
HAL Id: hal-03940473
https://hal.science/hal-03940473v1

Submitted on 22 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Capacitated Vehicle Routing Problem Under Deadlines:
An Application to Flooding Crisis

Florent Dubois, Paul Renaud-Goud, Patricia Stolf

To cite this version:
Florent Dubois, Paul Renaud-Goud, Patricia Stolf. Capacitated Vehicle Routing Problem Under
Deadlines: An Application to Flooding Crisis. IEEE Access, 2022, 10, pp.45629-45642. �10.1109/AC-
CESS.2022.3170446�. �hal-03940473�

https://hal.science/hal-03940473v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3170446, IEEE Access

Digital Object Identifier Not attributed

Capacitated Vehicle Routing Problem
under Deadlines : An application to
flooding crisis
FLORENT DUBOIS1, PAUL RENAUD-GOUD2, AND PATRICIA STOLF.3
1IRIT lab, University of Toulouse, Route de Narbonne, 31330 Toulouse, France (e-mail: florent.dubois@irit.fr)
2IRIT lab, University of Toulouse, Route de Narbonne, 31330 Toulouse, France (e-mail: paul.renaud.goud@irit.fr)
3IRIT lab, University of Toulouse, Route de Narbonne, 31330 Toulouse, France (e-mail: patricia.stolf@irit.fr)

ABSTRACT Facing the issue of fast flood and its important damages both on victims and infrastructures,
involved authorities are interested in the study of the ways to answer at best this kind of crisis both on long-
term and emergency phase. The victim relief operations can be optimized to help rescue teams improve
their management of the crisis situation. It is translated on the field by the development of a decision
support tool for victim relief operations. The problem addressed is a Vehicle Routing Problem (VRP) for
the rescue vehicles. This article focuses on searching efficient algorithms both in terms of execution time
and intervention promptness to solve these VRPs. Data from past crisis is used in this paper to evaluate the
performances of the algorithms on problems as close from field experience as possible. Since rescue teams
need to divide their forces on the different impacted sectors during a flooding, algorithms to dispatch the
resources (rescue team’s vehicles) between areas of intervention are studied.

I. INTRODUCTION
In the current context of climate change, disaster such as
flooding are more likely to happen as stated in [12] and [33]
for example. A response to these events is needed because
it results in important damages to inhabitants and infrastruc-
tures. [34] offers a table of the impact of flooding in France
from 1983 to 2010 in terms of deaths and estimated damages.
Over this time period, a dozen of crises are referenced with at
least 252 human casualties and more than 8,3 billions euros
estimated damages each. As a part of the response, the crisis
management field has been developed in the last years. This
includes victim relief which is a life saving challenge. In
order to tackle this issue, we work directly with the SDIS
31 (Service Départemental d’Incendie et de Secours : French
Firefighters that also intervene in case of floods) to help
them fill the gap. In this article we consider the short-term
response’s main problem: Victim relief. In order to give
the best response, the routes for rescue vehicles that will
intervene need to be optimized. This category of problem is
called Vehicle Routing Problems (VRPs).

Our problem gravitates around VRP, and gathers elements
from various flavors of VRPs

• Capacitated Vehicle Routing Problem (CVRP): Capac-
ity limitations of the vehicles and quantities to be taken
at demand points are considered.

• Split Delivery VRP: Sub-category of the CVRP where
the demand points can be split between several vehicles
as described by [17]. In our case Split Delivery is
mandatory because some demands cannot be served by
a single vehicle due to the number of victims.

• Heterogeneous VRP: This VRP allows to have vehicles
of different capacities as presented in [21]. This is the
case in our model where the rescue vehicles are not of
the same capacities.

• Vehicle Routing Problem with Time Windows
(VRPTW): In this category of VRP the demands need
to be served after the beginning of the time window and
before its end as explained in [20]. The end of the time
window is called the deadline.

Assembling all these types of VRPs and to insist on the
major aspects and difficulties of the problem, we call our
problem Capacitated Vehicle Routing Problem under Dead-
lines (CVRPD). The decision was made to use the word
Deadlines instead of the classical Time Windows terminol-
ogy to distinguish this problem dealing with human life
from commercial VRPs where Time Window violation does
not have the same consequences. This term also places the
problem more clearly in the crisis management context and
more precisely in the victim relief area.

Flood crises impact the territory and victims at a different

1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3170446, IEEE Access

level often correlated with the water level. This means for the
rescue teams different types of interventions that cannot be
served using the same resources. These categories determine
the types of demands that are in play but also the types of
vehicles (and their associated average speed) that may be
used for this kind of intervention.

VRP are known to be NP, it is to be determined whether
this problem is NP-complete. In this case computation time
of the solution would become a real challenge – at least
for large instances. In fact rescue teams work on short-
term deadlines and cannot always be reached between two
passages through rescue center. Furthermore, we want to op-
timize vehicles routes over several interventions. That is why
they try to anticipate future events using forecast services.
Computation time must then be negligible relatively to the
time of completion of a tour in order to be consistent with a
real-time decision support tool. However NP-completeness
in the strong sense problem’s are expected to become in-
tractable when the problem size grows even for moderately
small instances. Furthermore we have observed in [?] that
the Mixed Integer Program with Quadratic terms (MIQP) we
developed indeed has exponential computation time, which
explains the choice that was made to solve this problem
through heuristic algorithms.

In this paper we present the formulation of the model as a
MIQP but as stated above, an exact method is not suited to
answer the real-life problem in terms of computation time.
However this formulation allows to characterize a solution to
the problem in order to confirm the results that heuristics al-
gorithms produce and verify that the constraints of the model
are verified. We present several algorithms in this article with
the purpose of finding a solution in a short amount of time.
They are based on an insertion strategy where the routes of
vehicles are built gradually by inserting demands into it:

• Shortest Distance Insertion (SDI) algorithm: demands
are inserted into the route of the current closest vehicle
available;

• Best Flow-time Insertion (BFI) algorithm: demands are
inserted to a vehicle, based on the lowest impact on
objective;

• Best Flow-time Insertion with Order Questioning
(BFIOQ) algorithm: same principle is applied as BFI
adding a local search limited to the current route to
improve the solution at every insertion.

In this paper, these algorithms are compared to a reference
heuristic from the literature ([32]). Hopefully, the solution
developed in our work show better performances in term of
solution qualities and computation time than this baseline.
This comparison also helps to highlight the advantages of our
approach compared to other solutions from the literature to
answer the characteristics of our problem.

Comparing with existing heuristics is not sufficient though.
Data about victim relief operations is needed and its col-
lection may be difficult in this context. In fact for VRP in
general the problem of study cases is a real challenge and
a lot of studies choose to use instances from the literature

or to generate random instances. In this paper we generate
instances based on data from past crisis and use as much
real data as possible knowing that some information will be
missing if we want to replay a crisis identically, since data
logging is not a priority during the crisis. One of our study
case is the fast flood that occurred in Luchon’s Valley in
2013. Thanks to the partnership with SDIS 31, which was
in charge of the victim relief for this crisis, we were able to
retrieve the Experience Feedback (EF) from this crisis that
lists interventions of the rescue teams.

A flood can impact several areas at the same time forcing
rescue teams to plan interventions simultaneously on these
areas (we call them sectors). Using data extracted from EF,
we have developed a process to generate the sectors. A
flexible graph generator is important to randomly generate:
(i) stakes on the impacted area, (ii) connectivity between
stakes in the graph and (iii) impacted stakes that turn into
demands in a configurable way. Finally we have addressed
another of the problems encountered by rescue teams during
a crisis through resources dispatch. In fact, rescue teams need
to dispatch their resources between the impacted sectors. The
geographic constraints impose to dispatch the resources of
the rescue teams into several sectors in order to tackle the dis-
tance between demands and deal with several rescue centers.
To help improve the response to the crisis, we have developed
an algorithm in order to optimize resources dispatch through
sectors with an application to a simulated crisis containing
several sectors.

Several new contributions are presented in this article:
• Data extraction from Experience Feedback;
• A mathematical model of the problem to consider cate-

gories for the rescue vehicles;
• A heuristic Shortest Distance Insertion that mimics the

behavior of the rescue teams;
• BFI and BFIOQ algorithms that are evaluated on field

data;
• A configurable graph generator in order to evaluate

algorithms on territory adapted from real conditions;
• An experiment based on the resources dispatch between

sectors using the heuristics.
The remainder of this paper is organized as follows. In

Section II we present the literature around the studied prob-
lem. The Section III describes the problem and explains the
mathematical model. The heuristic algorithms are presented
in Section IV and the Data Analysis that seeds problem
instance generation is presented in Section V.

Experimental results are detailed in Section VI. We con-
clude in Section VII where we open the perspectives of our
work.

II. STATE OF THE ART
VRP has been studied under various forms. First it has been
tackled as a static problem as reported in [24]. In 1959
already the subject was studied in [15] to optimally dispatch
trucks of a fleet to serve customers. The VRP includes the
Pick-up and Delivery Problem (PDP) where we might have

2

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3170446, IEEE Access

to both pick-up and deliver people as in [11] that uses
heuristics and local search to optimize solution of a good
distribution and waste collection. [5] also works on carrier
trucks minimizing route costs on a flexible delivery context.
This article is an adaptation of the models from the literature
to fit the multi-days delivery period of the study. [13] fo-
cused on less-than-truckload delivery with the idea of sharing
delivery vehicles between professionals that do not fully
use vehicle capacity. This paper uses real data to validate
the optimization of truckload and shipping synchronisation.
Recently [29] studied the VRP over a period of several days
with the bi-objective of optimizing both route costs and
driver consistency. A similar bi-objective can be found in
the thesis of [7] where the objective is to minimize route
cost and maximize planning stability for a garbage collection
problematic. Most of the VRPs study commercial problems
and some of them are about same day delivery where we
search to optimize routing of vehicles to deliver the order the
same day of the command as in [28].

During the crisis, rescue teams need to deal with several
categories of demands. A difference has to be made between
interventions that need specialized vehicles, boats or even he-
licopters. Furthermore for every and each of these resources
of diverse categories, its capacity is a main constraint of the
problem. In the work of [35], capacity limitations of vehicles
are anticipated to minimize the detour for restocking (action
of a vehicle when going back to depot to refill or empty
its load) on an online model. On the contrary [10] studied
a model for Pick-up and Delivery considering various cate-
gories of goods but did not consider capacity as a constraint.
However this article concludes that exact methods are not
suited for problems of such complexity.

The studied problem is related to the split-delivery VRP.
[6] offers a review of the different problems of this VRP
variation in the literature. For instance [16] offers a heuristic
for this problem but it is only fitted to problems where each
demand is lower than the capacity of vehicles. [3] offers a
Tabu search to solve the problem but the computation time
performances of such solutions are not appropriate to the
Crisis Management Context.

The use of heuristic algorithms is then the best choice to
answer this problem because its dynamic asks for a compu-
tation time kept under the minute. Contrary to some other
VRPs, especially commercial applications, we need to keep
a focus on the computation time of our algorithms. Indeed the
degree of dynamism defined in [26] applied to our problem
demands for a computation time negligible compared to
the time scale of the completion of an operation. Even if,
the early article [19] tackled CVRP, the computation time
of the experiments it presents is not adapted to a dynamic
context. Different articles have studied heuristic solutions to
the VRPTW. In [27], a comparison is offered with differ-
ent heuristics from the literature. The comparison presents
different high quality solutions. For instance [9] develops
a heuristic based on a genetic approach. In this approach,
two populations of solutions evolve simultaneously in order

to improve solutions. The comparison also displays two-
stage heuristics such as [8] and [22]. This approach generates
routes on two time horizons. In the short term phase of the
problem, a first solution is used to compute route in a short
amount of time. Then a search heuristic tries to improve the
solutions on the long-term horizon. The comparison shows
computation time too important to fit the requirements of the
crisis management context (over five minutes for the same
scale of problems we want to study). These approaches use
local search to improve the initial solution. Hence, to fit the
computation time requirements induced by the context of
our problem, heuristic with a short computation time that
do not contain an improvement routine seems more likely
to produce feasible solutions in a short time.[32] presents an
insertion heuristic often used as a baseline in the literature.
It computes solutions in computation time with the same
scale we want to obtain. It also offers graph instances used
as benchmarks for many papers from the domain. However,
since these instances do not contain priorities, we will not be
able to use them for evaluation.
This insertion algorithm is a reference however it does not
consider priorities, which has to be considered in our prob-
lem. The quantity is also not considered in this heuristic.
Finally one of the major drawbacks might come from the
insertion, vehicle by vehicle, not comparing one vehicle with
another. It will then be interesting to compare the results
of our heuristic to this one. [2] also worked on heuristics
but to deal with online requests. Its application manages
no capacity and routes over a day period. It is considering
a short-term period and works on a look-ahead period to
avoid to create infeasibility situation in the future. Recently
[4] offered leads for local search in order to improve the
quality of a first solution with a destroy and repair heuristic
which deletes random demands from the route and tries to
insert them somewhere else to improve the solution. [25]
also uses local search algorithm as well as local clustering
in Variable MIP Neighborhood Descent algorithm. Working
with a computation time constraint as well, [30] decides to
use heuristics to find a solution in a time consistency with a
re-optimisation approach but on a single vehicle problem.

The validation process for VRPs is elaborated either by
replaying the events using collected data or simulating it
based on a configuration the closest possible from the original
problem. [36] studies Hazard material transportation with an
application area in Greece. The model is trying to minimize
the impact of randomly generated incident. Other studies
validate their model by replaying a crisis like [31] with
Taiwan earthquake on which they solved logistic material
distribution. This article does not consider though capacity
constraints as well as [14] that studies resources management
and rescue team deployment. Another approach is presented
in [1] that generates randomly 200 nodes size network to
validate a humanitarian relief model adapted to the size of
the specific crisis. [23] used a high scale model of the 1994
earthquake in Los Angeles but with empiric probabilities on
casualty types. In this article, data from EF are used and

3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3170446, IEEE Access

instead of replaying the crisis identically, we choose to play
a large scale set of similar crisis using the configuration
obtained by data extraction. This choice is motivated both
by the lack of data to replay the crisis identically and the
objective to test the studied solution over different situations.

In relations with works from the literature, this article
offers an application of the CVRP to a crisis management
problem with data of a flash flooding event. It is built on
the requirements of emergency teams. The article gathers
specific VRP versions into one problem dealing with the
capacity, deadline, categories and dynamic aspects all at
once. This article exclusively regroups the beforehand cited
constraints and brings them into the domain of crisis man-
agement. It intends to tackle the problem of the computation
time limitation in the context of emergency relief in order to
meet rescue teams expectations.

III. PROBLEM DESCRIPTION AND MATHEMATICAL
MODEL
A. PROBLEM DESCRIPTION
In this section, we present the CVRPD adapted to handle
several categories with shared resources.

We apply the CVRPD to people rescue in flash flooding
emergency phase, optimizing routes for rescue vehicles. We
characterize our problem as a directed graph G = (V, E)
where V is the vertex set V = J0, V K of size V + 1, V ∈ N,
where every vertex is a point of demand where people need
to be rescued. A person is considered as rescued when it has
been carried out to the vertex 0, which is the rescue center.
We use V⋆ as the set of all demand points without the rescue
center, and E = {(i, j) : (i, j) ∈ V2, i ̸= j} the set of
the direct edges representing existing roads that link nodes
together. Each edge is associated with a cost, reduced for our
problem to a travel time tti,j,c where c the category of vehicle
since travel speed depends on the vehicle. The category c is
an integer in the set C = J1,nbCatK. Each demand i has
a size di corresponding to the number of victims and has a
time ai for the action to be completed on the node (to rescue
victims).

In the perspective of dealing with several categories with
this model, it is necessary to introduce category variables.
There are nbCat categories that depend on the water level
or type of intervention. Depending on the category of the
demand, different types of vehicles are used and so the travel
time also variate.

First, a parameter is needed to identify the category of
a vehicle. For that purpose we define catk ∈ C, for all
k ∈ M, which is the category of vehicle k. We also
define the category of every demand i with ci ∈ C where
i ∈ V⋆. This category might be subject to evolve over time
depending on the water level for example. Since resources are
specific to the type of intervention, categories are considered
independent for this article. The categories are an input of the
model given by the rescue teams. In fact they can depend on
other factors than the water level like the medical emergency
of the situation for example. A really emergency demand

might need an intervention by chopper for instance (category
4). Furthermore the fifth category is dedicated to special
interventions such as cattle evacuations for instance.

In the CVRPD we are looking for a global optimal solution
of a VRP problem for the current state of the graph. Due to
the capacity limitations of the rescue vehicles and according
to the SDIS 31 expertise, the rescue teams may not have
resources to solve the problem with only one passage by the
rescue center.

To deal with the capacity limit of the vehicles, we also
need to consider that a vehicle k ∈ M has a maximum
capacity Qk, where M is the set of available vehicles. For
the purpose of the model we also use xz

i,j,k, a binary variable
which equals 1 if and only if vehicle k visits vertex j using
edge (i, j) in tour z ∈ Z . We introduce the tours, indexed by
z ∈ Z = J1, ZK where Z is the maximum number of times
any vehicle has to go through the rescue center, we will then
solve the problem on several tours.

We study a Crisis Management case with people lives at
stake so we need to determine for the model a way to differ
the urgent nodes to be treated in priority from demands that
do not need to be treated urgently. To do so, we base our
categories of priorities on the ones of the fireman’s depart-
ment which uses the following scale: (1) Can remain on the
spot, (2) Have to be rescued within 12 hours, (3) Have to be
rescued within 6 hours, (4) Need to be rescued in emergency.
These four priority categories are used to characterize the
problem with both priority factors and deadlines. To each
node i ∈ V⋆ we then associate a deadline fi ∈ N and a
priority factor pi ∈ N.

While the hard deadlines cover the emergency aspect of the
problem through the fi’s, the objective function minimizes
the cumulative weighted time for the demands to be treated.
In fact we want to obtain a feasible solution, which translates
with rescuing victims on time, and also to reduce at the
minimum the waiting time for the victims to be rescued. We
introduce the Flow-time which is the time between reception
and treatment of a demand at node i: hz

i,k − ri for vehicle k
on tour z with hz

i,k the absolute date of arrival of vehicle k to
node i on tour z and ri the release date of demand on node i
which is the date we received the information of the demand.
With release date and deadline introduced in the model, the
comparison can be made between CVRPD we are presenting
and the Capacitated Vehicle Routing Problem with Time
Windows highly represented in the literature, however the
terminology difference seems important to insist on the emer-
gency aspect of CVRPD and to differ it from commercial
problems for example. The objective of our optimization is
to minimize the total Flow-time weighted by the priority for
every demand. The aim of the optimization problem is to
assign the demands to the vehicles and to the tours. For each
vehicle on each tour we have to decide for a circuit in the
graph going through the rescue center. For each node of each
circuit we assign a part of the demands. We consider that the
action time ai is constant on a node even if only a part of the
demands is assigned. We will consider that the first tour for

4

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3170446, IEEE Access

the solution is for z = 1 and we will set all the variables for
z = 0 to 0.

B. MATHEMATICAL MODEL
We have seen in the state of the art (section II) that none
of the existing works covers entirely the problem we deal
with in this paper. Hence we describe here fully, and without
ambiguity, the mathematical model, which embeds both the
objective function to minimize and the constraints to fulfill.
It relies on the constants and the variables that are summed
up in tables 1 and 2. Using these variables and parameters,
we establish the following objective function:

min
∑
i∈V

∑
j∈V

∑
k∈M

∑
z∈Z

(hz
i,k − ri) · pi · qzi,k (1)

subject to: ∑
k∈M

∑
z∈Z

qzi,k = di, ∀i ∈ V (2)

hz
i,k−ri−R·(1−

∑
j∈V

(xz
j,i,k)) ≤ fi, ∀i ∈ V⋆; k ∈M; z ∈ Z

(3)

∑
i∈V

xz
i,j,k −

∑
i∈V

xz
j,i,k = 0, ∀j ∈ V; k ∈M; z ∈ Z (4)

∑
i∈V

qzi,k ≤ Qk, ∀k ∈M; z ∈ Z (5)

h
ϕ(i,z)
i,k + ai + tti,j,catk −R · (1− xz

i,j,k) ≤ hz
j,k (6)

∀i ∈ V; j ∈ V; k ∈M; z ∈ Z

qzj,k/Qk ≤
∑
i∈V

xz
i,j,k, ∀j ∈ V⋆; k ∈M; z ∈ Z (7)

∑
j∈V⋆

xz
0,j,k ≤ 1, ∀k ∈M; z ∈ Z (8)

∑
i∈V⋆

xz−1
0,i,k ≥

∑
i∈V⋆

xz
0,i,k ,∀z ∈ Z⋆; k ∈M (9)

∑
i∈V

(xz
i,j,k)× cj = catk ,∀j ∈ V⋆; k ∈M; z ∈ Z (10)

Where

• ϕ(i, z) =

{
z − 1 if i = 0
z otherwise

• R is an integer of big size compared to all other vari-
ables.

The objective function (1) is the sum of all the Flow-time
for every intervention of vehicles, weighted by the priority
factor of the demand and the number of persons taken at this
node.

pi Priority: A constant coefficient used in objective function for demand i
fi Deadline: latest time for any vehicle to pick the last demand at node i
ri Release time: time when the demand i appears
di Demand: The number of victims to rescue at node i
Qk Maximum capacity of vehicle k
catk Category of vehicle k
ci Category for node i

tti,j,c Travel time from node i to node j for category c
ai Action time for a demand at node i
R High size constant
M Set of available vehicles
V Set of vertices in the graph
C Set of integers for the categories
V⋆ Set of demand points in the graph (without rescue center)

TABLE 1: Inputs

xz
i,j,k Binary variable equal to 1 if vehicle k use the edge

from i to j during tour z
hz
i,k Absolute arrival time of vehicle k at node i on tour z

qzi,k Victims taken by vehicle k at node i on tour z

TABLE 2: Variables

Constraint (2) makes sure that solutions do treat every
demand fully.

The constraint (3) is the deadline constraint that states
that a solution cannot contain any completion time over the
deadline associated with the demand. The third term is used
to ensure the constraints only apply when node i is visited by
vehicle k on tour z, in other cases the big factor R makes the
inequality true for all reachable values of the other terms.

The inequalities (6) are necessary in order to ensure that
Flow-times respect the timing imposed by travel times and
action times compared to the previous interventions of a
vehicle. Thereby the time of arrival at a node is equal to
the time of arrival to the previous node to which we add the
action time on the previous node and the travel time between
these two nodes. Constraint (4) ensures that a vehicle that
arrives to a vertex also leaves it and (5) sets the maximum
capacity of vehicles.

The quantity and binary variables qzi,k and xz
i,j,k are linked

thanks to (7). (8) defines the tours as the route between two
transitions through the rescue center and (9) makes sure there
are no empty tours in the planning because it ensures that a
vehicle that leaves the rescue center at tour z is also leaving
the rescue center at tour z − 1.

The constraint (10) has been added to the model to order
the dependencies of the categories. This ensures that a vehicle
can only be affected to a demand of the same category.
This constraint guarantees that the categories are treated
independently and could be treated as parallel problems.
In practice considering the complexity of the problem, we
will not be able to solve it using exact methods and heuristic
algorithms are a better fit to solve the problem in real-time.

C. COMPLEXITY
The CVRPD is NP-complete in the strong sense.

Proof. We prove CVRPD is NP-complete by using a reduc-

5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3170446, IEEE Access

tion from 3-PARTITION problem, known to be NP-complete
in the strong sense [18]. A 3-PARTITION problem consists in
deciding whether a set Γ = {b1, ..., bN} of N = 3n positive
integers can be partitioned into n triplets Γ1, ...,Γn (i.e.
such that for any k ∈ {1, . . . , n}, Γk = {gk,1, gk,2, gk,3})
where

∑3
i=1 gk,i = B. We will denote σ : {1, . . . , n} ×

{1, . . . , 3} → {1, . . . , N} the permutation such that for all
(k, i) ∈ {1, . . . , n} × {1, . . . , 3}, gk,i = bσ(k,i).

First, CVRPD is NP since one can check in a polynomial
time whether a given route is feasible or not. From any 3-
PARTITION problem instance we call I1, we build up an
instance of CVRPD called I2 as follows. In I2, we dispose
of n vehicles, i.e. |M| = n, and the maximum capacity of
the vehicles is set to 3. We consider a single category for this
instance. We also consider a set V⋆ = {1, . . . , N} of N de-
mands, whose action time is set to bi: for all i ∈ V⋆, ai = bi.
Each node carries a single victim: ∀i ∈ V⋆, di = 1. All the
demands treated are from the same category numbered 1. The
travel time for every edge of the graph tti,j,1 for all i, j ∈ V⋆

is set to the same value of 2 · B. Finally the deadlines for
every node are defined as follows ∀i ∈ V⋆, fi = 9 · B. All
the release dates are null: ∀i ∈ V⋆, ri = 0.
(⇒) First we show that if there exists a solution to I1 then
there exists a solution to I2. We assume that I1 has a solution,
i.e. there exist n triplets Γk = {gk,1, gk,2, gk,3}, such that
for any k ∈ {1, ..., n},

∑3
i=1 gk,i = B, and we build a

solution to I2. For every vehicle k ∈ {1, . . . , n} we use the
sets Γk to provide a plan of the demands to be served. We
have that gk,i = bσ(k,i) and bj = aj (by construction) for
all j ∈ {1, . . . , N}, hence the node σ(k, 1) (resp. σ(k, 2),
σ(k, 3)) needs an action time of gk,1 (resp. gk,2, gk,3). We
decide that vehicle k goes through node σ(k, 1) then σ(k, 2)
then σ(k, 3), dealing with the full demands. We remark that
the capacity is not exceeded. Since all travel times are equal
to 2 · B by construction, the arrival date back at the rescue
center for vehicle k is therefore: 2 ·B+ gk,1+2 ·B+ gk,2+
2 · B + gk,3 + 2 · B = 4 · 2 · B +

∑3
i=1 gk,i = 9 · B. All

demands are satisfied and the deadline for every demand is
fulfilled: we have exhibited a solution to I2. In other terms,
a solution of CVRPD is given by taking q1i,k = 1 for all
i ∈ V⋆ and k ∈ {1, . . . , n}. We also need x1

0,σ(k,1),k = 1,
x1
σ(k,1),σ(k,2),k = 1, x1

σ(k,2),σ(k,3),k = 0 and x1
σ(k,3),0,k = 1.

For all k ∈ {1, ..., n}, xz
i,j,k = 0 otherwise. The variable hz

i,k

as to be affected according to the order of the plan determined
by the xz

i,j,k.
(⇐) Now we show that if there exists a solution to I2 then
there exists a solution to I1. We assume that I2 has a solution.
A vehicle can plan intervention to at most 3 nodes due to
deadlines set to 9 · B and the sum of travel times for 3
interventions equals 4 × (2 · B) = 8 · B. For the same
reasons, the problem needs to be treated in only one tour.
Otherwise for 3 interventions in 2 tours, the sum of travel
times would equal 10 ·B (6 ·B for the first tour and 4 ·B for
the second one) and it would imply deadline violation. Since
every node has to be rescued, and the total number of nodes

is equal to 3 · n, a vehicle routes exactly 3 interventions. We
define a permutation σ such that for all k ∈ {1, . . . , n} as
an intervention on nodes σ(k, j) for j ∈ {1, . . . , 3}. With
the deadlines ∀i ∈ V⋆fi = 9 · B, by removing the travel
times we have ∀k ∈ {1, . . . , n},

∑3
j=1 aσ(k,j) ≤ B. We

have, for all i ∈ V⋆bi = ai consequently
∑3

j=1 bσ(k,j) ≤ B.
In addition, knowing that

∑N
i=1 bi = n · B we have that

∀k ∈ {1, . . . , n},
∑3

i=1 bσ(k,i) = B. Therefore, I2 has a
solution if and only if I1 has a solution.

Altogether, CVRPD is NP-complete in the strong sense.

IV. HEURISTICS
In this section we will present the heuristics that we devel-
oped. First we introduce SDI heuristics programmed as a
reproduction of current rescue team behavior on the field.
Secondly BFI heuristic and its improved version are ex-
plained.

A. SHORTEST DISTANCE INSERTION ALGORITHM
This algorithm is based on the first fit algorithm. First fit is
a resources allocation scheme. It is used in the bin packing
problem where one must pack different size’s items in bins
also of different size. The list of items is sorted (in size order)
and then items are allocated, in order, to the first bin in which
they fit without consideration of the optimal choice. In our
case, items are the nodes whose size is the number of victims
and bins are the vehicles with their capacity. The list of nodes
(demands) with Shortest Distance Insertion (SDI) is sorted
first in term of priority and then for the nodes of the same
priority according to the distance of the closest available
vehicle. When a vehicle is full it returns to the depot and is
available for the next turn.

Detailed description of the algorithm is given in Figure 1.
This heuristic represents the decision process of the rescue

teams. However we suspect it not to be the most efficient. In
fact, the demand splits are not optimal since the quantity of
rescued persons is not taken into account for the decision pro-
cess in this algorithm. Furthermore it is a greedy algorithm so
the allocations are not re-assessed after a demand has been
assigned to a vehicle. In fact the process followed by rescue
teams without decision support tool is to rescue the nodes
by order of priority and then, using fast scooting techniques,
assign rescue operation to the closest vehicle available. In
this context, even if field experience can lead rescue teams
operative to take unpredictable decision, this algorithm is
a good way to model rescue teams relief decision process.
From this observation we will now be able to compare the rest
of our heuristics to this one in order to evaluate the improve
rate it brings to the current situation.

B. BEST FLOW-TIME INSERTION ALGORITHMS
The allocation scheme of this heuristic is based on Best Fit.
In opposition with First Fit, the purpose of this scheme is to
allocate resources to the most appropriate task. The allocation
process of this algorithm is described in algorithm 1.

6

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3170446, IEEE Access

Start

Select First Empty
Vehicle

Select Clothest
highest priority

demand

Demand
served entirely?

Delete node from
node pool

No

Create node pool
containing all

demand points

Vehicle full?
Vehicle go back to

depot
Yes

Yes

Node Pool
Empty?

End
Vehicle go back to

depot
Yes

No

No

FIGURE 1: Shortest Distance Insertion algorithm Flow
Chart

With:

• biggestDemand: sorts the demands by priority and then
by size in order to insert highest priority and biggest
demand first

• routeSize: looks for the different positions we might
insert the new demand depending on the already built
route

• assignDemand: assigns a demand to a vehicle. This
operation modifies the solution’s variables: xz

i,j,k, hz
i,k

and qzi,k with k the vehicle of insertion, z its turn and for
all the nodes i, j affected by the insertion.

The first step of this heuristic is to sort the demands by
priority first and by decreasing size for demands of the same
priority. The sorted list of the demands (updated each time
a vehicle picks up partially demands) constitutes the queue
line for the demands. Then for each demand, the Flow-
time Insertion Score (FIS) is computed for every vehicle as
follows for the vehicle k starting from node i for a rescue at
node j: This score equals +∞ if a deadline is violated by the

ALGORITHM 1
Best Flow-time Insertion
prio ← 1
for cat ∈ categories do

while prio < nbPrio do
dem ← biggestDemand(cat , prio)
for vehicle ∈M do

for pos ∈ routeSize(vehicle) do
score← FIS(pos, dem, vehicle)
if score < bestScore then

bestScore ← score
bestV ← vehicle
bestPos ← pos

end if
end for

end for
assignDemand(bestScore, bestV , bestPos)

end while
end for

insertion and otherwise :

FIS(i, j, k) =
pj × (tti,j,c + ai + hz

i,k)

qzj,k
, ∀z ∈ Z, c ∈ C

(11)
In this case the number of victims planned to be rescued at

node j, qzj,k is dependent on the current available capacity of
the vehicle and it needs to be included in the score calculation
in order to avoid the algorithm to allocate resources to treat
demand points partially if it can be avoided. It does not
forbid demand’s division but it reduces it compared to SDI.
This FIS is compared between vehicles and the demand is
allocated to the vehicle with the lowest score which means
the lowest impact on the objective function. This process is
then repeated as long as necessary to rescue all the victims.
At the end of the loop on priority, we check if there is at least
a vehicle left for the current tour, or else we change tour:
increment the current tour and empty the vehicles. Then we
also check if there are demands left in the current priority,
if not we switch to the next one. Finally the same check is
made on the categories at the end of the loop on categories.
This algorithm terminates on 2 conditions:

• All demands are served. In this case the algorithm
terminates with a solution to the problem.

• For all left demands FIS = +∞. The algorithm failed
to find a feasible solution and generated a partial solu-
tion that violates constraints of deadline.

C. BEST FLOW-TIME INSERTION WITH ORDER
QUESTIONING
This heuristic is based on BFI adding improvement. The
principle of this algorithm is mainly the same as BFI but any
time we add a demand in the route of vehicle, the order of
the demands that are already handled by this vehicle will be
questioned, as shown in the next algorithm. A brute force

7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3170446, IEEE Access

algorithm is then launched. It builds all the n! routes possible,
with n the number of demands already in the route of the
vehicle for this tour. Note that n is always lower than the
capacity of the vehicle which makes the number of routes
builds reasonable. An objective score for the tour is computed
for each of these routes. The route with the lower score is
selected and the assignment is made to the vehicle in the
final order. During the computation of this score, capacity
constraints do not enter in the calculation since they are not
modified. The pseudo-code of this heuristic is presented in
algorithm 2.

ALGORITHM 2
Best Flow-time Insertion with Order Questioning

prio ← 1
for cat ∈ categories do

while prio < nbPrio do
dem ← biggestDemand(cat , prio)
for vehicle ∈M do

for pos ∈ routeSize(vehicle) do
score← FIS(pos, dem, vehicle)
if score < bestScore then

bestScore ← score
bestV ← vehicle
bestPos ← pos

end if
end for

end for
assignDemand(bestScore, bestV , bestPos)
for route ∈ routesSize(bestV)! do

if OS (routes) < OS (bestRoute) then
bestRoute ← routes

end if
end for
assignNewRoute(bestRoute)
checkTurn(z)

end while
end for

With OS that computes the objective score of a given route.
This function computes the value of eq. (1) for a given vehicle
and turn concerned by the local search limited to the current
route.

D. SOLOMON HEURISTIC
In this section, a short presentation of the insertion heuristic
presented in [32] is made. This heuristic is used as a baseline
in the experimental part of our work. This heuristic starts by
initializing every route according to a criterion: The farthest
unrouted demand.

In this algorithm from literature the vehicles are consid-
ered one after the other. Therefore, the routine initializes the
route for a vehicle and then inserts demands in this route
until the vehicle capacity is reached. Then it handles the
next vehicle. When the route for the first tour is planned
for all vehicles, the routine continues with the second tour

for the first vehicle. Tours are incremented until all demands
are served. The algorithm depends on parameters λ, µ, α1

and α2 that can be adjusted to adapt performances of the
algorithm by changing weights of different factors. Further
details about the values used for parameters λ, µ, α1 and α2

are given in section VI.
Once a route has been initialized for a vehicle, the heuristic

tries to insert demands optimally in the route. At every
insertion, 2 criteria are used:

• The first criterion c1, is used to determine for each node,
the best feasible insertion spot. It is based on a sum of
two terms that represent the temporal deviation induced
by the insertion of the node in the existing route and the
delay on service for next demands in the route. In fact,
insertion is not necessarily at the end of the route but
at different positions. It might lead to offset an already
planned intervention to a node. Both terms are weighted
by α1 and α2 respectively.

• The second criterion c2, allows to determine which
demand is inserted knowing the results of best position
selection with the first criterion. The demand selected
is the one minimizing the difference between the travel
time from the depot, and the first criterion weighted by
λ and µ respectively.

Solomon Insertion Heuristic pseudo code is presented in
algorithm 3.

ALGORITHM 3
Solomon Heuristic

Input: d: List of demands
k ← 1
z ← 1
while d ̸= [] do

initializeRoute(k, d)
while

∑
i∈V⋆ qzi,k < Qk do

positions← computeBestPositions(c1, d)
bestNode, pos← bestNode(c2, d, positions)
insertDemand(bestNode, pos, d)

end while
if k = length(M) then ▷ Vehicles full in current tour

z ← z + 1 ▷ Switch to next tour
k ← 1 ▷ Select first vehicle

else
k ← k + 1 ▷ Switch to next vehicle

end if
l← sortDemands(criterion, d)

end while

E. RESOURCES DISPATCH
As stated earlier, a flood might impact several sectors. How-
ever rescue teams might have to handle the sectors with their
limited resources. We implement algorithms that dispatch
the resources among sector to optimize the response by
minimizing the objective over all sectors. The first approach
we follow in order to make the best resources dispatch is

8

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3170446, IEEE Access

to try all the possible configurations and keep the best one.
This is done by launching a heuristic with x vehicles, for
x ∈ [0,Mcat] with Mcat the maximum vehicle number of
a category. Then we pick the vehicle dispatch solution for
which the sum over all sectors of the Flow-time objective is
the lowest. But this Brute Force Resources Dispatch (BFRD)
method might be expensive in term of computation time.
That is why we also develop Greedy Resources Dispatch
algorithms (GRD). These algorithms give a resources (vehi-
cles) dispatch configuration based on the ratio of a specific
metric over the different sectors. The three versions of GRD
we test are based on 3 different metrics:

• GRD1 dispatches the total number of vehicles multi-
plied by the ratio of nodes of the sector.

• GRD2 dispatches the total number of vehicles multi-
plied by the ratio of victims of the sector.

• GRD3 dispatches the total number of vehicles multi-
plied by the ratio of the cumulative distance from the
rescue center to the nodes of the sector.

These algorithms are very fast compared to the brute-force
approach but as they do not try different configurations we
expect that these greedy algorithms might give infeasible ve-
hicles dispatch, which means they might not allocate enough
vehicles to one sector for the algorithm to be able to find a
feasible solution (there might not even exist a solution at all).
We then try another approach in order to get a feasible
solution and also reduce the number of computations tested
by BFRD. After checking with the results from BFRD that
variations of the objective are constant, a second algorithm
can be developed on the principle of a brute force. But
instead of testing all configurations Constant Objective De-
tection Resources Dispatch algorithm (CODRD) can stop the
computation when we reach 2 identical objectives in a row.
This exit condition can be stated because we confirmed that
the variations of the objective with BFRD are constant and
therefore if the objective does not vary with the addition of a
vehicle then it will not vary with more. For the experiments
we will apply these algorithms to 2 sectors but it can be
generalized to more. In fact a study on 2 sectors is sufficient
to compare the different Resource Dispatch algorithms and
avoids to use the algorithm on more sectors which would only
increase the number of possibilities of dispatch and therefore
the computation time.

V. DATA ANALYSIS
With the objective of reproducing real-life experiment to
validate the model and heuristics, data has been extracted
from Experience Feedback from rescue teams of SDIS 31.
SDIS 31 is responsible for the rescue operations for Haute-
Garonne Department in South of France. We conceived the
model to fit their logistic and therefore the priority categories
that they usually use. The values of the priority coefficients
are fixed to:

1) Can remain on the spot : 1
2) Have to be rescued within 12 hours : 2

3) Have to be rescued within 6 hours : 4
4) Need to be rescued in emergency : 10

These values have been arbitrary picked to represent the rela-
tive importance of each priority categories one from another.
They can be adapted consequently to discussions with the
rescue teams in order to fit the situation requirements. In 2013
a flash flood has occurred in the valley of Luchon in the South
of Haute-Garonne. The information kept in the experience
feedback documents is not sufficient to simulate an identical
crisis. Nevertheless we were able to extract useful data to
base our experiment on. Using this data, the goal is to build
several territories model as graphs that are similar to Luchon
crisis. These experimental graphs will be referred as Luchon-
like.
One of the aspect that was not retrievable is the connectivity
between the nodes of the graph. Since we aim at reproducing
similar graph, there is then a need to build random graphs
keeping the control on some known parameters of the territo-
ries we intend to study.
The extracted data characterisation is described in a first part
of this section. Then the graph generator that was developed
for these experiments is detailed. Finally experimental results
are presented and interpreted in the last part of this section.

A. EXPERIENCE FEEDBACK
During a crisis such as a flooding, interventions are very
distinctive and need a response using appropriate resources.
That is why rescue teams consider mainly categories of
interventions. Following the same characterisation system
we looked into the experiment feedback from Luchon for
statistics for each of these categories during the crisis. The
number of vehicles for each categories are the same as the
Experience Feedback description except for the category 4
where we reduced the number of helicopters on purpose to
make the problem harder to solve on this category.
Category 1
This category of intervention represents the mass evacua-
tions. These operations can be made by common vehicles
such as buses. It can be for example the evacuation of a
school or camping that will be impacted by the flood. The
vehicles of this category generally have high capacity so we
set it to 30. 5 vehicles are considered for the experiments.
During the crisis this category represented 66% of victims
rescued through 7 interventions.
Category 2
The interventions gathered in this category need more spe-
cific vehicles than the first one. When water already reaches
inhabited areas, evacuation is more difficult and specialized
vehicle are needed. These vehicles can go up to 80 centime-
tres water level in case of emergency but are often limited
to 50 centimetres for the safety of the rescue teams. In fact,
when the water level is to high, a firefighter scoots in front
of the vehicle to detect potential ditch masked by the water.
But this might become dangerous for this scoot in urban areas
with sewer drains that might aspirate him for example. These
vehicles have limited capacity we set to 10 for 4 vehicles in

9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3170446, IEEE Access

the experimental fleet. There were 32 demand points of this
category during Luchon crisis for 19% of the victims.
Category 3
When the water level is too high, road vehicle cannot access
the area of the intervention. The relief operation is then
operated by teams equipped with boats. These boats have
limited capacity set to 5 for the experiments with 3 vehicles
of this category covering the crisis. This category affected
less victims with 8% of them dispatched on 15 nodes.
Category 4
When none of the resources listed above can rescue a victim,
the only way may be to use a helicopter. This kind of
resources is very scarce but is available in cases of extreme
danger for a victim. We consider only one helicopter avail-
able in full time for our experiments and its capacity is of 1.
This category only represents 1% of the victims of the flood
with 5 interventions via helicopter for the case of study.
Category 5
This category is specific since it does not consider human
victims but animals. In fact cattle can also be affected by the
flooding events and it needs saving too. Usually the rescue
teams act as reinforcement for the cattle’s owner and the
transportation is operated thanks to the breeder resources.
That is why we only consider one vehicle with a capacity
of 10 to relief this category of victims that represented about
6% of the victims in Luchon on only one node.

To give some perspective to this percentage, it is important
to clarify that during Luchon crisis more than 500 persons
or animals were rescued over 60 nodes according to the
experience feedback. The data is recapitulated in the table
hereunder:

Category Number of Percentage of Number of Percentage of
Category nodes nodes victims victims

1 7 12% 330 66%
2 32 53% 95 19%
3 15 23% 40 8%
4 5 10% 5 1%
5 1 2% 30 6%

TABLE 3: Category Dispatching summary

B. GRAPH GENERATION
In order to evaluate the performance of the heuristics pre-
sented in this article, the objective, as stated earlier, is not
to replay the crisis that happened in 2013 since data is not
complete. The purpose of this generator is to be able to gen-
erate a wide variety of graphs depending on the parameters.
The process is to use the data extracted from EF in order to
generate the demands rescue teams have to intervene on. In
real-life, rescue teams have access to maps of the impacted
area at the beginning of the crisis. These maps display the
different stakes of the territory that might turn into demand
points at some time of the crisis. This is not exhaustive but

gives a good representation of the impacted area. The set of
nodes that rescue teams take into account at the beginning
of the crisis is a subset of the nodes of this map forming the
initial graph. For the purpose of experimentation, the goal is
to reproduce the distribution of such nodes over the area of
study.
In order to do so we developed a graph generator that creates
territories. Since as we will discuss later, there might be
several different areas of action, we call them sectors. A
sector is most of the time an urban area so we model it
through concentric circles. The number of zones represented
by these concentric circles is set at the creation of the sec-
tor. These zones represent the different areas of population
density from the center of an urban area to the countryside
around it. That is why for each zone the population density
and the connectivity factor are configurable as well. This last
parameter is the number of direct neighbors each node has in
the zone. From these factors, nodes are randomly generated
on a Cartesian coordinate system as we may observe on
Figure 2:

0

1

2

3

4

56

7

8

9
1011
12

13

14

15

16

1718

1920 212223 242526

27

28

29

30

31

32
33

34

35

36

37

38

3940

41

42

43

44

45

46

47

48

49

50

51

52

53

54 55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75
76

77

78

79

80

8182

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

FIGURE 2: Example of generated graph

We can see the different zones of a same sector differen-
tiated colors on this graph. The numbers inside the nodes
just represent the id of the demand. We created it with the
following parameters:

Zone Radius Density Connectivity
1 1000 10 3
2 2000 5 2
3 4000 1 1

TABLE 4: Category Dispatching summary

Using this generator and a set of parameters chosen to fit
the studied area, we generate graph similar to Luchon we call
Luchon-like.
At this stage, the graph only represents the potential stakes
in a Luchon-like crisis. The next step is to select some of

10

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3170446, IEEE Access

these nodes to become demands for the experiment. In our
experiment protocol, we already have the number of demands
we desire to try our heuristics on, to simulate a Luchon-like
crisis. In order to select the nodes, a selection program was
designed to randomly choose the nodes on a specific area
of the studied sector. This area is composed of a segmented
line representing the riverbed and, for each of this segment,
a value is associated to delineate the expansion of the flood
from its bed. Values are then associated for these demands
for the following variables :

• Priority : Uniform distribution among the different
priority values. Note that the deadlines are associated
with the priority.

• Action Time : Uniform distribution on the interval
[5, 35]. This interval was given by the rescue teams from
SDIS 31, the unity of time is the minute.

• Category : Uniform distribution among the 5 categories
with a maximum of nodes for each predefined category.

• Demand size : The law of distribution for these param-
eters depends on the category as stated in Table 5.

In this table we refer to Normal law. In this case the distri-
bution is truncated so that for all x-value: a ≤ x ≤ b and
the mean of the distribution is equal to µ and the standard
deviation is equal to σ.

0 20 40 60 80 100 120
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

FIGURE 3: Truncated normal distribution with µ = 45,
a = 10, b = 120 and σ = 35

Category 1 2 3 4 5
Distribution Normal Normal Normal Single A single

Law µ = 45 µ = 3 µ = 3 victims node of 30
a = 10 a = 1 a = 1 at each
b = 120 b = 8 b = 6 node
σ = 35 σ = 2 σ = 2

TABLE 5: Demands size distribution law by category

VI. EXPERIMENTAL RESULTS
The validation of the different algorithms presented in this
article is based on Luchon-like graphs. Three experimen-
tation are presented in this section. First we present the
performances of the different heuristics. The criterion for this
evaluation are both the computation time and objective score
(evaluation of the solution proposed by the algorithm through
the objective function). The experiment is made on 100

Luchon-like graphs and for each of the three heuristics tested
(SDI, BFI, BFIOQ) a mean for the computation time and the
objective score is calculated. The results displayed in Fig-
ure 4 offer the detail category by category for the Flow-time
score in ordinate, the computation time mean is displayed
on the abscissa. For this experiment we also developed the
Solomon insertion heuristic from [32] in order to compare
our performance to this heuristic from the literature. Note
that we did 6 runs with the Solomon heuristic for each graph
using only one initialization criteria : the farthest unrouted
customer. The second initialization criteria used in the article
was not a fit for our model since several demands might
have the same deadlines. The parameters used (µ, λ, α1,
α2) are: (1,1,1,0), (1,1,0,1), (1,1,1,1), (1,2,1,0), (1,2,0,1) and
(1,2,1,1). Finally note that the computation time displayed
in the results are only counting the computation time for the
best solution and not for the 6 runs accumulated in order to
make the reading of the results easier.

The figures of this graphic are detailed in Table 6 :

Average Average Deviation CT deviation
OS CT from best from best OS

(ms) OS solution solution
SDI 77285.22 49.91 55.7 % -87.8 %
BFI 53329.04 140.49 7.44 % -78.07 %

BFIOQ 49633.53 604.4 0 % 0 %
Solomon 96211.41 834.45 93.84 % 30.3 %

TABLE 6: Demands size distribution law by category

OS = Objective Score and CT = Computation Time
In details these results show a 30% improvement in Objective
score from SDI to BFI and 40% from SDI to BFIOQ. These
improvements are non-negligible and demonstrate the gain
that BFIOQ incurs over the first version of the heuristic
BFI. Furthermore we observe that every developed heuristic
shows better performances in term of computation time and
objective than Solomon’s heuristic.
However we can observe that improving the objective score
has a cost on the computation time as we see in Figure 4. Note
that the categories in the figure are piled up, from one to five
from bottom to the top.SDI has a better computation time
than BFI and is almost 15 times faster than BFIOQ. These
results are expected since BFIOQ questions the first solution
it found and this is time consuming. Even if this drawback
for BFIOQ is not to be totally forgotten, its impact is not
as important as its advantages. In fact the computation time
mean for BFI over the 100 graphs is approximately 600 ms
and is rarely over the second which fits the requirements for
the decision support tool.
This article also tackles the issue of resources dispatch. When
the flood impacts several distinctive areas but have to be
treated by the same entity, an effective dispatch of resources
through the impacted sectors is essential to optimize the
relief operations. Different options studied to optimize this
dispatch are presented earlier in this article. We test BFRD on
a larger number of vehicles than usual in order to make sure
to catch all the variations of the objective with the quantity of

11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3170446, IEEE Access

0 200 400 600 800
Computation Time (ms)

0

20000

40000

60000

80000

100000

Cu
m

ul
at

ed
 F

lo
wt

im
e

Sc
or

e

SDI

BFI
BFIOQ

Solomon

Heuristics Time and Quality Performances
Category 1
Category 2
Category 3
Category 4
Category 5

FIGURE 4: Graphic comparing computation time and
cumulative objective score performances of the heuristics

resources over the possible value interval. The results of this
experiment are presented in Figure 5.

The results are displayed category by category, we choose
not to display the 5th category because it is only one demand
so its variation is not interesting to study. In the graphics the
number of vehicles allocated to each sectors varies on the
abscissa (decrease for the first sector and increase for the
second one). The sum of both objectives is also displayed
in green. These results show that the objective variations are
constant, the objective always decreases with the increase of
the resources or is constant. These results justify the devel-
opment of an improved version of BFRD we also presented:
CODRD.
As for the previous experiment, the resources dispatch algo-
rithm are tested on 100 graphs, and each of them are split
into two sectors. In fact for this experiment, 100 Luchon-like
graphs have been generated and then split into two sectors
where resources are dispatched. The performance results are
the mean of the objective score over these graphs. However,
as mentioned in Section IV-E, greedy algorithm might induce
some infeasible situation. We then mean only on the graphs
that are feasible by all 5 algorithms. The results are displayed
in Figure 6 where the percentage of infeasibility as defined
earlier is written over the bars of each algorithms. Note that
the categories in the figure are dispatched from one to five
from bottom to the top.The experiments were built using
BFIOQ as heuristic since it is the heuristic showing the best
objective score performances.

In this figure we observe that GRD3 implies a lot of
infeasible situations. The choice has been made to keep it in
the displayed results even if it reduces the number of graphs
the mean is computed on. The reason is that we tried the
experiment without it and the performance results are slightly
the same. We observe as expected that in general, greedy
algorithms induce a non-negligible infeasibility ratio where

it is not the case for the other algorithms. Furthermore the
performances of CODRD are 4% better than those of GRD1
which is the best greedy algorithm. However the computation
time in this situation is not negligible in the contrary of the
previous experiment and it needs to be taken into account.
The average computation time for the greedy algorithms are
the same than those of the heuristic used (BFIOQ) so under
the second. The results shows that CODRD need 6 runs
instead of 1 for the greedy algorithms in average and the
computation time follow the same logic with a computation
time 6 times superior. We consider that in a situation where
the resources sufficient enough to avoid to be a hard con-
straint on the problem, the use of a greedy algorithm such
as GRD1 is probably the most appropriate choice regarding
the few performance gain from the use of CODRD compared
to the computation time gain. On the opposite, we prefer to
use CODRD in situations where resources are rare and the
computation time is worth the gain because at list a solution is
guaranteed where GRD1 shows a 14% error rate (dispatching
problems where the greedy algorithms dispatch led to an
infeasible situation for the heuristic BFIOQ).

Despite the good performances of the heuristics observed
on the experimental set, it might be interesting to get some
perspective about the reaction of the heuristics on scenarios
of different nature. Some characteristics of the data-set could
lead to different performances from the heuristics as follows:

• The number of nodes in the graph is a key factor for the
computation time performances. In fact, dealing with a
NP-complete problem, we expect to have exponential
computation time with the size of the problem as studied
in [?] using MIQP. This problem is also expected to
arise at a lower scale with the heuristics, most specifi-
cally with BFIOQ that includes an optimization on turn
that tries all the orders possible. It would be interesting
in further studies to take good care of experimenting on

12

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3170446, IEEE Access

(0, 20) (1, 19) (2, 18) (3, 17) (4, 16) (5, 15) (6, 14) (7, 13) (8, 12) (9, 11) (10, 10) (11, 9) (12, 8) (13, 7) (14, 6) (15, 5) (16, 4) (17, 3) (18, 2) (19, 1) (20, 0)
Number of vehicle (sector 1, sector 2)

0

20000

40000

Ob
je

ct
iv

e
(F

lo
w-

tim
e

sc
or

e) Category 1

(0, 24) (1, 23) (2, 22) (3, 21) (4, 20) (5, 19) (6, 18) (7, 17) (8, 16) (9, 15) (10, 14) (11, 13) (12, 12) (13, 11) (14, 10) (15, 9) (16, 8) (17, 7) (18, 6) (19, 5) (20, 4) (21, 3) (22, 2) (23, 1) (24, 0)
Number of vehicle (sector 1, sector 2)

10000

20000

Ob
je

ct
iv

e
(F

lo
w-

tim
e

sc
or

e) Category 2

(0, 20) (1, 19) (2, 18) (3, 17) (4, 16) (5, 15) (6, 14) (7, 13) (8, 12) (9, 11) (10, 10) (11, 9) (12, 8) (13, 7) (14, 6) (15, 5) (16, 4) (17, 3) (18, 2) (19, 1) (20, 0)
Number of vehicle (sector 1, sector 2)

2000

4000

6000

8000

Ob
je

ct
iv

e
(F

lo
w-

tim
e

sc
or

e) Category 3

(0, 8) (1, 7) (2, 6) (3, 5) (4, 4) (5, 3) (6, 2) (7, 1) (8, 0)
Number of vehicle (sector 1, sector 2)

100

200

300

400

Ob
je

ct
iv

e
(F

lo
w-

tim
e

sc
or

e) Category 4

Sector 1 Flowtime Score
Sector 2 Flowtime Score
Sum of Sectors

FIGURE 5: Variations of the objective score with affected resources evolution

larger scale’s scenarios.
• The distribution of the quantity among demands might

also have an impact on performances. For example for
a total number of 20 victims dispatched on 4 nodes, the
scenarios where there are 5 victims at each node or 1
victim at 3 nodes and the 17 other victims at one node
will most likely require different routes to follow in
order to optimize the response. In the first case the travel
to a node will have the same benefit on the objective
for every node whereas on the second one we still have
to travel to all the nodes but of them will only be to
rescue one person. The impact on the objective of each
node of the graph is less balanced in this second case.
This could be interesting to create an index to measure
the distribution of victims among node and experiment
different distributions instead of mimicking Luchon’s
victim distribution.

• In this paper we worked with 4 levels of priorities but
this scale could be smoothed on a larger range of values
in order to improve the treatment of the demands. It
would probably not show better performances in term of
objective since the priority is one of the factor taken into
computation of the objective score but it might induce
better specific handling of each demand.

• The nature of the graph itself is a major issue. Depend-
ing on whether we deal with high distances and few
connectivity or short distances and high connectivity,
the constraints for the heuristics are different. These
limit cases could represent respectively a crisis on a
countryside territory with few inhabitants compared to

a flooding in a big city. This problem can be solved by
the rescue teams with the dimensioning of the vehicle
fleet and clustering.
The same solution might be applied in case of dealing
with very high action time values.

Finally this article focus on developing algorithms sized to
answer to real data and problem characteristics.

VII. CONCLUSION
In this article we developed the problem encountered when
trying to optimize the rescue teams response to fast flood.
After exposing the complete model we demonstrated that the
use of heuristics is a best fit for the computation time’s re-
quirements for a real-time support decision tool. The heuris-
tics BFI and its improved version BFIOQ were presented and
compared to the heuristic SDI that is meant to reproduce
the current behaviour of the rescue teams. The comparison
made on a large set of graphs built to reproduce conditions
from the Luchon flooding from 2013, shows that the use
of BFIOQ helps improving the objective performance by
more than 55% with an affordable cost on computation time.
In fact SDI computation is completed under 100ms and
BFIOQ over 600ms which makes SDI 87% faster in average,
the computation time for BFIOQ stays under the second
which is satisfying. Furthermore we compared BFIOQ to a
widespread algorithm from the VRP’s literature, Solomon
insertion Heuristic. The results shows that this algorithm do
worth on both comparison criteria with almost 2 times worth
performances in objective and a 30% increase of computation
time. These results might be explained by the choice of the

13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3170446, IEEE Access

GRD1 GRD2 GRD3 BFRD CODRD
Algorithm

0

2500

5000

7500

10000

12500

15000

17500

Cu
m

ul
at

ed
 F

lo
wt

im
e

Sc
or

e

14 17

59

0 0

Resources Dispatchment Algorithm Performances Category 1
Category 2
Category 3
Category 4
Category 5

FIGURE 6: Objective Score performances for the different resources dispatch algorithms

objective that this heuristic was not developed to respond to.
Several algorithms of different types were also developed
to tackle the issue of resources dispatch over several im-
pacted sectors. Their comparison on the same kind of graphs
mentioned earlier but adapted to two sectors shows that
greedy algorithms like GRD1 allow good performances in a
very short amount of time but can create infeasible situation
while heuristics like CODRD allow to make sure not to
create infeasible situation and are slightly more efficient in
objective score aspect (5% approximately) but with a huge
cost on computation time (computation time 6 times higher
for CODRD). This rises the question of its usage in a final
tool where the common time expensive operations could be
gathered to speed up the process. Also the importance of the
computation time varies during the different phases of the
crisis, this can be made into perspectives accordingly with
the approach chosen to tackle the problem dynamically. If we
choose a re-optimization approach the computation time is a
central issue however if another approach is preferred such as
insertion heuristics the computation time is less of an issue.

REFERENCES
[1] Mahdieh Allahviranloo, Joseph Y.J. Chow, and Will W.

Recker. Selective vehicle routing problems under un-
certainty without recourse. Transportation Research
Part E: Logistics and Transportation Review, 62:68–88,
2014.

[2] E. Angelelli, N. Bianchessi, R. Mansini, and M.G.
Speranza. Short term strategies for a dynamic multi-
period routing problem. Transportation Research Part
C: Emerging Technologies, 17(2):106 – 119, 2009.

[3] C. Archetti, M. G. Speranza, and A. Hertz. A tabu

search algorithm for the split delivery vehicle routing
problem. Transportation Science, 40(1):64–73, 2006.

[4] Claudia Archetti, Dominique Feillet, Andrea Mor, and
Maria Gracia Speranza. Dynamic traveling salesman
problem with stochastic release dates. European Journal
of Operational Research, 280(3):832 – 844, 2020.

[5] Claudia Archetti, Elena Fernández, and Diana L.
Huerta-Muñoz. The Flexible Periodic Vehicle Routing
Problem. Computers & Operations Research, 85:58–
70, 2017.

[6] Claudia Archetti and Maria Grazia Speranza. The Split
Delivery Vehicle Routing Problem: A Survey. In Bruce
Golden, S. Raghavan, and Edward Wasil, editors, The
Vehicle Routing Problem: Latest Advances and New
Challenges, volume 43, pages 103–122. Springer US,
Boston, MA, 2008.

[7] Frédérique Baniel. Prise en compte d’objectifs de
stabilité pour l’organisation de collectes de déchets.
PhD thesis, 2009. Thèse de doctorat dirigée par Vi-
dal, Thierry et Huguet, Marie-José Systèmes industriels
Toulouse, INPT 2009.

[8] Russell Bent and Pascal Van Hentenryck. A two-stage
hybrid local search for the vehicle routing problem with
time windows. Transportation Science, 38, 10 2001.

[9] Jean Berger, Mohamed Barkaoui, and Olli Bräysy.
A route-directed hybrid genetic approach for the
vehicle routing problem with time windows. INFOR:
Information Systems and Operational Research,
41:179–194, 05 2003.

[10] Djamel Berkoune, Jacques Renaud, Monia Rekik, and
Angel Ruiz. Transportation in disaster response oper-
ations. Socio-Economic Planning Sciences, 46(1):23–

14

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3170446, IEEE Access

32, 2012. Special Issue: Disaster Planning and Logis-
tics: Part 1.

[11] Nicola Bianchessi and Giovanni Righini. Heuristic
algorithms for the vehicle routing problem with simul-
taneous pick-up and delivery. Computers & Operations
Research, 34(2):578–594, 2007.

[12] M.J. Booij. Impact of climate change on river flood-
ing assessed with different spatial model resolutions.
Journal of Hydrology, 303(1):176 – 198, 2005.

[13] Thomas Chabot, Florence Bouchard, Ariane Legault-
Michaud, Jacques Renaud, and Leandro C. Coelho.
Service level, cost and environmental optimization of
collaborative transportation. Transportation Research
Part E: Logistics and Transportation Review, 110:1–14,
2018.

[14] Lichun Chen and Elise Miller-Hooks. Optimal team
deployment in urban search and rescue. Transportation
Research Part B: Methodological, 46(8):984–999,
2012.

[15] G. B. Dantzig and J. H. Ramser. The truck dispatching
problem. Management Science, 6(1):80–91, 1959.

[16] Moshe Dror and Pierre Trudeau. Savings by split
delivery routing. Transportation Science, 23(2):141–
145, 1989.

[17] Moshe Dror and Pierre Trudeau. Split delivery routing.
Naval Research Logistics (NRL), 37(3):383–402, 1990.

[18] M. R Garey and D. S Johnson. Computers and
intractability, volume 29. W.H. Freeman New York,
2002.

[19] Michel Gendreau, Gilbert Laporte, and René Séguin.
An exact algorithm for the vehicle routing problem
with stochastic demands and customers. Transportation
Science, 29(2):143–155, 1995.

[20] B. Golden and A. Assad. Vehicle Routing with
Time Window Constraints. American Journal of
Mathematical and Management Sciences, 6(3 - 4):251–
260, 1986.

[21] Bruce Golden, Arjang Assad, Larry Levy, and Filip
Gheysens. The fleet size and mix vehicle routing
problem. Computers & Operations Research, 11(1):49
– 66, 1984.

[22] Jörg Homberger and Hermann Gehring. A two-phase
hybrid metaheuristic for the vehicle routing problem
with time windows. European Journal of Operational
Research, 162:220–238, 04 2005.

[23] Arun Jotshi, Qiang Gong, and Rajan Batta. Dispatching
and routing of emergency vehicles in disaster mitigation
using data fusion. Socio-Economic Planning Sciences,
43(1):1–24, 2009.

[25] Homero Larrain, Leandro C. Coelho, Claudia Archetti,
and M. Grazia Speranza. Exact solution methods
for the multi-period vehicle routing problem with due

[24] Gilbert Laporte. The vehicle routing problem:
An overview of exact and approximate algorithms.
European journal of operational research, 59(3):345–
358, 1992.
dates. Computers & Operations Research, 110:148–
158, 2019.

[26] Allan Larsen. The dynamic vehicle routing problem.
PhD thesis, Technical University of Denmark, 2000.

[27] David Pisinger and Stefan Ropke. A general heuristic
for vehicle routing problems. Computers & Operations
Research, 34(8):2403–2435, 2007.

[28] Damián Reyes, Alan L. Erera, and Martin W. P. Savels-
bergh. Complexity of routing problems with release
dates and deadlines. European Journal of Operational
Research, 266(1):29 – 34, 2018.

[29] Inmaculada Rodríguez-Martín, Juan-José Salazar-
González, and Hande Yaman. The periodic vehicle
routing problem with driver consistency. European
Journal of Operational Research, 273(2):575–584,
2019.

[30] Nicola Secomandi and François Margot. Reoptimiza-
tion approaches for the vehicle-routing problem with
stochastic demands. Operations Research, 57(1):214–
230, 2009.

[31] Jiuh-Biing Sheu. An emergency logistics distribution
approach for quick response to urgent relief demand in
disasters. Transportation Research Part E: Logistics and
Transportation Review, 43(6):687–709, 2007. Chal-
lenges of Emergency Logistics Management.

[32] Marius M. Solomon. Algorithms for the vehicle routing
and scheduling problems with time window constraints.
Operations Research, 35(2):254–265, 1987.

[33] Y. Tramblay and S. Somot. Future evolution of extreme
precipitation in the mediterranean. Climatic Change,
151(1):289–302, 2018.

[34] F. Vinet, D. Lumbroso, S. Defossez, and L. Boissier. A
comparative analysis of the loss of life during two re-
cent floods in France: the sea surge caused by the storm
Xynthia and the flash flood in Var. Natural Hazards:
Journal of the International Society for the Prevention
and Mitigation of Natural Hazards, 61(3):1179–1201,
2012.

[35] Wen-Huei Yang, Kamlesh Mathur, and Ronald H. Bal-
lou. Stochastic vehicle routing problem with restock-
ing. Transportation Science, 34(1):99–112, 2000.

[36] Konstantinos G. Zografos and Konstantinos N. An-
droutsopoulos. A decision support system for integrated
hazardous materials routing and emergency response
decisions. Transportation Research Part C: Emerging
Technologies, 16(6):684–703, 2008.

15

