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Teaching Agents how to Map:
Spatial Reasoning for Multi-Object Navigation

Pierre Marza1, Laetitia Matignon2, Olivier Simonin3 and Christian Wolf4

Abstract— In the context of visual navigation, the capacity to
map a novel environment is necessary for an agent to exploit its
observation history in the considered place and efficiently reach
known goals. This ability can be associated with spatial rea-
soning, where an agent is able to perceive spatial relationships
and regularities, and discover object characteristics. Recent
work introduces learnable policies parametrized by deep neural
networks and trained with Reinforcement Learning (RL). In
classical RL setups, the capacity to map and reason spatially
is learned end-to-end, from reward alone. In this setting, we
introduce supplementary supervision in the form of auxiliary
tasks designed to favor the emergence of spatial perception
capabilities in agents trained for a goal-reaching downstream
objective. We show that learning to estimate metrics quantifying
the spatial relationships between an agent at a given location
and a goal to reach has a high positive impact in Multi-
Object Navigation settings. Our method significantly improves
the performance of different baseline agents, that either build
an explicit or implicit representation of the environment, even
matching the performance of incomparable oracle agents taking
ground-truth maps as input. A learning-based agent from the
literature trained with the proposed auxiliary losses was the
winning entry to the Multi-Object Navigation Challenge, part of
the CVPR 2021 Embodied AI Workshop.

I. INTRODUCTION

Navigating in a previously unseen environment requires
different abilities, among which is mapping, i.e. the capacity
to build a representation of the environment. The agent can
then reason on this map and act efficiently towards its goal.
How biological species map their environment is still an open
area of research [1], [2]. In robotics, spatial representations
have taken diverse forms, for instance metric maps [3], [4]
or topological maps [5], [6]. Most of these variants have
lately been presented in neural counterparts, i.e. involving
artificial neural networks — metric neural maps [7], [8], [9]
or neural topological maps [10], [11] learned from RL or
with supervision.

This work focuses on improving the RL-based training
strategy of autonomous agents parametrized by deep neural
networks. We explore the question whether the emergence
of mapping and spatial reasoning capabilities can be
favored by the use of spatial auxiliary tasks that are
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Université de Lyon, INSA-Lyon, Villeurbanne, France.
pierre.marza@insa-lyon.fr,

2Laetitia Matignon is with Univ Lyon, UCBL, CNRS,
INSA-Lyon, LIRIS, UMR5205, F-69622 Villeurbanne, France.
laetitia.matignon@univ-lyon1.fr

3Olivier Simonin is with INSA Lyon, CITI Lab, INRIA Chroma team,
Villeurbanne, France. olivier.simonin@insa-lyon.fr

4Christian Wolf is with Naver Labs Europe, France
christian.wolf@naverlabs.com

i

j

ϕt

i

j

dt

Fig. 1. In the context of Deep-RL for Multi-Object Navigation, two
auxiliary tasks predict the direction (left) and the distance (right) to the
next object to retrieve if it has been observed during the episode. The green
object (square) is the current target, and other targets exist and have already
been found or might be required to be found later (ex: blue object / square).
Red dot: position of the agent. White and grey cells, respectively, indicate
free space and obstacles. Both, the angle ϕt and the distance dt between
the center of the map (i.e. the agent) and the target at time t are discretized
and associated with a class label. A third sub-task is to predict if the current
target has already been within the agent’s field of view during the episode.

related to a downstream objective. We target the problem
of Multi-Object Navigation [12], where an agent must reach
a sequence of specified objects in a particular order within
a previously unknown environment. Such a task is interest-
ing because it requires an agent to recall the position of
previously encountered objects it will have to reach later
in the sequence. This work does not introduce a new agent
architecture, but rather showcases the impact of augmenting
the vanilla RL training of state-of-the-art (SOTA) agents
selected in [12] to solve the Multi-Object Navigation task.
Augmenting the RL training of agents with auxiliary tasks
has shown promise in many recent works introducing several
variants [13], [14], [15], [16], [17]. These different formula-
tions are presented in more details in section II. Our work
belongs to the group of supervised auxiliary tasks, with an
application to 3D complex and photo-realistic environments,
and specifically targets the learning of mapping and spatial
reasoning, which has not been the scope of previous work.

We take inspiration from behavioral studies of human
spatial navigation [18]. Experiments with human subjects
aim at evaluating the spatial knowledge they acquire when
navigating a given environment. In [18], two important mea-
sures are referred as the sense of direction and judgement of
relative distance. Regarding knowledge of direction, a well-
known task is scene- and orientation- dependent pointing
(SOP), where participants must point to a specified location
that is not currently within their field of view. Being able to
assess its relative position compared to other objects in the



world is critical to navigate properly, and disorientation is
considered a main issue. In addition to direction, evaluating
the distance to landmarks is also of high importance.

We conjecture that an agent able to estimate the location
of target objects relative to its current pose will implicitly
extract more useful representations of the environment and
navigate more efficiently. A fundamental skill for such an
agent is thus to remember previously encountered objects.
Our auxiliary supervision targets exactly this ability. Classi-
cal methods based on RL rely on the capacity of the learning
algorithm to extract mapping strategies from reward alone.
While this has been shown to be possible in principle [8], we
will show that the emergence of a spatial mapping strategy
is significantly boosted through auxiliary tasks, which
require the agent to continuously reason on the presence of
targets w.r.t. to its viewpoint — see Figure 1.

We introduce three auxiliary tasks, namely estimating if a
target object has already been observed since the beginning
of the episode, and if it is the case, the relative direction and
the Euclidean distance to this object. If an object is visible
in the current observation, it will be helpful for training the
agent to recognize it (discover its existence and relevance to
the task) and estimate its relative position. More importantly,
if the target object was seen in the past, the auxiliary super-
vision will encourage the learning of representations of the
environment, either implicitly or explicitly predicted by the
agent, that are better spatially structured and populated with
more relevant semantic information, leading to an update of
the neural memory of the agent.

We propose the following contributions: (i) we show that
the auxiliary tasks improve the performance of previous neu-
ral baselines by a large margin, which even allows to reach
the performance of (incomparable) agents using ground-truth
oracle maps as input; (ii) we show the consistency of the
gains over different inductive biases, i.e. different ways to
structure neural networks, reaching from simple recurrent
models to agents structured with projective geometry. This
raises the question whether spatial inductive biases are re-
quired or whether spatial organization can be learned; (iii) the
proposed method reaches SOTA performance on the Multi-
ON task, and corresponds to the winning entry of the CVPR
2021 Multi-ON challenge 1. The Test-Standard leaderboard
2, as well as an explanatory video 3 are publicly available.

II. RELATED WORK

Visual navigation — has been extensively studied in
robotics [19], [20]. An agent is placed in an unknown envi-
ronment and must solve a specified task involving reaching
positions based on visual input, where [19] distinguish map-
based and map-less navigation. Recently, many navigation
problems have been posed as goal-reaching tasks [21]. The
nature of the goal, its regularities in the environment and
how it is communicated to the agent have a significant

1http://multion-challenge.cs.sfu.ca/2021.html
2https://eval.ai/web/challenges/challenge-page/805/

leaderboard/2202
3https://www.youtube.com/watch?v=ghX5UDWD1HU

impact on required reasoning capacities of the agent [22].
In Pointgoal [21], an agent must reach a location specified
as relative coordinates, while ObjectGoal [21] requires the
agent to find an object of a particular semantic category.
Recent literature [22], [12] introduced new navigation tasks
with two important characteristics, (i) their sequential nature,
i.e. an episode is composed of a sequence of goals to reach,
and (ii) the use of external objects as target objectives, i.e.
the objects to find are not part of the scanned 3D scenes
used as environments, but are for example randomly placed
coloured cylinders as in [12].

Multi-Object Navigation (Multi-ON) [12] is a task requir-
ing to sequentially retrieve objects, but unlike the Ordered
K-item task [22], the order is not fixed between episodes.
A sequential task is interesting as it requires the agent to
remember and to map potential objects it might have seen
while exploring the environment, as reasoning on them might
be required in a later stage. Moreover, using external objects
as goals prevents the agent from leveraging knowledge about
the environment layouts, thus focusing solely on memory.
Exploration is another targeted capacity as objects are placed
randomly within environments. For these reasons, our work
thus focuses on the new challenging Multi-ON task [12].

Learning-free navigation — A recurrent pattern in meth-
ods tackling visual navigation [19], [20] is modularity, with
different computational entities solving a particular sub-part
of the problem. A module might map the environment, an-
other one localize the agent within this map, a third one per-
forming planning. Low-level control is also often addressed
by a specialized sub-module. Known examples are based on
Simultaneous Localization and Mapping (SLAM) [4].

Learning-based navigation — The task of navigation can
be framed as a learning problem, leveraging the abilities of
deep networks to extract regularities from a large amount of
training data. Formalisms range from Deep Reinforcement
Learning (DRL) [13], [14], [23] to (supervised) Imitation
Learning [24]. Our work focuses on improving the training
strategy of autonomous agents trained with DRL by aug-
menting the reward-based supervision signal with auxiliary
losses that are related to the downstream task.

Such agents can be reactive [23] , but recent work tends
to augment agents with memory, which is a key component,
in particular in partially-observable environments [25], [26].
It can take the form of recurrent units [27], or become a
dedicated part of the system. In the context of navigation,
memory can fulfill multiple roles: holding a latent map-like
representation of the spatial properties of the environment,
as well as general high-level information related to the task
(“did I already see this object?”). Common representations
are metric [7], [8], [9], or topological [10], [11]. Other work
reduces assumptions about the necessary structure of the
environment representation by using Transformers [28] as
a memory mechanism on episodic data [29].

In contrast to end-to-end training, other approaches de-
compose the agent into sub-modules [30], [11] trained si-
multaneously with supervised learning [11] or a combination
of supervised, reinforcement and imitation learning [30].

http://multion-challenge.cs.sfu.ca/2021.html
https://eval.ai/web/challenges/challenge-page/805/leaderboard/2202
https://eval.ai/web/challenges/challenge-page/805/leaderboard/2202
https://www.youtube.com/watch?v=ghX5UDWD1HU


Somewhat related to our work, in [11], a dedicated semantic
score prediction module is proposed, which estimates the
direction towards a goal and is explicitly used to decide
which previously unexplored ghost node to visit next inside
a topological memory. In contrast, in our work we propose
to predict spatial metrics such as relative direction as an
auxiliary objective to shape the learnt representations, instead
of explicitly using those predictions at inference time.

Learning vs. learning-free — The differences in naviga-
tion performance between SLAM-based and learning-based
agents have been studied before [31], [32]. Even though
trained agents begin to perform better than classical methods
in recent studies [32], arguments regarding efficiency of
SLAM-based methods still hold [31], [33]. Frequently hybrid
methods are suggested [30], [11]. In contrast, we explore the
question, whether mapping strategies can emerge naturally in
end-to-end training through additional pretext tasks.

Auxiliary tasks — can be combined with any downstream
objective to guide a learning model to extract more useful
representations as proposed in [13], [14] to improve, both,
data efficiency and overall performance. [13] predict loop
closure and reconstruct depth observations; Lample et al. [15]
also augment the DRQN model [25] with predictions of game
features in fps games. A potential drawback is the need for
privileged information, which, however, is readily available
in simulated environments [32]. This is also the case in
our work, where we access information during training on
explored areas, positions of objects and of the agent, which,
of course, is also used for reward generation in classical RL.

In [14], unsupervised objectives are introduced, such as
pixel or action features and reward prediction. [17] introduce
self-supervised auxiliary tasks to speed up the training on
PointGoal. They augment the base agent from [34] with
an inverse dynamics estimator as in [35], a temporal dis-
tance predictor, and an action-conditional contrastive mod-
ule, which must differentiate between positives, i.e. real
observations that occur after the given sequence, and neg-
atives, i.e. observations sampled from other timesteps. [16]
introduce auxiliary tasks for ObjectGoal, building on top
of [17] and introduce the action distribution prediction and
generalized inverse dynamics tasks and coverage prediction.

Our work belongs to the group of supervised auxiliary
tasks, with an application to 3D complex and photo-realistic
environments, which was not the case of most concurrent
methods. We also specifically target the learning of mapping
and spatial reasoning through additional supervision, which
has not been the scope of previous approaches.

III. LEARNING TO MAP

We target the Multi-ON task [12], where an agent is required
to reach a sequence of target objects, more precisely coloured
cylinders, in a certain order, and which was used for a
recent challenge organized in the context of the CVPR 2021
Embodied AI Workshop. Compared to much easier tasks like
PointGoal or (Single) Object Navigation, Multi-ON requires
more difficult reasoning capacities, in particular mapping the
position of an object once it has been seen. The following

capacities are necessary to ensure optimal performance: (i)
mapping the object, i.e. storing it in a suitable latent memory
representation; (ii) retrieving this location on request and
using it for navigation and planning, including deciding when
to retrieve this information, i.e. solving a correspondence
problem between sub-goals and memory representation.

The agent deals with sequences of objects that are ran-
domly placed in the environment. At each time step, it only
knows the class of the next target, which is updated when
reached. The episode lasts until either the agent has found
all objects in the correct order or the time limit is reached.

A. SOTA agents in Multi-ON

Our contribution is independent of the actual implementation
choices in agents solving the Multi-ON task as we rather
target an improvement of the learning objective. We therefore
explored several neural baselines with different architectures,
as selected in [12]. The considered agents share a common
base shown in Figure 2, which extracts information from the
current RGB-D observation of the robot with a convolutional
neural network (CNN) fo, and computes embeddings of
the target object class and the previous action taken by
the agent. Differences between the considered baselines is
in their representation of the environment. The simplest
recurrent baseline NoMap does not construct a map of its
environment. OracleMap and OracleEgoMap baselines do
not build a global map, but rather have access to oracle
global maps of the environment containing channels for
occupancy information and location of goal objects. Finally,
ProjNeuralMap builds a map of the environment in real time,
associating feature vectors from fo with discrete cells in
the spatial 2D representation using projective geometry. In
variants that keep a global map, i.e. all except NoMap, it is
first transformed into an egocentric representation centered
around the agent’s position (explained further below). A
vector representation of the map is then extracted using
another CNN fm. Such operation can be considered as
a global read of the map. The vector representations are
concatenated and fed to a GRU [27] unit that integrates
temporal information, and whose output serves as input
to an actor and a critic heads, that respectively output a
distribution over the set of actions to take and an estimation
of the value of the state the agent is currently in. All agents
are trained with the same RL algorithm (and same training
hyper-parameter values) detailed in subsection III-C, as well
as the actor-critic formulation.

We present here in more details the considered variants
which have been explored in [12], but which have been
introduced in prior work (numbers ➀➁➂➃ correspond to
choices in Figure 2):

NoMap ➀ — is a recurrent GRU baseline that does not
explicitly build nor read a spatial map. The only memory
available for storing mapping information is the flat vectorial
hidden state of the GRU [27], a variant of a recurrent
neural network. While the agent could in principle still learn
(through RL) to use this vectorial memory like a spatial map,
this is in no way enforced through any design choice.



ProjNeuralMap ➀➁ [9], [8] — is a neural network
structured with spatial information and projective geometry.
Or, stated in different terms, in this work the map is not
pre-computed by a handcrafted and engineered function (e.g.
with estimated occupancy) and fed to an agent, as done in
classical robotics; rather, the map is an internal activation
of a neural network layer without trainable parameters.
As such the content of the map is not predefined and
interpretable through a handcrafted definition, the content
is trained through machine learning, in our case RL. This
layer is a map in the sense that (i) it is spatially organized
and corresponds to an allocentric birds-eye representation,
which is shifted and rotated with each agent motion through
estimated odometry; (ii) using calibrated cameras, pixels are
mapped to corresponding points on the map. However, the
actual values stored at each position are determined through
training and can, according to the learning signal, correspond
to a latent representation of anything ranging from occupancy
to more semantic information like object positions.

More specifically, ProjNeuralMap maintains a global al-
locentric map of the environment Mt ∈ RH×W×n com-
posed of n-channel vector representations, n being an hyper-
parameter, at each position within the full H×W environ-
ment. Similar to Bayesian occupancy grids (BOG), which
have been used in mobile robotics for many years [36],[37],
the map is updated in the two-step process already mentioned
above: (1) resampling taking into account estimated agent
motion, and (2) integration of the representation of the
current observation produced by a CNN fo.

Writing to the map — Given the current RGB observation
ot ∈ Rh×w×3, fo extracts an n-channel feature map o′t,
which is then projected onto the 2D ground plane following
the procedure in MapNet [9] to obtain an egocentric map
of the agent’s spatial neighbourhood mt ∈ Rh′×w′×n. The
ground projection module assigns a discrete location on the
ground plane to each element within o′t conditioned on the
input depth map dt ∈ Rh×w and known camera intrinsics.
Registration of the observation mt to the global map is based
on the assumption that the agent has access to odometry, as
in [12]. The update to Mt is performed through an element-
wise max-pooling between mt and Mt−1.

Reading the map — The global map is first cropped
around the agent and oriented towards its current heading
to form an egocentric map of its neighbourhood at time t,
which is then fed to fm producing a context feature vector.
The latter is then concatenated to the rest of the input,
i.e. representations of the current observation, target object
and previous action, producing the input to the recurrent
memory (GRU) unit. The full model is trained end-to-
end with Reinforcement Learning (RL), including networks
involved in map writing and reading operations.

OracleMap ➀➂ — has access to a ground-truth grid map
of the environment with 2 channels. The first channel is
dedicated to occupancy information with a binary value per
cell indicating the presence of free space or an obstacle. The
second channel encodes the presence of objects and their
classes with thus 9 possible values per cell, i.e. 1 to 8 for

TABLE I
SUMMARY OF ENV. REPRESENTATION IN SOTA BASELINE AGENTS.

Agent GRU
state

Map Map
update

Map
reading

Full
visibility

Oracle
occupancy

Oracle
goals

Neural
features

NoMap ✓ − − − − − − −
OracleMap ✓ ✓ − ✓ ✓ ✓ ✓ −

OracleEgoMap ✓ ✓ − ✓ − − ✓ −
ProjNeuralMap ✓ ✓ ✓ ✓ − − − ✓

RGBD 
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Oracle Map

Target object 
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Ego Map

CNN
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Linear Linear
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Linear
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3 Mask

4 Mask unobserved objects
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Map

Ego Map

CNN Linear2

Inverse projection

Embedding

Embedding

Linear
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Fig. 2. To study the impact of our auxiliary losses on different agents [12],
we explore several input and inductive biases. All variants share basic
observations ➀ (RGB-D image, target class, previous action). Variants also
use a map ➁ produced with inverse projective mapping. Oracle variants
receive ground truth maps ➂, where in one further variant unseen objects
are removed ➃. These architectures have been augmented with classification
heads implementing the proposed auxiliary tasks (green rectangle).

one of the 8 object classes, or 0 for no object. Each channel
information is passed through a learned embedding layer to
output a m-dim vector, m being an hyperparameter, as it
is common practice to represent categorical data fed to a
neural network. This leads to a map with 2 × m channels.
The map is cropped and centered around the agent to produce
an egocentric map as input to the model.

OracleEgoMap ➀➂➃ — gets the same egocentric map
as OracleMap with only object channels, and revealed in
regions that have already been within its field of view during
the episode. This variant corresponds to an agent capable
of perfect mapping — no information gets lost, but only
observed information is used.

Table I summarizes the environment representation strate-
gies used by the different baselines.

B. Learning to map objects with auxiliary tasks

We introduce auxiliary tasks, additional to the classical
RL objectives, and formulated as classification problems,
which require the agent to predict information on object
appearances, which were in its observation history in the
current episode. To this end, the base model is augmented
with three classification heads (Figure 2) taking as input
the contextual representation produced by the GRU unit.
It is important to note that these additional classifiers are
only used at training time to encourage the learning of
spatial reasoning. At inference time, i.e. when deploying
the agent on new episodes and/or environments, predictions
about already seen targets, their relative direction are distance
are not considered. Only the output of the actor is taken into
account to select actions to execute.

Direction — the agent predicts the relative direction of



the target object, only if it has been within its field of view
in the observation history of the episode (Figure 1 left). The
ground-truth direction towards the goal is computed as,

ϕt = ∢(ot, e) = − atan2(ot,x − ex,ot,y − ey) (1)

where e = [ex ey] (“ego”) are the coordinates of the agent on
the grid and o = [ot,x ot,y] are the coordinates of the center
of the target object at time t. As the ground-truth grid is
egocentric, the position of the agent is fixed, i.e. at the center
of the grid, while the target object gets different coordinates
with time. The angles are kept in the interval [0, 2π] and then
discretized into K bins, giving the angle class. The ground-
truth one-hot vector is denoted ϕ∗

t . At time instant t, the
probability distribution over classes ϕ̂t is predicted from the
GRU hidden state ht through an MLP as p(ϕ̂t) = fϕ(ht; θϕ)
with parameters θϕ.

Distance — The second task requires the prediction of
the Euclidean distance in the egocentric map between the
center box, i.e. position of the agent, and the mean of the
grid boxes containing the target object (Figure 1 right) that
was observed during the episode, dt = ||ot − e||2. Again,
distances are discretized into L bins, with d∗t as ground-
truth one-hot vector, and at time instant t, the probability
distribution over classes d̂t is predicted from the hidden state
ht through an MLP as p(d̂t) = fd(ht; θd) with parameters
θd.

Observed target — This third loss favors learning
whether the agent has previously encountered the target
object. The model is required to predict the binary value 1obs

t ,
defined as 1 if the target object at time t has been within
the agent’s field of view at least once in the episode, and
0 otherwise. The model predicts the probability distribution
over classes ˆobst given the hidden GRU state ht through an
MLP as p( ˆobst) = fobs(ht; θobs) with parameters θobs.

C. Training agents with Deep RL

Following [12], all agents are trained with Proximal Policy
Optimization (PPO) [38] and a reward composed of three
terms,

Rt = 1reached
t ·Rgoal +Rcloser +Rtime-penalty (2)

where 1reached
t is the indicator function whose value is 1 if the

found action was called at time t while being close enough
to the target, and 0 otherwise. Rcloser is a reward shaping
term equal to the decrease in geodesic distance to the next
goal compared to previous timestep. Finally, Rtime-penalty is a
negative slack reward to force the agent to take short paths.

PPO alternates between sampling and optimization phases.
At sampling time k, a set Uk of trajectories τ with length T
are collected using the latest policy πθ where θ denotes the
set of weights of the policy neural network. Note that T is
smaller than the length of a full episode. The base PPO loss
is then,

LPPO =
1

|Uk|T
∑
τ∈Uk

T−1∑
t=0

[
min

(
rt(θ)Ât, C(rt(θ), ϵ)Ât

)]
(3)

where C(rt(θ), ϵ) = clip (rt(θ), 1− ϵ, 1 + ϵ),
Ât is an estimate of the advantage function
Aπθ (st, at) = Qπθ (st, at) − V πθ (st) at time t with
Qπθ (st, at) = Eat′∼πθ

[∑T
t′=t γ

t′Rt′ | St = st, At = at

]
,

V πθ (st) = Eat′∼πθ

[∑T
t′=t γ

t′Rt′ | St = st

]
, and

rt(θ) = πθ(at|st)
πθold (at|st) is the probability ratio between

the updated and old versions of the policy. γ is referred
to as the discount factor, st and at respectively denote the
state and action at time t within the trajectory. We did not
make the dependency of states and actions on τ explicit in
the notation.

We provide more details here regarding the actor and critic
heads in the base architecture shared by all the considered
agents. These two modules respectively predict a distribution
πθ(at | st) over actions at conditioned on the current
state st and the state-value function V πθ (st), i.e. expected
cumulative reward starting in st and following policy πθ.
Combining an actor and a critic is a common approach in
RL [39].

D. Modification of the training objective with auxiliary tasks

We now detail our contribution, i.e. additional terms to the
base PPO loss in order to encourage spatial reasoning in
trained agents.

Direction, distance and observed target predictions are su-
pervised with cross-entropy losses from ground truth values
ϕ∗
t , d∗t and 1obs

t , respectively, as

Lϕ =
1

|Uk|T
∑
τ∈Uk

T−1∑
t=0

[
−1obs

t

K∑
c=1

ϕ∗
t,c log p(ϕ̂t,c)

]
(4)

Ld =
1

|Uk|T
∑
τ∈Uk

T−1∑
t=0

[
−1obs

t

L∑
c=1

d∗t,c log p(d̂t,c)

]
(5)

Lobs =
1

|Uk|T
∑
τ∈Uk

T−1∑
t=0

−(1obs
t log p( ˆobst)+

(1− 1obs
t ) log(1− p( ˆobst))) (6)

where 1obs
t is the binary indicator function specifying

whether the current target object has already been seen in
the current episode (1obs

t =1), or not (1obs
t =0).

The auxiliary losses Lϕ, Ld and Lobs are added as follows,

Ltot = LPPO + λϕLϕ + λdLd + λobsLobs (7)

where λϕ, λd and λobs weight the relative importance of
auxiliary losses.

IV. EXPERIMENTAL RESULTS

We focus on the 3-ON version of the Multi-ON task, where
the agent deals with sequences of 3 objects. The time
limit is fixed to 2500 environment steps, and there are 8
object classes. The agent receives a (256×256×4) RGB-D
observation and the one-in-K encoded class of the current
target object within the sequence. The discrete action space
is composed of four actions: move forward 0.25m, turn left
30◦, turn right 30◦, and found, which signals that the agent



considers the current target object to be reached. As the
aim of the task is to focus on evaluating the importance of
mapping, a perfect localization of the agent was assumed as
in the protocol proposed in [12].

Dataset and metrics — we used the standard train/val/test
split over scenes from the Matterport [40] dataset, ensuring
no scene overlap between splits. There are 61 training
scenes, 11 validation scenes, and 18 test scenes. The train
split consists of 50, 000 episodes per scene, while there are
12, 500 episodes per scene in the val and test splits. Reported
results on the val and test sets (Tables II and III) were
computed on a subset of 1, 000 randomly sampled episodes.
Fig. 3 shows an example of episode (from the Mini-val set
of the CVPR 2021 Multi-On Challenge) with RGB-D inputs.

We consider standard metrics of the field as given in [12]:

• Success: percentage of successful episodes (all three
objects reached in the right order in the time limit).

• Progress: percentage of objects successfully found in
the right order in an episode.

• SPL: Success weighted by Path Length. This extends
the original SPL metrics from [21] to the sequential
multi-object case.

• PPL: Progress weighted By Path Length.

Note that for an object to be considered found, the agent must
take the found action while being within 1.5m of the current
goal. The episode ends immediately if the agent calls found
in an incorrect location. For more details, we refer to [12].

Implementation details — training and evaluation hyper-
parameters, as well as architecture details have been taken
from [12]. All reported quantitative results are obtained after
4 training runs (6 runs were computed for ProjNeuralMap
with the three auxiliary losses for job scheduling reasons) for
each model, during 70M steps (increased from 40M in [12]).
This amount of training time is standard when considering
previous work targeting visual navigation with learning-
based agents trained with RL. Ground-truth direction and
distance measures are respectively split into K = 12 and
L = 36 classes. Indeed, angle bins span 30◦, and distance
bins span a unit distance on the egocentric map, that is
50 × 50 (the maximum distance between center and a grid
corner is thus 35). The map used to compute ground-truth
labels for auxiliary losses is the one fed to the OracleEgoMap
agent. Training weights λϕ, λd and λobs are all fixed to 0.25.
Each classification head is a single linear layer followed by
a softmax activation function.

Do the auxiliary tasks improve the downstream objec-
tive? — in Table II, we study the impact of the different
auxiliary tasks on the 3-ON benchmark when added to
the training objective of ProjNeuralMap, and their comple-
mentarity. Direction prediction significantly improves per-
formance, adding distance prediction further increases all
metrics by a large margin, outperforming the performance
of (incomparable) OracleEgoMap. Both losses have thus
a strong impact and are complementary, confirming the
assumption that sense of direction and judgement of relative
distance are two key skills for spatially navigating agents.

TABLE II
IMPACT OF DIFFERENT AUXILIARY TASKS (VALIDATION

PERFORMANCE). THE † COLUMN SPECIFIES COMPARABLE AGENTS.

Agent Dir. Dist. Obs. Success Progress SPL PPL †
OracleMap∗ − − − 44.9± 1.7 55.7± 2.4 35.4± 1.4 43.7± 2.2 −

OracleEgoMap∗ − − − 27.5± 2.7 42.8± 2.8 21.3± 2.5 32.7± 2.9 −

ProjNeuralMap

− − − 21.8± 1.7 38.6± 1.3 15.4± 0.7 27.0± 0.7 ✓
− − ✓ 22.4± 2.9 40.2± 2.2 16.2± 2.7 28.9± 2.3 ✓
− ✓ − 27.3± 3.3 43.0± 3.6 19.2± 2.1 30.6± 2.4 ✓
✓ − − 40.2± 4.2 55.9± 3.5 26.1± 2.2 36.4± 2.0 ✓
✓ ✓ − 44.3± 6.6 58.9± 4.9 29.0± 3.7 39.0± 2.2 ✓
✓ ✓ ✓ 49.2 ± 7.1 62.8 ± 5.2 32.0 ± 2.7 41.1 ± 1.1 ✓

TABLE III
CONSISTENCY OVER MULTIPLE MODELS (TEST SET). THE † COLUMN

SPECIFIES COMPARABLE AGENTS.

Agent Aux. Sup. Success Progress SPL PPL †
OracleMap∗ − 50.4± 3.5 60.5± 3.1 40.7± 2.2 48.8± 1.9 −

OracleEgoMap∗ − 32.8± 5.2 47.7± 5.2 26.1± 4.5 37.6± 4.7 −
✓ 44.0± 7.1 55.1± 7.0 35.0± 5.2 43.8± 5.0 −

ProjNeuralMap − 25.9± 1.1 43.4± 1.0 18.3± 0.6 30.9± 0.7 ✓
✓ 57.7 ± 3.7 70.2 ± 2.7 37.5 ± 2.0 45.9 ± 1.9 ✓

NoMap − 16.7± 3.6 33.7± 3.3 13.1± 2.4 26.0± 1.7 ✓
✓ 43.0± 4.7 58.2± 4.0 29.5± 1.8 39.9± 1.3 ✓

The third loss about observed target objects brings a sup-
plementary non-negligible boost in performance, showcasing
the effectiveness of explicitly learning to remember, and its
complementarity with distance and direction prediction.

Table III presents results on the test set, confirming
the significant impact on each of the considered metrics.
ProjNeuralMap with auxiliary losses matches the perfor-
mance of (incomparable) OracleMap on Progress and Suc-
cess, again outperforming OracleEgoMap when considering
all metrics. OracleMap has higher PPL and SPL, but has
also access to very strong privileged information.

Interestingly, OracleEgoMap also benefits from the use of
the auxiliary tasks at training time. As such agent already
has access to priviledged information about the position of
seen objects, this might suggest the auxiliary losses improve
its spatial reasoning capabilities.

Can an unstructured recurrent agent learn to map?
— we explore whether an agent without spatial inductive
bias, i.e. the assumption that the representation of the en-
vironment must be a 2D map, can be trained to learn a
mapping strategy, to encode spatial properties of the en-
vironment into its unstructured hidden representation. As
shown in Table III, NoMap indeed strongly benefits from
the auxiliary supervision (Success for instance jumping from
16.7% to 43.0%). Improvement is significant, outperforming
ProjNeuralMap trained without auxiliary supervision, and
closing the gap with OracleEgoMap. The quality of extra
supervision can thus help to guide the learnt representation,
mitigating the need for incorporating inductive biases into
neural networks. When both are trained with our auxiliary
losses, ProjNeuralMap still outperforms NoMap, indicating
that spatial inductive bias still provides an edge.

Comparison with the state-of-the-art — our method
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Fig. 3. Example agent trajectory (sample from competition Mini-val set). The agent properly explores the environment to find the pink object. It then
successfully backtracks to reach the white cylinder, and finally goes to the yellow one after another exploration phase (see text for a detailed description). In
columns 3 and 6, the relative direction and distance predictions are combined into a visualised blue point on top of the oracle egocentric map (Ground-truth
object positions). The red point corresponds to the position of the agent. Note that these predictions are not used by the agent at inference time, and are
only shown for visualisation purposes. The top down view and oracle egocentric map are also provided for visualisation only.

TABLE IV
CVPR 2021 Multi-ON CHALLENGE LEADERBOARD. Test Challenge ARE

THE OFFICIAL CHALLENGE RESULTS. Test Standard CONTAINS PRE- AND

POST-CHALLENGE RESULTS. RANKING IS DONE WITH PPL. THE ∗

SYMBOL DENOTES CHALLENGE BASELINES.

Agent/Method — Test Challenge — — Test Standard —
Success Progress SPL PPL Success Progress SPL PPL

Ours (Aux. losses) 55 67 35 44 57 70 36 45
SGoLAM 52 64 32 38 62 71 34 39

VIMP 41 57 26 36 43 57 27 36
ProjNeuralMap∗ − − − − 12 29 6 16

NoMap∗ − − − − 5 19 3 13

corresponds to the winning entry of the CVPR 2021 Multi-On
Challenge organized with the Embodied AI Workshop, shown
in Table IV. Test-standard is composed of 500 episodes
and Test-challenge of 1000 episodes. In the context of the
Challenge, the ProjNeuralMap agent was trained for 80M
steps with the auxiliary objectives, and then finetuned for
20M more steps with only the vanilla RL objective. The
official challenge ranking is done with PPL, which evaluates
correct mapping (quicker and more direct finding of objects),
while mapping does not necessarily have an impact on
success rate, which can be obtained by pure exploration.

Visualization — Figure 3 illustrates an example trajectory
from the agent trained with the auxiliary supervision in the
context of the CVPR 2021 Multi-On Challenge. The agent
starts the episode (Step 1) seeing the white object, which
is not the first target to reach. It thus starts exploring the

environment (Step 7), until seeing the pink target object (Step
13). Its prediction of the goal distance immediately improves,
showing it is able to recognize the object within the RGB-
D input. The agent then reaches the target (Step 27). The
new target is now the white object (that was seen in Step 1).
While it is still not within its current field of view, the agent
can localize it quite precisely (Step 32), and go towards the
goal (Step 46) to call the found action (Step 57). The agent
must then explore again to find the last object (Step 102).
When the yellow cylinder is seen, the agent can estimate its
relative position (Step 191) before reaching it (Step 212) and
ending the episode.

Information about observed targets, their relative dis-
tance and direction — Is such knowledge extracted by
ProjNeuralMap without auxiliary supervision ? We perform
a probing experiment by training three linear classifiers to
predict this information from the contextual representation
from the GRU unit, both for ProjNeuralMap agent initially
trained with and without auxiliary losses. We generate rollout
trajectories on 1000 training and validation episodes. It is
important to note that, as both agents behave differently,
linear probes are not trained and evaluated on the same data.
Fig. 4 shows that linear probes trained on representations
from our method perform better, and more consistently,
suggesting the presence of more related spatial information.

Last minute information — We discovered a bug in the
official Multi-ON code [12] which in some cases provides too
much information to the OracleEgoMap baseline. This bug
also affected the supervision of our agent (during training
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Fig. 4. Confusion matrices (validation set) of linear probes trained
on representations from both ProjNeuralMap initially optimized with and
without auxiliary supervision. Red lines indicate matrix diagonals.

only, the bug maintains validity of agent). The differences
are small, do not change conclusions or method orders.
New results for the values in Table III (test set) would be
52.3, 65.9, 36.4, 45.7.

V. CONCLUSION

In this work, we propose to guide the learning of mapping
and spatial reasoning capabilities by augmenting vanilla
RL training objectives with auxiliary tasks. We show that
learning to predict the relative direction and distance of
already seen target objects, as well as to keep track of those
observed objects, improves significantly the performance on
various metrics and that these gains are consistent over agents
with or without spatial inductive bias. The proposed training
strategy applied to a learning-based agent from the literature
allowed us to win the CVPR 2021 Multi-ON challenge.
Future work will investigate additional structure, for instance
predicting multiple objects.
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