Cutting-Planes by projecting instead of separating

Daniel Porumbel

CEDRIC CS Lab, CNAM, 2 rue Conté, 75003 Paris, France

(1) The general idea of projecting instead of separating

2 Linear robust optimization
(3) The Benders reformulation
(4) Column Generation for graph coloring
(5) Conclusions

Input : a polytope P with prohibitively-many constraints

Goal : "upgrade" the standard Cutting-Planes (right) to a new method that uses projections inside the polytope P
\star The separation subproblem will be upgraded to the projection sub-problem

Recall : Each iteration k corresponds to an outer approximation P_{k} of P and the Cutting-Planes has to separate opt $\left(P_{k}\right)$
$K<\measuredangle D \gg 1 \rightarrow+$

Given $\mathbf{x} \in P$ and a direction $\mathbf{d} \in \mathbb{R}^{n}$, the projection of \mathbf{x} along \mathbf{d} asks to find the maximum step length t^{*} such that $\mathbf{x}+t^{*} \mathbf{d} \in P$

Using such projections, the new method generates a convergent sequence of inner solutions.
 contact point $\mathbf{x}_{k}+t_{k}^{*} \mathbf{d}_{k}$ and a first-hit facet

Given $\mathbf{x} \in P$ and a direction $\mathbf{d} \in \mathbb{R}^{n}$, the projection of \mathbf{x} along \mathbf{d} asks to find the maximum step length t^{*} such that $\mathbf{x}+t^{*} \mathbf{d} \in P$

Using such projections, the new method generates a convergent sequence of inner solutions.
(1) At each iteration k , the projection $\mathbf{x}_{k} \rightarrow \mathbf{d}_{k}$ generates a contact point $\mathbf{x}_{k}+t_{k}^{*} \mathbf{d}_{k}$ and a first-hit facet

Given $\mathbf{x} \in P$ and a direction $\mathbf{d} \in \mathbb{R}^{n}$, the projection of \mathbf{x} along \mathbf{d} asks to find the maximum step length t^{*} such that $\mathbf{x}+t^{*} \mathbf{d} \in P$

Using such projections, the new method generates a convergent sequence of inner solutions.
(1) At each iteration k , the projection $\mathbf{x}_{k} \rightarrow \mathbf{d}_{k}$ generates a contact point $\mathbf{x}_{k}+t_{k}^{*} \mathbf{d}_{k}$ and a first-hit facet

$$
k=3 \text { here }
$$

Given $\mathbf{x} \in P$ and a direction $\mathbf{d} \in \mathbb{R}^{n}$, the projection of \mathbf{x} along \mathbf{d} asks to find the maximum step length t^{*} such that $\mathbf{x}+t^{*} \mathbf{d} \in P$

Using such projections, the new method generates a convergent sequence of inner solutions.
(1) At each iteration k , the projection $\mathbf{x}_{k} \rightarrow \mathbf{d}_{k}$ generates a contact point $\mathbf{x}_{k}+t_{k}^{*} \mathbf{d}_{k}$ and a first-hit facet

(1) Graph coloring (dual polytope in Column Generation)

2 A Benders's Cutting-Planes problem (primal polytope)
3 A robust optimization problem (primal polytope)
4 Cutting-Stock with multiple lengths (dual polytope)

Different techniques have been used to solve the projection sub-problem for these different problems :

- The Charnes-Cooper transformation for (2) an ad-hoc method for 3 or Dynamic Programming for 4
- I'll focus on 1

Iteration 1 : uncharted territory, follow objective function, i.e., advance along $\mathbf{x}_{1} \rightarrow \mathbf{d}_{1}$ where \mathbf{d}_{1} takes the value of the objective function

Iteration 1 : found a first outer solution opt $\left(P_{1}\right)$ and a first inner solution (contact point) $\mathbf{x}_{1}+t_{1}^{*} \mathbf{d}_{1}$

Iteration 2 : an inner feasible solution (contact point) $\mathbf{x}_{2}+t_{2}^{*} \mathbf{d}_{2}$ and a new outer solution. We take $\mathbf{d}_{2}=\operatorname{opt}\left(P_{1}\right)-\mathbf{x}_{2}$.

Iteration 3 : the feasible solution $\mathbf{x}_{3}+t_{3}^{*} \mathbf{d}_{3}$ is almost optimal

Iteration 4 : optimality of opt $\left(P_{3}\right)$ proved You can see the proposed method is convergent because it solves a separation problem on opt $\left(P_{k}\right)$ at each iteration k

- The convergence proof takes two lines, cool!

Building on existing work [1,2], the new method was deliberately designed to be more general and when possible simpler
[1] Daniel Porumbel. Ray projection for optimizing polytopes with prohibitively many constraints in set-covering column generation. Mathematical Programming, 155(1) :147-197, 2016.
[2] Daniel Porumbel. From the separation to the intersection subproblem for optimizing polytopes with prohibitively many constraints in a Benders decomposition context. Discrete Optimization, 2018.

Notice the trajectory of the inner points - there is no built-in feature in the Cutting-Planes to generate inner points

- each x_{k} is a point on the last projected segment, i.e., between \mathbf{x}_{k-1} and $\mathbf{x}_{k-1}+t_{k-1}^{*} \mathbf{d}_{k-1}$
- in this example we choose : $x_{k}=\mathbf{x}_{k-1}+\frac{1}{2} \cdot t_{k-1}^{*} \mathbf{d}_{k-1}$

Notice the trajectory of the inner points - there is no built-in feature in the Cutting-Planes to generate inner points

- each x_{k} is a point on the last projected segment, i.e., between \mathbf{x}_{k-1} and $\mathbf{x}_{k-1}+t_{k-1}^{*} \mathbf{d}_{k-1}$
- in this example we choose : $x_{k}=\mathbf{x}_{k-1}+\frac{1}{2} \cdot t_{k-1}^{*} \mathbf{d}_{k-1}$

- each x_{k} is a point on the last projected segment, i.e., between \mathbf{x}_{k-1} and $\mathbf{x}_{k-1}+t_{k-1}^{*} \mathbf{d}_{k-1}$
- we here choose the contact point : $x_{k}=\mathbf{x}_{k-1}+t_{k-1}^{*} \mathbf{d}_{k-1}$

The projection sub-problem

We are given :

$$
\max \left\{\mathbf{b}^{\top} \mathbf{x}: \mathbf{a}^{\top} \mathbf{x} \leq c_{a}, \forall\left(\mathbf{a}, c_{a}\right) \in \text { Constr }\right\}=\max \left\{\mathbf{b}^{\top} \mathbf{x}: \mathbf{x} \in P\right\}
$$

Separation sub-problem on \mathbf{x}

$$
\min \left\{c_{a}-\mathbf{a}^{\top} \mathbf{x}:\left(\mathbf{a}, c_{a}\right) \in \text { Constr }\right\}
$$

The projection sub-problem

We are given :

$$
\max \left\{\mathbf{b}^{\top} \mathbf{x}: \mathbf{a}^{\top} \mathbf{x} \leq c_{\mathrm{a}}, \forall\left(\mathbf{a}, c_{a}\right) \in \text { Constr }\right\}=\max \left\{\mathbf{b}^{\top} \mathbf{x}: \mathbf{x} \in P\right\}
$$

Separation sub-problem on \mathbf{x}

$$
\min \left\{c_{a}-\mathbf{a}^{\top} \mathbf{x}:\left(\mathbf{a}, c_{a}\right) \in \text { Constr }\right\}
$$

Projection sub-problem on $\mathbf{x} \rightarrow \mathbf{d}$
\Longrightarrow find max t^{*} such that $\mathbf{a}^{\top} \mathbf{x}+t^{*} \cdot \mathbf{a}^{\top} \mathbf{d} \leq c_{a} \forall\left(\mathbf{a}, c_{a}\right) \in$ Constr

The projection sub-problem

We are given :

$$
\max \left\{\mathbf{b}^{\top} \mathbf{x}: \mathbf{a}^{\top} \mathbf{x} \leq c_{a}, \forall\left(\mathbf{a}, c_{a}\right) \in \text { Constr }\right\}=\max \left\{\mathbf{b}^{\top} \mathbf{x}: \mathbf{x} \in P\right\}
$$

Separation sub-problem on \mathbf{x}

$$
\min \left\{c_{a}-\mathbf{a}^{\top} \mathbf{x}:\left(\mathbf{a}, c_{a}\right) \in \text { Constr }\right\}
$$

Projection sub-problem on $\mathbf{x} \rightarrow \mathbf{d}$
\Longrightarrow find max t^{*} such that $\mathbf{a}^{\top} \mathbf{x}+t^{*} \cdot \mathbf{a}^{\top} \mathbf{d} \leq c_{a} \forall\left(\mathbf{a}, c_{a}\right) \in$ Constr

$$
t^{*}=\min \left\{\frac{c_{a}-\mathbf{a}^{\top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}}:\left(\mathbf{a}, c_{a}\right) \in \text { Constr }, \mathbf{d}^{\top} \mathbf{a}>0\right\}
$$

(1) The general idea of projecting instead of separating
2. Linear robust optimization
(3) The Benders reformulation
(4) Column Generation for graph coloring
(5) Conclusions

Introducing the Robust Linear Program

Start from a standard LP with a feasible area described by :

$$
\mathbf{a}^{\top} \mathbf{x} \leq c_{a} \forall\left(\mathbf{a}, c_{a}\right) \in \text { constr }_{\text {nom }}
$$

Introducing the Robust Linear Program

Start from a standard LP with a feasible area described by :

$$
\mathbf{a}^{\top} \mathbf{x} \leq c_{a} \forall\left(\mathbf{a}, c_{a}\right) \in \text { Constr }_{\text {nom }}
$$

For each nominal constraint $\left(\mathbf{a}, c_{a}\right) \in$ Const $r_{\text {nom }}$ one can define a (huge) set of robust constraints

$$
\left(\mathbf{a}+\mathbf{a}^{\prime}\right)^{\top} \mathbf{x} \leq c_{a}
$$

where any \mathbf{a}^{\prime} belongs to a set a (reasonable) deviation of the nominal coefficients a.

Introducing the Robust Linear Program

Start from a standard LP with a feasible area described by :

$$
\mathbf{a}^{\top} \mathbf{x} \leq c_{a} \forall\left(\mathbf{a}, c_{a}\right) \in \text { Constr }_{\text {nom }}
$$

For each nominal constraint $\left(\mathbf{a}, c_{a}\right) \in$ Const $r_{\text {nom }}$ one can define a (huge) set of robust constraints

$$
\left(\mathbf{a}+\mathbf{a}^{\prime}\right)^{\top} \mathbf{x} \leq c_{\mathrm{a}}
$$

where any \mathbf{a}^{\prime} belongs to a set a (reasonable) deviation of the nominal coefficients a.
More exactly : $\mathbf{a}^{\prime} \in \mathbb{R}^{n}$ is a vector with at maximum Γ non-zero components such that $a_{i}^{\prime} \in\left\{-0.01 \cdot a_{i}, 0,0.01 \cdot a_{i}\right\} \forall i \in[1 . . n]$.

- We write $\mathbf{a}^{\prime} \in \operatorname{Dev}_{\Gamma}(\mathbf{a})$

I only compare to the cutting-planes from [M. Fischetti and M. Monaci. Cutting plane versus compact formulations for uncertain (integer) linear programs. Mathematical Programming Computation, 4(3) :239-273, 2012.]

The projection sub-problem

We need the maximum t such that

$$
\left(\mathbf{a}+\mathbf{a}^{\prime}\right)^{\top}(\mathbf{x}+t \mathbf{d}) \leq c_{a} \forall\left(\mathbf{a}, c_{a}\right) \in \text { Constr }_{\text {nom }}, \mathbf{a}^{\prime} \in \operatorname{Dev}_{\Gamma}(\mathbf{a}),
$$

i.e., we consider all nominal constraints $\left(\mathbf{a}, c_{a}\right)$ and all their deviations $\mathbf{a}^{\prime} \in \operatorname{Dev}_{\Gamma}(\mathbf{a})$

The projection sub-problem

We need the maximum t such that

$$
\left(\mathbf{a}+\mathbf{a}^{\prime}\right)^{\top}(\mathbf{x}+t \mathbf{d}) \leq c_{a} \forall\left(\mathbf{a}, c_{a}\right) \in \text { Constr }_{\text {nom }}, \mathbf{a}^{\prime} \in \operatorname{Dev}_{\Gamma}(\mathbf{a}),
$$

i.e., we consider all nominal constraints $\left(\mathbf{a}, c_{a}\right)$ and all their deviations $\mathbf{a}^{\prime} \in \operatorname{Dev}_{\Gamma}(\mathbf{a})$
Let's work this formula for each nominal constraint (a, c_{a}) The projection sub-problem asks to minimize

$$
\min _{\mathbf{a}^{\prime} \in \operatorname{Dev}(\mathbf{a})} \frac{\mathbf{c}_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\top} \mathbf{d}}
$$

The projection sub-problem

We need the maximum t such that

$$
\left(\mathbf{a}+\mathbf{a}^{\prime}\right)^{\top}(\mathbf{x}+t \mathbf{d}) \leq c_{a} \forall\left(\mathbf{a}, c_{a}\right) \in \text { Constr }_{\text {nom }}, \mathbf{a}^{\prime} \in \operatorname{Dev}_{\Gamma}(\mathbf{a}),
$$

i.e., we consider all nominal constraints $\left(\mathbf{a}, \boldsymbol{c}_{\mathrm{a}}\right)$ and all their deviations $\mathbf{a}^{\prime} \in \operatorname{Dev}_{\Gamma}(\mathbf{a})$
Let's work this formula for each nominal constraint (\mathbf{a}, c_{a})
The projection sub-problem asks to minimize

$$
\min _{\mathbf{a}^{\prime} \in \operatorname{Dev}(\mathbf{a})} \frac{\mathbf{C a}_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\top} \mathbf{d}}
$$

This could be written as a linear-fractional program (because \mathbf{a}^{\prime} can be seen as belonging to a polytope) and solved with the Charness-Cooper transformation.

A step-by-step t-decreasing algorithm

Start with the t value given by the nominal constraint alone, i.e., fix $\mathbf{a}^{\prime}=0$ in formula below :

$$
t \leftarrow \frac{c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\top \top} \mathbf{d}} \quad \stackrel{\mathbf{a}^{\prime}=\mathbf{0}_{n}}{=} \quad \frac{c_{a}-\mathbf{a}^{\top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}}
$$

A step-by-step t-decreasing algorithm

Start with the t value given by the nominal constraint alone, i.e., fix $\mathbf{a}^{\prime}=0$ in formula below :

$$
t \leftarrow \frac{c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\top} \mathbf{d}} \quad \stackrel{\mathbf{a}^{\prime}=\mathbf{0}_{n}}{=} \quad \frac{c_{a}-\mathbf{a}^{\top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}}
$$

(1) This t is not necessarily optimal because there might exist a different $\mathbf{a}^{\prime}\left(\neq \mathbf{0}_{n}\right)$ such that

$$
t>\frac{c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\prime \top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\prime \top} \mathbf{d}}
$$

A step-by-step t-decreasing algorithm

Start with the t value given by the nominal constraint alone, i.e., fix $\mathbf{a}^{\prime}=0$ in formula below :

$$
t \leftarrow \frac{c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\top \top} \mathbf{d}} \quad \stackrel{\mathbf{a}^{\prime}=\mathbf{0}_{n}}{=} \quad \frac{c_{a}-\mathbf{a}^{\top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}}
$$

(1) This t is not necessarily optimal because there might exist a different $\mathbf{a}^{\prime}\left(\neq \mathbf{0}_{n}\right)$ such that

$$
t>\frac{c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\prime \top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\prime \top} \mathbf{d}}
$$

equivalent to

$$
t \cdot\left(\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\prime \top} \mathbf{d}\right)>c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\prime \top} \mathbf{x}
$$

A step-by-step t-decreasing algorithm

Start with the t value given by the nominal constraint alone, i.e., fix $\mathbf{a}^{\prime}=0$ in formula below :

$$
t \leftarrow \frac{c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\top \top} \mathbf{d}} \quad \stackrel{\mathbf{a}^{\prime}=\mathbf{0}_{n}}{=} \quad \frac{c_{a}-\mathbf{a}^{\top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}}
$$

(1) This t is not necessarily optimal because there might exist a different $\mathbf{a}^{\prime}\left(\neq \mathbf{0}_{n}\right)$ such that

$$
t>\frac{c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\prime \top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\prime \top} \mathbf{d}}
$$

equivalent to

$$
t \cdot\left(\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\prime \top} \mathbf{d}\right)>c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\prime \top} \mathbf{x}
$$

(2) Solve $\min _{\mathbf{a}^{\prime} \in \operatorname{Dev} \Gamma(\mathbf{a})} c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\top \top} \mathbf{x}-t \cdot\left(\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\mathbf{a}^{\top}} \mathbf{d}\right)$

A step-by-step t-decreasing algorithm

Start with the t value given by the nominal constraint alone, i.e., fix $\mathbf{a}^{\prime}=0$ in formula below :

$$
t \leftarrow \frac{c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\top \top} \mathbf{d}} \quad \stackrel{\mathbf{a}^{\prime}=\mathbf{0}_{n}}{=} \quad \frac{c_{a}-\mathbf{a}^{\top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}}
$$

(1) This t is not necessarily optimal because there might exist a different $\mathbf{a}^{\prime}\left(\neq \mathbf{0}_{n}\right)$ such that

$$
t>\frac{c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\prime \top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\prime \top} \mathbf{d}}
$$

equivalent to

$$
t \cdot\left(\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\top} \mathbf{d}\right)>c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\prime \top} \mathbf{x}
$$

(2) Solve $\min _{\mathbf{a}^{\prime} \in \operatorname{Dev}_{\Gamma}(\mathbf{a})} c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\top \top} \mathbf{x}-t \cdot\left(\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\top} \mathbf{d}\right)$
(3) Repeat from (1) while the optimum of above LP is below 0

A step-by-step t-decreasing algorithm

The resulting t is given as input to the next constraint of Constr $r_{\text {nom }}$, to iteratively apply steps (1) - 3) to all Constrinom
(1) This t is not necessarily optimal because there might exist a different $\mathbf{a}^{\prime}\left(\neq \mathbf{0}_{n}\right)$ such that

$$
t>\frac{c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\top \top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\prime \top} \mathbf{d}}
$$

equivalent to

$$
t \cdot\left(\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\top} \mathbf{d}\right)>c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\prime \top} \mathbf{x}
$$

(2) Solve $\min _{\mathbf{a}^{\prime} \in \operatorname{Dev}(\mathbf{a})} c_{a}-\mathbf{a}^{\top} \mathbf{x}-\mathbf{a}^{\top} \mathbf{x}-t \cdot\left(\mathbf{a}^{\top} \mathbf{d}+\mathbf{a}^{\mathbf{a}^{\top}} \mathbf{d}\right)$
(3) Repeat from (1) while the optimum of above LP is below 0

Results on the robust linear program

Each interior point is defined as : $\mathbf{x}_{k}=\mathbf{x}_{k-1}+\frac{1}{10} \cdot t_{k-1}^{*} \mathbf{d}_{k-1}$

Results on the robust linear program

Each interior point is defined as : $\mathbf{x}_{k}=\mathbf{x}_{k-1}+\frac{1}{10} \cdot t_{k-1}^{*} \mathbf{d}_{k-1}$

(1) The general idea of projecting instead of separating

2 Linear robust optimization
(3) The Benders reformulation
(4) Column Generation for graph coloring
(5) Conclusions

Du modèle de départ aux reformulatinne coût des flux，on $\min \mathbf{d}^{\top} \mathbf{x}+\mathbf{b}^{\top} \mathbf{y}$ va utiliser $\mathbf{b}=\mathbf{0}$
$\mathbf{D x} \geq \mathbf{e} \longleftarrow$ Contraintes de design

$$
\begin{aligned}
& \mathbf{B x}+\mathbf{A y} \geq \mathbf{c} \nwarrow \\
& \mathbf{x} \in \mathbb{Z}_{+}^{n}, \mathbf{y} \geq \mathbf{0}
\end{aligned} \begin{aligned}
& \text { Le flux } \mathbf{y} \text { doit pouvoir } \\
& \text { passer }
\end{aligned}
$$

\mathbf{x} est un nombre d＇unités à faire fonctionner．
－câbles à monter
－entrepôts à ouvrir
y est un coût des flux qui passent，coût d＇affectations，etc

Du modèle de départ aux reformılatinne coût des flux, on va utiliser $\mathbf{b}=\mathbf{0}$ $\min \mathbf{d}^{\top} \mathbf{x}+\mathbf{b}^{\top} \mathbf{y}$
$\mathbf{D x} \geq \mathbf{e} \quad$ Contraintes de design $\mathbf{B x}+\mathbf{A y} \geq \mathbf{c} K$
$\mathbf{x} \in \mathbb{Z}_{+}^{n}, \mathbf{y} \geq \mathbf{0}$ $\begin{aligned} & \text { Le flux } \mathbf{y} \text { doit pouvoir } \\ & \text { passer }\end{aligned}$
Reformulation 1 :

$$
\begin{aligned}
& \min \mathbf{d}^{\top} \mathbf{x}+\hat{z} \\
& \mathbf{D x} \geq \mathbf{e} \\
& \hat{z}=\min \left\{\mathbf{b}^{\top} \mathbf{y}: \mathbf{B} \mathbf{x}+\mathbf{A} \mathbf{y} \geq \mathbf{c}, \mathbf{y} \geq \mathbf{0}\right\} \\
& \mathbf{x} \in \mathbb{Z}_{+}^{n}
\end{aligned}
$$

Du modèle de départ aux reformulations

$$
\begin{gathered}
\min \mathbf{d}^{\top} \mathbf{x}+\mathbf{b}^{\top} \mathbf{y} \\
\mathbf{D} \mathbf{x} \geq \mathbf{e} \\
\mathbf{B x}+\mathbf{A} \mathbf{y} \geq \mathbf{c} \\
\mathbf{x} \in \mathbb{Z}_{+}^{n}, \mathbf{y} \geq \mathbf{0}
\end{gathered}
$$

Reformulation 1 :

$$
\begin{array}{ll}
\min ^{\sin } \mathbf{d}^{\top} \mathbf{x}+\hat{z} \\
& \mathbf{D x} \\
& \geq \mathbf{e} \\
\hat{z} & =\min \left\{\mathbf{b}^{\top} \mathbf{y}: \mathbf{B x}+\mathbf{A y} \geq \mathbf{c}, \mathbf{y} \geq \mathbf{0}\right\} \\
\mathbf{x} & \in \mathbb{Z}_{+}^{n}
\end{array}
$$

Du modèle de départ aux refor coút dès flux, on

$$
\begin{gathered}
\quad \min \mathbf{d}^{\top} \mathbf{x}+\mathbf{b}^{\top} \mathbf{y} \\
\mathbf{D} \mathbf{x} \geq \mathbf{e} \\
\mathbf{B x}+\mathbf{A} \mathbf{y} \geq \mathbf{c} \\
\mathbf{x} \in \mathbb{Z}_{+}^{n}, \mathbf{y} \geq \mathbf{0}
\end{gathered}
$$

Reformulation 2 :
$\min \mathbf{d}^{\top} \mathbf{x}+\hat{z}$
Dx $\geq \mathbf{e}$
$\hat{z}=\max \left\{(\mathbf{c}-\mathbf{B x})^{\top} \mathbf{u}: \mathbf{u} \in \mathscr{P}\right\}$,
$\mathbf{x} \in \mathbb{Z}_{+}^{n}$

$$
\mathscr{P}=\left\{\mathbf{u} \geq \mathbf{0}: \mathbf{A}^{\top} \mathbf{u} \leq \mathbf{b}\right\}
$$

Du modèle de départ aux refor coút dés flux, on

$$
\begin{gathered}
\quad \min _{\mathbf{d}^{\top} \mathbf{x}+\mathbf{b}^{\top} \mathbf{y}} \quad \begin{array}{l}
\text { Dx } \geq \mathbf{e} \\
\mathbf{B x}+\mathbf{A} \mathbf{y} \geq \mathbf{c} \\
\mathbf{x} \in \mathbb{Z}_{+}^{n}, \mathbf{y} \geq \mathbf{0}=0
\end{array}
\end{gathered}
$$

Reformulation 3 :

$$
\begin{aligned}
& \min \mathbf{d}^{\top} \mathbf{x}+\hat{\mathbf{z}} \\
& \mathbf{D x} \geq \mathbf{e} \\
& \quad \hat{\mathbf{z}}=\max \left\{(\mathbf{c} \quad \mathbf{B x})^{\top} \mathbf{u}: \mathbf{u} \in \mathscr{P}\right\} \\
& \mathbf{0} \geq(\mathbf{c}-\mathbf{B x})^{\top} \mathbf{u} \quad \forall \mathbf{u} \in \mathscr{P} \\
& \mathbf{x} \in \mathbb{Z}_{+}^{n} \\
& \quad \mathscr{P}=\left\{\mathbf{u} \geq \mathbf{0}: \mathbf{A}^{\top} \mathbf{u} \leq \mathbf{0}\right\}
\end{aligned}
$$

Du modèle de départ aux reformulations

$$
\begin{gathered}
\min \mathbf{d}^{\top} \mathbf{x}+\mathbf{b}^{\top} \mathbf{y} \\
\mathbf{D x} \geq \mathbf{e} \\
\mathbf{B x}+\mathbf{A y} \geq \mathbf{c} \\
\mathbf{x} \in \mathbb{Z}_{+}^{n}, \mathbf{y} \geq \mathbf{0}
\end{gathered}
$$

Reformulation 4 :

$$
\begin{aligned}
& \min \mathbf{d}^{\top} \mathbf{x} \\
& \mathbf{D x} \geq \mathbf{e} \\
&(\mathbf{B x})^{\top} \mathbf{u} \geq \mathbf{c}^{\top} \mathbf{u} \quad \forall \mathbf{u} \in \mathscr{P}, \\
& \mathbf{x} \in \mathbb{Z}_{+}^{n} \\
& \mathscr{P}=\{\mathbf{u}\left.\geq \mathbf{0}: \mathbf{A}^{\top} \mathbf{u} \leq \mathbf{0}\right\}
\end{aligned}
$$

Les coupes Benders sont définies par les rayons u du polytope Benders \mathscr{P}

Du modèle de départ aux reformulations

$$
\begin{gathered}
\quad \min \mathbf{d}^{\top} \mathbf{x}+\mathbf{b}^{\top} \mathbf{y} \\
\mathbf{D x} \geq \mathbf{e} \\
\mathbf{B x}+\mathbf{A} \mathbf{v}>\mathbf{c} \\
\left\{\begin{array}{l}
\text { Projection } \mathbf{x} \rightarrow \mathbf{d} \\
\max _{\mathbf{u} \in \mathscr{P}}\left\{\frac{(\mathbf{B x})^{\top} \mathbf{u}-\mathbf{c}^{\top} \mathbf{u}}{-(\mathbf{B d})^{\top} \mathbf{u}}:-(\mathbf{B d})^{\top} \mathbf{u}>0\right\} \\
\min \mathbf{d}^{\top} \mathbf{x} \\
\mathbf{D x}
\end{array}\right. \\
\geq \mathbf{e} \\
(\mathbf{B x})^{\top} \mathbf{u} \\
\geq \mathbf{c}^{\top} \mathbf{u} \quad \forall \mathbf{u} \in \mathscr{P}, \\
\mathbf{x}
\end{gathered} \in \mathbb{Z}_{+}^{n} \quad \begin{aligned}
& \mathscr{P}=\left\{\mathbf{u} \geq \mathbf{0}: \mathbf{A}^{\top} \mathbf{u} \leq \mathbf{0}\right\}
\end{aligned}
$$

Reformulation 4 :

Résolution sous-problème d'intersection
II faut résoudre

$$
\begin{gathered}
t^{*}=\max _{\mathbf{u} \in \mathscr{P}}\left\{\frac{(\mathbf{B} \mathbf{x})^{\top} \mathbf{u}-\mathbf{c}^{\top} \mathbf{u}}{-(\mathbf{B d})^{\top} \mathbf{u}}:-(\mathbf{B d})^{\top} \mathbf{u}>0\right\} \\
\text { avec } \mathscr{P}=\left\{\mathbf{u} \geq \mathbf{0}: \mathbf{A}^{\top} \mathbf{u} \leq \mathbf{0}\right\}
\end{gathered}
$$

Charnes-Cooper transformation :

$$
\overline{\mathbf{u}}=\frac{\mathbf{u}}{-(\mathbf{B d})^{\top} \mathbf{u}}
$$

Using $\mathbf{u} \in \mathscr{P} \Longrightarrow \mathbf{A}^{\top} \overline{\mathbf{u}} \leq \mathbf{0}, \overline{\mathbf{u}} \geq \mathbf{0},-(\mathbf{B d})^{\top} \overline{\mathbf{u}}=1$, we obtain

$$
t^{*}=\min \left\{(\mathbf{B} \mathbf{x})^{\top} \overline{\mathbf{u}}-\mathbf{c}^{\top} \overline{\mathbf{u}}: \mathbf{A}^{\top} \overline{\mathbf{u}} \leq \mathbf{0}, \overline{\mathbf{u}} \geq \mathbf{0},-(\mathbf{B d})^{\top} \overline{\mathbf{u}}=1\right\}
$$

		Projective Cutting-Planes				Standard Cutting-Planes		
	OPT	$\begin{aligned} & \text { Best } \\ & \text { IP } \\ & \text { Sol } \end{aligned}$	Iterations avg (dev)	Time [secs] avg (dev)	Time solve master	Iterations avg (dev)	Time [secs] avg (dev)	$\begin{aligned} & \text { Time } \\ & \text { solve } \\ & \text { master } \end{aligned}$
a	42.333	48	22.8 (1)	0.06 (0.002)	4.4\%	35 (4.9)	0.09 (0.01)	5.5\%
b	245.67	265	73.8 (2.7)	0.2 (0.006)	6.1\%	131 (11.8)	0.4 (0.04)	8.7\%
c	204.33	220	56.5 (1.5)	0.2 (0.004)	4.9\%	78.5 (16)	0.2 (0.05)	5.8\%
d	299.33	317	67.5 (3)	0.2 (0.01)	4.3\%	104 (4.3)	0.4 (0.02)	6.1\%
e	67.333	77	35.4 (0.8)	0.1 (0.006)	4.2\%	39.5 (5.5)	0.1 (0.02)	5.5\%
a	46		174 (27.4)	7.4 (5.8)	89.5\%	229 (146)	9.6 (3)	95\%
b	260		824 (206)	1073 (636)	99.5\%	2987 (2427)	4129 (819)	99.8\%
c	214		242 (27.1)	99 (31.6)	98.4\%	526 (442)	378 (70.8)	99.6\%
d	313		336 (53.4)	321 (103)	99.2\%	1315 (1049)	2367 (469)	99.8\%
e	74		1336 (138)	4907 (1640)	99.8\%	2250 (1292)	6703 (2857)	99.9\%

Les 5 derniers lignes concernent le modèle IP.
"dév » = déviation standard
(1) The general idea of projecting instead of separating

2 Linear robust optimization
(3) The Benders reformulation
(4) Column Generation for graph coloring
(5) Conclusions

We need to focus on the dual. The primal master is :

$$
\mathbf{x :} \quad \begin{aligned}
& \min \sum_{y_{a} \geq 0} c_{a} y_{a} \\
& a_{i} y_{a} \geq b_{i} \\
& \forall i \in[1 . . n] \\
& \forall\left(\mathbf{a}, c_{a}\right) \in \text { Constr }
\end{aligned}
$$

The dual LP is :

$$
P\left\{\begin{array}{l}
\quad \max ^{\mathbf{b}^{\top} \mathbf{x} \quad\left(=\max \mathbf{1}_{n}^{\top} \mathbf{x}\right)} \\
y_{a}: \\
\mathbf{a}^{\top} \mathbf{x} \leq c_{a}, \quad \forall\left(\mathbf{a}, c_{a}\right) \in \text { Constr } \\
\\
\mathbf{x} \geq \mathbf{0}_{n}
\end{array}\right.
$$

- $c_{a}=1$ for each stable a (each color counts once)

We re-write the graph coloring problem :

$$
P\left\{\begin{array}{l}
\max \mathbf{1}_{n}^{\top} \mathbf{x} \\
\mathbf{a}^{\top} \mathbf{x} \leq 1, \quad \text { for any stable } \mathbf{a} \in\{0,1\}^{n} \\
\mathbf{x} \geq \mathbf{0}_{n}
\end{array}\right.
$$

The projection sub-problem on $\mathbf{x} \rightarrow \mathbf{d}$

$$
t^{*}=\min \left\{\frac{1-\mathbf{a}^{\top} \mathbf{x}}{\mathbf{a}^{\top} \mathbf{d}}: \mathbf{a} \in \operatorname{STAB}, \mathbf{d}^{\top} \mathbf{a}>0\right\}
$$

where STAB is the set of stables that can be written as

$$
\begin{aligned}
& a_{i}+a_{j} \leq 1 \quad \forall\{i, j\} \in E \\
& a_{i} \in\{0,1\} \quad \forall i \in V
\end{aligned}
$$

$$
\begin{aligned}
& t^{*}= \min _{\mathbf{a}} \frac{1-\mathbf{x}^{\top} \mathbf{a}}{\mathbf{d}^{\top} \mathbf{a}} \\
& \mathbf{d}^{\top} \mathbf{a}>0
\end{aligned}
$$

$$
\operatorname{STAB} \begin{cases}a_{i}+a_{j} \leq 1, & \forall\{i, j\} \in E \\ a_{i} \in\{0,1\} & \forall i \in[1 . . n]\end{cases}
$$

$$
\begin{gathered}
t^{*}=\min _{\mathbf{a}} \frac{1-\mathbf{x}^{\top} \mathbf{a}}{\mathbf{d}^{\top} \mathbf{a}} \\
\mathbf{d}^{\top} \mathbf{a}>0
\end{gathered} \quad \begin{array}{lll}
t^{*}=\min _{\mathbf{a}, \bar{\alpha}} \bar{\alpha}-\mathbf{x}^{\top} \overline{\mathbf{a}} \\
\operatorname{STAB}\left\{\begin{array}{lll}
a_{i}+a_{j} \leq 1, & \forall\{i, j\} \in E & \overline{\mathbf{a}}_{i}+\overline{\mathbf{a}}_{j} \leq \bar{\alpha} \\
\mathbf{d}_{i} \in\{0,1\} & \forall i \in[1 . . n] & \overline{\mathbf{a}}_{i} \in\{0, \bar{\alpha}\} \\
& \bar{\alpha} \geq 0
\end{array} \quad \forall i, j\right\} \in E \\
& \overline{\mathbf{a}}=\frac{\mathbf{a}}{\mathbf{d}^{\top} \mathbf{a}} \text { and } \bar{\alpha}=\frac{1}{\mathbf{d}^{\top} \mathbf{a}}
\end{array}
$$

This is a discrete Charnes-Cooper transformation!

$$
\begin{aligned}
& t^{*}=\min _{\mathbf{a}} \frac{1-\mathbf{x}^{\top} \mathbf{a}}{\mathbf{d}^{\top} \mathbf{a}} \\
& \mathbf{d}^{\top} \mathbf{a}>0 \\
& \operatorname{STAB} \begin{cases}a_{i}+a_{j} \leq 1, & \forall\{i, j\} \in E \\
a_{i} \in\{0,1\} & \forall i \in[1 . . n]\end{cases} \\
& t^{*}=\min _{\mathbf{a}, \bar{\alpha}} \bar{\alpha}-\mathbf{x}^{\top} \overline{\mathbf{a}} \\
& \bar{a}_{i}+\overline{\mathrm{a}}_{j} \leq \bar{\alpha} \quad \forall\{i, j\} \in E \\
& \mathbf{d}^{\top} \overline{\mathbf{a}}=1 \\
& \overline{\mathbf{a}}_{i} \in\{0, \bar{\alpha}\} \quad \forall i \in[1 . . n] \\
& \bar{\alpha} \geq 0 \\
& \overline{\mathbf{a}}=\frac{\mathbf{a}}{\mathbf{d}^{\top} \mathbf{a}} \text { and } \bar{\alpha}=\frac{1}{\mathbf{d}^{\top} \mathbf{a}}
\end{aligned}
$$

This is a discrete Charnes-Cooper transformation!
The separation sub-problem is :

$$
\begin{array}{ll}
\min 1-\mathbf{x}^{\top} \mathbf{a} & \\
a_{i}+a_{j} \leq 1, & \forall\{i, j\} \in E \\
a_{i} \in\{0,1\} & \forall i \in[1 . . n]
\end{array}
$$

$$
\begin{array}{cc}
t^{*}=\min _{\mathbf{a}} \frac{1-\mathbf{x}^{\top} \mathbf{a}}{\mathbf{d}^{\top} \mathbf{a}} & t^{*}=\min _{\mathbf{a}, \bar{\alpha}} \bar{\alpha}-\mathbf{x}^{\top} \overline{\mathbf{a}} \\
\mathbf{d}^{\top} \mathbf{a}>0 & \overline{\mathbf{a}}_{i}+\overline{\mathbf{a}}_{j} \leq \bar{\alpha} \quad \forall\{i, j\} \in E \\
\operatorname{STAB}\left\{\begin{array}{ccc}
a_{i}+a_{j} \leq 1, & \forall\{i, j\} \in E & \mathbf{d}^{\top} \overline{\mathbf{a}}=1 \\
a_{i} \in\{0,1\} & \forall i \in[1 . . n] & \overline{\overline{\mathbf{a}}_{i} \in\{0, \bar{\alpha}\}} \\
\bar{\alpha} \geq 0 & \forall i \in[1 . . n] \\
& \overline{\mathbf{a}}=\frac{\mathbf{a}}{\mathbf{d}^{\top} \mathbf{a}} \text { and } \bar{\alpha}=\frac{1}{\mathbf{d}^{\top} \mathbf{a}} &
\end{array}\right. \\
&
\end{array}
$$

This is a discrete Charnes-Cooper transformation!
The separation sub-problem is :

$$
\begin{array}{ll}
\min 1-\mathbf{x}^{\top} \mathbf{a} & \text { The continuity-breaking } \\
a_{i}+a_{j} \leq 1, & \forall\{i, j\} \in E
\end{array} \begin{array}{ll}
a_{i} \in\{0,1\} & \forall i \in[1 . . n]
\end{array}
$$

$$
\begin{aligned}
& t^{*}=\min _{\mathbf{a}} \frac{1-\mathbf{x}^{\top} \mathbf{a}}{\mathbf{d}^{\top} \mathbf{a}} t^{*}=\min _{\mathbf{a}, \bar{\alpha}} \bar{\alpha}-\mathbf{x}^{\top} \overline{\mathbf{a}} \\
& \mathbf{d}^{\top} \mathbf{a}>0 \\
& \operatorname{STAB}\left\{\begin{array}{lll}
\overline{\mathrm{a}}_{i}+\overline{\mathrm{a}}_{j} \leq \bar{\alpha} & \forall\{i, j\} \in E \\
a_{i}+a_{j} \leq 1, & \forall\{i, j\} \in E & \mathbf{d}^{\top} \overline{\mathbf{a}}=1 \\
a_{i} \in\{0,1\} & \forall i \in[1 . . n] & \overline{\bar{a}}_{i} \in\{0, \bar{\alpha}\} \quad \\
& \bar{\alpha} \geq 0 & \forall i \in[1 . . n] \\
& \overline{\mathbf{a}}=\frac{\mathbf{a}}{\mathbf{d}^{\top} \mathbf{a}} \text { and } \bar{\alpha}=\frac{1}{\mathbf{d}^{\top} \mathbf{a}}
\end{array}\right.
\end{aligned}
$$

This is a discrete Charnes-Cooper transformation!
The separation sub-problem is :

$$
\min 1-\mathbf{x}^{\top} \mathbf{a}
$$

The edge inequalities could

$$
\begin{array}{ll}
\hline a_{i}+a_{j} \leq 1, & \forall\{i, j\} \in E \\
a_{i} \in\{0,1\} & \forall i \in[1 . . n]
\end{array}
$$ have been replaced by any others imaginable

Each interior point \mathbf{x}_{k} yields a lower bound

We used

$$
\mathbf{x}_{k}=\mathbf{x}_{k-1}+t_{k-1}^{*} \mathbf{d}_{k-1}
$$

so that $\mathbf{x}_{k}=$ the last contact point

For Column Generation, we used Lagrangian bounds

Further results on graph coloring

Each first row in black : the standard method Each second row in red : the new method.

Three lower bounds found along the search

instance	beginning iter $: l \mathrm{lb} /$ time	mid iteration iter $: l \mathrm{lb} /$ time	last iteration iter $: l \mathrm{lb} /$ time
r125.1	$34: 2.35 / 0.06$	$36: 2.62 / 0.06$	$47: 5 / 0.08$
	$5: 2.35 / 0.18$	$17: 2.61 / 0.68$	$20: 5 / 0.80$
ds jc125.5	$253: 13.08 / 365$	$306: 14.27 / 634$	$378: 15.08 / 1101$
	$16: 13.04 / 213$	$62: 14.001 / 1288$	$136: 15.003 / 4077$
ds jc125.9	$70: 25.67 / 24.4$	$134: 34.13 / 78$	$171: 42.11 / 136$
	$2: 25.67 / 7.3$	$44: 34.11 / 109$	$150: 42.03 / 486$

(1) The general idea of projecting instead of separating

2 Linear robust optimization
(3) The Benders reformulation
(4) Column Generation for graph coloring
(5) Conclusions

We proposed Projective Cutting-Planes:

(1) The driving force is a sequence of inner solutions (a bit like in IPM) that are not available by default in standard Cutting-Planes

- If one wants to calculate inner solutions during a standard Cutting-Planes, it may be possible but : 1) one has to apply some ad-hoc method and 2) such inner solutions will always remain a by-product of the algorithm

We proposed Projective Cutting-Planes:

(1) The driving force is a sequence of inner solutions (a bit like in IPM) that are not available by default in standard Cutting-Planes

- If one wants to calculate inner solutions during a standard Cutting-Planes, it may be possible but : 1) one has to apply some ad-hoc method and 2) such inner solutions will always remain a by-product of the algorithm
(2) The lower bounds of the new method are monotonically increasing over the iterations : the infamous "yo-yo" effect is finished

We proposed Projective Cutting-Planes:
(1) The driving force is a sequence of inner solutions (a bit like in IPM) that are not available by default in standard Cutting-Planes

- If one wants to calculate inner solutions during a standard Cutting-Planes, it may be possible but : 1) one has to apply some ad-hoc method and 2) such inner solutions will always remain a by-product of the algorithm
(2) The lower bounds of the new method are monotonically increasing over the iterations : the infamous "yo-yo" effect is finished
- The new method discovered a new lower bound for a very well studied graph dsjc250.1
- On the robust optimization problem, the new method is faster even in terms of CPU time

