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Abstract

Packer detection is an important topic because most malware is packed
and this allows it to avoid detection based on static analysis. Identifying
classes of packers is the key to effective detection because it makes it easier
to determine from a static analysis whether further analysis is needed or
whether a decision is already possible. Thus in this work we propose new
features to cluster packers from their unpacking function. This method
makes it possible to effectively cluster packers, and is able, by clustering,
to identify packer classes used by malware. It is a step towards a larger
data clustering allowing to identify custom packers.

1 Introduction

1.1 Context

The emergence of new malware is a trend that represents an increasingly impor-
tant issue in our information systems. Detecting malware efficiently is crucial
in any information system. Detection engines can use a static analysis that will
analyze syntax of programs or a dynamic analysis that will execute programs in
a controlled environment. Static analysis has the advantage of being very fast in
the general case, while dynamic analysis is more able to bypass obfuscations but
much more expensive in terms of analysis time. To counteract these analyses,
malware authors will use different obfuscation methods. In the case of dynamic
analysis, these obfuscation methods mainly consist in recognizing the fact that
the malware is running in a controlled environment and masking its behavior to
try to fool the controller. In the case of static analysis, malware will try to hide
their malicious code behind a code obfuscation. A classic method to obfuscate
the code of a program is to use a packer.

The purpose of these packers is to compress and/or encrypt the program
code and create a new program that will consist of a decryption procedure and
the original program code in encrypted form. Since static analysis does not run
the program, it is stuck with an unpacking function.

Software cannot be considered malicious just because it has been packed.
It is quite common to use a packer for legitimate reasons. Packers allow to
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compress and therefore optimize the size of files. They also allow to protect the
binary code of the file for intellectual property reasons. Therefore, many legit-
imate files are packed. Malware authors also use the most common packers to
obfuscate their malicious program. For example UPX [1] is a packing program
that is widely used both in the malware domain and for harmless files, it uses the
UCL compression algorithm and provides a decompression procedure that from
the packed file can quickly recover the original file. The problem for malware
authors using these common packers is that this packers are well known and
that their decompression procedure, when not provided directly as in the case
of UPX, can be performed by the large malware analysis community. With this
in mind, malware authors modify these packers to try to make themselves un-
detectable. They can also make homemade packers to combine obfuscation and
discretion. These homemade packers can be more or less extensive modifications
of existing packers or brand new ones. Here too, unpacking methods based on
targeted emulation, for example, can be used to unpack malicious packers. The
detection of packers thus becomes a challenge of static analysis because it allows,
by identifying the class of packers, to propose unpacking methods to push the
analysis further. Hence, knowing which packer class we are dealing with when
analyzing suspicious files is a crucial issue in malware analysis. Answering this
question is also important because it allows decisions to be made about which
further analysis methods to use. This requires to understand packers data re-
trieved from various malware sources and to do so classify this data in some
way. Cluster packers into distinct classes allows to make some assumption on a
packer class and is a huge help to detection engines.

1.2 Source exploration and clustering

In order to keep up with the constant evolution of malware, new samples must
always be collected. The malware analysis community puts a lot of effort into
making these samples available and, complemented by the deployment of hon-
eypots, it is possible to actively track the evolution of malware. Thus, our data
consists of a large number of files that are constantly evolving and they must be
well labeled to be used for detection. The community provides labels for a part
of the malware files, for example MalwareBazaar[2] labels with good precision
part of malware present in its database. But this labeling only concerns the
malware payload, it rarely gives information about the obfuscations or packag-
ing applied to this malware, in particular it does not give information about
which packer was used to obfuscate a malware. This is why it is difficult to
automatically build packer databases using these sources. Tools based on sig-
nature methods such as ClamAV[3] for malware detection or DIE[4] for packer
detection, answer to part of this problem, by generally updating their database
with manual intervention. This allows malware analysts to identify the char-
acteristic features of the malicious file in order to make a suitable signature
and provide some tagging data. But this manual interaction is responsible for
delays in taking into account new threats and takes the risk of not detecting
an attack in time. Therefore, we place ourselves in the case of automatic gen-
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eration of signature databases and we must answer the problem of identifying
classes of packers for weakly labeled data. To identify these classes of packers
we can cluster our data using clustering algorithms. Clustering is the process
of dividing data into subsets (clusters) according to relevant criteria. The el-
ements to be clustered can be considered only once, at the initialisation step,
which is the standard procedure for most clustering algorithm. In our case we
have to consider our data as a continuous flow in real time because of malware
packer evolution. Thus, we have to apply incremental clustering methods. In
this paper we use the incremental DBScan clustering algorithm that we detail
in Section 2.2. To distinguish these classes of packers we focus on the static
analysis of their unpacking function. We apply transformations on this unpack-
ing code to avoid changes in the code that would not be characteristic. This
step of extracting relevant data from our samples is described in Section 2.1.

1.3 Ambition

This is a preliminary work that introduces a method to distinguish classes of
packers. By clustering large amounts of data we can determine crucial infor-
mation about packer classes without labeling them precisely. This way, we can
interpret clustering results with the aim of improving a detection engine. To do
this, we can take advantage of our trust in the sources from which the malware
and goodware are fetched. Indeed, a clustering on this scale makes it possible to
distinguish classes of packers which concern both goodware and malware. The
composition of these classes of packers is a good indicator to notice that they
are common packers, such as UPX or MPRESS. On the contrary, if these classes
of packers are only composed of malware then this gives a good indication that
they are characteristic of the malware world. For example it can be packers pur-
chasable on the darknet which can be used by many different malwares. Also,
considering the labeling of the malware community and in particular the most
serious sources, we can consider our classes of packers through the labeling of
their payloads. If in the composition of a class of packers we always find the
same payload labeling, then we may have to deal with a packer specific to a
particular malware. The reasoning is also true for groups of malware authors.
Figure 1 illustrates this general reasoning. This characterization is the goal of
our work and the case studies of Section 3 goes in this direction.

1.4 Related work

There are works on the packer classification problem in literature. Most studied
techniques are based on yara-like signatures [5], and DIE [4] (Detect It Easy) is
a classic tool using this method, also PEiD [6] is well known but does not evolve
anymore. These tools are used in major malware detection platforms. Yara-
like signatures in these tools are generally manually wrote which is not adapted
to rapidly evolving malware. As a result these needed manual intervention are
responsible for delaying detection of new packers. Machine learning methods are
also used for packer classification, particularly supervised learning methods as in
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Figure 1: Packer classes identification

[7]. These packer classifier models perform well for classifying packers belonging
to classes that the model trained from, but it is not adapted to evolving and
new packers that appear in the wild. The method described in [8] is the closest
to our work in terms of transformations on the graph (Section 2.1), but they
do not validate their model experimentally. Moreover, their way of considering
the graph as a whole seems less suitable to clustering approaches. The work of
Noureddine et al.[9] uses the same incremental clustering method and performs
very well on their custom set of packers. It has demonstrated the relevance of
incremental clustering in the context of highly evolving packers. However, more
tests on custom packers used by malware are needed to have more confidence in
this model. Also, it might be necessary to weight the different features by their
relevance.

2 Methodology

2.1 Part of transformed CFG as features

We want to capture similarities between packed files. Extracting features from
our files that will match this ambition is necessary and is the main difficulty. We
must choose features that correspond to relevant characteristics for clustering
our files. In related work [9] features selection is focused on metadata and
pondered with the first few instructions extracted through radare2 [10]. We
decide to match packers through similarities of their unpacking code. To extract
characteristics of this code, we disassemble statically this unpacking procedure,
building a Control Flow Graph (CFG). We could compute a distance from
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this CFG but it may pose a problem since it is not resistant to few syntactic
modifications of a program code or modifications implied by new versions of code
compilers. To handle this problem, after static disassembly of the program code
we apply some transformations on the resulting Control Flow Graph (CFG).
These transformations are based on previous work on the Gorille tool[11]. They
are made for catching similarities between binaries and to be resistant to code
modification. Principle is to focus the analysis on the CFG shape, in particular
on conditional branching in the program. From this transformed CFG graph
we compute several sub-graphs of 12 nodes, a sub-graph is computed for each
node of the graph and correspond to a breadth-first exploration of the graph.

A sample can be represented as a set of sub-graphs, and each sub-graph
can be signed in a unique way. In our case we chose to sign these sub-graph
by computing a md5 hash. We can now compare this new form of samples by
comparing the number of common sub-graphs signature between two samples.
It is the problem of comparing two sets, and one notion of distance that can
be used, and will be used in this paper is Jacquard distance which is a classic
distance for set comparison. Jaccard distance of two sets A and B, Jδ(A,B)
can be described as:

Jδ(A,B) = 1− |A ∩B|
|A ∪B|

This distance has the advantage of comparing the ratio of common elements
in two sets, it is a good choice in our opinion when applied in our context
since packers does not hide their extraction procedure among a larger code.
If we want to take this hypothesis into account, for more obfuscated packer
extraction procedure, the overlap distance[12] may be a better choice and will
be investigated in future works.

2.2 Incremental DBScan

Since the files we need to cluster are constantly fetched from multiple sources,
static clustering methods would be a large waste of time and computing re-
sources since the entire clustering needs to be calculated again each time new
points are added to the dataset. Another practical problem with static cluster-
ing is that many methods rely on a pre-computed distance matrix that would be
of a prohibitive size when working with large datasets. We picked a DBScan[13]
incremental clustering algorithm. DBScan is a density-based clustering method
that is widely used. Density-based approaches usually consider elements in
sparse areas as noise, which correspond to our context where we want to cluster
files from the wild. The percentage of these files that will be unique and impos-
sible to cluster should be important, hence DBScan will consider it as noise and
won’t be bothered. Its pairwise comparison also match our features (described
in sub-section 2.1), because we do not have any order notions on our data and
only pairwise comparison has a meaning is this context. Also incremental DB-
Scan has already been used with some success in the work of Noureddine et
al.[9] for metadata features.
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Incremental DBScan, when clustering a new sample, will first find the clos-
est cluster to the incoming data point, then check if the new point respect the
density criterion to be integrated into the cluster (e.g. there are enough cluster
points close to it). If the incoming point cannot be integrated into an existing
cluster, the algorithm will try to create a new cluster by finding enough close
neighbours in the data point currently classified as noise. Finally, if no new clus-
ter could be created the incoming point is classified as noise and the procedure
repeats for the next data point. See Figure 2.

Figure 2: Incremental clustering process for packed files

3 Case studies

3.1 Manually packed samples

For initial testing and evaluation of the clustering method, it is necessary to
have a selection of samples that are packed with known packers and to know
specifications that can act as a ground truth when judging cluster coherence and
quality. But a problem when dealing with packed files from an outside source is
that it can be very difficult to verify which packer was used on the file, even when
it is a given information, since errors in packer identification are common and
hard to detect and would greatly pollute a selection of test samples. As such,
a good way to obtain a controlled set of samples is to manually pack a control
set of unpacked executable files using different packers. For this experiment the
starting set of unpacked files was created from approximately 600 files obtained
from a freshly installed Windows 10 distribution that were subsequently packed
using the following twelve packers: aspack, mew, packman, pecompact, pelock,
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petite, rlpack, telock, themida, upack, upx and yoda. This operation yielded
5912 packed files (Table 1), with the difference from the expected 7200 being
explained by not all packers being able to pack every original file, with the most
common limitation being x64 executables not being supported by the packer.

packer name successfully packed count
pecompact 461

upack 661
rlpack 636
upx 600
telock 413
yoda 427

themida 560
petite 426
aspack 429
mew 429

packman 432
pelock 421

Table 1: Manually packed data-set

Not clustered - 928 files

15.7%

Clustered - 4984 files

84.3%

Figure 3: Manually packed samples clustering ratio

Results Our clustering method managed to cluster 85% of packed files (Fig-
ure 3), since our criteria is a minimal of 4 elements with appropriate distance
by cluster, 15% of our samples could not be clustered with 3 others similar
samples. This ratio of 85% of clustered samples is an encouraging result. To
focus first on well clustered results (Table 4), we successfully clustered 11 of the
12 packers we initially picked for this study with an average success of 86%.
We have 5 packers that are fully well-clustered meaning that we regroup in one
cluster all samples of the same packer. One of these packed files (telock) have
been clustered into 2 separate clusters (clusters 3,4), we suspect that it is due
to variations in the unpacking procedure depending on the file that is packed.
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Only one of these packers has not been clustered and it is due to limit of static
analysis approach. We use standard static analysis approach to disassemble
programs and pecompact jumps to register values in its unpacking procedure.
This limit can be surpassed by using a static analysis tool that tracks register
values by symbolic analysis.

packer name unclustered count unclustered ratio
pecompact 459 99.6%

upack 215 33%
rlpack 181 28%
upx 42 7%
telock 20 5%
yoda 1 0%
total 928 15.7%

Table 2: Manually packed unclustered samples

cluster № packer count

14
pecompact 2

upack 1
upx 2

Table 3: Manually packed wrongly clustered samples

3.2 Zeus malware case

In this use case we want to show how this clutering allows us to match our
ambition (see Section 1.3) on a reduced set of malware samples. To do so
we want to cluster some goodware that are packed (here they are part of the
previous set of goodware that we pack by ourselves) with some malware that is
packed in unknown ways. By doing this we want to show that we can cluster
Zeus packed samples with goodware packers. This is to conclude that we have
successfully identified a class of packers that is used to pack both harmless
programs and Zeus malware. We also want to use this test to compare our
clustering method with the DIE packer detection tool.

We focus on Zeus/Zbot malware which is a trojan designed to steal bank-
ing information. It is also known to be packed by different packers. In this
experiment we won’t control which packers are used to pack the Zeus malware
payload, we will pick some Zeus samples randomly from multiple sources and
only check if they are packed. Checking if Zeus samples are packed is not a
trivial issue and we use dynamic analysis to ensure this.
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cluster № packer name count packer family ratio
1 upack 446 67%
2 themida 560 100%

3,4 telock
388 94%
5 1%

5 petite 426 100%
6 aspack 429 100%
7 upx 556 93%
8 mew 428 99.8%
9 packman 432 100%
10 pelock 421 100%
11 rlpack 455 72%
12 yoda 426 99.9%

Table 4: Manually packed well clustered samples

Confidence in packing properties The notion of wave is developed here
[14] and is built to identify self-modifications of a program’s code. It consists in
running a program in a sandbox and trace its execution. That is, if a program
allocates memory or rewrites its own code in order to then execute these newly
instantiated instructions, this modification operation is written into a what is
called a wave. These waves describe exactly what kind of obfuscation a packer
apply, the concept of wave is more inclusive than just considering packers but
it considers any packer-like behavior. Thus, by analyzing our Zeus malware
with such a process, we can identify whether they use packer-type procedures
or not by the fact they have at least one rewriting wave. We also completed
this approach by adding files detected by DIE as packers.

Samples selection We have recovered 1000 randomly picked unique samples
of the Zeus malware from MalwareBazaar and VxUnderground, these malware
are labeled as Zeus on these sites. This labeling has been confirmed by Virus-
Total which is an online antivirus aggregator. We therefore consider with a high
degree of certainty that our test samples all match the Zeus malware. These
Zeus files were analyzed by the DIE[4] packer detection tool in order to compare
the DIE labeling with our clustering. Additionnaly, with these files we clustered
our 600 manually packaged UPX to see if some cluster contains both goodware
packers and packed Zeus samples. Among these data, 685 were named by DIE,
our 600 manually packed UPX and 85 Zeus samples.

Results We clustered 93% of our elements (see Figure 4) into 10 clusters.
These 10 clusters are decomposed into 3 clusters of more than 400 elements
(clusters 8,9,10) and 7 much smaller clusters (see Table 5). Clusters 8 and 10
are each composed of more than half of the copies of UPX that we had packaged
ourselves. It seems that we have clustered, with these manually packed UPX
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Not clustered - 113
7%

Clustered - 1487

93%

Figure 4: Zeus and UPX packed samples clustering ratio

samples, some Zeus samples which are packed using a packer very similar to
UPX, if not UPX itself. This conclusion is reinforced by DIE’s labeling of
about 25% of the Zeus samples in cluster 8 as UPX, as well as some Zeus copies
as UPX for cluster 10. Looking at these clusters we can see that while DIE
agrees in general for most elements, it does not draw the same conclusions as
our clustering algorithm, even on classical packers like UPX. It is difficult to
draw more conclusions at this stage of our work because we were not able to
obtain labels with more confidence for these elements. In any case, we can show
here that for labeling packers on malware DIE performs poorly. Cluster 4 is
smaller but it is interesting to see that our clustering here is very consistent
with DIE labeling. It seems that we have identified here with our clustering
a class of packers corresponding to MPRESS with 100% success according to
DIE.

cluster № DIE information Manually packed upx count
1 ∅ 0 41
2 ∅ 0 17
3 upx: 2 0 42
4 mpress: 13 0 13
5 ∅ 0 10
6 upx: 1 0 7
7 ∅ 0 6
8 upx: 434 381 436

9
upx: 1

0 508
spoon studio: 3

10
upx: 221

219 407
spoon studio: 11

Table 5: Zeus and UPX well clustered samples
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4 Conclusion

Our method based on transformed CFG sub-graphs seems promising. Relying
on the unpacking function extracted statically from the files to cluster similar
packers gives very good results for our controlled test set (Section 3.1). Our
method performs matching on packers in a completely generic way. Thus we
can apply it to the case of custom packers used by malicious files. The case study
in Section 3.2 is a clustering of packers used by Zeus malware. We managed
to cluster goodware manually packed by us with Zeus packed malware files. It
seems that our verification with the DIE tool supports our clustering of UPX
for Zeus. Moreover, if we believe the DIE results we have clustered another
sample of Zeus which is packed by MPRESS. It would be now a question of
studying the clusters of Zeus not recognized by DIE, which could mean that
we identified another common packer that neither us nor DIE have exposed (by
lack of clustered data in our case). These clusters could also signify that it is
a custom packer used by Zeus as in the article [15]. We are now thinking of
clustering larger datasets to achieve our ambition presented in Section 1.3 which
would improve the decision of malware detection engines.
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