of average vertical profiles (right panel)
for monthly mean climatological values of POCs (small organic carbon concentration), POCb (big organic carbon concentration), CaCO3
(calcite concentration), and CHL (total chlorophyll) for the western basin (red line) and eastern basin (blue line) in µmol L−1.

Figure A6. Comparison of the vertical profiles between in situ data (from Henry et al. (1994)) and model output for (a) [Nd] (in pmol kg−1)
and εNd in (b).
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Figure A7. (a) Map of the NEMO-MED12 model domain and bathymetry with location of the main Mediterranean sub-basins and in
situ observation. The solid lines (in red) represent the trans-Mediterranean vertical section. Comparison of the vertical profiles of [Nd] (in
pmol kg−1) between in situ data and model output for Levantine (b), Aegean (c), Ionian (d), Algerian (e), Gulf of Lion (f), and Alboran
sub-basins.
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