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Abstract

We propose in this paper a numerical strategy in order to compute a tur-

bulence model for compressible flows, including a dynamical estimation of

the jump of the turbulent kinetic energy across shock waves. The model is

taken from [11], and the Finite Volume scheme applies for a specific interface

Riemann solver. The whole procedure requires the detection of shock waves

in unsteady flows.
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Introduction

Many industrial applications require the computation of compressible tur-

bulence models in order to obtain a relevant representation of the mean den-

sity, mean velocity, mean pressure and turbulent kinetic energy ( for instance

in the framework of combustion and aerodynamics). These models classically

apply for Reynolds averaging technique and Favre decomposition [6, 7, 8],

and closure laws for some correlations are mandatory. We refer for instance

to [23, 22, 2, 20, 3, 9] which recall some basic useful models and closures,

and also provide some properties and theoretical investigation of the latter.

This paper aims at defining a suitable algorithm for computing approxi-

mate solutions of a turbulence model for compressible flows, while retaining

the dynamic model first introduced in [11]. It is actually the sequel of a recent

work devoted to the analysis and the numerical approximation of solutions of

the three-equation conservative model [10] for mass, momentum and energy.

The latter model which is taken from [17], accounts for the turbulent kinetic

energy K in a simple way, while setting:

K = ξ0ρ
5/3, (1)

with ξ0 > 0, together with the standard equation of state :

P = (γ − 1)ρe. (2)

The associated one-dimensional Riemann problem is investigated in [10],

and it is shown that a Finite Volume scheme including approximate Rie-

mann solvers enables to provide convergent approximations of solutions of
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the model, even when shocks occur in the flow. Nonetheless, it may be

argued that the closure law (1) does not account for turbulent entropy vari-

ations across a shock wave. This urges the introduction of a more relevant

turbulence model which would enable to represent turbulent compressible

flows with more accuracy. Moreover, even when restricting to smooth solu-

tions, it is known that classical turbulence models also account for turbulent

entropy variations in regular zones.

Thus we will present herein some way to account for K variations in the

whole computational domain. For that purpose, we will first recall in section

1.2 the basic dynamic model proposed in [11], and detail the full parametriza-

tion of shock waves. This model will then be inserted in a set of PDEs that

will govern the evolution of mass, momentum and total energy, together with

the turbulent entropy Kρ−5/3, hence providing the four unknowns ρ, P, U,K.

This will be achieved in section 1.3. Afterwards, a Finite Volume scheme will

be defined in section 2, that requires :

• the detection of the shock wave location in the unsteady flow at any

time,

• the definition of a suitable interface Riemann-type solver in order to

take turbulent entropy variations through shocks arising at an interface

separating two neighboring mesh cells,

• a stable and consistent way to handle Dirac source terms occurring

with shock patterns.

Eventually, some numerical results will be provided and discussed in section
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3, and some conclusions will be drawn.
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1. Governing equations

In this section, we present the steps used with the averaged Euler equa-

tions in order to derive a compressible model with dynamic estimation of

the turbulent energy across a shock wave. This presentation consists in two

different steps: (i) we start with the presentation of the global PDE formula-

tion, (ii) we then move on to the presentation of the strategy used to estimate

the jump of the turbulent entropy through a shock wave.

1.1. Global PDE formulation

The present model is an extension of the model presented in [17, 10] (

the counterpart two- phase framework is presented in [18]), which is based

on Euler equations for a compressible flow.

It includes three conservation laws corresponding to the mass, momentum

and total energy balance. The main unknowns are: the mean density ρ, the

mean pressure P (in the sense of Reynolds averaging) and the mean velocity

u (in the sense of Favre averaging). A fourth equation accounting for the

turbulent kinetic energy K describes the evolution of the turbulent entropy

ξ:

ξ = Kρ−5/3.
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The set of PDEs which determine the evolution of variables ρ, u, P and ξ

within the flow has the following form:

∂t(ρ) + ∂x(ρu) = 0

∂t(ρu) + ∂x

(
ρu2 + P +

2K

3

)
= 0

∂t(ρE) + ∂x

(
u

(
ρE + P +

2K

3

))
= 0

∂t(ρξ) + ∂x(ρuξ) +M(x, t)δ(x−σt=0) = 0

(3)

by noting the mean total energy E:

ρE = ρe(P, ρ) +
ρu2

2
+K,

where e(P,ρ) is the mean specific internal energy given by user. We also note:

P ∗ = P +
2

3
K, (4)

the modified pressure. The Dirac mass is δ(x−σt=0) located in x = σt, M(x, t)

is the mass located at the shock position, and σ is the velocity of the shock

wave.

Remark 1 (The special case M(x, t) = 0)

In the specific case where M(x, t)=0, the model associated with system (3)

is conservative. We emphasize that (3) is hyperbolic (see Appendix A). Its

real eigenvalues are:

λ1 = u− c̃, λ2,3 = u, λ4 = u+ c̃,

where the turbulent speed of density waves c̃ is given by:

c̃2 = c2 +
10K

9ρ
= c2 +

10

9
ξρ2/3.
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When M(x, t) = 0, the Rankine-Hugoniot relations associated with model

(3) are: 

−σ[ρ] + [ρu] = 0,

−σ[ρu] +

[
ρu2 + P +

2K

3

]
= 0,

−σ[ρE] +

[
u

(
ρE + P +

2K

3

)]
= 0

−σ[ρξ] + [ρuξ] = 0

(5)

The first relation gives us:

[ρv] = 0, with v = u− σ.

The fourth relation can be written in the following form:

[ρvξ] = 0 =⇒ ρv[ξ] = 0

Through a shock wave (GNL field), we have ρv 6= 0, thus [ξ]RL=0 where L

(R) respectively denote the variables ahead (behind) the shock wave.

Besides, we note that ξ is a Riemann invariant in GNL waves associated

with λ1 and λ4. Hence, we deduce that ξ remains constant in GNL waves

(shock or rarefraction). �

However, it is usually argued that the ’closure’ [ξ]RL=0 through a shock wave

(or M(x, t) = 0) is not totally realistic. Focusing for instance on hydrogen

explosion, an accurate prediction of shock waves is mandatory, and thus a

relevant (non zero) definition of the mass M(x, t) is required.

This is discussed in the following section, while Appendix D gives some
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possible reformulation of the governing set of PDE when a sole shock wave

occusion in the fluid flow.

1.2. Estimation of the turbulent entropy jump through a shock wave

We will consider in the sequel the model which has been proposed in

[11]. The latter reference proposes a methodology to evaluate the jump of

turbulent entropy through shock waves.

1.2.1. Estimating M(x, t)

In the sequel, we will consider the following turbulent perfect gas EOS:

P = (γ − 1)ρe.

with γ > 1.

For a given shock wave propagating at speed σ, we note the variables on

the right side of the shock with the index ’R’, and the variables of the left

side of the shock with index ’2’ (thus focusing on the wave associated with

u + c̃). The following Rankine-Hugoniot relations for the conservation of

mass, momentum and energy can be easily obtained using (6)
[ρ(u− σ)]R2 = 0

m2[τ ]R2 + [P ∗]R2 = 0

[e+Kτ ]R2 + P̄ ∗R,2[τ ]R2 = 0

(6)

with m = ρR(uR − σ), and for any quantity φ: φ̄a,b = φa+φb
2

, [φ]ab = φa − φb.

The fourth equation in (3) enables to get:

−σ[ρξ]R2 + [ρuξ]R2 +M0 = 0 =⇒ m[ξ]R2 +M0 = 0 (7)
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In order to determine the intermediate state ’2’ from the state ’R’, and there-

fore to find the value of M0, one more relation is needed.

• The second and the third equation of (6) are written in the form: P ∗2 − P ∗R −m2(τR − τ2) = 0

P ∗R(βτR − τ2)− P ∗2 (βτ2 − τR) + 2ξRτ
−2/3
R α− 2ξ2τ

−2/3
2 α = 0

(8)

where:

α =
(γ − 5/3)

(γ − 1)
,

and

β =
(γ + 1)

(γ − 1)
.

System (8) admits 2 equations with 3 unknowns: P ∗2 , τ2 and ξ2.

The first relation in (8) determines the Rayleigh line, and we call the

function H(τ2, P
∗
2 , ξ2) the Hugoniot function of the turbulent gas flow

defined by second relation in (8) :

H(τ2, P
∗
2 , ξ2) = P ∗R(βτR−τ2)−P ∗2 (βτ2−τR)+2ξRτ

−2/3
R α−2ξ2τ

−2/3
2 α (9)

• The additional relation is given by following [11], the tangent of

the Rayleigh line to the curve H in the plane (τ2, P ∗2 ) with ξ2 fixed,

gives us the additional relation. We rewrite this constraint by solving

the following equation:

∂H

∂τ
|(P ∗,ξ)dτ |ξ +

∂H

∂P ∗
|(τ,ξ)dP ∗|ξ = 0, (10)

which gives us the following equation:

4

3
ξ2τ
−5/3
2 α = P ∗R + P ∗2 β +m2τR −m2τ2β. (11)
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For a given value of (τ, u, P, ξ)R and σ, we have to find 5 unknowns

(τ, u, P, ξ)2 and M0 solution of (6), (7) and (11).

1.2.2. Positivity conditions

We investigate now the positivity conditions pertaining to ξ2 (or equiva-

lently K2). Actually, since ξ2 must have a positive value, conditions pertain-

ing to the jump of τ will appear when crossing the shock, depending on the

value of the parameter γ .

We denote by:

A = P ∗R + P ∗2 β +m2τR −m2τ2β,

the right hand side of equation (11). Assuming that τ2> 0 therefore ξ2> 0,

then A will take the sign of (γ-5/3) (linked to α).

• case γ < 5/3 :

Since (γ-5/3) has a negative sign, then A must be negative for ξ2 to

remain positive. Using the first relation of system (8) and the definition

of P ∗ (4), we reformulate A in the following form :

A = c̃R
2 +

2

3
KRτR(γ − 5/3)−m2

(
(γ + 1)τ2τR − γτ 2R

)
.

When A <0, it is necessary that:

m2
(
(γ + 1)τ2τR − γτ 2R

)
> c̃R

2 +
2

3
KRτR(γ − 5/3). (12)

Using Lax inequality:

σ > λ4(WR), (13)
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we deduce from (13) that:

c̃R
2 +

2

3
KRτR(γ − 5/3) > 0.

Owing to m2>0, a condition involving the jump [τ ]R2 appears, which is:

(γ + 1)τ2τR − γτ 2R > 0,

and eventually (τR>0):

τ2 >
γ

(γ + 1)
τR. (14)

• case γ > 5/3:

in the case where the shock is of low amplitude (i.e τR ≈ τ2) and the

turbulence is weak (i.e KR << 1), A writes:

A = PR(1 + β) +m2τR(1− β) = (c2R − (uR − σ)2)
1

τR
.

Thanks to the Lax inequality (13), which gives:

σ > uR + c̃R > uR + cR,

we get that:

σ − uR > cR > 0,

Thus A must be negative. However this is in contradiction with (11)

4

3
ξ2τ
−5/3
2 α = A,

when γ > 5/3, that is: α > 0.

Remark 2 (case γ > 5/3 with τR 6= τ2 and KR >> 1)

In this case we will not explicitly give the positivity conditions, because

in an extension of this case (τR ≈ τ2 and KR << 1) we have found a

contradiction, therefore we do not take this case into account and we

just focus on the case where γ < 5/3. �
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1.2.3. Final form of M(x,t)

Using the additional relation (11) and system (8), simple calculations lead

to solve a second order polynomial equation in τ2, G(τ2)=0, where:

G(τ2) = 2m2βτ 22 −
5γ

2(γ − 1)
(m2τR+P ∗R)τ2 +P ∗RτR

γ

γ − 1
+

1

2
m2τR+ξRτ

−2/3
R α.

(15)

Equation (15) admits a unique solution under the two constraints:

τ2 < τR , τ2 >
γ

(γ + 1)
τR. (16)

Once τ2 has been obtained by solving G(τ2)=0, the first equation in (6) gives

u2, the second one gives P ∗2 , the third one gives:

[
P ∗τ

(γ − 1)
+ αξτ−2/3]R2 + ¯P ∗2,R[τ ]R2 = 0 (17)

which in turn provides ξ2. Then the jump [ξ]R2 is known, and we can calculate

M0 by equation (7):

M0 = −m[ξ]R2 .

Of course a similar approach is used across the shock wave associated with

u− c̃.

Remark 3 The Lax criterion applied to our system states that for an ad-

missible shock wave with a velocity σ we have for a (u+ c̃)-shock:

λ4(W2) = u2 + c̃2 > σ > λ4(WR) = uR + c̃R (18)

In fact, we have:

σ − u2 − c̃2 = m2τ 22 − γP ∗Rτ2 − γτRτ2 + γm2τ 22 +
2

3
ξ2τ
−2/3
2 (γ − 5

3
),
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using the first and second equations of (6). By replacing ξ2 by its value given

by equation (11), we find that:

σ − u2 − c̃2 = 0,

which means that the first inequality in (18) is reached. �

2. Numerical method

In this part we will introduce a numerical method in order to cope with

the compressible turbulence model (3) described in the previous part. The

method consists in adapting a hybrid solver to compute approximate solu-

tions of the problem. This hybrid solver consists in two solvers: a classical

approximate interface Riemann solver when no shock wave is detected, and

a specific interface solver dedicated to the interface where a shock wave has

been detected. We will call it the modified approximate Riemann solver

’MARS’.

For this, we use a classical Finite Volume formulation in a 1D domain. The

computational domain on segment [a,b] is subdivided into cells Ii, where

xi+1/2 represents the cell interface between cells Ii and Ii+1, and xi repre-

sents the cell center. We define ∆tn the time step at time tn and ∆xi the

length of Ii such that: tn+1 = tn+ ∆tn and ∆xi= xi+1/2 − xi−1/2.

In the sequel, we will define the modified solver, more particularly the inter-

face solver applied when a shock wave is detected on an interface. Concerning

the classical approximate Riemann solver we will not detail it, because it is
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already known in the literature, the reader is referred to [14, 13, 24] for more

details.

t

x

Linearized 1− wave 2, 3− wave Linearized 4− wave

Wi Wi+1

W1 W2

xi+1/2

Figure 1: Classical linearized interface solver at the interface (i + 1
2 ) when no shock has

been detected.

t

x

Exact (u− c̃)− shock 2, 3− wave Linearized 4− wave

Wi0 Wi0+1

W̃1 W̃2

xi0+1/2

Figure 2: Modified interface solver ’MARS’, if a (u-c̃)-shock is detected at the interface

(i0 +
1
2 ).
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t

x

Linearized 1− wave 2, 3− wave Exact (u+ c̃)− shock

Wi0 Wi0+1

W̃1 W̃2

xi0+1/2

Figure 3: Modified interface solver ’MARS’, if a (u-c̃)-shock is detected at the interface

(i0 +
1
2 ).

2.1. Shock detector

In order to define properly the modified interface Riemann-type solver on

the interface where a shock wave has been detected, a practical technique

of detection of shock waves is needed. There are some methods proposed

in the literature to detect shock waves (see [19, 25] for instance for steady

patterns), however only few focus on the unsteady framework, as pointed out

in the conclusion of paper [25]. Thus, a different strategy will be introduced

in the sequel, which basically relies on properties of the solution of the one-

dimensional Riemann problem, on the entropy inequality and on associated

Lax inequalities (see [21]).

For an interface ′i + 1
2

′ separating the two cells i and i + 1, we define the

quantity gi,i+1 as follows:

gni,i+1 = −σi+1/2[η
n]i+1
i + [fnη ]i+1

i , (19)
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where (η, fη) denotes the entropy-entropy flux pair, with η = −ρs and fη =

uη. The estimation of the shock velocity is made on the basis of the mass

balance:

σi+1/2 =
[(ρu)n]i+1

i

[ρn]i+1
i

. (20)

Actually, for a discontinuity between the cells ’i’ and ’i+1’ travelling at speed

σi+ 1
2
, we have the following inequality:

−σi+1/2[η
n]i+1
i + [fnη ]i+1

i < 0. (21)

The use of jump relations (6)-(7) makes it possible to give a simple form of

the quantity g:

gni,i+1 =
ρni ρ

n
i+1[u

n]i+1
i [sn]i+1

i

[ρn]i+1
i

.

We can deduce that if gni,i+1 < 0 then we have detected a discontinuity zone.

Though redundant, we also enforce the test:

[un]i+1
i < 0,

where [un]i+1
i is expected to be o(1) through shock waves (unlike through

’discrete’ contact discontinuities where [u]i+1
i ≈ o(h) ).

Finally the test will be in the following form:

if gni,i+1 < 0 and [un]i+1
i < 0, then a shock wave is detected on the interface in i+

1

2

Once we have detected the interfaces with occurence of a shock wave, it

remains to know whether it is a (u-c̃)-shock or a (u+c̃)-shock wave. The

definition of shock waves in the sense of Lax will be used to distinguish

them:
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• if ui−c̃i > σi+1/2 > ui+1−c̃i+1, then a (u−c̃)-shock wave is detected on the interface

in ′i+ 1
2

′

• if ui+c̃i > σi+1/2 > ui+1+c̃i+1, then a (u+c̃)-shock wave is detected on the interface

in ′i+ 1
2

′

• • • • • • • • • • • • • • • • x
shock zone shock zone

gi,i+1 < 0, [u]i+1
i < 0

• • • • • • • • • • • • x

(u− c̃)− shock zone(u+ c̃)− shock zone

Figure 4: Two different steps of the shock detector. Step 1 (left) shock zone detection,

step 2 (right) (u-c̃)-shock or (u+c̃)-shock identification. Interface colors: shock zone (red),

1-shock (blue), 3-shock (yellow) and for other waves types (black)

In practice, most of the time the shock zone involves more than a sole

interface, as depicted in figure (4).

2.2. Modified Approximate Riemann Solver when a shock occurs ’MARS’

This section describes the numerical resolution of the Riemann problem

associated with a shock detected on the interface. More precisely we want to

evaluate the numerical flux FMARS
i0+

1
2

associated with the shock wave at inter-

face i0 + 1
2
. For the detection step, we assume that shock speeds have been

estimated. Moreover the mass M0 is given here.

In the following, we consider the general case M 6= 0. In order

to simplify the presentation of the modified solver, we focus on the case of

an effective shock in the 4-wave (i.e. when a (u+c̃)-shock appears).
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First of all, we recall that (see [10], or Appendix A ) the eigenvalues of

system (3) are:

λ1(W ) = u− c̃, λ2,3(W ) = u, λ4(W ) = u+ c̃

The associated eigenvectors are respectively:

r1(W ) = (ρ,−c̃, ρc̃2, 0) , r2(W ) = (1, 0, 0, 0)

r3(W ) = (0, 0, 0, 1) , r4(W ) = (ρ, c̃, ρc̃2, 0)

where

W = (ρ, u, P ∗, ξ), (22)

is the set of variables considered here.

The double wave associated with λ2,3 is linearly degenerate (LD), and r2

and r3 are independent. The variables (u, P ∗) are the Riemann invariants in

this double wave.

The wave configuration retained for the simplified solver at the interface

is depicted in figure 5.

We note that:

W1 −Wi = µi+ 1
2
r̃1, (23)

with r̃1 = (ρ̄,−¯̃c, ¯ρ˜2c, 0)i+ 1
2
, where ā = ai+1+ai

2
(µi+ 1

2
will be given in step 3).
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t

x

Linearized 1− wave (u+ c̃)− shockDouble contact wave

ξi ξi+1

ξ1
ξ2

xi+1/2

ξi = ξ1

Figure 5: Partial solution of the Riemann problem in terms of ξ. Intermediate states noted

’1’,’2’

Concerning the wave associated with λ4, we assume that it is a shock wave.

The jump relations associated with this wave are as follows :

ρR(uR − σ) = ρ2(u2 − σ) = m

m2[τ ]R2 + [P ∗]R2 = 0

[e+Kτ ]R2 + P̄ ∗R,2[τ ]R2 = 0

m[ξ]R2 +M0 = 0

(24)

where WR=Wi+1.

The shock speed σi+1/2 is known numerically on the interface thanks to the

detection stage (20). We recall that ξ2 is known sinceM0 is known, according

to the formula proposed in section 1.2. We can then deduce from the jump

relations (24) the three unknowns (ρ, u, P )2 for the intermediate state ’2’.

At this stage, we can propose a modified approximate Riemann solver ’MARS’
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adapted to the specific configuration of a (u+c̃)-shock wave. We calculate in

three steps which are::

1. Use of the jump relation through 4-wave.

2. Exact connection through the double contact wave λ2,3 = u.

3. Connection between state ’L’ and ’1’ through linearized 1-wave.

Remark 4 The second and the third step of modified solver are the same

as for the classical solver VFRoe-ncv [4]. �

We recall that:

P = (γ−)ρe. (25)

• Step 1( (u+c̃)-shock): The jump relations (24) give us:

P ∗2 (τ2) = P ∗R −m2(τR − τ2), (26)

u2(τ2) = σi+1/2 +mτ2, (27)

with

σi+1/2 =
[ρu]i+1

i

[ρ]i+1
i

= ū+ ρ̄
[u]i+1

i

[ρ]i+1
i

. (28)

Using relations (27) (26), and third relation of (24), we have to solve a

nonlinear scalar equation of unknown τ2:

γ(P ∗2 (τ2) +P ∗R)(τR− τ2) + (τR + τ2)(P
∗
R−P ∗2 (τ2)) + 2(γ− 5

3
)[Kτ ]R2 = 0. (29)

From a pratical point of view, the nonlinear equation (29) is solved using the

dichotomy method, thus ρ2 = 1
τ2

is known.
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Using (27) (respectively (26) ), we get the intermediate speed u2 (the interme-

diate pressure P ∗2 ). The calculation of the intermediate state ’2’ guarantees

that :

[ρ]R2 [P ∗]R2 > 0 and [u]R2 < 0. (30)

• Step 2 (double contact wave): Knowing that the Riemann invariants

associated with the contact wave are (u, P ∗), we set:

u1 = u2 and P ∗1 = P ∗2 . (31)

• Step 3 (Linearized 1- wave ): u1 and P ∗1 are now known, thus us-

ing (23) we obtain:

ρ1 = ρL +
[P ∗]1L

¯̃cL,R
. (32)

This guarantees that:

[ρ]1L[P ∗]1L > 0. (33)

The modified interface solver is now fully defined.The intermediate states are

defined as follows:

WMARS
k = (ρk, uk, P

∗
k , ξk), k = 1, 2. (34)

and then the numerical flux FMARS
i0+1/2 is defined through (37), (38) and (40). �

Now we can move on to the presentation of the finite volume scheme that is

based on these two Riemann solvers.
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Remark 5 Even ifM0= 0, the ’MARS’ solver is not strictly the VFRoe-ncv

solver [4, 10]. �

2.3. Global solver and numerical scheme

In this section, we present a finite volume scheme [5], for the numerical

resolution of the following system of equations:

∂t(ρ) + ∂x(ρu) = 0

∂t(ρu) + ∂x

(
ρu2 + P +

2K

3

)
= 0

∂t(ρE) + ∂x

(
u

(
ρE + P +

2K

3

))
= 0

∂t(ρξ) + ∂x(ρuξ) +M0δ(x−σt=0) = 0

(35)

where M0 = 0, or M0 given by section (1.2).

The numerical scheme reads :

∆xi(Z
n+1
i − Zn

i ) + ∆t(Fn
i+ 1

2
−Fn

i− 1
2
) + ∆tBn

i = 0, (36)

with Z = (ρ, ρu, ρE, ρξ), Bi = (0, 0, 0,Mi), and:

Fn
i+ 1

2
=


F lnd
i+ 1

2

= F (Z(W ∗
lnd(W

n
i ,W

n
i+1)) when no shock wave has been detected,

FMARS
i+ 1

2

= F (Z(W ∗
MARS(W n

i ,W
n
i+1)) if a shock wave has been detected,

(37)

where:

F (Z) = (ρu, ρu2 + P ∗, u(ρE + P ∗), ρuξ). (38)

The solution W ∗
lnd(WL,WR) of the approximate Riemann problem, is found

with the linearized solver VFRoe-ncv (see [4, 10]). When no shock wave is
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detected on the interface, the solution of the Riemann problem is given by :

W ∗
lnd(WL,WR) =



WL if λ̄1 ≥ 0;

W lnd
1 if λ̄1 < 0 and λ̄2,3 ≥ 0;

W lnd
2 if λ̄2,3 < 0 and λ̄3 ≥ 0;

WR if λ̄4 < 0;

(39)

For more details about the solutionW ∗
lnd, the reader is referred to Appendix

B.

The solutionW ∗
MARS(WL,WR) of the approximate Riemann problem, is found

with the modified interface solver ’MARS’. If a shock wave has been detected

on the interface, the solution of the Riemann problem is given thus by :

W ∗
MARS(WL,WR) =



WL if λ1 ≥ 0;

WMARS
1 if λ1 < 0 and λ2,3 ≥ 0;

WMARS
2 if λ2,3 < 0 and λ3 ≥ 0;

WR if λ4 < 0;

(40)

where WMARS
1 , WMARS

2 are the 2 intermediate states, calculated in the sec-

tion 2.2.
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Mn
i is a contribution in cell i to the global jump of turbulent entropy M0.

It appears when a shock wave has been detected locally. In order to guar-

antee that
∑N

i=1M
n
i = M0 (recall that N is the total number of cells in the

domain and M0 is the global jump of turbulent entropy to be imposed on

shock wave), the calculation of Mi is done as follows :

• We set Mn
i = 0, ∀ i ∈ N, at each time step time n .

• Loop 1 : if a shock is detected at interface i+1/2 :

1. χn
i+ 1

2

= |ρni+1 − ρni |,

2. Sumn =
∑N

i=1 χ
n
i+ 1

2

.

(41)

• Loop 2 : if a shock is detected at interface i+1/2:

1. χ̃n
i+ 1

2
=

χn
i+ 1

2

Sumn
, (42)

2.


si σi+1/2 < 0→Mn

i = Mn
i + χ̃ni+1/2 ∗M0

si σi+1/2 > 0→Mn
i+1 = Mn

i+1 + χ̃ni+1/2 ∗M0

Moreover, ∆tn and ∆xi are linked by the Courant-Friedrichs-Levy (CFL)

following condition :
∆tn

∆xi
max(|λj|j=1,2,3,4) < 1,

in scheme (36).
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3. Numerical Results

We present now some numerical results obtained for the model and scheme

detailed in the previous sections. We focus here on test cases involving shock

waves. The test cases provide a comparison between the exact solution and

the approximate solution and make it possible to obtain a numerical conver-

gence curve, which gives the error in L1 norm. The profiles of the approxi-

mate solutions are presented at a given final time for the density ρ, velocity

u, pressure P, modified pressure P ∗, and the turbulent entropy ξ.

All the computations are performed for a given value of CFL = 0.5. More-

over, in all the tests below, we have considered the perfect gas EOS:

P = (γ − 1)ρe,

where the constant γ is equal to 7
5
. The computational domain is [0, 1] and

the initial discontinuity separating states WL and WR is located at x= 0.5.

The domain [0, 1] is discretized using uniform cells, ∆xi = ∆x, and the

number of cells varies from 200 up to 2× 105 cells.

3.1. Test 1: Double shock wave ( ξ= ξ0)

The first test case is a double non-symmetrical shock with a mass M0 =

0. This case is used to test the modified interface solver, on the basis of the

pure conservative system (turbulence entropy is constant), and to compare

the results with classical solver [10].

This case test is taken from [10]. The initial conditions of the Riemann
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problem to be solved are given below:

(ρL, uL, PL, ξL) = (1, 650, 106, 104)

(ρR, uR, PR, ξR) = (1,−687.545913, 98007.273140, 104)

Figure 6: Double-shock wave test case. Density (top left), velocity (top right), pressure

(bottom left) and P ∗ (bottom right). Comparison between the modified interface solver

(green) and the VFRoe-ncv solution (purple) at t = 144× 10−3 s, CFL = 0.5, 500 cells.

Figure 6 shows qualitative comparisons between the approximate solutions

calculated with the modified interface solver ’MARS’ and the linearized solver

VFRoe-ncv for a mesh containing 500 cells. Figure 7 shows the convergence
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Figure 7: Double-shock wave test case. Convergence curves, with modified interafce solver

(left), VFRoe-ncv (right): logarithm of the relative L1-error versus the logarithm of the

mesh size with uniform meshes containing from 200 to 200000 cells. The error is plotted

for variables, ρ, u, P and P ∗.

curves, with the two solvers (’MARS’ and VFRoe-ncv), for the set of vari-

ables {ρ, u, P, P ∗}, and for ξL = ξR = 104, M0=0.

First of all, the behavior of ’MARS’ near the 3-shock wave around x = 0.6

is steep but oscillating (see figure 6). The error curve for VFRoe-ncv and

’MARS’ on P and ρ is comparable but a little better for VFRoe-ncv on u

and P ∗. The error (for ’MARS’) varies as ≈ h1 for variables u and P ∗ on

fine meshes, and as h1/2 for ρ and P (owing to the occurrence of the contact

discontinuity), see figure 7. This result of the convergence was expected.

3.2. Test 2: Simple 4-shock wave

We consider now a single 4-shock wave. We assume that M0 6= 0 is given

by the user. The exact solution is shown in figure 8. We propose here to

examine the approximate solution of a Riemann problem, with two different
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t

x

(u+ c̃)− shock

WL WR
x0

Figure 8: The exact solution of the Riemann problem for the test 2.

pressure ratios PL

PR
, and with a strictly negative value for M0 motivated from

a physical point of view (turbulent entropy decreases through the shock).

The initial condition of the Riemann problem is given by:

Case 1:

σ = 580, and M0 = −50000,

(ρL, uL, PL, ξL) = (1.936, 280.451, 261265.856, 1000)

(ρR, uR, PR, ξR) = (1, 650, 105, 913.793)

Case 2:

σ = 580, and M0 = −50000,

(ρL, uL, PL, ξL) = (4.487, 461.047, 268669.876, 1000)

(ρR, uR, PR, ξR) = (1, 650, 104, 913.793)

where WR, σ, M0 are given, and WL calculated with (24).
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The pressure ratio in test case 2 is close to 26.8 while the ratio in test case

1 is close to 2.6.

In the following we will perform these two test cases, with the standard

scheme presented in 2.3, and with a modified scheme.

3.2.1. Standard scheme

In this part, we will illustrate the numerical results of test 2 (case 1, case

2) using the standard scheme 2.3.

Figure 9 (respectively 12) shows the behavior of the density ρ, velocity u,

modified pressure P ∗ and turbulent entropy ξ for case 1 (respectively case 2)

at a given time Tf = 3× 10−3, on different meshes with 100 cells, 1000 cells

and 10000 cells. Figure 10 (respectively 13) shows the convergence curve for

the case 1 (respectively case 2), for the set of variables {ρ, u, P, P ∗,ξ}. The

behavior of the shock detector is shown in figure 11 (respectively 14) for case

1 (respectively case 2) on a mesh with 200000 cells.

The profiles of density ρ, velocity u, modified pressure P ∗, in case 1 (rescp

case 2), represented in figure 9 (respc figure 12), show a good behavior of the

variable (ρ, u, P ∗) through the 4-shock wave. The profiles of these 3 variables

are disturbed and slightly oscillating on a coarse mesh, but by increasing the

number of mesh cells, these oscillations tend to disappear. The profiles of (ρ,

u, P ∗) on a fine mesh take the form of the exact solution (figure 8) with x0

= 0.674 and Tf = 3× 10−3.
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On the other hand, with regard to the profile of the turbulent entropy ξ,

the latter converges towards the profile of the exact solution in case 2 and it

does not converge in case 1.

The convergence curve ensures the above results (see figure 10 for case 1,

and figure 13 for case 2). Figures 11, 14, show that the behavior of the shock

detector in case 2 is better than that of case 1.

Remark 6 The parameter coefi+ 1
2
taken in the standard scheme is a choice

and not mandatory. We illustrate test 3.2 with another parameter:

coefn
i+ 1

2
= |P ∗ni+1 − P ∗ni |. (43)

The reader is referred to Appendix C for more details. �
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Figure 9: Simple 4-shock wave test case 1, with standard scheme. Density (top left),

velocity (top right), P ∗ (bottom left) and ξ (bottom right). Profile of the approximate

solution for different meshes =100, 1000, 10000 cells at t = 3× 10−3 s, CFL = 0.5.
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Figure 10: Simple 4-shock wave test case 1, with standard scheme. Convergence curves:

logarithm of the relative L1-error versus the logarithm of the mesh size with uniform

meshes containing from 200 to 200000 cells. The error is plotted for variables, ρ, u, P, P ∗

and ξ.

Figure 11: Simple 4-shock wave test case 1, with standard scheme. Shock detector

behavior on all interfaces (left), behavior of the shock detector around the detected shock

(right): it indicates 0 if it does not detect a shock, and 3 if it detects
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Figure 12: Simple 4-shock wave test case 2, with standard scheme. Density (top left),

velocity (top right), P ∗ (bottom left) and ξ (bottom right). Profile of the approximate

solution for different meshes =100, 1000, 10000 cells at t = 3× 10−3 s, CFL = 0.5.
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Figure 13: Simple 4-shock wave test case 2, with standard scheme. Convergence curves:

logarithm of the relative L1-error versus the logarithm of the mesh size with uniform

meshes containing from 200 to 200000 cells. The error is plotted for variables, ρ, u, P, P ∗

and ξ.

Figure 14: Simple 4-shock wave test case 2, with standard scheme.Shock detector be-

havior on all interfaces (left), behavior of the shock detector around the detected shock

(right): it indicates 0 if it does not detect a shock, and 3 if it detects
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3.2.2. Modified scheme

In this part, we assume that the shock is unique. We choose a single

shock interface, looking for the greatest value of the jump of u:

maxNi=1|ui+1 − ui| = |ui0+1 − ui0| =⇒ A single shock is assumed to be located

at interface i0 +
1

2
.

Consequently, we modify the numerical scheme presented in 2.3, by elimi-

nating the 2 loops (41,42), and replace it by the following one:


Mn

i0
= 1

2
M0,

Mn
i0+1 = 1

2
M0.

In the following, we will simulate test 2 case 1 with the modified scheme.

The behavior of the density ρ, velocity u, modified pressure P ∗ and turbulent

entropy ξ, are shown in figure 15. The results provided by the two methods

are almost similar for the three profiles (ρ, u, P ∗). The remarkable difference

between the two methods lies in the profile of the turbulent entropy, where

we notice that the oscillations around the (u+c̃)-shock disappear on the fine

meshes, whereas this is not the case with the standard scheme. The error

varies as ≈ h1 for all variables (ρ, u, P ∗, ξ), hence the convergence of all the

variables with the modified scheme holds.
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Figure 15: Simple 4-shock wave test case 1, with modified scheme. Density (top left),

velocity (top right), P ∗ (bottom left) and ξ (bottom right). Profile of the approximate

solution for different meshes =100 cells, 1000 cells, 10000 cells at t = 3×10−3 s, CFL = 0.5.
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Figure 16: Simple 4-shock wave test case 1, with modified scheme. Convergence curves:

logarithm of the relative L1-error versus the logarithm of the mesh size with uniform

meshes containing from 200 to 200000 cells. The error is plotted for variables, ρ, u, P, P ∗

and ξ.

Figure 17: Simple 4-shock wave test case 1, with modified scheme. Shock detector

behavior on all interfaces (left), behavior of the shock detector around the detected shock

(right): it indicates 0 if it does not detect a shock, and 3 if it detects
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4. Conclusion

This chapter was devoted to the analysis and numerical approximation

of the turbulent compressible model introduced in [11]. The latter model en-

ables to take the jump of turbulent entropy across shock waves into account,

and meanwhile provides some methodology in order to calculate the entropy

jump. The analysis of the model comfirms it is meaningful.

A numerical technique has been proposed in order to obtain approximate

solutions when a shock wave occurs in the fluid flow. This method requires a

shock detector, which has been grounded on Lax conditions and the entropy

inequality. Numerical results show that the present approach must be im-

proved in order to get consistant and stable approximations in an industrial

framework.
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A. Main properties of model 3 with M(x, t) = 0

In this section, we detail the structure of system (3) (eigenvalues, eigen-

vectors, Riemann invariants) in a general framework with respect to the EOS.

A.1. Hyperbolicity

System (3) is written in the form:

∂tW + A(W )∂xW = 0, (44)

where the primitive variable W reads:

W = (ρ, u, P ∗, ξ)t.

The jacobian matrix A(W) is:

A(W ) =


u ρ 0 0

0 u τ 0

0 ρc̃2 u 0

0 0 0 u

 ,

where τ = 1/ρ denotes the specific volume and c̃2 = c2(P, ρ) + 10
9
ξρ2/3.

System (44) is hyperbolic, it admits four real eigenvalues:

λ1(W ) = u− c̃, λ2,3(W ) = u, λ4(W ) = u+ c̃, (45)

and the associated eigenvectors rk(W) span the whole space R4 provided that

c̃ 6= 0:

r1(W ) =
(
ρ,−c̃, ρc̃2, 0

)t
, r2(W ) = (1, 0, 0, 0)t ,
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r3(W ) = (0, 0, 0, 1)t , r4(W ) =
(
ρ, c̃, ρc̃2, 0

)t
.

Fields associated with λ1(W ) and λ4(W ) are genuinely non linear (GNL),

and field associated with λ2,3(W ) is linearly degenerate (LD).

A.2. Riemann invariants

The two Riemann invariants associated with the LD field (λ2,3 = u) are

the following whatever the EOS is:

I21 (W ) = u , I22 (W ) = P ∗(P, ρ, ξ).

The Riemann invariants associated with the two GNL waves read:

1− rarefaction wave : I11 (W ) = s(P, ρ) , I12 (W ) = u+

∫ ρ

0

c̃(I11 (W ), ρ′, I13 (W ))

ρ′
dρ′,

1− rarefaction wave : I13 (W ) = ξ.

4− rarefaction wave : I41 (W ) = s(P, ρ) , I42 (W ) = u−
∫ ρ

0

c̃(I41 (W ), ρ′, I43 (W ))

ρ′
dρ′,

4− rarefaction wave : I43 (W ) = ξ.

B. The intermediate states for VFRoe-ncv

The VFRoe-ncv scheme is based on the computation of the exact solution

of a linearized version of the Riemann problem at the interface between two

cells. It thus relies on finding the two intermediate states Z1 and Z2: the

state Z1 (resp. Z2) lies between the linearized waves λ̄1 and λ̄2,3 (resp. λ̄2,3

and λ̄4). We have:

Z1 = ZL + α1r̂1, (46)
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Z2 = Z1 + α2r̂2 + α3r̂3, (47)

ZR = Z2 + α4r̂4, (48)

where the linearized right eigenvectors are:

r̂1 = (1,−̂̃cτ, ̂̃c,2, 0)t, r̂2 = (1, 0, 0, 0)t, r̂3 = (0, 0, 0, 1)t, r̂4 = (1, ̂̃cτ, ̂̃c2, 0)t,

and where the coefficients α1 and α4 associated with the eigenvalues λ̄1 and

λ̄4 read:

α1 =
1

2

[P ∗]RL̂̃c2 − 1

2

[u]RL ρ̂̂̃c ,

α4 =
1

2

[P ∗]RL̂̃c2 +
1

2

[u]RL ρ̂̂̃c .

It should be noted that thanks to (47), we have:

u1 = u2, and P ∗1 = P ∗2 .

After simple calculus on equations (46) and (48), the following intermediate

values can be found:

u1 = u2 = ū− 1

2ρ̄̂̃c [P ∗]RL ,

P ∗1 = P ∗2 = P̄ ∗ − ρ̄̂̃c
2

[u]RL ,

ρ1 = ρL +
[P ∗]RL

2̂̃c2 − ρ̄

2̂̃c [u]RL , ρ2 = ρR −
[P ∗]RL

2̂̃c2 − ρ̄

2̂̃c [u]RL ,

ξ1 = ξL, ξ2 = ξR.

Finally, the intermediate states are defined as follows:

W lnd
k = (ρk, uk, P

∗
k , ξk), k = 1, 2. (49)
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C. Additional numerical results: a simple 3-shock wave with dif-

ferent coefficients

The profiles of the approximate solutions along the x-domain are given in

figure 18 (respectively 21) for case 1 (respectively case 2), for several meshes

with 100, 1000 and 10000 cells. Figure 19 (respectively 22) represents the

error curve for case 1 (respectively case 2), and the shock detector behavior

is shown in figure 20 (respectively 23) for case 1 (respectively case 1).

Finally, by comparing these results (with coefn
i+ 1

2

= |P ∗ni+1 − P ∗ni |) with the

results of part 3.2.1 (with coefn
i+ 1

2

= |ρni+1 − ρni | ), we find that the solution

is roughly almost the same.

D. A tentative PDE formulation of model [11]

Model [11] provides the contents of M0 (see section 1.2). System of equa-

tions (3) presented in section 1, can be rewritten as follows:

∂tφ+ σ∂xφ = 0

∂t(ρ) + ∂x(ρu) = 0

∂t(ρu) + ∂x

(
ρu2 + P +

2K

3

)
= 0

∂t(ρE) + ∂x

(
u

(
ρE + P +

2K

3

))
= 0

∂t(ρξ) + ∂x(ρuξ) +M0∂xφ = 0

(50)

by noting the mean total energy E:

E = e+
1

2
u2 +

K

ρ
.
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Figure 18: Simple 3-shock wave test case 1, with standard scheme and coefi+1/2 = |P ∗
i+1−

P ∗
i |. Density (top left), velocity (top right), P ∗ (bottom left) and ξ (bottom right). Profile

of the approximate solution for different meshes =100, 1000, 10000 cells at t = 3 × 10−3

s, CFL = 0.5.

We define the modified pressure P ∗:

P ∗ = P +
2

3
K,

where K = ξρ5/3 ⇐⇒ ξ = Kρ−5/3.

The variable φ denotes a colour function (see [16, 15, 12, 1] such that:
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Figure 19: Simple 3-shock wave test case 1, with standard scheme and coefi+1/2 = |P ∗
i+1−

P ∗
i |. Convergence curves: logarithm of the relative L1-error versus the logarithm of the

mesh size with uniform meshes containing from 200 to 200000 cells. The error is plotted

for variables, ρ, u, P, P ∗ and ξ.

Figure 20: Simple 3-shock wave test case 1, with standard scheme and coefi+1/2 = |P ∗
i+1−

P ∗
i |. Shock detector behavior on all interfaces (left), behavior of the shock detector around

the detected shock (right): it indicates 0 if it does not detect a shock, and 3 if it detects
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Figure 21: Simple 3-shock wave test case 2, with standard scheme and coefi+1/2 = |P ∗
i+1−

P ∗
i |. Density (top left), velocity (top right), P ∗ (bottom left) and ξ (bottom right). Profile

of the approximate solution for different meshes =100, 1000, 10000 cells at t = 3 × 10−3

s, CFL = 0.5.

φ(x, 0) =

0 if x < 0

1 if x > 0

and σ is the shock speed. M0 is given non zero.

System (50) is rewritten as follows:

∂tY + C(Y )∂xY = 0, (51)
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Figure 22: Simple 3-shock wave test case 2, with standard scheme and coefi+1/2 =

|P ∗
i+1 − P ∗

i |. Convergence curves: logarithm of the relative L1-error versus the logarithm

of the mesh size with uniform meshes containing from 200 to 200000 cells. The error is

plotted for variables, ρ, u, P, P ∗ and ξ.

Figure 23: Simple 3-shock wave test case 2, with standard scheme and coefi+1/2 =

|P ∗
i+1−P ∗

i |. Shock detector behavior on all interfaces (left), behavior of the shock detector

around the detected shock (right): it indicates 0 if it does not detect a shock, and 3 if it

detects
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with Y the primitive variable:

Y = (φ, ρ, u, P ∗, ξ),

C(Y ) is the jacobian matrix:

C(Y ) =



σ 0 0 0 0

0 u ρ 0 0

0 0 u τ 0

A 0 ρc̃2 u 0

B 0 0 0 u


,

with: 
A = M0ρ

−1/3
(

2

3
ρ− (

∂e

∂P
|ρ)−1

)
,

B =
M0

ρ
.

(52)

We assume that: M0 6= 0, and γ 6= 5
3

(in case of a perfect gas EOS) which implies that:

A 6= 0 and B 6= 0.

System (51) admits five real eigenvalues:

λ0(Y ) = σ, λ1(Y ) = u− c̃, λ2,3(Y ) = u, λ4(Y ) = u+ c̃. (53)

The associated eigenvectors rk(Y ) are:

r0(Y ) =

(
∆(u− σ),−A, (u− σ)

A

ρ
,−A(u− σ)2,−B∆

)t
,

r1(Y ) =
(
0, ρ,−c̃, ρc̃2, 0

)t
, r2(Y ) = (0, 1, 0, 0, 0)t ,

r3(Y ) = (0, 0, 0, 0, 1)t , r4(Y ) =
(
0, ρ, c̃, ρc̃2, 0

)t
,
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with ∆ = (u− σ)2 − c̃2.

In the sequel, we assume that:

σ 6= u.

We must distinguish two cases which depend on the value of ∆:

(i) ∆ 6= 0: system (50) is hyperbolic (eigenvectors span R5);

(ii) ∆ = 0: the associated eigenvector r0(Y ) ∈ V ect{r1, r2, r4} =⇒ system

(50) is degenerate.

The second case (ii) above corresponds to system (3) in section

1.1.

E. Positivity of the total pressure of the mixture P ∗

In this section, we are interested in studying the condition of the positivity

of the total pressure of the mixture P ∗. Let us first recall the system of

Rankine-Hugoniot relations associated with model (3). We assume that the

variable (ρ, u, P, ξ)R on the right side of the shock ’R’, the shock speed σ and

M0 are given. The system of jump conditions is written as follows:

[ρ(u− σ)]R2 = 0

m2[τ ]R2 + [P ∗]R2 = 0

[e+Kτ ]R2 + P̄ ∗R,2[τ ]R2 = 0

m[ξ]R2 +M0 = 0

(54)

with P ∗ = P + 2
3
K, τ = 1

ρ
, K = ξρ5/3 and m = ρR(uR − σ). The variable

(ρ, u, P, ξ)2 on the left side of the shock noted ’2’ is the main unknown.
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In the sequel, we will consider the following turbulent perfect gas EOS:

P = (γ − 1)ρe.

The third equation of system (54) can be written in the following form:

P ∗2 = P ∗Rg(z)

g(z) =
h(z)

(β − z)

h(z) = βz − 1 + 2
(γ − 5/3)

(γ − 1)
(
KR

P ∗R
)(z − K2

KR

)

z =
ρ2
ρR

(55)

To study the positivity of P ∗, we will examine the variation of the function

h(z) in the interval [1, β[. The derivative of the function h(z) is:

h′(z) = β + 2
(γ − 5/3)

(γ − 1)

KR

P ∗R
.

We distinguish 2 cases which depend on the value of γ:

• for γ>5/3: h′(z) is positive in the interval [1,β[ =⇒ h(z) is increasing

over [1,β[; then for h(z) to be positive (P ∗2 > 0), it suffices that h(1)>0,

which imposes a condition on the jump of [K]R2 such that:

P ∗R + (γ − 5/3)[K]R2 > 0 ⇐⇒ h(1) > 0 (56)

• for γ < 5/3: we distinguish 2 sub-cases:

1. if (γ+ 1) + 2(γ− 5/3)KR

P ∗
R
> 0: h′(z) is positive in the interval [1,β[

=⇒ h(z) is increasing in [1,β[; condition (56) appears to keep the

positivity of P∗.
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2. if (γ+1)+2(γ−5/3)KR

P ∗
R
< 0: h′(z)<0 in [1,β[ =⇒ h(z) is decreasing

in [1,β[; then for h(z)>0 (P ∗2 > 0), it suffices that h(β)>0, which

imposes a condition on the jump of [K]R2 such that:

γPR +
5

3
(γ − 1)KR +

(γ − 1)(γ − 5/3)

2
[K]R2 > 0.

F. Study of the ratio P ∗
2

P ∗
R
in (u+c̃)-shock

First of all, let us define Pk:

Pk =
2

3
K,

so that the pressure P ∗ reads:

P = P + Pk.

The modified pressure P ∗ is then composed of a ’laminar’ thermodynamical

pressure P and a ’turbulent’ contribution Pk. In the following, the ratio P ∗
2

P ∗
R

is studied for the model considering a turbulent perfect gas EOS:

P = (γ − 1)ρe.

We assume that the right state (ρ, u, P, ξ)R and σ are known, and that Pk,R >

0 and PR > 0. The jump relations associated with (u+c̃)-shock are:

[ρ(u− σ)]R2 = 0

m2[τ ]R2 + [P ∗]R2 = 0

[e+Kτ ]R2 + P̄ ∗R,2[τ ]R2 = 0

m[ξ]R2 +M0 = 0

4

3
ξ2τ
−2/3
R α = P ∗R + P ∗2 β +m2τR −m2τ2β

(57)
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with m = ρR(uR−σ), α = (γ−5/3)
(γ−1) , β = (γ+1)

(γ−1) , σ is the speed of the shock and

P ∗ = P + 2
3
ξρ5/3 is the total pressure.

We set:

z2 =
ρ2
ρR
.

Across a (u+c̃)-shock wave we have necessarily z2 > 1 and z2 <
(γ+1)
γ

(see

section 1.2). Using the third and fifth equations of (57), we get the following

formula for the pressure P ∗2 with respect to z2 and to the right state:

P ∗2 = P ∗Rh2(z2; ξR, P
∗
R, ρR), (58)

with:

h2(z2; ξR, P
∗
R, ρR) =

2βz22 − 5z2 + 4z22
KR

P ∗
R
α− 3m2 τR

P ∗
R

(z2 − β)

5z2(β − 2
5
z2)

(59)

We note that the jump relations (57) can only be defined if h2(z2; ξR, P ∗R, ρR) >

1 ( thanks to the second equation of relations of jump). For this, we examine

below the conditions to keep (h2(z2; ξR, P
∗
R, ρR)− 1) > 0 with respect to z2

∈ [1, (γ+1)
γ

[.

First of all:

h2(z2; ξR, P
∗
R, ρR)− 1 =

g2(z2; ξR, P
∗
R, ρR)

5z2(β − 2
5
z2)

,

with:

g2(z2; ξR, P
∗
R, ρR) = 2z22(β + 2

KR

P ∗R
α+ 1) + z2(−5− 5β − 3m2 τR

P ∗R
) + 3m2 τR

P ∗R
β.

(60)

Since 5z2(β − 2
5
z2) > 0 (becausez2 < (γ+1)

γ
) is positive. The positivity study

of g2 is equivalent to (h2(z2; ξR, P
∗
R, ρR)− 1) > 0.
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The first and second order derivatives of g2 are:

g′2(z2) = 4z2(β + 2
KR

P ∗R
α + 1)− 5− 5β − 3m2 τR

P ∗R
, (61)

g′′2(z2) = 4(β + 2
KR

P ∗R
α + 1). (62)

We distinguish 2 cases for g′′(z2) depending on the sign of α (γ):

1. if α > 0 (γ > 5/3): we have g′′2(z2) positive for z2 ∈ [1, (γ+1)
γ

[

2. if α < 0 (γ < 5/3): We distinguish 2 cases depending on ratio value
PK,R

P ∗
R
:

(a) if PK,R

P ∗
R

< 2γ
3(5/3−γ) : we have g′′2(z2) positive for z2 ∈ [1, (γ+1)

γ
[

(b) if PK,R

P ∗
R

> 2γ
3(5/3−γ) : we have g′′2(z2) negative for z2 ∈ [1, (γ+1)

γ
[

The case γ > 5/3 is not relevant (see section 1.2), we are interested in the

case γ < 5/3 in the following.

For γ < 5/3: we have distinguished 2 sub-cases, which depend on the value

of the ratio PK,R

P ∗
R
. The limiting ratio is bounded by δ = 2γ

3(5/3−γ)> 1 (γ < 5
3
),

then case(b) PK,R

P ∗
R
> 1 then case (b) is impossible. For that purpose, we will

consider that case 2(a) in the study of the positivity of g2(z2).

Case 2(a): γ < 5
3
and KR

P ∗
R

< γ
(5/3−γ) : we have g′′2(z2) positive ∀ z2 ∈

[1, (γ+1)
γ

[, which implies that g′(z2) is increasing ∀ z2 ∈ [1, (γ+1)
γ

[.

Sign of g′2: thanks to condition 2(a), we find that g′2( (γ+1)
γ

) < 0, but since

g′2 is an increasing function, then g′2(z2) is negative ∀ z2 ∈ [1, (γ+1)
γ

[. This

implies that the function g2(z2) is decreasing ∀ z2 ∈ [1, (γ+1)
γ

[.
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Finally for γ < 5
3
and KR

P ∗
R

< γ
(5/3−γ) : g2(z2) is decreasing in [1, (γ+1)

γ
[; then for

getting g2(z2) > 0 (P ∗2> P ∗R), it suffices that g2( (γ+1)
γ

) > 0, which imposes

the following condition:

2(
(γ + 1)

γ
)2
(
β + 1 + 2

KR

P ∗R
α

)
+

(γ + 1)

γ

(
−5− 5β − 3m2 τR

P ∗R

)
+3m2 τR

P ∗R
β > 0.

(63)
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