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Abstract: Initially present only in functional languages such as OCaml and Haskell, Algebraic
Data Types have now become pervasive in mainstream languages, providing nice data abstractions
and an elegant way to express functions though pattern matching. Numerous approaches have been
designed to compile rich pattern matching to cleverly designed, efficient decision trees. However,
these approaches are specific to a choice of memory representation which must accommodate
garbage collection and polymorphism.
ADTs now appear in languages more liberal in their memory representation. Notably, Rust is now
introducing more and more memory optimisations. As memory representation and compilation
are interdependent, it raises the question of pattern matching compilation for highly customised
layouts.
We propose to ease the experimentation of new, custom layouts in the early stages of compiler
development by providing specification tools and a complete synthesis chain to generate pattern
matching compilation procedures.
In this article, we present a novel way to specify compositional memory layouts, for which we au-
tomatically synthesise elementary builders and accessors, yielding a correct representation-specific
compilation algorithm. This approach is implemented in a prototype tool ribbit.
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Compositional Flexible Memory Representations for Algebraic
Data Types

Résumé : Initialement présents dans les langages fonctionnels comme Ocaml et Haskell, les types al-
gébriques sont maintenant de plus en plus présents dans les langages mainstream comme Rust. Ils permettent
une abstraction commode des données et une façon élégante de décrire des fonctions via le filtrage de motifs
(pattern-matching).

Ce rapport de recherche présente un framework facilitant la création et l’experimentation de nouvelle
représentation mémoire en fournissant un outil de specification pour les représentations, et une chaine de
synthèse completer pour générer les procedures de compilation attenante. La correction de l’algorithme est
prouvée sous une hypothèse de validité de la représentation. L’algorithme est implémenté dans l’outil ribbit.

Mots-clés : HPC, types algébriques, filtrage, compilation
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4 Baudon & Gonnord & Radanne

1 Introduction

Algebraic Data Types (ADTs) are an essential tool to model data. They allow to group together information
in a consistent way through the use of records, also called product types, and to organise options through
the use of variants, also called sum types. A proper ADT support enables to:

• Model data in a way that is close to the programmer’s intuition, abstracting away the details of the memory
representation of said data.

• Safely handle data by ensuring via pattern-matching that its manipulation is well-typed, exhaustive and
non-redundant.

• Optimise manipulation of data thanks to rich constructs understood by the compiler.

Despite these promises, Algebraic Data Types were initially only present in functional programming
languages such as OCaml and Haskell. Recently, they have gained a foothold in more mainstream languages
such as Typescript, Scala, Rust and even soon Java. They are however still lacking in high-performance lower-
level languages. One difficulty for language designers wishing to add pattern matching to their language
is that compiling a rich pattern matching language to efficient code is a non-trivial task, which is not
commonly available in shared compiler frameworks such as LLVM. Indeed, such frameworks only provide
optimisations for C-like switches on integers (or integer-like enumerations). Additionally, existing works on
pattern matching Maranget (2008); Wadler (1987); Sestoft (1996) provide very efficient compilation schemes,
but are geared towards memory representations found in GC-managed functional languages such as OCaml
and Haskell: uniform representations with liberal usage of boxing. Highly non-uniform data representations
such as the ones found in C++ do not easily fit.

More generally, the descriptive nature of ADTs should enable compilers to aggressively optimise the
representation of terms. The simplest example is the Option type, whose values are either Some value or
None. An easy way to represent such type is to box the value in the Some constructor below a pointer.
However, if that value is an integer ranging from 0 to 10, we can represent it unboxed and use 11 for None.
This optimisation is regularly done by programmers manually in for instance C++, at the price of error-prone
manipulations. More complex optimisations on nested and rich data types are even more error-prone.

While these transformation are not generally easy, compilers have all the information at hand to perform
them automatically on the whole program. This trove of potential optimisations has been brushed upon in
recent versions of Rust, but remains largely unexplored. One reason for this lack of exploration is that ensuring
the correctness of such optimising transformation is difficult. Indeed, the choice of memory representation
of values in a language generally has far reaching consequences in the whole compiler, the language runtime
but also it’s foreign function interface and garbage collector. Compiler designers are thus legitimately careful
about changes in the memory representation, where mistakes could lead to complex compilation bugs.

Unfortunately, there is no ultimate memory representation: each language has very specific demands
concerning its memory representation. Some languages requires great uniformity, for instance to allow for a
tracing GC, other aim for the most compact representation. This prevent the development of a single highly
efficient and formally proven memory representation that could be used in many languages.

We propose to address these difficulties from the perspective of a compiler designer that desires to ex-
plore various “memory optimisations” for monomorphic types and their performance regarding the pattern-
matching procedure:

• We introduce a notion of compositional memory representation for Algebraic Data Types and define a
novel specification for the compiler developer to provide such a representation.

• From this specification, and for each type of the input program, we automatically synthesise a function
from values to their memory representation, along with a state-of-the-art optimising pattern matching
compilation procedure tailored to the specified memory representation.

• Our synthesis procedure automatically checks that the provided specification is correct, and enforces the
validity of the generated representation and the associated pattern matching compilation algorithm.

• Our framework is implemented in a tool ribbit.

Inria
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//Colors for the Red-Black Trees
enum Color { Red, Black }

//Red-Black Trees of content T
enum RBT<T> {

Node (Color, T, &RBT<T>, &RBT<T>),
Empty,

}

pub fn cardinal<T>(v : RBT<T>) -> u32 {
match v {

Tree::Node(_, _, l, r) => 1+cardinal(*l)+cardinal(*r),
Tree::Empty => 0

}}

Figure 1: Red-Black trees and cardinal operation in Rust

fn cardinal(_1:RBT) = switch(_1){
| 0 -> 0
| 1 -> let _5 = cardinal(*((_1 as Node).2))

let _6 = cardinal(*((_1 as Node).3))
1 + _6 + _5

}

(a) Simplified Rust “MIR” output
cardinal (param/290) =

(if (== param/290 1)
0
(+ (+ 1 (apply* cardinal (field2 param/290))

(apply* cardinal (field3 param/290))))
)

(b) Simplified OCaml “Lambda” output

Figure 2: Intermediate representation of the cardinal function in Rust and OCaml

2 Memory Representation of ADTs

To explore in more detail the memory representation of algebraic data types, we now investigate two languages
which implements ADTs: Rust and OCaml. While these languages have some common lineage, they have a
very different attitude towards code emission: OCaml is a GC-managed language which factors predictability
and regularity. Rust on the other hand favours performance and absolute control over low-level details.
These differences result in drastically different choices in memory representation. We now focus on a concrete
example of algebraic datatype which requires both expressivity and performance: Red Black Trees.

2.1 Red-Black Trees in OCaml and Rust

A Rust version of Red-Black Trees is depicted in Fig. 1. We first define Color, which is either the constant
Red or Black. The type definition of RBT<T> expresses trees as recursive data structures of content T. It has
two cases: Empty, and Node which contains a colour, a value, and two pointers (denoted &(..)) to its left
and right subtrees. For instance, Node(Red, 1515, &Node(Black, 0, &Empty,&Empty), &Empty) is a tree
of type RBT<u64>.

The cardinal function takes a tree and returns its cardinal using pattern matching. If its argument is
of the “shape” of the left-hand side of the rule then the value of the right-hand side (body) is evaluated. In
Rust, pattern matching is introduced by the keyword match and alternatives are depicted under the form of
a list of the form p ⇒ b where p is a pattern and b its body. Moreover, patterns can be nested, and the body
can use named subterms. In our example, Empty yields a cardinal of 0 and Node(_,_,l,r) yields a cardinal
of 1+cardinal(l)+cardinal(r).

We now look at how Rust and OCaml compile the cardinal function. Both compilers provide an interme-
diate representation (IR) in which the pattern matching is represented as a decision tree which manipulates
the underlying memory representation. We showcase simplified versions of the parts of interest in Fig. 2.
OCaml’s Lambda IR represents matching using the built-in primitive field to access subterms inside the

RR n° 9495
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Figure 3: Output of our ribbit compiler for the balancing code of Fig. 1 in the OCaml memory representation
This output is a decision tree whose root is on the left. Decision (square) nodes compute values from their input (low-level representation),

then branch depending on this value. Round nodes denote the final returned value of the procedure (the numbering of the matched

branch).

representation. It uses the if primitive to discriminate between cases. Rust’s MIR1 uses slightly lower level
operations such as dereferencing and field accesses, and a switch construct on memory words.

In both cases, Red, Black and Empty are represented as unboxed integers. The similarity stops there.
In OCaml, sum types are represented uniformly: argument-less constructors are unboxed integers, and con-
structors with arguments are pointers to a block, which always starts with a tag and some fields. In the Node
case, the block contains a tag and four fields. This totals 6 memory words. In Rust, Node is directly a struct
containing only four words. Indeed, Rust recognises that the tag (which differentiate Node and Empty) and
the colour can be both packed in a single 64bits field. The resulting type uses 4 memory words.

2.2 Pattern Matching Optimising Compilation
Red-Black trees famously rely on a fairly complex balancing step, which redistributes the colours depending
on the internal invariant of the data structure. Thanks to nested patterns, this step can be expressed very
compactly using the following matching:

match c, v, t1, t2 {
Black, z, &Node(Red, y, &Node(Red, x, a, b), c), d

| Black, z, &Node(Red, x, a, &Node(Red, y, b, c)), d
| Black, x, a, &Node(Red, z, &Node(Red, y, b, c), d)
| Black, x, a, &Node(Red, y, b, &Node(Red, z, c, d))
=> Node(Red, y, &Node(Black,x,a,b), &Node(Black,z,c,d)),

a, b, c, d => Node (a, b, c, d),
}

This pattern matching inspects four arguments at the same time: the current colour c, the current
value v and the sub-trees t1 and t2. Since this pattern matching is at the core of a performance-sensitive
data structure, we naturally want it to be as efficient as possible. This is why many pattern matching
implementations come with clever heuristics and techniques to output optimised decision trees Kosarev et al.
(2020); Maranget (2008); Sestoft (1996). The resulting code is highly non-trivial, as can be seen in Fig. 3.

2.3 Defining a Memory Representation
So far, we have kept a prudish veil on how one actually defines the memory representation of values in a
language like Rust or OCaml. This is largely because it is composed of an uncountable collection of decision
spread around the whole design of the compiler and its runtime: it affects the compilation of expressions,
creation of values, field accesses, foreign function interfaces, runtime and garbage collection code and, what
concerns us most in this article, pattern matching compilation. All these elements must naturally be kept
synchronised, at the risk of causing delicate compiler bugs. Even in a language like Rust, which favour
optimised memory layouts, incremental improvements to the representation of values has progressed slowly
due to the far-reaching nature of such changes to the compiler.

1the Middle Intermediate Representation (MIR) is a control flow graph. We reconstruct some of its logic here for ease of
reading.

Inria
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In this article, we present a framework to easily define the memory representation of a language. Our
framework automatically checks, using constraint solving, that the proposed representation is well-formed –
for instance, that constructors can effectively be differentiated – and synthesise two functions: one to compile
pattern matches and one to turn values into their memory representation.

Our framework is based on two main insights.

1. A reasonable memory layout of values should be composable: for a value v, its subvalues can be found
in its representation. For instance Node(Red, 1515, &Node(Black, 0, &Empty,&Empty), &Empty) con-
tains the subvalue Node(Black, 0, &Empty,&Empty) in its representation.

2. To yield itself to pattern matching, the memory representation of values should be distinguishable: one
should be able to determine if an RBT value is a Node or an Empty.

To specify such a memory representation, called compositional, one should provide two operations for each
type: 1. where to place subterms in the memory representation, 2. how to distinguish values. For simplicity,
we only show the definition for the RBT<u64> type. A full compiler would provide such information for all
types.

2.3.1 Composability

For each type, we require the position of its subterm. Concretely, this is a mapping from source values with
holes to memory values with holes:

Node(c : Color, , , ) →
{{

c′ 64, , ,
}}

with c′[0, 1] = 2 ∗ c+ 1

Node( , i : u64, , ) → {{ , i 64, , }}
Node( , , l, ) → {{ , , l ∗, }}
Node( , , , r) → {{ , , , r ∗}}

&t → Ptr64,3 t ∗

There are many things to note here. {{ }} indicates a structure: a sequence of memory word of various sizes.
∗ is an optionally sized position in the representation. Some fields are directly sized: the integer content i

for instance is explicitly sized as 64 bit. The sizes of l and r, the two subtree pointers, are left unspecified
and will be inferred. Numerical representation can be tweaked as we move to the memory representation:
for instance, the colour c is stored in the first two bits of the header word, appropriately shifted. We also
indicate that the pointer is 64-bits wide, and that 3-bits are always 0 for alignment.

To enforce composability, we enforce that the “source” patterns on the left hand side should be shallow –
without any subpatterns. Note that there are no mapping for Empty, since it doesn’t have subvalues.

2.3.2 Distinguishability

To distinguish values, we require a collection of discriminants that express where in memory to look, and
which value would be associated to each constructor. We only need one discriminant for RBT:

{{h 64, . . .}}with tag = h[0, 0] ⇒
{

Empty 7→ tag = 0
Node 7→ tag = 1

}
This reads as follow: “Let tag be the lowest bit of the first field of the given RBT value, if the constructor of
the value is Empty it has tag = 0, if it is Node is has tag = 1”.

2.3.3 Synthesis

These two information are in fact completely sufficient to fully determine the memory representation of
values. Our synthesis proceeds as follow:

1. We first derives a “general shape” of values. Here, this indicate that RBT memory values are of the shape
{{Word64}} in the Empty case – a struct with a single 64bits integer – and {{Word64,Word64,Ptr64,3RBT,Ptr64,3RBT}}
in the Node case – a struct with four 64bits words.

RR n° 9495



8 Baudon & Gonnord & Radanne

2. Based on this general shape, the missing information is inferred using constraint solving. For instance, it
will determine that the word in the Empty case will always be 0, to distinguish with the Node case. This
step also checks the correctness of the representation.

3. Thanks to this last step, the memory representation is fully defined. The framework synthesis a Repr•

functions which returns the memory value of any given value. For instance Repr•
RBT<u64>(Node(Red, 1515,Empty,Empty)) =

{{2, 1515,Ptr64,3 {{0}} ,Ptr64,3 {{0}}}}
4. Finally, our framework synthesise a compilation function from pattern to decision trees.

Our synthesis framework has been implemented in a tool called ribbit. It provides the full chain from
specification of the memory representation (for now, as OCaml code), to constraint solving (using the SMT
solver Z3) to pattern matching compilation. We showcase the compilation of the balancing function provided
above in Fig. 3.

In the rest of this article, we formally define a language with pattern matching (Section 3), propose an input
specification for compositional representations (Section 4) and details our synthesis procedure (Section 5).
We finally sketch some extensions to our framework (Section 6).

3 Patterns and Pattern Matching

In this section, we present a language of patterns as well as a generic algorithm to compile pattern matching
to decision trees.

3.1 Patterns, Syntax and Semantics

The Pat language, described in Fig. 4, roughly follows the syntax of ML-style languages, restricted to
simple types and patterns. A matching, denoted m, is composed of a list of patterns. The bodies of
the clauses are left unspecified here and can be composed of any expression language. Patterns, de-
noted p, are composed of constructor patterns along with variables (x), wildcards ( ) and “or”-patterns
(p1 | p2). Type expressions, denoted τ , are composed of sums, written

∑
0≤i<n Ki(ti,0, . . . , ti,ni−1) or

K0(τ0,0, . . . , τ0,n0−1) + . . . + Kn−1(τn−1,0, . . . , τn−1,nn−1−1), and of primitive types (essentially fixed-width
signed or unsigned integers). Type environments, denoted Γ, contains both variable and type names, both
associated to type expressions. Values, denoted v, follow a subset of the pattern grammar. Finally, value
environments, denoted σ, associate variables to their values.

For ease of presentation, we assume the following:

• Types are monomorphic: all code has been specialised.
• All types are named with unique identifiers, whose definitions are stored in the type environment Γ. This

allows us to segment types and break recursions. For instance the definition τ = A + B(i32) yields the
type naming environment Γ = {t 7→ A+B(t′); t′ 7→ i32}. Recursive types result in a cycle in the type
environment.

• Patterns are exhaustive: all possible cases are handled.

Dynamic Semantics The semantics of patterns take the form of a judgement p ▷ v → σ meaning that
pattern p matches value v and binds the variables bound in σ. We also define the matching judgement
Match {p1 | · · · | pn} ▷ v → i, σ which additionally returns the index of the matched branch. In a full-fledged
language, it would then trigger the evaluation of the body of the branch in question. The semantic rules are
standard and shown in Appendix A.

Static Semantics The typing judgement, denoted Γ ⊢ p : t → Γ′, indicates that pattern p is of type t
(defined in Γ) and returns a new environment Γ′ containing the new variables bound in p. It follows the
standard rules for typing patterns, shown in Appendix A.

Example 1 (Running example: definition). As a running example for the rest of the paper, we consider the
type t defined in the following type naming environment:

Inria



Compositional Flexible Memory Representations for Algebraic Data Types 9

Patterns
p ::= _ (Wildcard)

| x (Variable)
| (p1 | p2) (Disjunction)
| K(p1, . . . , pn) (Constructor pattern)

Matching
m ::= Match {p1 | · · · | pn} (Matching)

Types
t ::= T (Primitive type)

|
∑

n Ki(t0, . . . , tni−1) (Sum type)
Γ ::= {xi 7→ τi; tj 7→ τj} (Type env.)

Values
v ::= z ∈ Z (Integer constant)

| K(v0, . . . , vn−1) (Constructor value)
σ ::= {x0 7→ v0; . . . ;xn−1 7→ vn−1} (Value env.)

Figure 4: Pat, our simplified language of patterns and types

Γ =

{
t 7→ None + Some(tABC);

tABC 7→ A+B + C(tint); tint 7→ u32

}
We define the following matching problem:

m0 = Match


| (p0) None | Some(A)

| (p1) Some(B)

| (p2) Some(C(n))


• The pattern p0 matches either value None or Some(A). We write m0 ▷ None → 0, ∅ and m0 ▷ Some(A) →
0, ∅.

• The third pattern p2 matches any value of type t of the form Some(C(n)), where n is a value of type tint,
and binds its value to the given name. For instance, m0 ▷ Some(C(42)) → 2, {n 7→ 42}

Additionally, these patterns are well-typed:

Γ ⊢ p0 : t → Γ Γ ⊢ p2 : t → Γ ∪ {n : u32}

♦

3.2 Templated Compilation of Pattern Matching
We now quickly rephrase Maranget (2008)’s state-of-the-art pattern matching compilation algorithm to deci-
sion trees, illustrated in Example 3. Decision trees T ∈ Trees, whose grammar is described in Fig. 5, formalise
the description of nested switch cases that we illustrated in Fig. 3.

The function Compilet : Pat → Trees takes as input a pattern matching problem for values of a given
type t and outputs an equivalent decision tree for memory representations of such values. In the rest of this
article, we assume that Γ is always provided implicitly.

Decision trees Decision trees are composed of nodes of the form switch (e) { C }, consisting of an expression
e computing the memory value under scrutiny and of a list of cases C. A decision tree leaf is of the form
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10 Baudon & Gonnord & Radanne

Expressions
e ::= ∆ (Main input)

| e⊕ z where ⊕ ∈ {∧,∨,+,≤, ̸=, . . . } (Bitwise and arithmetic operations)
| ∗ e (Pointer dereferencing)
| e.i (i-th block field access)
| . . . (Memory-dependent operations)

Switch cases
C ::= z 7→ T · C (Regular case)

| ⊤ 7→ T (Default case)
| ∅ (No default case)

Decision trees
T ∈ Trees

T ::= switch (e) { C } (Decision node)
| success(j, {xi 7→ ei}) (Branch j with bindings)
| unreachable (Unreachable leaf)

Figure 5: Decision trees and their expressions

success(j, σ), which successfully returns a branch index j and a set of binding expressions σ. Since we only
consider exhaustive patterns, there are no failure cases.

At toplevel, decision trees take as input the main input of the whole matching, denoted ∆. The scrutinee
of a switch is an expression manipulating memory values (thus an expression over ∆). These expressions
are partially target-dependent but composed at least of dereferencing, field access and simple bitwise and
arithmetic operations. The output bindings σ are also target-dependent.

The dynamic semantics of these decision trees are similar to those of pattern matching, thus we omit their
description and provide a simple example.

Example 2 (Decision tree). The following decision tree matches an option type in the OCaml representation:

switch (∆ & 1)

{
1 7→ success(0, ∅)
0 7→ success(1, {n 7→ ∗∆.1})

}
This first determines whether the least significant bit of ∆ is 1 or 0. This determines whether a value is None
(the integer 1) or a Some (a pointer). If None, we succeed with branch 0. If Some, we succeed with branch
1 and a binding environment mapping n to the value inside Some, as computed by ∗∆.1. ♦

Pattern matching compilation algorithm Our algorithm Compilet0 (P) compiles a pattern matching
problem to an equivalent decision tree using the now classic approach of pattern matrices. Its arguments are:

• the type of the main input value (at toplevel) t0;
• a pattern matrix P in which each row encodes a case of the matching problem and and each column a term

to be scrutinised (allowing us, for instance, to split product patterns and choose which field to inspect
first). At the end of each row, we also record its index and a binding environment. The column headers
indicate which parts of the main input this column is matching against, as a subterm of the toplevel value.

Compilet proceeds by recursively emitting switch nodes (depicted as branching nodes in our graphical
representation) and reducing the pattern matrix until exhaustion. It has five cases, depending on the shape
of P:

empty If P is empty, the algorithm fails, as exhaustive patterns should have a valid pattern for every case.
wildcard If the first row consists only of wildcards, the matching can only succeed as this branch accepts
all values.
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
□

None | Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2




□
None ∅, 0

Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2

or Which variant is ∆ at toplevel? (None, or Some)?switch

PNone =

(
∅, 0

)
None

success(0, ∅)
wildcard


Some(□)

A ∅, 0
B ∅, 1

C(n) ∅, 2


Some

Which variant “under the Some”? (A, B, or C?)
switch

(
∅, 0

)
A

success(0, ∅)
wildcard

(
∅, 1

)B

success(1, ∅)
wildcard

(
hn = Some(C(□))

n ∅, 2

)
C

Pn =

(
hn

{n 7→ Memory content "under Some(C)"} , 2

)variable

success(2, {n 7→ Memory content "under Some(C)"})
wildcard

Figure 6: Execution of Compilet(m0) on the running example. Blue coloured parts depict the final decision tree (that
can be used to match any value of type t); other parts depict pattern matrices used during the compilation procedure.

variable If there exists a variable pattern pℓi in some row ℓ (and the previous rows contain no variable
patterns), we introduce pℓi into this row’s binding environment.
or If there exists an “or”-pattern pℓi = p1 | p2 in some row ℓ (and the previous rows contain no “or”-patterns),
we split it into two new rows.
switch Otherwise, an actual switch node must be generated. The aim of this switch node is to inspect the
head constructor of the value contained in one of the inputs, compare it to the patterns of its column in
P, then branch to its associated subtree that performs the remaining computations (on other columns and
nested values).

Example 3 ( Running example: Compilet∆ function ). Fig. 6 depicts the execution of Compilet(m0) on
the running example (Example 1). The produced decision tree can then be used to “match” the memory
representation of any value v of type t. It first applies the or rule, then the switch rule to decide whether the
head constructor of v is None or Some. In the former case, it immediately stops, returning 0. In the latter
case, it continues through the left branch of the tree while getting access to the subvalue “under Some”, for
which it should decide whether it is A, B or a C. Finally, if this subvalue is a C, it should get access to the
subvalue “under C”. Note that the detailed operation of how to discriminate between constructors such as
A, B and C is still undefined at this point. This is indeed highly dependent on precise details of the chosen
internal memory layout. ♦

Representation dependence While Maranget (2008)’s algorithm produces good decision trees, it was
originally specific to a given memory representation (the OCaml one). In order to allow for custom repre-
sentations, we must provide additional representation-specific functions to:

• extract the representation of a subvalue from the memory representation of its parent value (Unwrap•
t );

• retrieve the head constructor of a source value from its memory representation (InspectAndSplit•
t ).

Unfortunately, specifying these functions for each type and constructor is particularly complex. In particular,
ensuring the correctness of such functions when written by hand in compiler code is delicate. Instead, we
propose to synthesise such representation-specific functions for any custom memory representation, based
on a higher-level description of the memory layout of values. In the following sections, we show how to
automatically derive the full compilation algorithm for any type, including representation-specific functions,
from a user-provided high-level description of the desired memory representation.
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12 Baudon & Gonnord & Radanne

τ̂ ∈ T̂ypes ::= | Wordℓ | Ptrℓ,aτ̂ |
{{
τ̂
}}

|
⊔

τ̂

v̂ ∈ V̂alues ::= | Wordℓ (z) | Ptrℓ,av̂ |
{{
v̂
}}

|
⊔

v̂

ops ∈ WordOps ::= ■ (Identity)
| ops[i, j] (Bits i to j, inclusive)
| ops⊕ z where ⊕ ∈ {∧,∨,+,≤, ̸=, . . . } (Bitwise and arithmetic operations)

ĥ ∈ ̂Contexts ::= ops ∗ (Unsized memory hole)
| ops ℓ (Sized memory hole)

| Ptrℓ,aĥ (Pointer)

|
{{

, . . . , ĥ
i
, . . . ,

}}
(i-th field in a block)

Figure 7: Memory values, types and contexts

4 Input Specification for Memory Layouts

A layout, or memory representation, specifies how to encode values of any source type in memory, so as to be
able to encode each typed value in a fully deterministic way. This section formally explains how to provide
an input specification for our synthesis algorithm.

4.1 Notations: Source and Memory Operations

In this section, we define similar notions on the source language Pat and on memory contents. From now on,
hats will denote memory-related notions: h ∈ Contexts denotes a source context while ĥ ∈ ̂Contexts denotes
a memory context.

Source contexts, subterms of a type Source contexts are used to deconstruct values and types. A
constructor context is a constructor pattern in which all subpatterns are wildcards, except one which is
another context. All contexts end with a single hole □. The grammar for source contexts (Contexts) is
defined below:

h ::= □ (Hole)
| K(_, . . . ,_, h,_, . . . ,_) (Constructor context)

We can now define the subterms of a sum type expression as a set of contexts where subterms are located:

SubTerms(
∑
n

Ki(ti,j
ni)) =

{
Ki

(
, . . . ,□

j
, . . . ,

)}
0≤i<n
0≤j<ni

We also write SubTerms(t) instead of SubTerms(Γ(t)) when Γ is implicit from the context.

Example 4 (Running example: subterms). From the definition of types in Example 1, we obtain:

SubTerms(t) = {Some(□)} SubTerms(tABC) = {C(□)}

Constant constructors such as None do not yield any subterm context. ♦
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Compositional Flexible Memory Representations for Algebraic Data Types 13

Memory Values and Types In order to work on the internal representation of values, we consider an
abstraction of memory, similar to LLVM IR’s types, shown in Fig. 7. A memory value is always typed and is
either a fixed-size word encoding an integer z ∈ Z, written Wordℓ (z) and typed Wordℓ, a fixed-size pointer
to another memory value v̂ of type τ̂ with a fixed number a of address alignment bits (filled with 0s), written
Ptrℓ,av̂ and typed Ptrℓ,aτ̂ , or a contiguous block containing a finite number of heterogenous memory values
(fields), written {{v̂0, . . . , v̂n−1}} and typed {{τ̂0, . . . , τ̂n−1}}. We also define a (finite) disjoint union of memory
values (resp. types) to denote the possibility of several concrete memory values (resp. types) at a given
location, along with a wildcard to denote an unspecified memory value (resp. type). The typing rules for
the judgment ⊢ v̂ : τ̂ are straightforward and omitted for the sake of brevity.

Memory Contexts A memory context, defined in Fig. 7, indicates a position within a memory value
and an optional transformation of the word at this position. It consists of a coarse-grained hierarchy of
structural elements – namely pointers and blocks – ending with an optionally sized “hole” ℓ and of finer-
grained operations on the word designated by the hole. The hole of a memory context applied to a word
(resp. pointer) value should match the size of this word (resp. the number of alignment bits). The hole of a
memory context applied to a block must be unsized and contain the identity operation (i.e., ■ ∗).

Example 5 (Running example: memory contexts). Consider tABC from our running example (Example 1).
Its memory representation in OCaml (which we will refine later in Section 4.3) is of type τ̂ = Word64 ⊔
Ptr64,3 {{Word64,Word64}}. The OCaml representation maps the concrete source values A, B and C(42) to
the following memory values:

A 7→ Word64 (1) B 7→ Word64 (3) C(42) 7→ Ptr64,3 {{Word64 (2) ,Word64 (85)}}

The two constant constructors A and B are mapped to odd constant values. The C constructor is mapped
to a 64-bit-wide, 3-bit-aligned pointer (thus an even number), pointing to a block containing its tag 2 and
a value. The integer value 42 is located in the second field of this block. As we will see in more detail in
Section 4.3, integers are encoded through a 1-bit left shift and an increment (42× 2 + 1 = 85). ♦

4.2 Input Ingredients for Compositional Layouts

Let t a source type such that Γ(t) =
∑

n Ki(ti,j
ni). In order to synthetise a full (compositional) memory

representation, the user should provide:

• Position•
t : SubTerms(t) → ̂Contexts

defines how the representation of each subvalue is composed into the representation of its parent value;
• Discrs•t ⊂ ̂Contexts× ({Ki}n → Z)

is a set of discriminants. A discriminant consists of a memory context indicating where to look, and a
partial mapping from constructors to integer values that can be found at this position. The discriminants
should be defined such that, for each distinct pair of constructors, at least one discriminant is defined for
both constructors and maps them to distinct integer values, i.e.:

∀0 ≤ i < j < n, ∃(ĥ, split) ∈ Discrs•t , split(Ki) ̸= split(Kj)

4.3 Example: OCaml Layout Specification

We now demonstrate how to specify the OCaml memory representation of values Minsky and Madhavapeddy
(2021) in our framework. All computation details can be found in Appendix D.

Informal specification OCaml memory values are either unboxed immediates or pointers to blocks, both
one word wide. OCaml blocks are contiguous word-aligned structs. Every block starts with a header word
containing various metadata including a tag indicating the constructor of the underlying value. For simplicity,
we ignore the remaining metadata here. An important optimisation is that argument-less constructors are
represented as unboxed integers, rather than empty blocks. The integer value is the index of the constructor.
In OCaml, None has the same representation as the integer value 0 (i.e., Word64 (1)), without any boxing.
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14 Baudon & Gonnord & Radanne

To distinguish pointers from unboxed values at runtime, the least significant bit of every memory value is
used as a pointer flag. Concretely, a memory value whose lowest bit is set to 1 contains an unboxed constant
in its remaining 63 bits, while a lowest bit set to 0 indicates that the memory value is a pointer. Finally,
addresses are word-aligned, guaranteeing that their 3 last bits are always 0 (for 64-bit-wide words).

Formal OCaml layout specification Let t such that Γ(t) =
∑

n Ki

(
ti,j

ni
)
.

The Position• function gives the position of a subvalue in the “pointer-to-block” memory structure:

Position•
t

(
Ki

(
, . . . ,□

j
, . . . ,

))
= Ptr64,3

{{
, . . . , ■ ∗

j+1
, . . . ,

}}
The three discriminants express how to distinguish between constructors:

• D≥0 distinguishes between unit and non-unit constructors by inspecting the lowest bit, which is always 1
(resp. 0) for unit (resp. non-unit) constructors:

D≥0 =

(
■[0, 0] ∗;

{
Ki 7→

{
1 if ni = 0

0 otherwise
| 0 ≤ i < n

})
• D=0 distinguishes individual unit constructors:

D=0 = (■ 64; {Ki 7→ 2× i+ 1 | ni = 0})

In this case, the value must be an unboxed integer, which we can inspect right away.
• D>0 distinguishes individual non-unit constructors:

D>0 = (Ptr64,3 {{■ 64, . . .}} ; {Ki 7→ i | ni > 0})

In this case, the value must be a pointer to a block.

We then have Discrs•t = {D≥0, D=0, D>0}.

Example 6 (Running example: tABC ingredients). Consider tABC in our running example. As we saw
in Example 5, the unit constructors A and B are distinguishable from C by inspecting the lowest bit of
the representation (which acts as a pointer flag); we also define a discriminant to distinguish A from B and
another that solely affects C (so as to obtain the expected memory structure).

Discrs•tABC
=

{(
■[0, 0] 64,

{
A 7→ 1 C 7→ 0
B 7→ 1

})
,(

■ 64,
{
A 7→ 1 B 7→ 3

})
,

(Ptr64,3 {{■ 64, . . .}} , {C 7→ 2})}

We also define the composition of Repr•
tint

(n)
within Repr•

tABC
(C(n)):

Position•
tABC

(C(□)) = Ptr64,3 {{ , ■ ∗, . . .}}

5 Synthesis of Memory Representations
We now give our complete synthesis procedure, whose overall pipeline is shown in Fig. 8, which takes as input
the specification functions of Section 4.2.

It proceeds by generating partial intermediate representations of a type t for each tag, which can be either
a constructor or a wildcard ⊤. It then completes these intermediate representations using constraint solving.
This is done in three steps:

1. Structural interpolation (Section 5.1) determines the memory type ReprTy•
t (tag) of the representation of

any value of type t whose constructor fits tag, as well as a memory pattern PreRepr•
t (tag) which encodes

all statically known representation elements. This step proceeds by collecting all necessary structural
information from the input specification and computing an “intersection” of all collected constraints. If
this step succeeds, its result is a memory pattern with some remaining unsolved word contents.
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Position•
t : SubTerms(t) → ̂Contexts

Discrs•t ⊂ ̂Contexts × (Constrs(t) → Z)

User-provided representation specification

ReprTy•
t : Constrs(t) ∪ {⊤} → T̂ypes

PreRepr•
t : Constrs(t) ∪ {⊤} → ̂Patterns

Intermediate representation with unsolved words

SMT

Repr•
t : Values(t) → V̂alues

Repr.-specific primitives: Unwrap•
t , InspectAndSplit•

t

Fully solved synthesised representation

Compilet : Pat → Trees

(1) Structural interpolation

model

(2) Representa-
tion completion

(3) Synthesis of pat-
tern matching primitives

Figure 8: Representation synthesis pipeline

ϕ ::= ⊤ | (ops = xh) | (ops = z) | ϕ ∧ ϕ

p̂ ∈ ̂Patterns ::= t@h | Wordℓ (ϕ) | Ptrℓ,ap̂ |
{{

p̂?
}}

|
⊔

p̂

Figure 9: Memory patterns and word formulas

2. Representation completion (Section 5.2) fully determines the contents of each word. After ensuring that the
intersection of all patterns is non-empty, there still remain under-specified parts. The goal of this step is to
synthesise a unique memory value. We translate unsolved word descriptions to SMT formulas on fixed-size
bitvectors. Solving these formulas yields a model that assigns a concrete value or a subterm symbol to
each word, which finishes the complete synthesis of the Repr•

t function. If a formula is unsatisfiable, it
means that we cannot obtain a suitable representation.

3. Synthesis of pattern matching primitives (Section 5.3) produces the primitives needed by our templated
Compilet algorithm. More precisely, for each source type t, we generate a function Unwrap•

t that extracts
the representation of a subvalue from the representation of its parent value and InspectAndSplit•

t , which
determines the constructor of a source value from its representation.

Each of these three steps may fail, indicating that the input specification is invalid. The rest of the section
follows the synthesis pipeline. Since the representation of a type is dependent on the representation of its
subtypes, we process the types of an environment Γ in the reverse prefix order.

5.1 Structural Interpolation
PreRepr•

t (tag) is representation template in which structural elements are fully determined but word con-
tents remain unsolved. ReprTy•

t (tag) gives the memory type for a given tag. To generate them, we use
memory patterns, shown in Fig. 9. Memory patterns are memory value skeletons in which word con-
tents are specified by a formula ϕ. A formula is either true (⊤) or a conjunction of clauses of the form
(ops1 = x1) ∧ · · · ∧ (opsm = xm), where xk are concrete integers or subterm symbols and opsk are sequences
of operations applied to the word contents ■. Memory patterns also feature an application case t@h, which
stands for the (unsolved) memory representation of the subterm of type t at position h. The remaining
pattern cases are similar to the previously defined memory values and types.

Memory patterns are equipped with union and intersection operations, defined in Appendix B, which
allow to build them up incrementally. For instance, the following rule expresses that a pointer pattern is
compatible with any word pattern whose width “fits” in its address alignment bits; the specified word contents
must then be zero.

ℓ′ ≤ a (0)ℓ′ satisfies ϕ

Ptrℓ,ap̂ ∩ Wordℓ′ (ϕ) = Ptrℓ,ap̂

Memory patterns also have an instantiation operation, noted ĥ[p̂] which builds a pattern from ĥ, where
the hole is replaced by p̂. This is also defined in Appendix B.
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16 Baudon & Gonnord & Radanne

Example 7 (Memory patterns). Word64 (■[0, 0] = 1) denotes any 64-bit-wide word whose lowest bit is 1.
In our running example, the memory pattern tint@C(□) matches memory values representing a value of type
tint. Ultimately, it will represent Repr•

tint
(v) where v is the subvalue “under C”. ♦

5.1.1 PreRepr•
t and ReprTy•

t

Let t a type and tag one of its constructors, or ⊤. PreRepr•
t (tag) is the intersection of all constraints

pertaining to this memory layout: composability constraints, denoted p̂ct and distinguishability constraints,
denoted p̂dt .

PreRepr•
t (tag) = p̂dt (tag) ∩

⋂
h∈SubTerms(t,tag)

p̂ct(h)

This memory pattern intersection may be empty, in which case representation generation fails and the input
specification is deemed invalid since it provided incompatible memory patterns. Composability constraints
are defined by iterating over subterms. Crucially, this yields a natural base case for constructors without
subterms. ReprTy•

t (tag) is a restriction of PreRepr•
t (tag), where formulas are erased, yielding a memory

type. We will now define each of these constraints.

5.1.2 Distinguishability Constraints

Distinguishability constraints p̂dt (tag) encode that, for any given sum type t, the head constructor of any
memory value can be identified by inspecting some predefined memory locations. Concretely, we accumulate
all constraints on a given constructor, and then merge all constructor-specific constraints.

Let t such that Γ(t) =
∑

n Ki(ti,j
ni) and Ki one of its constructors. We collect constraints by iterating

over each discriminant and its constructors, collecting coarse-grained contexts, word operations, widths and
values. For unsized memory holes (i.e., ∗), we use the maximal value width.

C =def



(ĥ, ℓ, ops, z) where

(ĥ′, split) ∈ Discrs•t
(Ki 7→ z) ∈ split

ĥ[ ops ℓ′ ] = ĥ′

ℓ = (if (ℓ′ is ∗) then max
(K 7→z)∈split

width(z) else ℓ′)


We now define the specific distinguishability pattern p̂dt (Ki) that applies to a given constructor Ki by

instanciating contexts, intersecting the resulting patterns and taking the conjunction of word formulas:

p̂dt (Ki) =
⋂

(ĥi,ℓi,opsi,zi)∈C

ĥi[Wordℓi (opsi = zi)]

The generic distinguishability pattern of t captures the structural characteristics common to all constructors:

p̂dt (⊤) =
⋃

K∈Constrs(t)

p̂dt (K)

5.1.3 Composability Constraints

Composability constraints p̂ct(h) encode that the memory representation of a value that fits h must contain
the memory representation of its subvalue at Position•

t (h). Our goal is to collect representation constraints
for each subterm position h, then merge them all.

Let t′ be the subtype of t at the hole in h. Inductively, we have defined the generic representation type of
t′: τ̂ ′ = ReprTy•

t′(⊤). Let ĥ[ ops ℓ0 ] = Position•
t (h). For the representation to be consistent, the memory

hole at ĥ must have type τ̂ ′. There are two cases:

• The memory value at position ĥ is a proper ℓ-bit wide word. We thus have τ̂ ′ = Wordℓ and ℓ0 = ℓ or
ℓ0 = ∗. To link the various constraints, we introduce xh, a variable that contains the integer contents at
position h. We output the constraint p̂ct(h) = ĥ[Wordℓ (ops = xh)].
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• The memory value at position ĥ is a not a word (for instance, it is a block). We necessarily have ops ℓ0 =
■ ∗. Since the stored memory value is not a word, we simply recall the constraints pertaining to the
position h with its type t′ using an application pattern: p̂ct(h) = ĥ[t′@h].

Example 8 (Running example: constraints). Consider the type tABC from our running example and the
input ingredients of Example 6:

• tABC is a sum type with three variants. For the sake of brevity, we only give p̂dtABC
(C), which is an

intersection of two memory patterns since two discriminants involve C:

p̂dtABC
(C) = Ptr64,3 {{Word64 (■ = 2) , . . .}} ∩ Word1 (■[0, 0] = 0)

This pattern matches memory values that have characteristics of both a 64-bit-wide, 3-bit-aligned pointer
to a block with at least one field, whose first field is a 64-bit-wide word whose contents ■ satisfy ■ = 2,
and of a word or address of at least one bit whose lowest bit is 0.

• tABC has one subterm C(□). Its composability pattern is:

p̂ctABC
(C(□)) =Ptr64,3 {{ , ■ ∗, . . .}} [Word64

(
■ = xC(□)

)
]

=Ptr64,3
{{

,Word64

(
■ = xC(□)

)}}
which expresses that the representation of C(n) must be a pointer to a block with at least two fields, whose
second field is a word containing an (unknown) integer value y such that y = xC(□), where xC(□) denotes
the integer contents of Repr•

tint
(n).

♦

5.2 Representation Completion
We have now collected all constraints on our representation into a memory pattern that contains formulas.
The next step of representation synthesis consists in solving each word formula. More precisely, given
PreRepr•

t (K) for some constructor K of t, we consider each memory context ĥ such that the memory
pattern Wordℓ

ĥ

(
ϕĥ

)
is at position ĥ in the memory pattern PreRepr•

t (K).
Let xh1

, . . . , xhm
be all the subvalue representation variables that appear in ϕĥ. Let ℓ1, . . . , ℓm the

widths of these subvalues’ representations (i.e., ReprTy•
tk

= Wordℓk). Our goal is to synthesise a function
that, given the subvalues’ representations, builds the word of the parent value (which we denoted ■ in
our formula). Let yĥ this function from bitvectors of widths ℓ1, . . . , ℓm to an ℓĥ-bit-wide bitvector. Let
ϕ′
ĥ
= ϕĥ[■ → yĥ(xh1

, . . . , xhm
)] the formula with ■ substituted with its (symbolic) value. Solving ϕ′

ĥ
then

consists in finding a function interpretation for y that satisfies it, denoted fĥ. If ϕ′
ĥ

is unsatisfiable, the input
specification is deemed invalid.

We solve each such formula ϕ′
ĥ

in PreRepr•
t (K) and obtain suitable fĥ interpretations. This gives us

fully set values for each memory word, allowing us to define the representation function for source values of
constructor K. In order to define the full representation function, we perform the same procedure for each
constructor Ki of t. We finally set:

Repr•
t (Ki(vj)) = PreRepr•

t (Ki)
[
Wordℓ

ĥ

(
ϕĥ

)
→ Wordℓ

ĥ

(
eĥ
)]

where eĥ = fĥ
(
Repr•

t1(vh1), . . . ,Repr•
tm(vhm)

)
Example 9 (Running example: completion). We admit the following representation function for the prim-
itive type tint: Repr•

tint
(n) = Word64 (2× n+ 1) (see Section 6). Let us now build Repr•

tABC
(K) for each

constructor K ∈ {A,B,C}:

• K = A. Collecting constraints yields this unsolved representation:

PreRepr•
tABC

(A) = Word64 (■[0, 0] = 1) ∩ Word64 (■ = 1)

= Word64 (■[0, 0] = 1 ∧■ = 1)

from which we extract the formula ϕ = (y[0, 0] = 1 ∧ y = 1) whose unknown is y ∈ {0, 1}64 (a bitvector
of size 64). The model y = Word64 (1) satisfies ϕ, hence Repr•

tABC
(A) = Word64 (1). Similarly, we obtain

Repr•
tABC

(B) = Word64 (3).
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• K = C. After simplification, the constraints for C (from Example 8) give the following unsolved rep-
resentation, in which the 64-bit-wide bitvector SMT variable xC(□) symbolises the representation of the
subvalue “under C”:

PreRepr•
tABC

(C) =Ptr64,3
{{

Word64 (■ = 2) ,
Word64

(
■ = xC(□)

)}}
The first word description leads to a constant value of 2, the second one is solved by y = xC(□) and we
finally get:

Repr•
tABC

(C(n)) = Ptr64,3
{{

Word64 (2) ,Word64

(
Repr•

tint
(n)
)}}

♦

5.3 Synthesis of Pattern Matching Primitives

We have previously asserted that the specification yield a consistent memory layout and synthesised a repre-
sentation function to build memory values? We finally synthesise the pattern matching primitives introduced
in Section 3.2.

Unwrap•
t : SubTerms(t) → Exprs

Unwrap•
t (h) builds an expression to access the representation of the subvalue at position h in a value of type

t. The input ingredient Position•
t (h) returns a memory context ĥ providing this information. To obtain

Unwrap•
t (h), we translate ĥ to a target expression, as defined in Fig. 5. For instance, if Position•

t (h) ={{
, . . . ,□

i
, . . . ,

}}
, then Unwrap•

t (h) = ∆.i.

InspectAndSplit•
t : (Constrs(t) → Trees) → Trees

InspectAndSplit•
t (branch) builds a decision tree given a function branch from t constructors to decision

trees. This primitive is more complex to build, and requires careful exploration of t discriminants to emit
the minimal amount of switch nodes. We proceed by iteratively generating intermediate decision trees for
decreasing sets of possible constructors, starting from all constructors of t. We then glue these intermediate
decision trees with switch nodes.

More precisely, we define the decision tree TK by induction on the current set of constructors K:

• If K = {K} contains a single constructor,
we return TK = branch(K).

• Otherwise, let us consider H the set of discriminants which effectively distinguish values in K:

H =

{
ĥ

∣∣∣∣∣ (ĥ, split) ∈ Discrs•t
∃K,K ′ ∈ K ∩ split, split(K) ̸= split(K ′)

}

H might contain several discriminants. We choose the “shallowest” one, i.e. that doesn’t look far into the
representation, and name it ĥ0. Thanks to the precondition on Discrs•, we show (in Appendix C) that
this shallowest discriminant always exists. By our distinguishability constraints, ĥ0 is a valid context for
all values whose constructor is in K.
We can now build our switch node. Let e the target expression returning the value located at ĥ0 (built
similarly to Unwrap•). By definition, the possible values of e are V = {z | K ∈ K ∩ split, split(K) = z}.
For each zi in V , let Kzi = {K ∈ K | split(K) = zi ∨ K /∈ split} the constructors compatible with this
result. Let K⊤ = {K ∈ K | K /∈ split} the remaining constructors. We finally obtain:

TK = switch (e)



z0 7→ TKz0

...
zm−1 7→ TKzm−1

⊤ 7→ TK⊤

where zi ∈ V
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n = *(*Δ.1).1 n

0

1*Δ.1
1

3

((*Δ.1) & 1)
0

1

(Δ & 1)
0

1

Figure 10: Output of ribbit for our running example Compilet(m0) with the OCaml representation.

Appendix C shows the detailed algorithm and its proof.
Finally, our representation-parametrised Compilet function presented in Section 3.2 is complete and can

compile any pattern matching on t values to an equivalent decision tree. We state its correctness w.r.t. the
memory layout:

Theorem 1. Let Γ a type environment; t ∈ Γ, m a matching such that Γ ⊢ m : t → Γ′ and T =
Compilet(m). Then for any value v of type t such that m ▷ v → i, σ, the evaluation of T on Repr•

t (v)
succeeds with i, {x 7→ Repr•

Γ(x)σ(x)}.

Example 10 (Running example: InspectAndSplit• generation). Let us build TA,B,C . The shallowest
discriminant (See Example 6) is DAB,C that inspects the lowest bit of the representation, thus e = ∆ & 1
that has values 0 (for C) or 1 (for A or B). The recursion for C gives branch(C). The recursion using DA,B

is similar. We finally obtain the helper function:

InspectAndSplit•
tABC

(branch) =def

switch (∆ & 1)

0 7→ branch(C)

1 7→ switch (∆)

{
1 7→ branch(A)
3 7→ branch(B)

}
After generating all helper functions, a final call to Compilet(m0) produces the final decision tree depicted
in Fig. 10. Notice that switch nodes now use concrete expressions operating on memory values to extract
subvalues’ representations and distinguish between constructors.

For space reasons, we only gave a partial development of our running example in the OCaml representation.
For the (far too extensive) details see Appendix D. ♦

6 Extensions

So far, we only showed the basic pattern constructs: sum types. Modern pattern languages have many
additional constructs. We now sketch several extensions of our framework. These extensions are implemented
in our prototype.

Reference and product types References and product are degenerate cases of sum types with only one
case. Our framework trivially extends to these constructs, with the simplification that Discrs• is always
empty for these types (as there is nothing to be distinguished).
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Primitive types Users may wish to pattern match on primitive types. At first glance, primitive types
are similar to sum types where each constant is a unit constructor. Unfortunately, the number of distinct
values (264 for native integers) makes such definition of Discrs• too large and the solving step intractable.
Furthermore, primitives types are not always finite (big integers).

To alleviate this issue, we extend the notion of Discrs• to work on sets of values which should be
treated the same, as if we had several sum type constructors with a single field containing the individual
value. Formally, for each T a primitive type, we require an additional ingredient ValSets•T which defines
a partition of the values of T . We then require discriminants to work on these sets of values: Discrs•T ⊂
̂Contexts × (ValSets•T → Z). The rest of our synthesis procedure readily extends to these additional

specifications.

Bit-stealing A more interesting extension is an optimisation known as bit-stealing in which address align-
ment bits are used to store additional integer values. For instance, our RBT example can be represented
even more compactly by using aligned pointers and storing the color in the lowest bit. Our framework al-
ready support leveraging pointer alignment: the OCaml representation exploits the fact that the lowest bit
of pointers is always 0. To bit-steal, we extend pointers appropriately: Ptrℓ,a(z) _ v̂ is a ℓ-wide pointer to
v̂ with z in the a lowest-bits. Pattern intersection and solving are easily adapted.

7 Related Works

7.1 Memory Representation and ADTs

Memory representation in functional polymorphic garbage-collected languages was identified quickly as an
important area for performance improvements. Peterson (1989) proposes techniques to avoid tagging, while
Leroy (1992); Jones and Launchbury (1991) suggest ways to unbox values. Our work encourages new devel-
opment in this area, by allowing to combine these works with efficient pattern matching compilation. Leroy
(1990) presents a calculus which can mix a uniform polymorphic representation and monomorphic optimised
representation, which we could use to make several representations cohabit. Colin et al. (2018) details how
to extend our source language to handle recursive types in the presence of unboxing. Many of these works
are implemented in some capacity in OCaml and Haskell.

Iannetta et al. (2021); Koparkar et al. (2021) propose drastically different representations for Algebraic
Data Types, where almost everything is flattened, allowing excellent cache behaviour and parallelism. Our
work would augment these approaches with efficient decision tree generation.

7.2 Pattern Matching Compilation

Pattern languages for algebraic data types were first introduced by the HOPE language Burstall et al. (1980).
Its general form has been adopted mostly as-is in mainstream languages with rich static typing such as Haskell,
OCaml, F#, Scala or Rust, but also more recently in more general languages such as Python and soon Java.
This diversity of host languages, with their very varied compilation techniques and memory representations,
make our framework all the more relevant.

We focused on the core of pattern matching language, with some minor extensions like disjunctive patterns.
Other extensions include ranges, guards, matching of polymorphic variants Garrigue (1998), and exception
patterns (in recent OCaml versions). These are orthogonal to our work.

As for pattern-matching compilation, many works exists since the first introduction of pattern matrices in
the context of the LML language Augustsson (1985). Fessant and Maranget (2001) first proposed optimisation
for backtracking automata, introducing the “row and column” approach to split the pattern matrix. Their
technique is currently used in OCaml. This approach was later refined by Maranget (2008) to produce
good decision trees, which we base our work on. It delivers excellent performance, while being reasonable to
compute in practice. Most approaches to improve the current state-of-art algorithms rely on heuristics for the
choice of column to split A study of heuristics is done in Scott and Ramsey (2000). Both conclude that the
choice of heuristic only has minor performance consequences in most cases, but can matter for very particular
matches. We believe the choice of memory representation has a much bigger impact on performance.
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8 Conclusion
We have presented a specification and synthesis framework for composable memory representation, suitable
for Algebraic Data Types implementation and compilation. Our framework not only synthesise optimising
compilation procedure, but also checks the valid of the provided specification. As a case study, we used our
method to recover a complete description for the OCaml representation and associated pattern-matching
compilation. To our knowledge, this is the first generic specification of memory representation linked with
Algebraic Data Types compilation purpose. We have also implemented our technique in a prototype tool
called ribbit and shown its output on concrete examples.

Our technique paves the way towards the formalisation and description of new optimisation techniques
for memory representation. In recent versions, Rust has been introducing more and more complex memory
representation optimisations, which are so far unspecified and could benefit from our synthesis framework.
Furthermore, we believe there is a trove of optimisations yet to be explored when it comes to the memory
representation of Algebraic Data Types. Some promising leads are to apply super-optimisation to individual
performance-sensitive data structures, or to allow programmers to specify whether types should be optimised
for space, cache behaviour, or even sharing. We hope this work serves as a stepping stone for these further
optimisations.
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A Source patterns
In this appendix, we give an exhaustive presentation of our source pattern language, including its complete
formal semantics. It includes all the extensions described in Section 6. This extends Section 3.1.

We first recall the complete grammar in Fig. 11.

Dynamic Semantics Fig. 12 defines the dynamic operational semantics of patterns. p ▷ v → σ stands for
“p matches value v and binds the variables in σ”. Most of the rules are straightforward, with the following
peculiarities:

• The bound value environment returned by the matching is populated by variables, through the Var rule.
• We enforce that there is no shadowing: variables must be bound only once, as asserted by the side-condition

in the Constructor rules.
• Alternatives are left-leaning: we first try to match with the left branch (AltL rule) before trying the right

branch (AltR rule).

We also define the matching judgement in rule Matching: Match {p1 | · · · | pn} ▷ v → i, σ which behaves
as the normal judgement, but additionally returns the index of the branch which was matched. In a full
language, it would then trigger the evaluation of the body of the branch in question.

Typing Fig. 13 defines the typing judgement Γ ⊢ p : t → Γ′: “pattern p has type t and binds variables
whose types are defined in environment Γ′”. Typing follows the semantics closely:

• As before, the bound typing environment Γ′ is populated by variables through the Var rule.
• We enforce that there is no shadowing in the Tuple and Constructor rules.
• Bound environments must be identical in all branches, as enforced by the Alt rule.

B Memory patterns
Memory patterns are memory value skeletons in which possible values of address alignment bits and word
contents are constrained by SMT formulae. They are notably used for structural interpolation, in Section 5.1.
In this section, we flesh out their auxiliary operations, notably union, intersection and instanciation.

We first recall their grammar in Fig. 14. t@h denotes the application of PreRepr•
t to the subvalue

at position h. Note the extension of pointer pattern to accommodate for bit-stealing. Other cases closely
follow the grammar of memory values: fixed-width words whose contents are specified by an SMT formula
ϕ, fixed-width and fixed-alignment pointers (to another memory pattern) whose address alignment bits are
specified by an SMT formula ϕ, blocks containing a finite number of fields (which are either memory patterns
or the wildcard ) and disjoint unions of memory patterns. ϕ is either ⊤ (always true) or a conjunction of
clauses

∧
i(opsi = xi) where each xi is either a concrete integer value or a subterm symbol and each opsi is

a sequence of operations applied to the word contents.

Union and intersection Memory patterns are equipped with intersection and union operations.
The intersection of two memory patterns, defined in Fig. 15, is empty if they are incompatible (that is, if

they specify different memory structures) or another memory pattern that captures both patterns’ structural
information and word contents otherwise. Intersection performs width extension: the intersection of two
words is a word of the same width as the widest initial word. Also note that (t@h) only intersects with
memory patterns that do not constrain memory values more than PreRepr•

t (⊤) – indeed, (t@h) denotes
any memory value that matches PreRepr•

t (⊤).
The union of two memory patterns, defined in Fig. 16, merges their common memory structures and adds

disjoint unions between incompatible structures and different SMT formulae. The resulting memory pattern
captures all information that applies to any memory value that matches either of the initial patterns.

Instantiation Memory context instantiation, defined in Fig. 17, formalizes the substitutions in memory
patterns. ĥ[p̂] is a memory pattern whose structure is that of the memory context ĥ, where the holes has
been replaced by p̂ enhanced with the inner word operations.
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C Decision tree generation algorithm for InspectAndSplit•

In Section 5.3, we give a definition of InspectAndSplit•
t using a recursive algorithm to build decision trees.

This definition uses the concept of shallowest context, without defining it. In this appendix, we flesh out this
definition and formalize and prove the algorithm to build decision trees.

C.1 Memory context relations

We first define a partial prefix order ≺ on memory contexts in Fig. 18. Intuitively, if ĥ ≺ ĥ′, then any memory
value that is compatible with ĥ′ is also compatible with ĥ. Accordingly, we assert that any transformation on
words is a prefix of pointer dereferencing, as the former is compatible with any word or pointer of appropriate
width whereas the latter only applies to pointers.

Two memory contexts may be “compatible” in that they both apply to at least one common memory
value, without one being a prefix of the other. We formalise this relation in Fig. 19.

We also define a “semi-ordered compatibility” relation ⋊ from which we derive a notion of minimum
memory context :

ĥ⋊ ĥ′ ⇐⇒ ĥ = ĥ′ ∨ ĥ ≺ ĥ′ ∨ ĥ ▷◁ ĥ′ min Ĥ =
{
ĥ ∈ Ĥ | ∀ĥ′ ∈ Ĥ, ĥ⋊ ĥ′

}
Finally, the following results are needed to prove the existence of at least one minimal relevant discriminant:

Lemma 1. Let Ĥ a non-empty, finite set of memory contexts and P̂ a set of memory patterns instantiating
all contexts of Ĥ (i.e., ∀ĥ ∈ Ĥ, ∃p̂ ∈ P̂ ,∃p̂′, p̂ = ĥ[p̂′]). Then we have⋂

p̂∈P̂

p̂ ̸= ∅ ⇒ min Ĥ ̸= ∅

Proof. We first show that for any memory contexts ĥ and ĥ′ and any memory patterns p̂ and p̂′ such that
ĥ[p̂]∩ ĥ′[p̂′] ̸= ∅, we have ĥ⋊ ĥ′ or ĥ′⋊ ĥ. This result is immediate by induction on pattern intersection rules.

Therefore, for all ĥ, ĥ′ ∈ Ĥ, we have ĥ⋊ ĥ′ or ĥ′ ⋊ ĥ. Since Ĥ is a finite ordered set, there exists at least
one ĥ ∈ Ĥ such that ∀ĥ′ ∈ Ĥ, ĥ′ ̸≺ ĥ, that is ∀ĥ′ ∈ Ĥ, ĥ′ ⋊ ĥ, which proves the existence of at least one
minimal memory context of Ĥ. ♢

Lemma 2. Let ĥ0, ĥ1, ĥ2 and p̂, p̂′ such that ĥ0 ⋊ ĥ1 and ĥ1[p̂] ∩ ĥ2[p̂
′] ̸= ∅. Then we have ĥ0 ⋊ ĥ2.

Proof. By induction on memory pattern intersection. ♢

C.2 Decision tree generation algorithm
Recall the definition of InspectAndSplit•

t (branch) where t is a sum type and branch a function from t
constructors to decision trees: InspectAndSplit•

t (branch) = TConstrs(t), where TK is defined as follows for
a set of constructors K:

• if K is empty, it is undefined and we omit any decision tree branch leading to T∅;
• if K contains one constructor K, we branch to its associated continuation with T{K} = branch(K);
• otherwise, we pick a minimal relevant discriminant (ĥ, split) ∈ Discrs•t such that

ĥ ∈ min

{
ĥ

∣∣∣∣∣ (ĥ, split) ∈ Discrs•t
∃K,K ′ ∈ K ∩ split, split(K) ̸= split(K ′)

}

Let e the target expression returning the value located at ĥ0 (built similarly to Unwrap•). We build the
following switch node:

TK = switch (e)

{
c 7→ TK(c)

∣∣∣∣∣ c ∈ Z ∪ {⊤}
Kc ̸= ∅

}
with Kz = {K ∈ K | (K, z) ∈ split ∨K /∈ split} for z ∈ Z and K⊤ = {K ∈ K | K /∈ split}.
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The correctness of this algorithm relies on the two following results.

Lemma 3 (Strictly decreasing constructor set). Let K ⊆ Constrs(t) with |K| > 1. For any source value v
whose head constructor K is in K, the execution of TK on Repr•

t (v) branches to a recursively defined decision
tree TK′ with K ∈ K′ ⊊ K.

Proof. Let (ĥ, split) the minimal relevant discriminant picked for this step. Let v a source value whose head
constructor K is in K. Let us first remark that in any case, the execution of TK on Repr•

t (v) branches to
TK(c) for some c ∈ Z ∪ {⊤}.

We first show that each such set K(c) is a strict subset of K. By definition of (ĥ, split), there are at least
two distinct constructors K and K ′ in K∩ split such that split(K) ̸= split(K ′). It follows that at least one of
these constructors is absent from each K(c) for c ∈ Z ∪ {⊤}, hence K(c) ⊊ K.

We now show that we always have K ∈ K(c). This is immediate if K /∈ split. Otherwise, we have
K ∈ split and we show that the switch node branches to TK(split(K)): upon evaluation on the input Repr•

t (v),
the switch expression e yields the memory value located at ĥ. By construction, Repr•

t is such that this
memory value is a word whose contents are split(K). Indeed, for all K ∈ split, PreRepr•

t (K) was built from
an intersection of memory patterns including p̂ = ĥ′ [Wordℓ (ops = split(K))] where ĥ′[ ops ℓ′ ] = ĥ (ℓ and ℓ′

are irrelevant here). This implies that the memory value located at ĥ′ in Repr•
t (v) exists and is a word

whose contents ■ are such that ops = split(K), that is, the memory value located at ĥ in Repr•
t (v) exists

and is a word whose contents are equal to split(K). ♢

Lemma 4 (Existence of at least one minimal relevant discriminant). Assume that the representation is valid,
that is, Repr•

t (K) exists for each constructor K of t. Then for all K ⊆ Constrs(t) such that |K| > 1, we
have

min

{
ĥ

∣∣∣∣∣ (ĥ, split) ∈ Discrs•t
∃K,K ′ ∈ K ∩ split, split(K) ̸= split(K ′)

}
̸= ∅

Proof. According to the distinguishability condition on Discrs•t , there exists a discriminant (ĥ, split) ∈
Discrs•t such that K,K ′ ∈ split and split(K) ̸= split(K ′) for any constructor K ′ ̸= K, therefore Ĥ is
non-empty.

For any constructor K of type t, let

ĤK = Ĥ ∩

{
ĥ

∣∣∣∣∣ (ĥ, split) ∈ Discrs•t
Ki ∈ split

}

Recall the definition of the distinguishability pattern of any constructor K. Owing to representation
validity, we have

p̂dt (K) =
⋂

(ĥi,ℓi,opsi,zi)∈C

ĥi [Wordℓi (opsi = zi)] ̸= ∅

where

C =



(ĥ, ℓ, ops, z) where

(ĥ′, split) ∈ Discrs•t
(K 7→ z) ∈ split

ĥ[ ops ℓ′ ] = ĥ′

ℓ = (if (ℓ′ is ∗ ) then max
(K′ 7→z′)∈split

width(z) else ℓ′)


Notice that for any relevant discriminant (ĥ, split) ∈ Discrs•t such that K ∈ split, there exists (ĥi, ℓi, opsi, zi) ∈
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C such that ĥ = ĥi[ opsi ℓ′i ]; we can write

ĥi[Wordℓi (opsi = zi)]

= ĥi

[
opsi ℓ′i [Wordℓi (■ = zi)]

]
=
(
ĥi[ opsi ℓ′i ]

)
[Wordℓi (■ = zi)]

= ĥ[Wordℓi (■ = zi)]

That is, each considered memory context is instantiated once in this non-empty pattern intersection. We can
thus apply Lemma 1 to show that for all K ∈ K, min ĤK ̸= ∅.

We must now prove that min Ĥ = min
{
min ĤK

}
K∈K

is not empty. Let K,K ′ ∈ K such that K ̸= K ′.

Using the same distinguishability condition argument as before, we have ĤK ∩ ĤK′ ̸= ∅ and apply Lemma 2
on both constructors’ distinguishability patterns to show that any minimal context for either constructor is
compatible with all minimal contexts for the other constructor, and thus min

(
min ĤK ∪min ĤK′

)
̸= ∅. ♢

Using these two results, we show that InspectAndSplit•
t descends through switch nodes that successively

restrict the set of potential constructors, ending with the decision tree associated with the specific identified
constructor.

We can thus assert the correctness of our pattern matching compilation scheme:

Theorem 2. Let Γ a type environment; let t ∈ Γ a type. Let m a matching such that Γ ⊢ m : t → Γ′ and
T = Compilet(m). Then for any value v of type t such that m ▷ v → i, σ, the evaluation of T on Repr•

t (v)
succeeds with i, {x 7→ Repr•

Γ(x)σ(x)}.

D Full example: OCaml representation

Recall the type environment from our running example:

Γ = { t 7→ None + Some(tABC);

tABC 7→ A+B + C(tint);

tint 7→ u32}

In this section, we detail the complete representation synthesis pipeline and pattern matching compilation for
the OCaml representation, with all extensions enabled. (Note that the bit-stealing extension is not actually
used in this representation, which is why all addresses’ alignment bits are set to 0.)

D.1 Input specification

D.2 Primitive type tint

In OCaml, all integer values follow the same memory layout. Let S = [0; 232 − 1] the set of u32 values. We
encode any integer value n ∈ S on 64 bits, then transform it through a one-bit left shift and an increment to
set its pointer flag (lowest bit) to 1. As S is the only defined value set and no other representation constraints
apply, no discriminant is needed for tint. We thus define the following ingredients:

ValSets•tint
= {S} Discrs•tint

= ∅ Position•
tint

(S(□)) = (■− 1)/2[0, 31] 64

D.3 Sum types tABC and t

Sum types ingredients are similar across individual types. The main distinction done is between unit and non-
unit constructors, which are represented by 64-bit-wide words and 64-bit-wide pointers to blocks, respectively.
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We define the following ingredients for tABC:

Position•
tABC

(C(□)) = Ptr64,3 {{ , ■ ∗, . . .}}

Discrs•tABC
=


DAB,C =

(
0[■, 0] ∗,

{
A 7→ 1 B 7→ 1
C 7→ 0

})
,

DA,B =
(
■ 64,

{
A 7→ 1 B 7→ 3

})
,

DC = (Ptr64,3 {{■ 64, . . .}} , {C 7→ 2})


We define the following ingredients for t:

Position•
t (Some(□)) = Ptr64,3 {{ , ■ ∗, . . .}}

Discrs•t =


DNone,Some =

(
0[■, 0] ∗,

{
None 7→ 1
Some 7→ 0

})
,

DNone = (■ 64, {None 7→ 1}) ,
DSome = (Ptr64,3 {{■ 64, . . .}} , {Some 7→ 1})


D.4 Structural interpolation

Example 11 (Building the unsolved representation of a primitive type: tint). tint only has one value set
S. No discriminant applies: by convention, we define p̂dtint

(S) = . We derive its only composability pattern
from Position•

tint
(S(□)) to build its unsolved representation:

PreRepr•
tint

(⊤) = PreRepr•
tint

(S)

= p̂ctint
(S) = Word64 (((■− 1)/2)[0, 31] = x□)

ReprTy•
tint

(⊤) = ReprTy•
tint

(S) = Word64

♦

Example 12 (Composing word representations: tABC). We first compute the unsolved representations of
both unit constructors A and B, which solely consists of their distinguishability pattern. Two discriminants
apply: DA,B and DAB,C . We decompose and recombine DAB,C into the memory pattern Word1 (■[0, 0] = 1)
and get

PreRepr•
tABC

(A) = p̂dtABC
(A)

= Word64 (■ = 1) ∩ Word1 (■[0, 0] = 1)

= Word64 (■ = 1 ∧■[0, 0] = 1)

PreRepr•
tABC

(B) = p̂dtABC
(B)

= Word64 (■ = 3) ∩ Word1 (■[0, 0] = 1)

= Word64 (■ = 3 ∧■[0, 0] = 1)

We therefore have ReprTy•
tABC

(A) = ReprTy•
tABC

(B) = Word64.
For the non-unit constructor C, we need both a composability and a distinguishability memory pattern.

Two discriminants apply: DC and DAB,C , hence

p̂dtABC
(C) = Ptr64,3(⊤) _ {{Word64 (■ = 2) , . . .}}

∩ Word1 (■[0, 0] = 0)

= Ptr64,3(⊤ ∧■[0, 0] = 0) _ {{Word64 (■ = 2) , . . .}}

We derive the composability pattern from Position•
tABC

(C(□)) and ReprTy•
tint

(⊤) = ReprTy•
tint

(S) =
Word64:

p̂ctABC
(C(□)) = Ptr64,3(⊤) _

{{
,Word64

(
■ = xC(□)

)
, . . .

}}
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Note that the representation of the subvalue “under C” has been integrated as an SMT variable xC(□). Hence

PreRepr•
tABC

(C) = p̂dtABC
(C) ∩ p̂ctABC

(C(□))

=
Ptr64,3(⊤ ∧■[0, 0] = 0 ∧ ⊤)
_
{{

Word64 (■ = 2) ,Word64

(
■ = xC(□)

)}}
and ReprTy•

tABC
(C) = Ptr64,3 {{Word64,Word64}}.

We finally compute the union of these partial representations to get the generic unsolved representation
and its memory type:

PreRepr•
tABC

(⊤)

= PreRepr•
tABC

(A) ∪ PreRepr•
tABC

(B) ∪ PreRepr•
tABC

(C)

= PreRepr•
tABC

(A) ⊔ PreRepr•
tABC

(B) ⊔ PreRepr•
tABC

(C)

ReprTy•
tABC

(⊤)

= ReprTy•
tABC

(A) ∪ ReprTy•
tABC

(B) ∪ ReprTy•
tABC

(C)

= Word64 ∪ Word64 ∪ Ptr64,3 {{Word64,Word64}}
= Word64 ⊔ Ptr64,3 {{Word64,Word64}}

♦

Example 13 (Composing non-word representations: t). The unsolved representation of the unit constructor
None is very similar to that of A and B from the previous example: two discriminants DNone and DNone,Some
apply and we get

PreRepr•
t (None) = p̂dt (None)

= Word64 (■ = 1) ∩ Word1 (■[0, 0] = 1)

= Word64 (■ = 1 ∧■[0, 0] = 1)

ReprTy•
t (None) = Word64

The unsolved representation of the non-unit constructor Some is the intersection of its only composability
pattern and of its distinguishability pattern, involving two discriminants DSome and DNone,Some.

p̂dt (Some) = Ptr64,3(⊤) _ {{Word64 (■ = 1) , . . .}}
∩ Word1 (■[0, 0] = 0)

= Ptr64,3(⊤ ∧■[0, 0] = 0) _ {{Word64 (■ = 1) , . . .}}

Since ReprTy•
tABC

(⊤) is not a word type, we integrate the subvalue representation as an application pattern
rather than an SMT variable:

p̂ct(Some(□)) = Ptr64,3(⊤) _ {{ , tABC@Some(□), . . .}}

and we get

PreRepr•
t (Some) = p̂dt (Some) ∩ p̂ct(Some(□))

= Ptr64,3(⊤ ∧■[0, 0] = 0) _ {{Word64 (■ = 1) , . . .}}
∩ Ptr64,3(⊤) _ {{ , tABC@Some(□), . . .}}

=
Ptr64,3(⊤ ∧■[0, 0] = 0 ∧ ⊤)
_ {{Word64 (■ = 1) , tABC@Some(□)}}
ReprTy•

t (Some) = Ptr64,3
{{

Word64,ReprTy•
tABC

(⊤)
}}
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And we can finally build the generic unsolved representation and memory type:

PreRepr•
t (⊤) = PreRepr•

t (None) ∪ PreRepr•
t (Some)

= Word64 (■ = 1 ∧■[0, 0] = 1)

⊔ Ptr64,3(⊤ ∧■[0, 0] = 0 ∧ ⊤)
_ {{Word64 (■ = 1) , tABC@Some(□)}}

ReprTy•
t (⊤) = ReprTy•

t (None) ∪ ReprTy•
t (Some)

= Word64 ⊔ Ptr64,3
{{

Word64,ReprTy•
tABC

(⊤)
}}

♦

D.5 Representation completion

Example 14 (Representation completion of a primitive type: tint). We complete the unsolved representation
of the only value set of tint. PreRepr•

tint
(S) = Word64 (ϕ) contains one formula at the position ■ ∗ that we

express as the following atomic SMT problem:

(ϕ) y■ ∗ : {0, 1}32 → {0, 1}64

such that ∀x□ : {0, 1}32, (y■ ∗(x□)− 1)/2[0, 31] = x□

where the variable x□ symbolises the source integer value as a bitvector of width 32. We immediately solve
it with the following model: y■ ∗(x□) = (2× x□ + 1)64, hence Repr•

tint
(n) = Word64 (2× n+ 1). ♦

Example 15 (Representation completion of tABC). Recall the unsolved representation patterns from the
previous section. PreRepr•

tABC
(A) = Word64 (ϕ) contains one formula at the position ■ ∗ that we express

as the following atomic SMT problem:

(ϕ) y■ ∗ : {0, 1}64 such that y■ ∗ = 1 ∧ y■ ∗ [0, 0] = 1

which we solve with the model y■ ∗ = (1)64, which satisfies ϕ, hence Repr•
tABC

(A) = Word64 (1).
We carry out the same steps to solve PreRepr•

tABC
(B): y■ ∗ = 3 satisfies y■ ∗ = 3 ∧ y■ ∗ [0, 0] = 1 and

thus Repr•
tABC

(B) = Word64 (3).
Solving PreRepr•

tABC
(C) is slightly more involved: it contains three formulas at positions ĥ0 = Ptr64,3 {{■ ∗, . . .}},

ĥ1 = Ptr64,3 {{ , ■ ∗, . . .}} and ■ ∗, which we express through the following atomic SMT problems:

(ϕ0) yĥ0
∈ {0, 1}64 such that yĥ0

= 2

(ϕ1) yĥ1
∈ {0, 1}64 → {0, 1}64

such that ∀xC(□) : {0, 1}64, yĥ1
(xC(□)) = xC(□)

(ϕ) y■ ∗ ∈ {0, 1}3 such that ⊤ ∧ y■ ∗ [0, 0] = 0 ∧ ⊤

We immediately solve these with the following models:

yĥ0
= (2)64 satisfies ϕ0

yĥ1
(xC(□)) = xC(□) satisfies ϕ1

y■ ∗ = (0)3 satisfies ϕ

and thus get, for any value v of type tint:

Repr•
tABC

(C(v)) =
Ptr64,3(0)
_
{{

Word64 (2) ,Word64

(
Repr•

tint
(v)
)}}

♦
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Example 16 (Representation completion of t). Recall the unsolved representation patterns from the previous
section. PreRepr•

t (None) = Word64 (ϕ) contains one formula at the position ■ ∗ that we express as the
following atomic SMT problem:

(ϕ) y■ ∗ : {0, 1}64 such that y■ ∗ = 1 ∧ y■ ∗ [0, 0] = 1

The model y■ ∗ = (1)64, satisfies ϕ, hence Repr•
t (None) = Word64 (1).

PreRepr•
t (Some) contains three formulas at positions ĥ0 = Ptr64,3 {{■ ∗, . . .}}, ĥ1 = Ptr64,3 {{ , ■ ∗, . . .}}

and ■ ∗ that we express as the following atomic SMT problems:

(ϕ0) yĥ0
: {0, 1}64 such that yĥ0

= 1

(ϕ1) yĥ1
: {0, 1}64 → {0, 1}64 such that ∀x : {0, 1}64, yĥ1

(x) = x

y■ ∗ : {0, 1}3 such that ⊤

which we solve with the following models:

yĥ0
= (1)64 satisfies ϕ0 yĥ1

(x) = x satisfies ϕ1 y■ ∗ = (0)3 satisfies ⊤

and we thus have, for any source value v of type tABC:

Repr•
t (Some(v)) =

Ptr64,3(0) _
{{

Word64 (1) ,Word64

(
Repr•

tABC
(v)
)}}

Notice that Repr•
tABC

(v) corresponds to
xSome(□) in PreRepr•

t (Some). ♦

D.6 Pattern matching primitives

We finally synthesise pattern matching primitives Unwrap• and InspectAndSplit• for each sum type.

D.6.1 Composability primitives: Unwrap•

Since the composability ingredients for the only subterm of both sum types tABC and t are identical, their
composability primitives – which are generated by converting a memory context ingredient to a target ex-
pression – are also identical.

From the memory context

Position•
tABC

(C(□)) = Position•
t (Some(□)) = Ptr64,3 {{ , ■ ∗, . . .}}

we obtain

Unwrap•
tABC

(C(□)) = (∗∆).1 Unwrap•
t (Some(□)) = (∗∆).1

With both types, the evaluation of this expression on the representation of a non-unit source value yields
the representation of its subvalue under the constructor, as expected. Indeed, ∗ (Ptr64,3(0) _ {{v̂0, v̂1}}) .1
evaluates to v̂1.

D.6.2 Distinguishability primitives: InspectAndSplit•

The different signatures of tABC and t result in distinct decision trees to distinguish between constructors.
Indeed, InspectAndSplit•

tABC
features an extra switch node to distinguish between unit constructors A and

B.

Example 17 (tABC). Let branch : {A,B,C} → Trees. The generation of InspectAndSplit•
tABC

(branch)
begins with its toplevel decision tree T{A,B,C}.
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The only minimal relevant discriminant for {A,B,C} is DAB,C , which inspects the pointer flag to dis-
tinguish between unit and non-unit constructors. We emit the following switch node, in which recursively
defined trees are present:

T{A,B,C} = switch (∆ & 1)

1 7→ T{A,B}
0 7→ T{C}
⊤ 7→ T∅ (unreachable)


We now compute T{A,B}, whose minimal relevant discriminant is DA,B , and T{C}:

T{A,B} = switch (∆)

 1 7→ T{A}
3 7→ T{B}
⊤ 7→ F (∅) (unreachable)

 T{C} = branch(C)

Finally, we compute the last subtrees T{A} = branch(A) and T{B} = branch(B). Combining all previously
defined subtrees yields the full decision tree: InspectAndSplit•

tABC
(branch) =

switch (∆ & 1)

1 7→ switch (∆)

{
1 7→ branch(A)
3 7→ branch(B)

}
0 7→ branch(C)


♦

Example 18 (t). Let branch : {None,Some} → Trees. The generation of InspectAndSplit•
t (branch)

begins with its toplevel decision tree T{None,Some}. Its only minimal relevant discriminant is DNone,Some,
which inspects the pointer flag to distinguish between None and Some. This step is sufficient to fully
distinguish all constructors: we have TNone = branch(None), TSome = branch(Some) and obtain the following
decision tree: InspectAndSplit•

t (branch) =

switch (∆ & 1)

{
1 7→ branch(None)
0 7→ branch(Some)

}
♦

D.7 Pattern matching compilation
Recall the pattern matching problem from our running example:

m0 = Match


| (p0) None | Some(A)

| (p1) Some(B)

| (p2) Some(C(n))


We can now apply our templated compilation procedure Compilet to m0 by instantiating InspectAndSplit•

and Unwrap• calls.

Example 19 (OCaml pattern matching compilation of our running example). Our compilation procedure
generates the following parametrised decision tree for the input m0:

Compilet(m0) = InspectAndSplit•
t

None 7→ success(0)
Some 7→ InspectAndSplit•

tABCA 7→ success(0)
B 7→ success(1)
C 7→ success(2, {n 7→ Unwrap•

tABC
(C(□))})


[∆/Unwrap•

t (Some(□))]


We first determine whether we are dealing with None or a Some value; in the latter case, we determine
whether the value “under Some” is a unit constructor or C, in which case we bind the representation of

Inria



Compositional Flexible Memory Representations for Algebraic Data Types 33

the integer value “under C” to the symbol n. We can now replace the symbolic calls to pattern matching
primitives with their expressions to obtain the final decision tree:

Compilet(m0) = switch (∆ & 1)
1 7→ success(0)
0 7→ switch (((∗∆).1) & 1)1 7→ switch ((∗∆).1)

{
1 7→ success(0)
3 7→ success(1)

}
0 7→ success(2, {n 7→ ((∗∆).1).1})




Notice how Unwrap•

t (Some(□)) calls are composed into the InspectAndSplit•
tABC

decision tree so as to
inspect the representation of the subvalue “under Some”, which is (∗∆).1. ♦
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Patterns
p ::= _ (Wildcard)

| x (Variable)
| (p | p′) (Disjunction)
| z ∈ Z (Integer constant pattern)
| &p (Reference pattern)
| ⟨p0, . . . , pn−1⟩ (Product pattern)
| K(p0, . . . , pn−1) (Constructor pattern)

Matching
m ::= Match {p0 | · · · | pn−1} (Matching)

Types
t ::= T (e.g., i32, u16) (Primitive type)

| &t (Reference type)
|
∏

n ti (Product type)
|
∑

n Ki(ti,0, . . . , ti,ni−1) (Sum type)

Γ ::=

{
x0 : t0; . . . ;xn−1 : tn−1;
t0 7→ τ0; . . . ; tn′−1 7→ τn′−1

}
(Type environment)

Values
v ::= z ∈ Z (Integer constant)

| &v (Reference)
| ⟨v0, . . . , vn−1⟩ (Product)
| K(v0, . . . , vn−1) (Constructor)

σ ::= {x0 7→ v0; . . . ;xn−1 7→ vn−1} (Value env.)

Figure 11: Pat, our simplified language of patterns and types

Any
▷ v → ∅

Var
x ▷ v → {x 7→ v}

Constant
z ▷ z → ∅

Reference
p ▷ v → σ

&p ▷ &v → σ

Tuple
∀i, pi ▷ vi → σi ∀j ̸= i, σi ∩ σj = ∅

⟨pi⟩ ▷ ⟨vi⟩ →
⋃

σi

Constructor
∀i, pi ▷ vi, σi ∀j ̸= i, σi ∩ σj = ∅

K(pi) ▷ K(vi) →
⋃

σi

AltL
p1 ▷ v → σ

(p1 | p2) ▷ v → σ

AltR
p1 ⋫ v p2 ▷ v → σ

(p1 | p2) ▷ v → σ

Matching
pi ▷ v → σ ∀j < i, pj ⋫ v

Match {p1 | · · · | pn} ▷ v → i, σ

Figure 12: Semantics of patterns: p ▷ v → σ
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Any
Γ ⊢ : t → ∅

Var
Γ ⊢ x : t → {x : t}

Reference
Γ ⊢ p : t → Γ′

Γ ⊢ &p : &t → Γ′

Constant
z ∈ T

Γ ⊢ z : T → ∅

Tuple
∀i; Γ ⊢ pi : ti → Γi ∀i, j; Γi ∩ Γj = ∅

Γ ⊢ ⟨pi⟩ :
∏

ti →
⋃

Γi

Constructor
∃i0,K = Ki0 ∀j; Γ ⊢ pj : ti,j → Γj ∀i, j; Γi ∩ Γj = ∅

Γ ⊢ K(pj) :
∑

Ki(ti,j) →
⋃

Γj

Alt
∀i; Γ ⊢ pi : t → Γ′

Γ ⊢ p1 | p2 : t → Γ′

Matching
∀i; Γ ⊢ pi : t → Γ′

Γ ⊢ Match {p1 | · · · | pn} : t → Γ′

Figure 13: Typing of patterns: ⊢ p : t → Γ

ϕ ::= ⊤ | (ops = xh) | (ops = z) | ϕ ∧ ϕ

p̂ ::= t@h | Wordℓ (ϕ) | Ptrℓ,a(ϕ) _ p̂ |
{{

p̂?
}}

|
⊔

p̂

Figure 14: Memory patterns values and types

(t@h) ∩ (t@h) = t@h
PreRepr•

t (⊤) ∩ p̂ = PreRepr•
t (⊤)

(t@h) ∩ p̂ = t@h

ℓ ≤ ℓ′

Wordℓ (ϕ) ∩ Wordℓ′ (ϕ
′) = Wordℓ′ (ϕ ∧ ϕ′)

ℓ′ ≤ a

Ptrℓ,a(ϕ) _ p̂ ∩ Wordℓ′ (ϕ
′) = Ptrℓ,a(ϕ ∧ ϕ′) _ p̂

p̂ ∩ p̂′ = p̂′′

Ptrℓ,a(ϕ) _ p̂ ∩ Ptrℓ,a(ϕ′) _ p̂′ = Ptrℓ,a(ϕ ∧ ϕ′) _ p̂′′

n ≤ n′ ∀i < n, p̂i ∩ p̂′i = p̂′′i{{
p̂i

n
, . . .

}}
∩
{{

p̂′i
n′

, . . .

}}
=

{{
p̂′′i

n
, p̂′n+i

n′−n
, . . .

}} ∀i, p̂ ∩ p̂i = p̂′i

p̂ ∩
⊔
n

p̂i =
⊔
n

p̂′i

Figure 15: Intersection

(t@h) ∪ (t@h) = t@h
PreRepr•

t (⊤) ∪ p̂ = PreRepr•
t (⊤)

(t@h) ∪ p̂ = t@h
Wordℓ(ϕ) ∪ Wordℓ(ϕ) = Wordℓ(ϕ)

p̂ ∪ p̂′ = p̂′′

Ptrℓ,ap̂(ϕ) ∪ Ptrℓ,ap̂(ϕ) = Ptrℓ,ap̂′′(ϕ)

p̂i0 ∪ p̂′i0 = p̂′′i0{{
p̂i

n
, . . .

}}
∪
{{

p̂i
i0
, p̂′i0 , p̂i

n−i0−1
, . . .

}}
=
{{
p̂i

i0
, p̂′′i0 , p̂i

n−i0−1
, . . .

}} ∀i, p̂ ∪ p̂i = p̂′i

p̂ ∪
⊔
n

p̂i =
⊔
n

p̂′i

no other rule applies
p̂ ∪ p̂′ = p̂ ⊔ p̂′

Figure 16: Union
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■ ∗[p̂] = p̂
ops[ϕ] = ϕ′

ops ∗[Wordℓ (ϕ)] = Wordℓ (ϕ
′) ops ℓ[Wordℓ (ϕ)] = Wordℓ (ϕ

′)

ops[ϕ] = ϕ′

ops ∗[Ptrℓ,a(ϕ) _ p̂] = Ptrℓ,a(ϕ′) _ p̂ ops a[Ptrℓ,a(ϕ) _ p̂] = Ptrℓ,a(ϕ′) _ p̂

ĥ[p̂] = p̂′(
Ptrℓ,aĥ

)
[p̂] = Ptrℓ,a(⊤) _ p̂′

ĥ[p̂] = p̂′{{
, . . . , ĥ

i
, . . . ,

}}
[p̂] =

{{
, . . . , p̂′

i
, . . . ,

}}

Figure 17: Memory context instantiation – ops[ϕ] substitutes each clause ops′ = x in ϕ with ops ◦ ops′ = x

■ ∗ ≺ op(ops) ∗ ■ ℓ ≺ op(ops) ℓ
ops ∗ ≺ ops′ ∗

op(ops) ∗ ≺ op(ops′) ∗

ops ℓ ≺ ops′ ℓ

op(ops) ℓ ≺ op(ops′) ℓ

ops ∗ ≺ Ptrℓ,aĥ ■ ℓ ≺ Ptrℓ,aĥ ops a ≺ Ptrℓ,aĥ ■ ∗ ≺
{{

, . . . , ĥ
i
, . . . ,

}}
ĥ ≺ ĥ′

Ptrℓ,aĥ ≺ Ptrℓ,aĥ′
{{

, . . . , ĥ
i
, . . . ,

}}
≺
{{

, . . . , ĥ′
i
, . . . ,

}}

Figure 18: Partial prefix order

op ̸= op′

op(ops) ∗ ▷◁ op′(ops′) ∗ op(ops) ℓ ▷◁ op′(ops′) ℓ

ops ∗ ▷◁ ops′ ∗

op(ops) ∗ ▷◁ op(ops′) ∗

ops ℓ ▷◁ ops′ ℓ

op(ops) ℓ ▷◁ op(ops′) ℓ

ops ∗ ̸≺ Ptrℓ,aĥ

ops ∗ ▷◁ Ptrℓ,aĥ

ops a ̸≺ Ptrℓ,aĥ

ops a ▷◁ Ptrℓ,aĥ

i ̸= i′{{
, . . . , ĥ

i
, . . . ,

}}
▷◁
{{

, . . . , ĥ′
i′
, . . . ,

}} ĥ ▷◁ ĥ′

Ptrℓ,aĥ ▷◁ Ptrℓ,aĥ′
{{

, . . . , ĥ
i
, . . . ,

}}
▷◁
{{

, . . . , ĥ′
i′
, . . . ,

}}

Figure 19: Non-comparable compatibility
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