
HAL Id: hal-03941045
https://hal.science/hal-03941045v1

Submitted on 16 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing isogenies between finite Drinfeld modules
Benjamin Wesolowski

To cite this version:
Benjamin Wesolowski. Computing isogenies between finite Drinfeld modules. IACR Communications
in Cryptology, 2024, �10.62056/avommp-3y�. �hal-03941045�

https://hal.science/hal-03941045v1
https://hal.archives-ouvertes.fr


COMPUTING ISOGENIES BETWEEN FINITE DRINFELD MODULES

BENJAMIN WESOLOWSKI

Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400, Talence, France

INRIA, IMB, UMR 5251, F-33400, Talence, France

Abstract. We prove that isogenies between Drinfeld modules over a finite field can be com-

puted in polynomial time. This breaks Drinfeld analogs of isogeny-based cryptosystems.

1. Introduction

In this short note we prove the following theorem.

Theorem 1.1. Given an integer n and two Drinfeld Fq[x]-modules ϕ and ψ over a finite field L,
one can compute an isogeny ι : ϕ → ψ of τ -degree n, or decide that none exists, in polynomial
time in n and in the length of the input. More precisely, the set of morphisms from ϕ to ψ of
degree at most n is an Fq-linear space, of which the algorithm finds a basis.

This algorithm breaks Drinfeld analogs of isogeny-based cryptosystems in polynomial time. A
first algorithm to compute such isogenies was described in [JN19], also with the aim to break such
cryptosystems. However, it was observed in [LS22] that the algorithm of [JN19] has an expo-
nential complexity in n, heuristically. A similar algorithm to [JN19] was independently proposed
in [CGS20], together with an analysis that indeed features an exponential dependence in n. That
exponential complexity raised new hope that Drinfeld-based cryptosystems could be secure.

The strategy we propose in this note starts similarly, reducing the problem to a system of
polynomial equations. In [JN19] and [CGS20], this system is solved by a recursive strategy,
resulting in a tree of potential solutions. One can then explore the tree to find actual solutions,
but the tree has exponential size, and solutions may be sparse. Instead, we linearise the system
of equations, and find the space of all solutions with efficient linear algebra.

2. Drinfeld modules

Consider a field extension L/Fq, and the Frobenius endomorphism τ : α 7→ αq of L. The ring of

Ore polynomials is the subring L{τ} of Fq-linear endomorphisms of L consisting of elements of
the form

n∑
i=0

αiτ
i,

for arbitrary n ∈ Z≥0 and αi ∈ L. If αn ̸= 0, the integer n is called the τ -degree of the polynomial,
written degτ . As soon as L ̸= Fq, the ring is not commutative, as τα = αqτ for any α ∈ L.

Let k be an extension of Fq of transcendance degree 1, with a place ∞, and A its subring
of regular functions outside ∞. Given any non-zero ideal a in A, we write deg(a) = logq(A /a).
Given any non-zero element a ∈ A, we write deg(a) = deg(aA). Let L be a field equipped with
a non-zero ring homomorphism γ : A → L.

Definition 2.1. A Drinfeld A-module over L is a ring homomorphism ϕ : A → L{τ} such that
ϕ(A) ̸⊆ L and the τ0 coefficient of ϕ(a) is γ(a) for any a ∈ A. For any a ∈ A, we write ϕa = ϕ(a).
The rank of ϕ is the integer r such that degτ (ϕa) = r deg(a) for any a ∈ A. We write Drr(A, L)
the set of Drinfeld A-modules over L of rank r.

For simplicity, we focus the rest of this note on the archetypical case A = Fq[x]. Then, a
Drinfeld module is fully determined by ϕx, the image of x ∈ Fq[x].
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Definition 2.2. A morphism of Drinfeld A-modules ι : ϕ → ψ over L is an Ore polynomial
ι ∈ L{τ} such that ιϕa = ψaι for any a ∈ A. An isogeny is a non-zero morphism.

For ι : ϕ→ ψ to be an isogeny of Drinfeld Fq[x]-modules, it is sufficient to verify ιϕx = ψxι.

3. Proof of the main theorem

We fix an integer n and two Drinfeld Fq[x]-modules ϕ and ψ over a finite field L. We prove in
this section that one can compute an isogeny ι : ϕ → ψ of τ -degree n, or decide that none exists,
in polynomial time in n and in the length of the input.

Proof of Theorem 1.1. Write ϕx =
∑r
j=0 αjτ

j and ψx =
∑r
j=0 βjτ

j , with ω = α0 = β0 = γ(x).
The strategy starts similarly to previous work. It is sufficient to find the coefficients of an Ore
polynomial ι =

∑n
i=0 ιiτ

i ∈ L{τ} such that ιϕx = ψxι. We wish to solve(
n∑
i=0

ιiτ
i

) r∑
j=0

αjτ
j

 =

 r∑
j=0

βjτ
j

( n∑
i=0

ιiτ
i

)
.

Writing αi = βi = 0 for any i > r, the left hand side can be written

n∑
i=0

r∑
j=0

ιiτ
iαjτ

j =

n∑
i=0

r∑
j=0

ιiα
qi

j τ
i+j =

n+r∑
k=0

min(k,n)∑
i=0

ιiα
qi

k−i

 τk.

Similarly, the right hand side can be written as

r∑
j=0

n∑
i=0

βjτ
jιiτ

i =

r∑
j=0

n∑
i=0

βjι
qj

i τ
i+j =

n+r∑
k=0

min(k,n)∑
i=0

βk−iι
qk−i

i

 τk.

Comparing the coefficients, we obtain the system

min(k,n)∑
i=0

ιiα
qi

k−i =

min(k,n)∑
i=0

βk−iι
qk−i

i , for all k ∈ [1, k + r].

The field L is an Fq-vector space of finite dimension d = [L : Fq], and each α 7→ αq
i

is a linear
map. Hence, the above system is an Fq-linear system of (n+ r)d equations in (n+ 1)d variables.
One can thus solve this system and find a solution ι such that ιn ̸= 0 (i.e., an isogeny of τ -degree
n), or decide that none exists, in polynomial time. □

4. Comparison with previous work

Previous work on computing isogenies focused on the case of rank 2, where the two Drinfeld
modules ϕ, ψ ∈ Dr2(Fq[x], L) are fully determined by Ore polynomials ϕx = ∆ϕτ

2 + gϕτ + γ(x)
and ψx = ∆ψτ

2 + gψτ + γ(x) in L{τ}, with ∆ϕ ̸= 0 and ∆ψ ̸= 0. To find an isogeny, one has to
find ι =

∑n
i=0 ιiτ

i ∈ L{τ} such that ιϕx = ψxι. In [JN19] and [CGS20], one starts with the same
strategy followed above, expanding both sides of the equality(

n∑
i=0

ιiτ
i

)(
∆ϕτ

2 + gϕτ + ω
)
=
(
∆ψτ

2 + gψτ + ω
)( n∑

i=0

ιiτ
i

)
,

and identifying the coefficients in τ i, which yields the system

τn+2 : ∆qn

ϕ ιn = ∆ψι
q2

n ,

τn+1 : ∆qn−1

ϕ ιn−1 + gq
n

ϕ ιn = ∆ψι
q2

n−1 + gψι
q
n,

τ i+2 : ∆qi

ϕ ιi + gq
i+1

ϕ ιi+1 + ωq
i+2

ιi+2 = ∆ψι
q2

i + gψι
q
i+1 + ωιi+2, for i ∈ [0, n− 2],

τ1 : gϕι0 + ωqι1 = gψι
q
0 + ωι1.

Now, our strategy diverges from previous methods. In [JN19] and [CGS20], one uses these equa-
tions from τn+2 to τ2, in this order, to recursively find candidate solutions for ιn to ι1, in this
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order. At each step, there are either 0 or q possible solutions for ιi [LS22, Lemma 4.2], forming a
tree that can explored. Each leaf of the tree then provides a solution if it also satisfies the final
equation from τ1. It was heuristically argued in [LS22] that this tree has exponential size in n,
and that successful leaves are rare, leading to an exponential running time.
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