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Input : a polytope P with
prohibitively-many constraints

Goal : “upgrade” the standard
Cutting-Planes (right) to a
new method that uses projec-
tions inside the polytope P

? The separation sub-
problem will be up-
graded to the projection
sub-problem

Recall : Each iteration k cor-
responds to an outer ap-
proximation Pk of P and the
Cutting-Planes has to se-
parate opt(Pk )



Given x ∈ P and a direction d ∈ Rn, the projection of x along d
asks to find the maximum step length t∗ such that x + t∗d ∈ P

Using such projections, the new method generates a
convergent sequence of inner solutions.

1 At each iteration k, the projection xk → dk generates a
contact point xk + t∗k dk and a first-hit facet
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Problems addressed with the new method

1 Graph coloring (dual polytope in Column Generation)

2 A Benders’s Cutting-Planes problem (primal polytope)

3 A robust optimization problem (primal polytope)

4 Cutting-Stock with multiple lengths (dual polytope)

Different techniques have been used to solve the projection
sub-problem for these different problems :

The Charnes-Cooper transformation for 2 , an ad-hoc me-
thod for 3 or Dynamic Programming for 4

I’ll focus on 1
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x1 = [0 0]>

Iteration 1 : uncharted territory, follow objective function, i.e.,
advance along x1 → d1 where d1 takes the value of the
objective function
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ite
ra

tio
n 1

x1 = [0 0]> opt(P1)

x1+t∗1d1feasible solution

outer solution

Iteration 1 : found a first outer solution opt(P1) and a first inner
solution (contact point) x1 + t∗1d1
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x1 = [0 0]> opt(P1)

x1+t∗1d1

x2+t∗2d2

opt(P2)

x2

Iteration 2 : an inner feasible solution (contact point) x2 + t∗2d2

and a new outer solution. We take d2 = opt(P1)− x2.
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P

x3

x3+t∗3d3

x1 = [0 0]> opt(P1)

x1+t∗1d1

x2+t∗2d2

opt(P2)

x2

opt(P3)

Iteration 3 : the feasible solution x3 + t∗3d3 is almost optimal
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P

x3

x1 = [0 0]> opt(P1)

x1+t∗1d1

x2+t∗2d2

opt(P2)

x2

opt(P3)

Iteration 4 : optimality of opt(P3) proved
You can see the proposed method is convergent because it
solves a separation problem on opt(Pk ) at each iteration k

The convergence proof takes two lines, cool !
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P

x3

x1 = [0 0]> opt(P1)

x1+t∗1d1

x2+t∗2d2

opt(P2)

x2

opt(P3)

Building on existing work [1,2], the new method was deliberately
designed to be more general and when possible simpler

[1] Daniel Porumbel. Ray projection for optimizing polytopes with
prohibitively many constraints in set-covering column generation.
Mathematical Programming, 155(1) :147–197, 2016.

[2] Daniel Porumbel. From the separation to the intersection subpro-
blem for optimizing polytopes with prohibitively many constraints in
a Benders decomposition context. Discrete Optimization, 2018.
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P

x3

x1 = [0 0]> opt(P1)

x1+t∗1d1

x2+t∗2d2

opt(P2)

x2

opt(P3)

Notice the trajectory of the inner points — there is no built-in
feature in the Cutting-Planes to generate inner points

each xk is a point on the last projected segment, i.e., bet-
ween xk−1 and xk−1 + t∗k−1dk−1

in this example we choose : xk = xk−1 +
1
2 ·t
∗
k−1dk−1

everything was like a movie until here : let’s move to real life
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x1 = [0 0]> opt(P1)

x1+t∗1d1

x2+t∗2d2

= x2

d2 = opt(P1)− x2

Notice the trajectory of the inner points — there is no built-in
feature in the Cutting-Planes to generate inner points

each xk is a point on the last projected segment, i.e., bet-
ween xk−1 and xk−1 + t∗k−1dk−1

we here choose the contact point : xk = xk−1 + t∗k−1dk−1

everything was like a movie until here : let’s move to real life
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The projection sub-problem

We are given :

max
{

b>x : a>x ≤ ca, ∀(a, ca) ∈ Constr
}

= max
{

b>x : x ∈ P
}

Separation sub-problem on x

min
{

ca − a>x : (a, ca) ∈ Constr
}

Projection sub-problem on x→ d
=⇒ find max t∗ such that a>x + t∗ · a>d ≤ ca ∀(a, ca) ∈ Constr

t∗ = min

{
ca − a>x

a>d
: (a, ca) ∈ Constr, d>a > 0

}
.
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Introducing the Robust Linear Program
Start from a standard LP with a feasible area described by :

a>x ≤ ca ∀(a, ca) ∈ Constrnom
For each nominal constraint (a, ca) ∈ Constrnom one can define
a (huge) set of robust constraints

(a + a′)>x ≤ ca,

where any a′ belongs to a set a (reasonable) deviation of the
nominal coefficients a.
More exactly : a′ ∈ Rn is a vector with at maximum Γ non-zero
components such that a′i ∈ {−0.01 · ai , 0, 0.01 · ai} ∀i ∈ [1..n].

We write a′ ∈ DevΓ(a)

I only compare to the cutting-planes from [M. Fischetti and M. Monaci.
Cutting plane versus compact formulations for uncertain (integer) linear
programs. Mathematical Programming Computation, 4(3) :239–273, 2012.]
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The projection sub-problem

We need the maximum t such that

(a + a′)>(x + td) ≤ ca ∀(a, ca) ∈ Constrnom,a′ ∈ DevΓ(a),

i.e., we consider all nominal constraints (a, ca) and all their
deviations a′ ∈ DevΓ(a)

Let’s work this formula for each nominal constraint (a, ca)
The projection sub-problem asks to minimize

min
a′∈DevΓ(a)

ca − a>x− a′>x
a>d + a′>d

This could be written as a linear-fractional program (because a′

can be seen as belonging to a polytope) and solved with the
Charness-Cooper transformation.
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A step-by-step t-decreasing algorithm
Start with the t value given by the nominal constraint alone, i.e.,
fix a′ = 0 in formula below :

t ← ca − a>x− a′>x
a>d + a′>d

a′=0n=
ca − a>x

a>d
1 This t is not necessarily optimal because there might exist

a different a′(6= 0n) such that

t >
ca − a>x− a′>x

a>d + a′>d

equivalent to
t ·
(
a>d + a′>d

)
> ca − a>x− a′>x

2 Solve min
a′∈DevΓ(a)

ca − a>x− a′>x− t ·
(
a>d + a′>d

)

3 Repeat from 1 while the optimum of above LP is below 0
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A step-by-step t-decreasing algorithm
�
�

�
�

The resulting t is given as input to the next constraint
of Constrnom, to iteratively apply steps 1 — 3 to all
Constrnom

1 This t is not necessarily optimal because there might exist
a different a′(6= 0n) such that

t >
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Results on the robust linear program�



�
	Each interior point is defined as : xk = xk−1 + 1

10 · t
∗
k−1dk−1
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Du modèle de départ aux reformulations

min d>x + b>y
Dx ≥ e

Bx + Ay ≥ c
x ∈ Zn

+, y ≥ 0

x est un nombre d’unités à faire fonctionner.
câbles à monter
entrepôts à ouvrir

y est un coût des flux qui passent, coût d’affectations, etc

coût des flux, on
va utiliser b = 0

Contraintes de design

Le flux y doit pouvoir
passer
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+, y ≥ 0

Reformulation 1 :

min d>x + ẑ
Dx ≥ e

ẑ = min
{

b>y : Bx + Ay ≥ c,y ≥ 0
}

x ∈ Zn
+

On va dualiser ce PL
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Du modèle de départ aux reformulations

min d>x + b>y
Dx ≥ e

Bx + Ay ≥ c
x ∈ Zn

+, y ≥ 0

Reformulation 2 :

min d>x + ẑ
Dx ≥ e

ẑ = max{(c− Bx)>u : u ∈P},
x ∈ Zn

+

P =
{

u ≥ 0 : A>u ≤ b
}

coût des flux, on
va utiliser b = 0
=⇒ ẑ = 0
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Du modèle de départ aux reformulations

min d>x + b>y
Dx ≥ e

Bx + Ay ≥ c
x ∈ Zn

+, y ≥ 0

Reformulation 3 :

min d>x + ẑ≡
Dx ≥ e

ẑ= max{(c− Bx)>u : u ∈P}
0 ≥ (c− Bx)>u ∀u ∈P,

x ∈ Zn
+

P =
{

u ≥ 0 : A>u ≤ 0
}

coût des flux, on
va utiliser b = 0
=⇒ ẑ = 0
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Du modèle de départ aux reformulations

min d>x + b>y
Dx ≥ e

Bx + Ay ≥ c
x ∈ Zn

+, y ≥ 0

Reformulation 4 :

min d>x
Dx ≥ e

(Bx)>u ≥ c>u ∀u ∈P,

x ∈ Zn
+

P =
{

u ≥ 0 : A>u ≤ 0
}

Les coupes Benders
sont définies par les
rayons u du polytope
Benders P
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Du modèle de départ aux reformulations

min d>x + b>y
Dx ≥ e

Bx + Ay ≥ c
x ∈ Zn

+, y ≥ 0

Reformulation 4 :

min d>x
Dx ≥ e

(Bx)>u ≥ c>u ∀u ∈P,

x ∈ Zn
+

P =
{

u ≥ 0 : A>u ≤ 0
}

Projection x→ d

max
u∈P

{(Bx)> u− c>u
−(Bd)>u

: −(Bd)>u > 0
}
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Résolution sous-problème d’intersection

Il faut résoudre

t∗ = max
u∈P

{
(Bx)> u− c>u
−(Bd)>u

: −(Bd)>u > 0

}

avec P =
{

u ≥ 0 : A>u ≤ 0
}

Charnes–Cooper transformation :

u =
u

− (Bd)> u

Using u ∈P =⇒ A>u ≤ 0, u ≥ 0, − (Bd)> u = 1, we obtain

t∗ = min
{
(Bx)> u− c>u : A>u ≤ 0, u ≥ 0, − (Bd)> u = 1

}
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Résultats

Instance Projective Cutting-Planes Standard Cutting-Planes
Best Iterations Time [secs] Time Iterations Time [secs] Time

OPT IP solve solve
Sol avg ( dev ) avg ( dev ) master avg ( dev ) avg ( dev ) master

a 42.333 48 22.8 ( 1 ) 0.06 (0.002) 4.4% 35 ( 4.9 ) 0.09 (0.01 ) 5.5%
b 245.67 265 73.8 ( 2.7 ) 0.2 (0.006) 6.1% 131 ( 11.8 ) 0.4 (0.04 ) 8.7%
c 204.33 220 56.5 ( 1.5 ) 0.2 (0.004) 4.9% 78.5 ( 16 ) 0.2 (0.05 ) 5.8%
d 299.33 317 67.5 ( 3 ) 0.2 ( 0.01 ) 4.3% 104 ( 4.3 ) 0.4 (0.02 ) 6.1%
e 67.333 77 35.4 ( 0.8 ) 0.1 (0.006) 4.2% 39.5 ( 5.5 ) 0.1 (0.02 ) 5.5%
a 46 174 (27.4) 7.4 ( 5.8 ) 89.5% 229 ( 146 ) 9.6 ( 3 ) 95%
b 260 824 ( 206 ) 1073 ( 636 ) 99.5% 2987 (2427) 4129 ( 819 ) 99.8%
c 214 242 (27.1) 99 ( 31.6 ) 98.4% 526 ( 442 ) 378 (70.8 ) 99.6%
d 313 336 (53.4) 321 ( 103 ) 99.2% 1315 (1049) 2367 ( 469 ) 99.8%
e 74 1336 ( 138 ) 4907 (1640 ) 99.8% 2250 (1292) 6703 (2857) 99.9%

Les 5 derniers lignes concernent le modèle IP.
« dév » = déviation standard
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We need to focus on the dual. The primal master is :

min
∑

caya

x :
∑

aiya ≥ bi ∀i ∈ [1..n]

ya ≥ 0 ∀(a, ca) ∈ Constr
The dual LP is :

max b>x (= max 1>n x)
ya : a>x ≤ ca, ∀(a, ca) ∈ Constr

x ≥ 0n
P
{

ca = 1 for each stable a (each color counts once)



We re-write the graph coloring problem :

max 1>n x
a>x ≤ 1, for any stable a ∈ {0,1}n

x ≥ 0n
P
{

The projection sub-problem on x→ d

t∗ = min

{
1− a>x

a>d
: a ∈ STAB, d>a > 0

}
,

where STAB is the set of stables that can be written as

ai + aj ≤ 1 ∀{i , j} ∈ E
ai ∈ {0,1} ∀i ∈ V
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t∗ = min
a

1− x>a
d>a

d>a > 0

STAB

{
ai + aj ≤ 1, ∀{i , j} ∈ E

ai ∈ {0,1} ∀i ∈ [1..n]
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STAB

{
ai + aj ≤ 1, ∀{i , j} ∈ E

ai ∈ {0,1} ∀i ∈ [1..n]

t∗ = min
a,α

α− x>a

ai + aj ≤ α ∀{i , j} ∈ E

d>a = 1
ai ∈ {0, α} ∀i ∈ [1..n]

α ≥ 0

⇐⇒
a =

a
d>a

and α =
1

d>a
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Each interior point xk yields a lower bound

We used�� ��xk = xk−1 + t∗k−1dk−1

so that xk = the last
contact point

For Column Ge-
neration, we used
Lagrangian bounds
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Further results on graph coloring

Each first row in black : the standard method
Each second row in red : the new method.

Three lower bounds found along the search

instance beginning mid iteration last iteration
iter:lb/time iter:lb/time iter:lb/time

r125.1
34 :2.35/0.06 36 :2.62/0.06 47 :5/0.08
5 :2.35/0.18 17 :2.61/0.68 20 :5/0.80

dsjc125.5
253 :13.08/365 306 :14.27/634 378 :15.08/1101
16 :13.04/213 62 :14.001/1288 136 :15.003/4077

dsjc125.9
70 :25.67/24.4 134 :34.13/78 171 :42.11/136

2 :25.67/7.3 44 :34.11/109 150 :42.03/486
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We proposed Projective Cutting-Planes :
1 The driving force is a sequence of inner solutions (a bit

like in IPM) that are not available by default in standard
Cutting-Planes

If one wants to calculate inner solutions during a standard
Cutting-Planes, it may be possible but : 1) one has to
apply some ad-hoc method and 2) such inner solutions will
always remain a by-product of the algorithm

2 The lower bounds of the new method are monotonically
increasing over the iterations : the infamous “yo-yo” effect
is finished

• The new method discovered a new lower bound for a very well
studied graph dsjc250.1
• On the robust optimization problem, the new method is faster
even in terms of CPU time



We proposed Projective Cutting-Planes :
1 The driving force is a sequence of inner solutions (a bit

like in IPM) that are not available by default in standard
Cutting-Planes

If one wants to calculate inner solutions during a standard
Cutting-Planes, it may be possible but : 1) one has to
apply some ad-hoc method and 2) such inner solutions will
always remain a by-product of the algorithm

2 The lower bounds of the new method are monotonically
increasing over the iterations : the infamous “yo-yo” effect
is finished

• The new method discovered a new lower bound for a very well
studied graph dsjc250.1
• On the robust optimization problem, the new method is faster
even in terms of CPU time



We proposed Projective Cutting-Planes :
1 The driving force is a sequence of inner solutions (a bit

like in IPM) that are not available by default in standard
Cutting-Planes

If one wants to calculate inner solutions during a standard
Cutting-Planes, it may be possible but : 1) one has to
apply some ad-hoc method and 2) such inner solutions will
always remain a by-product of the algorithm

2 The lower bounds of the new method are monotonically
increasing over the iterations : the infamous “yo-yo” effect
is finished

• The new method discovered a new lower bound for a very well
studied graph dsjc250.1
• On the robust optimization problem, the new method is faster
even in terms of CPU time


	The general idea of projecting instead of separating
	Linear robust optimization
	The Benders reformulation
	Column Generation for graph coloring
	Conclusions

	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


