Iban Guinebert
email: iban.guinebert@onera.fr

Andres Barrilado

Franck Kevin Delma

Galtie ´2

Claire Pagetti

Quality of Fault Injection Strategies on Hardware Accelerator

Keywords: Formal modelling of hardware, Failure modes, Fault injection

Safety-critical systems require understanding and mitigating the behavior of processors in case of failures. In order to analyze and verify hardware architectures, intensive fault injection campaigns are made. This work focuses on assessing the quality of fault injection strategies. The idea is to identify all failure scenarios associated to a hardware accelerator and estimate the coverage associated to a strategy. We have applied the approach on a leNet5 streaming architecture accelerator.

Introduction

In the automotive domain, ISO 26262 [START_REF] Jeon | Automotive hardware development according to ISO 26262[END_REF] is the standard defining the functional safety process. Among the objectives, any semiconductor component (e.g. processor) must be able to detect and mitigate hardware failures that have an impact on the safety of the function running on it.

Context

The traditional approach [START_REF] Benso | A Functional verification based fault injection environment[END_REF] to develop ISO26262 compliant processors consists of (1) identifying the failure modes, (2) defining an adequate detection mechanism that permits to detect hardware failures at run-time and (3) realizing intensive fault injection campaigns to verify and validate the design. A classical detection mechanism consists of duplicating the computing units and of comparing each instruction in lock step manner [START_REF] Iturbe | A triple core lock-step (TCLS) ARM® cortex®-R5 processor for safety-critical and ultra-reliable applications[END_REF]. If this solution has worked perfectly so far, the introduction of hardware accelerator to execute more demanding applications (such as machine learning applications) changes the situation. Indeed, duplicating all computing units would imply the use of a large amount of silicon space and require a lot of power as illustrated by the system-on-a-chip of Tesla [START_REF] Talpes | Compute solution for tesla's full self-driving computer[END_REF]. Thus, in the future, new detection strategies will have to be defined.

In any case, verification and validation activities are of paramount importance to assess the quality of a detection mechanism, i.e. does it lead indeed to the expected detection capacity? These V & V activities start by understanding in depth the failure scenarios, in particular by identifying the safety impact of failures combinations. Then, intensive and representative fault injection campaigns must be defined in order to stress the architecture when activating the failure scenarios. We focus on hardware-level fault injection because this encompasses real abnormal behaviors. Most of the works propose random fault injection [START_REF] Mittal | A survey on modeling and improving reliability of DNN algorithms and accelerators[END_REF], which is insufficient to provide a full coverage of all failure scenarios. On the other hand, realizing naive exhaustive fault injection campaigns is unrealistic as it could take too much time (e.g. one year). Thus, we propose to explore tractable exhaustive/systematic analyses.

Contributions

A fault injection campaign is composed of a fault injection strategy (specifying where to inject the faults and how to code them) and of an activation strategy (indicating how to identify and generate a set of representative covering inputs). The activation strategy is outside the scope of the present article, the interested reader can find numerous methods (like [START_REF] Eggersglüß | On optimization-based ATPG and its application for highly compacted test sets[END_REF]) addressing the Automatic Test Pattern Generation problem (ATPG). The purpose of the present work is to help assess the quality of fault injection strategies. For this purpose, we first define a formalization of the hardware behavior (Sect. 2) under normal circumstances or under fault. Then, we proposed a methodology (Sect. 3) to identify and quantitatively evaluate the failure scenarios involving a SDC (silent data corruption) failure. We define a coverage metric for fault injection strategies with respect to the full set of failure scenarios. We applied the methodology (Sects. 2.3 and 4) on a leNet5 streaming architecture accelerator and compared the quality of three injection strategies.

Abstract Semantics of Hardware Architecture

In the following we define an abstraction of hardware architectures that allows to describe the behavior of circuits at the Register Transfer Level (RTL).

Semantics of Atomic Components

The hardware is composed of several components where the smallest units are the atomic components. The design is hierarchical, meaning that a component contains several (atomic or non-atomic) components. The description consists of the combination of two parts: the topology details the components and their connections, whereas the dynamic details the data flow driving the communication between or within components. We consider typical atomic components building modern hardware.

Definition 1 (Atomic component). An atomic component c is:

-either combinational (e.g. mult, add, max); in this case it applies an operation on several inputs and computes several outputs; -or a register of size b reg ; in this case it can store some data of size ≤ b reg bits. A register has one input and possibly more than one output if the data is required by several components.

The set of atomic components is denoted by C.

We abstract from the complex logic of the hardware design in order to only represent the behavior by its data-flow. The logic is encoded by some inputs to be instantiated for each specific hardware. The formalization reuses the notion of flow, à la lustre [START_REF] Halbwachs | The synchronous data flow programming language LUSTRE[END_REF] or à la tagged signal model [START_REF] Lee | A framework for comparing models of computation[END_REF]. We consider finite executions of a program that traverse some components and terminate. The next execution will start after the end of the previous execution. The input and output flows of combinational components are all synchronous. Indeed, the computation is considered to be instantaneous because the propagation delay within those components is less than a clock period.

Definition 2 (Flow).

A flow f = ((t k , d k)) k<N is

Property 1 (Combinational components semantics).

Let c be a combinational component, then ∀i < n in (c), j < n out (c): c.in i c.out j .

The registers store data and cannot be read instantaneously. Data within the register is pushed out by the input flow. So when data arrives, it is stored until a new one overwrites it. In that case, a reader can read any instance between two successive data writings.

Definition 4 (Shift function)

. Let f = ((t k , d k)) k<N ∈ F, let I ⊆ [0, N[denote a finite subset of indices, let (e k) k∈I denote a sequence of integers. The function shft f is defined by shft f (I, (e k) k∈I) = ((T f (k) + e k , d k)) k∈I .

Definition 5 (Register semantics).

A register r = (O k , (e j) j∈O k) k<nout(r) is defined by O k denoting the set of indices of data d j that can be read from r.out k and (e j) j∈O k the delays before reading the data d j . For an input flow f = r.in = ((t k , d k)) k<N , the semantics of r is: for all p < n out (r), r.out p = shft f (O p , (e k) k∈Op). The following constraints must hold for the delays: for all

k ∈ O p , 1 ≤ e k and for all k ∈ O p \ {N -1}, e k ≤ T f (k + 1) -T f (k).

Semantics of Components

A design consists in assembling components by connecting them or grouping them in higher-level components.

Property 2 (Communicating components). Let c 1 , c 2 be two components (atomic or not) such that ∃i, j : c 1 .out i is connected to c 2 .in j . Then, c 1 .out i = c 2 .in j .

Property 3 (Hierarchical components). Let c be a hierarchical component. Let c 1 be a component inside c such that ∃i, j : c.in i (resp. c.out i) is connected to c 1 .in j (resp. c 1 .out j). Then c.in i = c 1 .in j (resp. c.out i = c 1 .out j).

Example 1 (Example of non-atomic component).

Let c 1 and c 2 two components within a component c as presented in Fig. 1. According to Properties 2 and 3, ∀i ∈ [0, 3]: Extractors are very common components, they consist of a series of connected registers that allow to select from an input flow the sub-set of data needed by other components (see Fig. 2).

c.in i = c 1 .in i and c 2 .in i = c 1 .out i ; ∀i ∈ [0, 1]: c.out i = c 2 .out i . C 1 C 2 in 0 in 1 in 2 in 3 out 0 out 1

Definition 6 (Extractors).

An extractor e = (r p) p<Ne is defined by a series of N e connected registers r p . We assume that the first output flow of each register is connected to the next register, i.e. for p < N e -1, r p .out 0 is connected to r p+1 .in. Note that atomic registers are a particular case of extractors where N e = 1.

Property 4 (Sub-flow extracted by an extractor).

For an extractor e = (r p) p<Ne , we can reconstruct the indices I p of the data extracted from the input flow r 0 .in that are output by each register r p . Let

r p = (O p k , (e j) j∈O p k) k<nout(rp) , let O p k (i) (resp. I p k (i))
the function returning the i-th element of the sorted set O p k (resp. I p k). First we decompose I p per output flow, thus

I p = ∪ k<nout(rp) I p k .
Then, for all p < N e -1 and k < n out (r p), we can compute I p k knowing the sets (O i j) i,j (or vice versa, compute O p k knowing the sets (I i j) i,j) as follows:

-For r 0 , by Definition 5, the indices I 0 k extracted from r 0 .in are directly given by O 0 k . So ∀k < n out (r 0), So

I 0 k = O 0 k ; -
∀p < N e , k ≤ n out (r p), O p k = {i < |I p-1 0 | I p-1 0 (i) ∈ I p k }.
Example 2 (Sub-flow extracted by an extractor). Let us compute the semantics of the extractor of Fig. 2 when N e = 3 (the extractor is composed of 3 registers).

I 0 0 = O 0 0 = {2} and I 0 1 = O 0 1 = {1, 2}. For p = 1, I 1 0 = {I 0 0 (i)|i ∈ O 1 0 } = {2}. For p = 2, I 2 0 = {I 1 0 (i)|i ∈ O 2 0 } = {2}
Let us illustrate the Property 4 by computing the sets O p k . We do not need all sets I p k because some can be reconstructed. For p = 0, we can compute

I 1 0 = I 2 0 = {2} and I 0 0 = I 1 0 ∪ I 2 0 = {2} thus O 0 0 = I 0 0 = {2} and O 0 1 = I 0 1 = {1, 2}. For p = 1, O 1 0 = {i < 1|I 0 0 (i) ∈ I 1 0 } = {0}. For p = 0, O 2 0 = {i < 1|I 1 0 (i) ∈ I 2 0 } = {0}.

Application of the Semantics to a Streaming Architecture

A streaming architecture is a very simple hardware where the function to be implemented is directly mapped as a set of blocks. We have implemented the leNet5 [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF] with Haddoc2 [START_REF] Abdelouahab | Tactics to directly map CNN graphs on embedded FPGAs[END_REF] as shown in Fig. 4. leNet5 is a convolutional neural network (CNN) trained to recognize handwritten digits between 0 and 9 from the MNIST [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] dataset. A CNN [START_REF] Abdelouahab | Accelerating CNN inference on FPGAs: a survey[END_REF][START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF] is a deep neural network composed of successive convolution and pooling layers, sometimes followed by fully connected layers. Input and output of CNNs (resp. of each layer) are multidimensional vectors also called tensors.

Due to lack of space, we only present how convolutions have been coded in the leNet5 hardware and their semantics. Note that the hardware architectures and semantics of other layers are quite similar to the convolutions. Our convolution hardware is composed of several extractors (see Fig. 5), the role of which is to extract from the input tensor the values that will be used during the convolution. From the tensor stored in the extractors, the convolution for one feature map is computed by means of several multipliers and one adder adding all the multiplication results (see Fig. 6); this is often referred to as a dot product. On the output side, a max implements the ReLU function. +1. Note that the parameters w in , h in , h s , w s , h p , w p , w ker , h ker are chosen such that w out , h out ∈ N.

• O p k can be computed (cf. Property 4) from I Ne-1 0 = (w s c + lh s w i n) c<wout,l<hout and from all p < N e such that n out (r p) = 2,

I p 1 = (N e -1 -p + w s c + lh s w in) c<wout,l<hout .
• The delays are defined as follows: for all j ∈ O p k if j < length(r p .in) then e j = T rp.in (j + 1) -T rp.in (j) otherwise e j = T rp.in (j) + 1.

Definition 8 (Dot product).

After the c in extractors, there are c out dot products as shown in Fig. 6. Each dot product d contains N d = c in ×w ker ×h ker multipliers (mult p) p<N d . Each multiplier is followed by a register r p = (O p 0 , (e i) i∈O p 0). The outputs of the (r p) p<N d are connected to an adder add followed by a register r add = (O 0 , (e i) i∈O0). The dot product semantics is given by: 1. ∀p < N d , mult p .in = extr.out p , r p .in = mult p .out and add.in p = r p .out;

2. ∀p < N d , O p 0 = O 0 = {0, . . . , length(extr.out p) -1} 3. for all register r of d, if i < length(r.in) -1 then e i = T r.in (i + 1) -T r.in otherwise e i = T r.in (i) + 1
Property 5 (Validation). An abstract model of a system or an architecture is necessary for analyses, but it is mandatory for the model to represent correctly and accurately the system i.e. the model must be a valid representation of the architecture. In order to ensure this, we compared the flows of the defined components and layers obtained with the formalization against those obtained using RTL simulation with leNet5 parameters and inputs.

Methodology

The methodology for assessing the quality of a fault injection strategy relies first on the identification of the failure modes and the failure scenarios. Then, it is possible to count the number of faults to be injected to cover the full spectrum of possible failure scenarios. This first enumeration can be seen as a naive estimation. Successively, the definition of equivalence rules may help reduce the number of fault injections while preserving the same level of coverage (see Definition 14).

Fault Model

A fault model addresses the way a component is expected to fail [START_REF] Koopman | Lost message and system failures[END_REF]. This can also be referred to as a failure mode [START_REF] Villemeur | Reliability, Availability, Maintainability and Safety Assessment[END_REF].

Definition 9 (Failure mode).

A failure mode is defined by a type, a location (i.e. spatial location within a hardware), a time of activation (i.e. logical time when the failure mode is activated) and a duration (i.e. number of logical instants when the failure mode remains activated).

There are several types of fault models for VLSI circuits [START_REF] Avizienis | Basic concepts and taxonomy of dependable and secure computing[END_REF]. In this work, we focus on silent data corruptions (SDC) because they can have a severe functional safety impact, they are the hardest to detect and are predominant compared to non-SDC failures. We consider the two main types of SDC failure modes [START_REF] Abraham | Fault and error models for VLSI[END_REF][START_REF] Eghbal | Analytical fault tolerance assessment and metrics for TSV-Based 3D network-on-chip[END_REF].

Definition 10 (Stuck-at X). A permanent stuck-at X (SX) models a defect

where a flow is erroneously connected to logical level X where X ∈ {0, 1}. The location of a stuck-at is on a bit b of some input/output flow of an atomic component c. We assume stuck-at faults to be activated at t = 0 and because they are permanent, their duration is infinite.

Let f = ((t k , d k)) k<N a flow, a stuck-at SX f,b on f at bit b, modifies f into ((t k , d * k)) k<N where d * k is the modified value of d k .

Definition 11 (Bit-flip). A transient bit-flip (BF) is a bit inversion of a stored data. It is located on a bit b stored in a register

r = (O k , (e i) i∈O k) k<nout(rp) .
It is activated at time t and is assumed (without loss of generality) to last 1 time unit. A bit-flip on r, denoted BF r,b,t , modifies the values stored from input flow r.in at t and has an effect on the output flows r.out k if t belongs to [T r.in (i), T r.in (i) + e i] and i ∈ O k . We denote the modified value r.out k = ((t 0 , d 0 , . . . , (t i , d * i), . . . , (t n , d n)) where n = |O k | -1 and d * i is the modified value of d i . Otherwise, there is no effect on r.out k .

Identification of Failures Scenarios

We have to identify the set of failure scenarios, where a failure scenario is a combination of failures. According to ISO26262, single-point failure scenarios (i.e. involving a unique failure mode) must be studied in priority in automotive systems. This is the reason why we focus on them only.

Property 6 (Failure scenarios). The set of single-point failure scenarios is FM = c∈C FM (c). Since we consider two types of failure modes, this can be refined as for all c ∈ C FM (c) = S1 (c) ∪ S0 (c) ∪ BF (c) where SX (c) is the set of stuck-at X and BF (c) is the set of bit-flips that may occur on c. Indeed, it is sufficient to enumerate the failure scenarios per atomic component and concatenate the resulting list.

Definition 12 (Stuck-at X identification). Let c ∈ C be an atomic component. Then SX

(c) = io∈{in,out},k<n io(c) ,b<bc.io k {SX c.io k ,b }.
Combinational components are only subject to stuck-at because they take no (RTL logical) time to execute. To compute BF (r), we need to know all the activation times where a data has been stored and will be read.

Property 7 (Bit-flip identification). Let r = (O k , (e k j) j∈O k) k<nout(r) be a register and r.in = ((t i , d i)) k<N its input flow. We define the set of time intervals V r where a bit-flip may have an impact on data. Let E i = {0} ∪ k<nout(rp),i∈O k {e k i } be the set of delays for the i-th data read, E i (j) the j-th element of the sorted set E i then V r = ∪ i<N,j<|Ei|-1 {[t i + E i (j), t i + E i (j + 1)]}. Injecting a bit-flip at any t of a given interval will result in the same corruption. So the set of bit-flip is BF (r) = [t,t]∈Vr,b<br {BF r,b,t }.

Example 3 (Bit-flip identification).

Let us consider the register r 0 of the Example 2, we have [START_REF] Abraham | Fault and error models for VLSI[END_REF][START_REF] Benso | A Functional verification based fault injection environment[END_REF], [START_REF] Benso | A Functional verification based fault injection environment[END_REF][START_REF] Benso | Fault-list collapsing for fault-injection experiments[END_REF], [START_REF] Benso | Fault-list collapsing for fault-injection experiments[END_REF][START_REF] Berrojo | New techniques for speeding-up fault-injection campaigns[END_REF]}. A bit-flip occurring during [START_REF] Abraham | Fault and error models for VLSI[END_REF][START_REF] Benso | A Functional verification based fault injection environment[END_REF] corrupts d 1 on r 0 .out 0 . A bit-flip occurring during [START_REF] Benso | A Functional verification based fault injection environment[END_REF][START_REF] Benso | Fault-list collapsing for fault-injection experiments[END_REF] corrupts d 2 on r 0 .out 0 and r 0 .out 1 . Finally, a bit-flip occurring during [START_REF] Abraham | Fault and error models for VLSI[END_REF][START_REF] Benso | A Functional verification based fault injection environment[END_REF] corrupts d 2 on r 0 .out 1 .

E 0 = {0}, E 1 = {0, 3}, E 2 = {0, 1, 2} so V r0 = {

Coverage/Fault Collapsing

The purpose of the methodology is to assess the quality of a fault injection strategy. The quality consists in estimating how many single-point failure scenarios have been really triggered by the strategy among the exhaustive set identified by the Property 6. This problem shares some commonality with fault collapsing [START_REF] Berrojo | New techniques for speeding-up fault-injection campaigns[END_REF], a method used to reduce the number of faults to inject by merging those producing exactly the same safety impact. We were inspired by the collapsing rules of [START_REF] Benso | Fault-list collapsing for fault-injection experiments[END_REF]. We define an equivalence relation, valid for any input, that characterizes the effect of failures on a component.

Definition 13 (Failure mode equivalence).

For a component c and two failure modes fm 1 and fm 2 , fm 1 and fm 2 are equivalent for c, denoted fm 1 ≡ c fm 2 , iff for all possible values c.in 0 , . . . , c.in nin(c) , the flows output by c under a fm (denoted fm(c, c.in 0 , . . . , c.in nin(c)).out k) are the same for fm 1 and fm 2 , i.e. for all k < n out (c), fm 1 (c, c.in 0 , . . . , c.in nin(c)).out k = fm 2 (c, c.in 0 , . . . , c.in nin(c)).out k .

Thanks to this relation, it will be possible to identify failure modes having (or never having) equivalent impacts. We define specific rules inducing failure mode equivalence; these rules, however, may not identify all equivalent failure modes (Figs. 7, 8 and 9).

Rule 1 (Connected flows).

Let c 1 , c 2 be two connected components with c 1 .out 0 connected to c 2 .in 0 (fixing the port id to 0 and the number of connected ports does not change the genericity of the rule) and let c be the assembly component incorporating the connection c 1 , c 2 . Let fm 1 a failure mode the effect of which is impacting several output flows of c 1 . -stuck-at always affects all the outputs. Thus, if n out (r) = 1 we have SX r.in0,b ≡ r SX r.out0,b . Otherwise, we have SX r.in0,b ≡ r SX r.outj ,b -bit-flip at time t only affects the outputs that can be read at t. Thus,

if c 1 .out 0 is the only output corrupted by

fm 1 that is if n out (c 1) = 1 or fm 1 ≡ c1 SX c1.
• if exactly one output r.out k contains the corrupted data d i of in that is

E i = {e k i } then ∃![t -a, t + b] ∈ V r and BF r.in,b,t ≡ r BF r.out k ,b,ti+e k i ;
• otherwise several outputs are corrupted and there is no equivalence, that is BF r.in,b,t ≡ r BF r.out k ,b ,t .

Rule 3 (Failure modes equivalence on combinational components).

Let c be a combinational component. For all i < n in (c) and j < n out (c), for all

fm 1 ∈ {SX c.ini,b , BF c.ini,b,t } and fm 2 ∈ {SX c.outj ,b , BF c.outj ,b,t }, fm 1 ≡ c fm 2 .
Thanks to the equivalence rules we can define the coverage of a fault injection campaign.

Definition 14 (Coverage). Let FM P ⊆ FM be the subset of fault injections of a campaign P on a component c, and ≡ *

c the reflexive and transitive closure of ≡ c then the coverage of P (denoted Cov (P, FM)) is:

Cov (P , FM) = |{fm ∈ FM |∃fm ∈ FM P , fm ≡ * c fm }| |FM |

Experiments

The methodology has been applied on the leNet5 hardware defined in Sect. 2.3. As identified in the Sect. 5, many fault injection strategies have been proposed for DNN accelerators. We selected three of them:

-Input Registers: failure modes are injected at the interface of each layer.

Such a strategy is inspired from the activation layer fault injection of [START_REF] Neggaz | A reliability study on CNNs for critical embedded systems[END_REF]; -First Registers: failure modes are injected on the first register of each extractor. This strategy extends the previous one considering not only input registers. Note that a single register between two combinational components is an extractor. -Combinational Registers: failure modes are injected in all registers providing at least one output to a combinational component. This strategy is a deterministic version of the fault injection strategy of [START_REF] Salami | On the resilience of RTL NN accelerators: fault characterization and Mitigation[END_REF].

The coverage rules, defined in Sect. 3.3, have been implemented in a Scala code executed on an Intel-i7 CPU @2.9 GHz 8 GB RAM. This code can be easily adapted to assess the coverage on another streaming-based DNN accelerator.

Table 1 provides the fault coverage of each fault injection strategy per layer type (convolution, pooling, sequencer, and fully connected layers). Moreover, the estimated fault injection execution time provided by the Table 1 is extrapolated from a saboteur-based fault injection platform similar to [START_REF] Abideen | EFIC-ME: a fast emulation based fault injection control and monitoring enhancement[END_REF] and implemented on a Xilinx Virtex Ultrascale (XCVU440). The average injection time for a SX f,b or BF f,b,t has been estimated at 1.2ms for one full inference of the leNet5 on an image of the MNIST test dataset. Finally, the coverage assessment time column provides the processing time of the Scala code.

The input registers strategy reaches a poor coverage (11%) for BF and almost no coverage (<1%) for SX . The coverage is especially poor on the convolution (1% for SX , 3% for BF) and fully connected (0% for SX , 0% for BF) layers. These results suggest that DNN model-level (and software) injection may not be sufficient to ensure a significant coverage of hardware accelerator's internal faults. Indeed, the effects of an internal fault may not be equivalent to a failure at a layer interface.

The two other strategies provide considerably better BF (resp. 81% and 100%) and SX (resp. 81% and 83%) coverage. Obviously, this high coverage comes with an explosion of the estimated execution time (from 2 minutes for BF with input registers strategy to almost 4 hours with the combinational registers strategy). This result highlights the classical quality/efficiency trade-off that must be considered during the definition of a fault injection strategy.

Since the rules defined in Sect. 3.3 do not capture all equivalent failure modes, the coverage obtained is an under-approximation of the actual coverage. Nonetheless, this under-approximation is still able to ensure that all failure modes are covered by the last injection strategy.

Related Work

Abstract Model of Hardware Platform. The formalization of VHDL/verilog hardware descriptions has been widely studied in the literature. Many of the proposed formal semantics for VHDL can be found in [START_REF] Kloos | Formal semantics for VHDL[END_REF]. These semantics can abstract the hardware component either as a state/transition system -typically timed automata -enabling to perform formal verification with temporal logic like [START_REF] Bara | Formal verification of timed VHDL programs[END_REF]; or as a data processing flow -typically flow graphs like [START_REF] Reetz | Formal specification in VHDL for hardware verification[END_REF]. We focused on the propagation and final effects of a failure of the system components. That is why, like [START_REF] Reetz | Formal specification in VHDL for hardware verification[END_REF], the formalization of Sect. 2 represents only the data flow processing, the control logic being captured by the parametric definition of the registers (see Definition 5) and of their assembly (e.g. see Definition 6).

Fault Injection Strategies.

As identified by [START_REF] Ebrahimi | Fault injection acceleration by architectural importance sampling[END_REF], due to the tremendous complexity of industrial circuits, the number of failure modes in modern digital circuits makes naive systematic fault injection intractable. To tackle this issue, fault injection strategies provide guidelines to inject a fraction of the possible failure modes, small enough to be performed in a reasonable amount of time. This selection method can be statistical like [START_REF] Berrojo | New techniques for speeding-up fault-injection campaigns[END_REF] or systematic like [START_REF] Chen | Single-fault fault-collapsing analysis in sequential logic circuits[END_REF]. In both cases, the quality of these methods should be demonstrated.

Statistical Assessment of Fault Injection Strategies.

A way to assess the quality is to derive statistical confidence bounds on the fault injection campaign, knowing the failure mode distribution density. The method [START_REF] Leveugle | Statistical fault injection: quantified error and confidence[END_REF] identifies the number of scenarios that should be sampled and tested to achieve a given error margin and level of confidence. This approach is totally agnostic of the actual system under test, and needs an a priori estimation of the proportion (called p) of failure modes leading to a failure of the system. Due to the lack of inoperation feedback on DNN accelerator, the method must be applied by using a default (pessimistic) value of p. As identified by [START_REF] Tuzov | Accurate robustness assessment of HDL models through iterative statistical fault injection[END_REF], doing so deeply weakens the benefit of the approach (requiring to inject 18% of the total number of failure modes to obtain a 10 -3 error margin). Other methods such as [START_REF] Mukherjee | A systematic methodology to compute the architectural vulnerability factors for a highperformance microprocessor[END_REF] use the architecture of the system to identify the component failures that may lead to a system failure. More precisely the method of [START_REF] Mukherjee | A systematic methodology to compute the architectural vulnerability factors for a highperformance microprocessor[END_REF] can be used to identify, knowing the activation of the system, the bits within the architecture that can affect the system outputs (ACE bits). The authors propose to derive from it a statistical indicator assuming that failures are uniformly distributed. The main limitations of this method are the exclusive consideration of BF failure modes and the quality assessment the injection strategy based on a given activation, i.e. an image for leNet5.

Formal Assessment of Fault Injection Strategies.

Another way to assess the quality of the approach is to formalize and analyze the notion of failure mode equivalence classes. To define these classes, the method proposed in [START_REF] Benso | Fault-list collapsing for fault-injection experiments[END_REF] defines a list of equivalence rules for microprocessor's internal failure modes. It also relies on the notion of data life instants to identify which BF may have an impact. The authors of [START_REF] Chibani | Evaluating application-aware soft error effects in digital circuits without fault injections or probabilistic computations[END_REF] propose a way to identify these life instants with VHDL behavioral simulation. This method only requests one simulation to identify all the life instants resulting in a system failure. Nevertheless, the activation must be known to assess these critical life instants. So, unlike our method, the quality is only assessed for a given activation. Eventually, methods like [START_REF] Dao | SAT-based fault equivalence checking in functional safety verification[END_REF] use formal methods (like SAT solvers) to assess the equivalence between failure modes. More precisely, the authors of [START_REF] Dao | SAT-based fault equivalence checking in functional safety verification[END_REF] focus their work on permanent failure modes of gate-level combinational circuits. The formal methods are used to decide whether the resulting circuit (whose semantics has been altered) is semantically equivalent to the initial one. A failure mode is said equivalent to another one if and only if their impacts will be semantically equivalent whatever the activation. The notion of equivalence presented in Sect. 3.3 is inspired from this work. Nevertheless, we have adapted the equivalence rules to our description level (operation-level components) and considered the transient and permanent failure modes of sequential components.

Conclusion

We defined a generic method to assess the quality of a fault injection strategy for a given hardware. This consists in assessing how many failure scenarios equivalence sets have been explored. The coverage of a fault injection strategy requests a deep knowledge of both the behavior of the hardware accelerator and the fault model (and the effects of these faults). That is why this kind of framework may help the designer to assess efficiently (the coverage assessment execution time requires at most few minutes) the trade-off between the coverage and the efficiency of the strategy adopted. It shall be pointed out that depending on the actual implementation, some single point failures at physical-level may result in multiple failures at our abstraction level. Indeed, several atomic components may use a common cell (e.g. LUT cell) and this may lead to common cause problems. Nonetheless, these kinds of problems are known and are handled afterwards with a common cause analysis. In the future, we plan to generalize our approach by integrating more complex failure modes and lowering the level of abstraction. We will evaluate the scalability of our approach on industrial accelerators. We also plan to combine the identification of optimal fault injection strategies with ATPG and to use our formalization to generate optimal strategies, that are covering and efficient.

 a finite sequence of pairs where t k ∈ N is a time stamp and d k ∈ R is the value of f at time t k . The time stamps of f are accessed by the function T f (k) = t k for k < N. The values d k are all encoded with the same fixed number of bits denoted by b f . The length of a flow f (i.e. the number of elements of f) is accessible by length(f). The set of flows is denoted by F. Two flows f and f are synchronous, denoted by f f , if and only if T f = T f . Definition 3 (Input/output flows associated to a component). Let c be a component with n in (c) inputs (resp. n out (c) outputs); we denote by (c.in i) i<nin(c) (resp. (c.out i) i<nout(c)) the flows associated to these inputs (resp. outputs).

Fig. 1 .Fig. 2 .

 12 Fig. 1. Hierarchical component

;Fig. 3 . 2 Fig. 4 .

 324 Fig. 3. Execution of Example 2

 r 0 has 2 output flows with for the first output O 0 0 = {2} and e 2 = 1; the second O 0 1 = {1, 2} with e 1 = T r0.in (2) -T r0.in (1) and e 2 = 1. r 1 has 1 output flow with O 1 0 = {0} and e 0 = 1. r 2 has 1 output flow with O 2 0 = {0} and e 0 = 1. The execution when r 0 .in = (1, d 0)(4, d 1)(7, d 2) is given in Fig. 3. Let us illustrate the Property 4 by computing first the sets I p k . For p = 0,

Fig. 5 .

 5 Fig. 5. Extractor for the k th channel Fig. 6. A convolution for one feature map

Fig. 7 . 1 Fig. 8 . 2 Fig. 9 . 3 Rule 2 (

 7182932 Fig. 7. Rule 1 Fig. 8. Rule 2 Fig. 9. Rule 3

 out0,b (resp. fm 1 ≡ c1 BF c1.out0,b,t) then fm 1 ≡ c fm 2 where fm 2 ≡ c2 SX c2.in0,b (resp. BF c2.in0,b,t); 2. otherwise, several outputs are corrupted and the connected component c 2 interacting with one output cannot emulate all the corruptions. Thus, for all fm 2 ∈ {SX c2.in0,b , BF c2.in0,b ,t }, fm 1 ≡ c fm 2

Table 1 .

 1 Coverage and execution time estimations for one activation

	FM Strategy	Layers				Total Estimated	Coverage
						execution	assessment
						time	time (s)
		Conv Pool FC	Seq	(h:mm:ss)
	SX Input Registers	1%	7%	0%	15% <1% 0:00:01	3.7.10 -2
	First Registers	81% 14% 85% 15% 81% 0:02:50	3.9.10 -2
	Combinational Registers 83% 21% 87% 15% 83% 0:03:02	2.2.10 -2
	BF Input Registers	3%	94% 0%	100% 11% 0:02:35	23.1
	First Registers	76% 100% 100% 100% 81% 3:27:41	23.6
	Combinational Registers 100% 100% 100% 100% 100% 3:44:13	145.4

Acknowledgement. The research has benefited from the AI Interdisciplinary Institute ANITI. ANITI is funded by the French program "Investing for the Future -PIA3" under the Grant agreement No ANR-19-PI3A-0004.