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Abstract
This paper introduces a novel boundary integral equa-
tion (BIE) method for the numerical solution of prob-
lems of planewave scattering by periodic line arrays of
two-dimensional penetrable obstacles. Our approach is
built upon a direct BIE formulation that leverages the
simplicity of the free-space Green function but in turn
entails evaluation of integrals over the unit-cell bound-
aries. Such integrals are here treated via the window
Green function method. The windowing approximation
together with a finite-rank operator correction—used to
properly impose theRayleigh radiation condition—yield
a robust second-kind BIE that produces superalge-
braically convergent solutions throughout the spectrum,
including at the challenging Rayleigh–Wood anoma-
lies. The corrected windowed BIE can be discretized
by means of off-the-shelf Nyström and boundary ele-
ment methods, and it leads to linear systems suitable for
iterative linear algebra solvers as well as standard fast
matrix–vector product algorithms. A variety of numeri-
cal examples demonstrate the accuracy and robustness
of the proposed methodology.
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1 INTRODUCTION

This paper presents a novel windowed Green function (WGF) boundary integral equation (BIE)
method for the numerical solution of problems of time-harmonic electromagnetic planewave scat-
tering by infinite periodic arrays of penetrable obstacles in two spatial dimensions (although the
proposedmethodology can also be applied to acoustics). Problems of this type often arise in a num-
ber of application areas that greatly benefit from accurate and efficient numerical computations
such as, for instance, photonic crystal modeling1 and inverse design of metasurfaces2,3 whereby
the so-called locally periodic approximation is used to deal with scattering by large aperiodic
structures by decomposing it in a finite number of unit-cell periodic problems.4–6
Classical BIE formulations for scattering by periodic media rely on the quasi-periodic Green

function.7 As is well known, standard spatial and spectral representations of the quasi-periodic
Green function give rise to infinite series that (a) converge slowly depending on the relative
location of the source and target points and, in addition, (b) cease to exist at the so-calledRayleigh–
Wood (RW) anomalies (i.e., when at least one scattered/transmitted mode propagates in the
direction parallel to the array axis). Several analytical techniques have been proposed to tackle
the former problem including most notably Ewald’s method (see Refs. 7, 8 for a thorough review
on the subject). A strikingly simple method that also addresses the aforementioned slow conver-
gence issue is developed in Refs. 9, 10, which relies on a smooth windowed sum approximation of
the spatial series representation of the Green function. Away from RW anomalies, this approach
achieves superalgebraically fast convergence as the truncation radius increases. In view of the fact
that the quasi-periodic Green function itself does not exists at RW anomalies, all the aforemen-
tioned approaches simply break down at these singular configurations (although, as shown inRef.
[11, fig. 1.3], Ewald’s method produces accurate solutions at almost machine precision “distance”
from RW anomalies).
Improving on the windowed summation approach,12 and subsequent related work13,14 intro-

duce the quasi-periodic shifted Green function. BIE solvers that leverage this modified Green
function15–17 exhibit superalgebraic convergence away fromRWanomalies and algebraic but arbi-
trarily high-order convergence at and around RW anomalies, at the cost of 𝑛-tupling the number
of function evaluations where 𝑛 is the numbers of “shifts” utilized in the approximation. Recent
developments in this direction11,18 present a generalmethodology based on hybrid spatial/spectral
Green function representations and the Woodbury–Sherman–Morrison formula that makes clas-
sical approaches such as Laplace-type integral and Ewald’s methods, as well as the shifted Green
function approach, applicable and robust at and around RW-anomaly configurations.
Yet another class of BIE methods aims at bypassing the use of the problematic quasi-periodic

Green function. To the best of the authors’ knowledge, the first method in this class was intro-
duced in Ref. 19. There and in subsequent related contributions,20,21 Neumann-to-Dirichlet
operators are combined with the quasi-periodic boundary conditions on the unit-cell walls to
reduce the problem to a BIE expressed in terms of free-space Green function kernels. No explicit
mention of issues associatedwith RWanomalies are reported in theseworks. A different approach
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STRAUSZER-CAUSSADE et al. 279

F IGURE 1 Depiction of the quasi-periodic domain and the curves used in the derivation of the boundary
integral equation formulation

is adopted in Ref. 22 (see also Ref. 23) where the quasi-periodic problem is recast as a formally
second-kind indirect BIE formulation involving free-space Green function kernels and integrals
along the infinite boundaries of the (unbounded) unit-cell domain. Leveraging the exponential
decay of the boundary integrands in spectral form, the resulting BIE system is effectively reduced
to a bounded hybrid spatial–spectral computational domain where standard Nyström discretiza-
tions can be applied for its numerical solution. Although this method does not make use of the
quasi-periodic Green function, it involves evaluation of cumbersome Sommerfeld-type integrals
that need to be painstakingly modified in the presence of RW anomalies (when a pole at ori-
gin on the Sommerfeld integration contour needs to be accounted for by suitably deforming the
contour and adding the corresponding residue contribution). Building up on thiswork, a periodiz-
ing scheme akin to the method of fundamental solutions is developed in Ref. 24 and subsequent
contributions.25 This approach only entails evaluations of free-space Green function kernels in
spatial form and it appears immune to the presence of RW anomalies. However, the so-called
proxy (equivalent) sources employed by this scheme to enforce the quasi-periodicity condition,
give rise to relatively small but ill-conditioned subsystems that are treated by Schur complements
and direct linear algebra solvers, hence hindering the straightforward applicability of GMRES and
fast algorithms to performmatrix–vector product operations (such as the fastmultipolemethod,26
for instance).
Here, we present a method that falls under the latter class of BIE methods. Our approach

amounts to an extension of the WGF method for layer media scattering and waveguide
problems,27–30 to quasi-periodic scattering problems. Inspired by Ref. 27, we pursue a direct
BIE formulation derived from a Green’s representation formula of the scattered field within
the unbounded unit-cell domain, which uses the free-space Green function instead of the
problem-specific (quasi-periodic) Green function. The quasi-periodicity condition is then read-
ily incorporated into our formulation by exploiting the direct linear relationship between the
scattered-field traces on the left- and right-hand-side unit-cell walls. Unlike quasi-periodic Green
function-based BIE methods, these traces become additional unknowns that we need to solve
for in our formulation. The transmission conditions on the penetrable boundaries of the obsta-
cles are imposed through Kress–Roach/Müller’s approach31,32 which leads to weakly-singular
integral operators. As in Ref. 22, we hence obtain a formally second-kind BIE system given in
terms of free-space Green function kernels and boundary integrals over the unbounded unit-cell
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280 STRAUSZER-CAUSSADE et al.

boundaries. Indeed, prior to truncation, both formulations entail evaluation of the same weakly-
singular integral operators. Themain difference between the two approaches lies in the truncation
strategy. Instead of resorting to spatial–spectral representations of the integral operators, we work
with integral operators in pure spatial form hence enabling the use of off-the-shelf BIE methods
and fast algorithms. We do so by truncating the oscillatory integrals over the unbounded unit-
cell walls using a smooth window function that multiplies the free-space Green function kernels.
When applied to the traces of the (radiative) scattered field, the resulting windowed BIE opera-
tors spawn small errors that decay superalgebraically fast as the support of the window function
increases. As it turns out, however, at certain frequency ranges which include RW-anomaly con-
figurations, the naive windowing approximation of the BIE operators leads to a BIE system that
fails to account for the radiation condition. To properly enforce it, we then propose a corrected
windowed BIE that produces accurate solutions throughout the entire spectrum, including at
and around the challenging RW-anomaly configurations. (Interestingly, a somewhat similar cor-
rection procedure has been recently proposed in Ref. 33 to address the failure of the perfectly
matched layer technique at absorbing RWmodes in the context of finite element discretizations.)
The corrected windowed BIE is Fredholm of the second-kind and upon discretization it leads to
systems of equations that can be efficiently solved by iterative linear algebra solvers (i.e., GMRES)
which can be further accelerated by means of fast methods. The proposed methodology exhibits
superalgebraic convergence as the window size increases. A preliminary Matlab implementation
of the proposedmethodology is available at: https://github.com/caperezar/quasiperiodic-WGFM.
The paper is organized as follows. Section 2 describes the problem under consideration and

summarizes some important facts of the problem that will be utilized in the following sections.
Section 3 presents the derivation of the nonstandard Green’s representation formula on which
our direct BIE formulation is based on. Section 4 introduces the notation as well as the main
properties of the layer potentials and BIE operators. The direct BIE formulation of the problem
is derived in Section 5 while the naive windowed BIE is motivated and presented in Section 6. A
series of numerical experiments designed to examine the accuracy of the naive windowed BIE at
and around an RW-anomaly configurations is shown in Section 7. The corrected windowed BIE
formulation is then developed in Section 8. A variety of the numerical examples are presented in
Section 9. Finally, Section 10 presents the conclusions and future work.

2 PRELIMINARIES

This paper deals with problems of time-harmonic electromagnetic scattering by infinite periodic
arrays of penetrable obstacles in two dimensions for which we adopt the time convention e−𝑖𝜔𝑡

where 𝑡 > 0 is time and𝜔 > 0 is the angular frequency. In detail, letting 𝜃inc ∈ [−
𝜋

2
,
𝜋

2
] denote the

angle of incidence measured with respect to the negative 𝑦-axis, we consider the scattering and
transmission of a planewave

𝑢inc(𝑥, 𝑦) = e𝑖𝛼𝑥−𝑖𝛽𝑦, 𝛼 = 𝑘1 sin 𝜃inc, 𝛽 = 𝑘1 cos 𝜃
inc (1)

by an 𝐿-periodic array of the form 𝐷2 =
⋃

𝑛∈ℤ
{(𝑥, 𝑦) ∈ ℝ2 ∶ (𝑥 − 𝑛𝐿, 𝑦) ∈ Ω2} where Ω2 ⊂ ℝ2 is

an open and bounded domain of class 𝐶2. Here, 𝑘1 = 𝜔
√
𝜖1𝜇1 > 0 is the wavenumber of the exte-

rior domain𝐷1 = ℝ2 ⧵ 𝐷2 with permittivity 𝜖1 > 0 and permeability 𝜇1 > 0. Inside the penetrable
array 𝐷2, on the other hand, the wavenumber is given by 𝑘2 = 𝜔

√
𝜖2𝜇2 in terms of 𝜇2 > 0 and 𝜖2

which is allowed to be a complex number satisfying Im 𝜖2 ≥ 0.
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STRAUSZER-CAUSSADE et al. 281

The sought total field 𝑢 ∶ ℝ2 → ℂ, 𝑢 ∈ (𝐶2(𝐷1) ∩ 𝐶1(𝐷1)) ∪ (𝐶2(𝐷2) ∩ 𝐶1(𝐷2)), is the trans-
verse component of the total electric field in transverse electric (TE) polarization (reps. magnetic
field in transverse magnetic (TM) polarization) which satisfies

Δ𝑢 + 𝑘21𝑢 = 0 in 𝐷1 and Δ𝑢 + 𝑘22𝑢 = 0 in 𝐷2. (2a)

In addition, the total field satisfies the quasi-periodicity condition

𝑢(𝑥 + 𝐿, 𝑦) = 𝜁𝑢(𝑥, 𝑦), 𝜁 ∶= e𝑖𝛼𝐿, (𝑥, 𝑦) ∈ ℝ2, (2b)

and the transmission conditions

𝛾+
𝐷,𝑆

𝑢 = 𝛾−
𝐷,𝑆

𝑢 and 𝛾+
𝑁,𝑆

𝑢 = 𝜂𝛾−
𝑁,𝑆

𝑢 on 𝑆 ∶= 𝜕𝐷2, (2c)

where 𝜂 ∶= 𝜇1∕𝜇2 in TE polarization and 𝜂 ∶= 𝜀1∕𝜀2 in TM polarization, and where the Dirichlet
and Neumann traces are, respectively, defined as

(𝛾±𝐷,Γ𝑢)(𝒓) = lim
𝛿→0+

𝑢(𝒓 ± 𝛿𝐧(𝒓)) and (𝛾±𝑁,Γ𝑢)(𝒓) = lim
𝛿→0+

∇𝑢(𝒓 ± 𝛿𝐧(𝒓)) ⋅ 𝐧(𝒓), 𝒓 ∈ Γ (3)

for a given curve Γ with unit normal 𝐧. (Note that the traces are defined with respect to the fixed
orientation of the unit normal 𝐧 to the curve Γ. The precise orientation of 𝐧 along the relevant
curves employed in this paper is displayed in Figure 1.)
As usual, the total field is expressed as

𝑢 =

{
𝑢𝑠 + 𝑢inc in 𝐷1

𝑢𝑡 in 𝐷2

(4)

in terms of the incident (𝑢inc), transmitted (𝑢𝑡), and scattered (𝑢𝑠) fields, with the latter satisfying
the Rayleigh expansion

𝑢𝑠(𝑥, 𝑦) =

⎧⎪⎨⎪⎩
∑
𝑛∈ℤ

𝐵+
𝑛 e𝑖(𝛼𝑛𝑥+𝛽𝑛𝑦) for 𝑦 > ℎ+ ∶= sup

(𝑥,𝑦)∈Ω2

𝑦∑
𝑛∈ℤ

𝐵−
𝑛 e𝑖(𝛼𝑛𝑥−𝛽𝑛𝑦) for 𝑦 < ℎ− ∶= inf

(𝑥,𝑦)∈Ω2

𝑦
(5a)

above (𝑦 > ℎ+) and below (𝑦 < ℎ−) the infinite array 𝐷2, where

𝛼𝑛 ∶= 𝛼 + 𝑛
2𝜋

𝐿
and 𝛽𝑛 ∶=

⎧⎪⎨⎪⎩
√

𝑘21 − 𝛼2
𝑛 if 𝛼2

𝑛 ≤ 𝑘21

𝑖
√

𝛼2
𝑛 − 𝑘21 if 𝛼2

𝑛 > 𝑘21.
(5b)

As it turns out it is convenient to distinguish the following three integer sets:

 ∶={𝑛 ∈ ℤ ∶ 𝛼2
𝑛 < 𝑘21}, (6a)

 ∶={𝑛 ∈ ℤ ∶ 𝛼2
𝑛 > 𝑘21}, (6b)
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282 STRAUSZER-CAUSSADE et al.

 ∶={𝑛 ∈ ℤ ∶ 𝛼2
𝑛 = 𝑘21}. (6c)

According to our time convention, it holds that for 𝑛 ∈  the modes

𝑢+
𝑛 (𝑥, 𝑦) ∶= e𝑖𝛼𝑛𝑥+𝑖𝛽𝑛𝑦 and 𝑢−

𝑛 (𝑥, 𝑦) ∶= e𝑖𝛼𝑛𝑥−𝑖𝛽𝑛𝑦 (7)

in (5a) are upgoing and downgoing propagative planewaves, respectively. For 𝑛 ∈  , in turn, 𝑢+
𝑛

(respectively, 𝑢−
𝑛 ) correspond to evanescent planewaves; they decay exponentially when 𝑦 → +∞

(respectively, 𝑦 → −∞) while they grow exponentially as 𝑦 → −∞ (respectively, 𝑦 → +∞).
In turn, the set of integers = (𝑘1, 𝛼, 𝐿) = {𝑛 ∈ ℤ ∶ (𝛼 + 2𝜋𝑛∕𝐿)2 = 𝑘21} = {𝑛 ∈ ℤ ∶ 𝛽𝑛 = 0},

corresponds to the so-called RW-anomaly configurations34 (see also Refs. 11, 13, 18). For such 𝑛

values, it holds that

𝑢𝑛(𝑥, 𝑦) ∶= 𝑢+
𝑛 (𝑥, 𝑦) = 𝑢−

𝑛 (𝑥, 𝑦) = e𝑖𝛼𝑛𝑥 (8a)

is a planewave that propagates parallel to the array along the 𝑥-axis. As it follows from separation
of variables, the additional quasi-periodic homogeneous solution of the Helmholtz equation is
given by the degenerated solution

𝑣𝑛(𝑥, 𝑦) ∶= 𝑦 e𝑖𝛼𝑛𝑥, 𝑛 ∈  . (8b)

Typically, the Rayleigh series (5) serves as the radiation condition for the quasi-periodic scat-
tered field 𝑢𝑠. Alternatively, however, such a radiation condition can be expressed in a less direct
form by projecting the scattered field onto the nonradiative modes. As it turns out, this latter form
of the radiation condition is more suitable for our BIE formulation. To derive it, we first note that
since 𝑢𝑠 solves the homogeneous Helmholtz equationΔ𝑢𝑠 + 𝑘21𝑢

𝑠 = 0 in𝐷1 and is quasi-periodic,
it formally admits the general series expansion

𝑢𝑠 =

⎧⎪⎨⎪⎩
∑

𝑛∈∪
{
𝐵+
𝑛 𝑢

+
𝑛 + 𝐶+

𝑛 𝑢
−
𝑛

}
+

∑
𝑛∈

{
𝐵+
𝑛 𝑢𝑛 + 𝐶+

𝑛 𝑣𝑛
}

for 𝑦 > ℎ+∑
𝑛∈∪

{
𝐵−
𝑛 𝑢

−
𝑛 + 𝐶−

𝑛 𝑢
+
𝑛

}
+

∑
𝑛∈

{𝐵−
𝑛 𝑢𝑛 + 𝐶−

𝑛 𝑣𝑛} for 𝑦 < ℎ−.
(9)

The fact that 𝑢𝑠 is radiative and bounded in the sense of (5) then implies that 𝐶±
𝑛 = 0 for all

𝑛 ∈ ℤ. Therefore, computing these coefficients by projecting 𝑢𝑠(𝑥, ±ℎ) and 𝜕𝑦𝑢
𝑠(𝑥, ±ℎ) for ℎ >

max{ℎ+, −ℎ−} onto e𝑖𝛼𝑛𝑥, we obtain the relation

𝐶±
𝑛 =

1

𝐿 ∫
𝐿

2

−
𝐿

2

{
𝜕𝑦𝑢

𝑠(𝑥, ±ℎ) ∓ 𝑖𝛽𝑛𝑢
𝑠(𝑥, ±ℎ)

}
e−𝑖𝛼𝑛𝑥 𝑑𝑥 ⋅

⎧⎪⎨⎪⎩
∓1

2𝑖𝛽𝑛
e−𝑖𝛽𝑛ℎ if 𝑛 ∈  ∪ 

1 if 𝑛 ∈  .
(10)

We then conclude from here that the radiation condition (5) can be equivalently enforced by
requesting 𝑢𝑠 to satisfy (9) and

1

𝐿 ∫
𝐿

2

−
𝐿

2

{
𝜕𝑦𝑢

𝑠(𝑥, ±ℎ) ∓ 𝑖𝛽𝑛𝑢
𝑠(𝑥, ±ℎ)

}
e−𝑖𝛼𝑛𝑥 𝑑𝑥 = 0, 𝑛 ∈ ℤ. (11)
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STRAUSZER-CAUSSADE et al. 283

F IGURE 2 Depiction of the curves involved in the derivation of Green’s representation formula

3 GREEN’S REPRESENTATION FORMULAS

Unlike most of previous works, our direct BIE formulation is derived from a boundary integral
representation formula of the scattered field𝑢𝑠 that uses the free-spaceHelmholtzGreen function:

𝐺𝑘(𝒓, 𝒓
′) ∶=

𝑖

4
𝐻

(1)
0 (𝑘|𝒓 − 𝒓′|) (𝒓 ≠ 𝒓′) (12)

with 𝑘 = 𝑘1. This formula is derived by applying Green’s third identity to 𝑢𝑠 in Ω1 ∶= 𝑈 ⧵ Ω2,
where 𝑈 is the unit-cell domain

𝑈 = {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑦 = 𝗒2(𝑡), 𝗑2(𝑡) < 𝑥 < 𝗑2(𝑡) + 𝐿, 𝑡 ∈ ℝ} (13)

that lies between the infinite parallel curves

Γ2 ∶= {𝒓 ∈ ℝ2 ∶ 𝒓 = 𝐫2(𝑡), 𝑡 ∈ ℝ} and Γ3 ∶= {𝒓 ∈ ℝ2 ∶ 𝒓 = 𝐫2(𝑡) + 𝐿𝐞1, 𝑡 ∈ ℝ}, (14)

which are parameterized by the smooth function 𝐫2(𝑡) = (𝗑2(𝑡), 𝗒2(𝑡)). These curves are assumed
to extend infinitely along the 𝑦-axis not intercepting the boundary of obstacle Ω2, which is con-
tained within 𝑈 (see Figure 1). To simplify the analysis of the windowed integral operators in
Sections 6–8 and Appendix B and unless stated otherwise we further assume that 𝗒2(𝑡) = 𝑡 for|𝑡| > max{ℎ+, −ℎ−}.
On the other hand, the 𝐶2 boundary of Ω2 is assumed given by

Γ1 ∶= {𝒓 ∈ ℝ2 ∶ 𝒓 = 𝐫1(𝑡), 𝑡 ∈ [0, 2𝜋)} (15)

in terms of a (global) positively oriented twice continuously differentiable 2𝜋-periodic parameteri-
zation 𝐫1 ∶ [0, 2𝜋) → ℝ2. (More general piecewise smooth curvesΓ1 admitting local (patch-based)
curve parameterizations as well as multiply connected obstaclesΩ2 can be easily incorporated in
our approach.)
We start off with the derivation of the integral representation formula for scattered field 𝑢𝑠 in

Ω1. Let us then consider the bounded domainΩ1,ℎ = 𝑈ℎ ∩ Ω1 where𝑈ℎ = {(𝑥, 𝑦) ∈ 𝑈 ∶ |𝑦| < ℎ}

and ℎ > max{ℎ+, −ℎ−}; see Figure 2 and (5a) for the definition of ℎ±. Applying Green’s third
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284 STRAUSZER-CAUSSADE et al.

identity we have that for any fixed target point 𝒓 = (𝑥, 𝑦) ∈ Ω1,ℎ it holds that

⎛⎜⎜⎜⎝∫Γ1 + ∫
Γ+ℎ

+ ∫
Γ−ℎ

+ ∫
Γ2,ℎ

− ∫
Γ3,ℎ

⎞⎟⎟⎟⎠
{

𝑢𝑠(𝒓′)
𝜕𝐺𝑘1(𝒓, 𝒓

′)

𝜕𝑛(𝒓′)
− 𝜕𝑛𝑢

𝑠(𝒓′)𝐺𝑘1(𝒓, 𝒓
′)

}
𝑑𝑠(𝒓′)

=

{
𝑢𝑠(𝒓) if 𝒓 ∈ Ω1,ℎ

0 if 𝒓 ∈ Ω2,
(16)

where integration is carried out over the multiply connected curve 𝜕Ω1,ℎ that comprises Γ1, Γ2,ℎ,
Γ3,ℎ, and the straight horizontal lines Γ±ℎ = {(𝑥, 𝑦) ∈ 𝑅 ∶ 𝑦 = ±ℎ} with normals pointing toward
the interior of Ω1,ℎ.
Applying the Cauchy–Schwartz inequality, we have

|||||∫Γ±ℎ

𝑢𝑠(𝒓′)
𝜕𝐺𝑘1(𝒓, 𝒓

′)

𝜕𝑛(𝒓′)
𝑑𝑠(𝒓′)

||||| ≤
(
∫
Γ±ℎ

|𝑢𝑠|2𝑑𝑠)1∕2(
∫
Γ±ℎ

|||||𝜕𝐺𝑘1(𝒓, 𝒓
′)

𝜕𝑛(𝒓′)

|||||
2

𝑑𝑠(𝒓′)

)1∕2

,

|||||∫Γ±ℎ

𝜕𝑛𝑢
𝑠(𝒓′)𝐺𝑘1(𝒓, 𝒓

′)𝑑𝑠(𝒓′)
||||| ≤

(
∫
Γ±ℎ

|𝜕𝑛𝑢𝑠|2𝑑𝑠)1∕2(
∫
Γ±ℎ

|||𝐺𝑘1(𝒓, 𝒓
′)
|||2𝑑𝑠(𝒓′)

)1∕2

.

(17)

Therefore, from the uniform boundedness of 𝑢𝑠 and 𝜕𝑛𝑢𝑠 on Γ±ℎ for all ℎ > max{ℎ+, −ℎ−} (which
follows from (5)), and the large-argument asymptotic expansion of the Hankel functions (see, e.g.,
Ref. 35), we obtain

|||||∫Γ±ℎ

𝑢𝑠(𝒓′)
𝜕𝐺𝑘1(𝒓, 𝒓

′)

𝜕𝑛(𝒓′)
𝑑𝑠(𝒓′)

||||| ≲ 1√
ℎ

→ 0 and

|||||∫Γ±ℎ

𝜕𝑛𝑢
𝑠(𝒓′)𝐺𝑘1(𝒓, 𝒓

′)𝑑𝑠(𝒓′)
||||| ≲ 1√

ℎ
→ 0 as ℎ → ∞.

(18)

Taking then the limit as ℎ → ∞ in the remaining integrals over Γ2,ℎ and Γ3,ℎ we arrive at the
integral representation formula

⎛⎜⎜⎝ ∫Γ1 +∫
Γ2

−∫
Γ3

⎞⎟⎟⎠
{

𝑢𝑠(𝒓′)
𝜕𝐺𝑘1(𝒓, 𝒓

′)

𝜕𝑛(𝒓′)
− 𝜕𝑛𝑢

𝑠(𝒓′)𝐺𝑘1(𝒓, 𝒓
′)

}
𝑑𝑠(𝒓′)

=

{
𝑢𝑠(𝒓) if 𝒓 ∈ Ω1

0 if 𝒓 ∈ Ω2.
(19)

Note that only the boundedness of the scattered field and its gradient was used in these
derivations, not the radiation condition. More, precisely, any bounded homogenous solutions
of the Helmholtz equation in Ω1 admits the integral representation (19). In particular, it can be
shown (cf. Ref. 36) that upgoing and downgoing planewaves (7) for 𝑛 ∈  as well as horizontally
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STRAUSZER-CAUSSADE et al. 285

propagating modes (8b) for 𝑛 ∈  satisfy

⎛⎜⎜⎝ ∫Γ2 −∫
Γ3

⎞⎟⎟⎠
{

𝑢±
𝑛 (𝒓

′)
𝜕𝐺𝑘1(𝒓, 𝒓

′)

𝜕𝑛(𝒓′)
− 𝜕𝑛𝑢

±
𝑛 (𝒓

′)𝐺𝑘1(𝒓, 𝒓
′)

}
𝑑𝑠(𝒓′) = 𝑢±

𝑛 (𝒓), 𝒓 ∈ 𝑈. (20)

Finally, applying the standard Green’s third identity inside Ω2, we readily obtain the
representation formulas

−∫
Γ1

{
𝑢inc(𝒓′)

𝜕𝐺𝑘1(𝒓, 𝒓
′)

𝜕𝑛(𝒓′)
− 𝜕𝑛𝑢

inc(𝒓′)𝐺𝑘1(𝒓, 𝒓
′)

}
𝑑𝑠(𝒓′) =

{
0 if 𝒓 ∈ Ω1

𝑢inc(𝒓) if 𝒓 ∈ Ω2

(21)

and

−∫
Γ1

{
𝑢𝑡(𝒓′)

𝜕𝐺𝑘2(𝒓, 𝒓
′)

𝜕𝑛(𝒓′)
− 𝜕𝑛𝑢

𝑡(𝒓′)𝐺𝑘2(𝒓, 𝒓
′)

}
𝑑𝑠(𝒓′) =

{
0 if 𝒓 ∈ Ω1

𝑢𝑡(𝒓) if 𝒓 ∈ Ω2

(22)

for the incident and transmitted fields inside Ω2.

4 PARAMETERIZED INTEGRAL OPERATORS

This section presents the notation and the main properties of the Helmholtz layer potentials and
boundary integral operators used in the construction of the direct BIE in Section 5.
For a given wavenumber 𝑘𝑗 , 𝑗 = 1 or 2, and a sufficiently regular density function 𝜑 ∶ Γ𝑖 → ℂ,

with Γ𝑖 being one of the curves defined above in Section 3, we, respectively, define the Helmholtz
single- and double-layer potentials by(

𝑆𝐿𝑖
𝑗
𝜑
)
(𝒓) ∶= ∫

Γ𝑖

𝐺𝑘𝑗 (𝒓, 𝒓
′)𝜑(𝒓′)𝑑𝑠(𝒓′) and

(
𝐷𝐿𝑖

𝑗
𝜑
)
(𝒓) ∶= ∫

Γ𝑖

𝜕𝐺𝑘𝑗 (𝒓, 𝒓
′)

𝜕𝑛(𝒓′)
𝜑(𝒓′)𝑑𝑠(𝒓′), 𝒓 ∈ ℝ2 ⧵ Γ,

(23)

where the integrals associated with unbounded curves Γ𝑖 , 𝑖 = 2, 3, should be interpreted as
improper conditionally convergent integrals.
As is well-known (cf. Ref. 37), these potentials satisfy the jump relations(

𝛾±𝐷,Γ𝓁
𝑆𝐿𝑖

𝑗

)
𝜑 = 𝑉𝓁,𝑖

𝑗
𝜑,

(
𝛾±𝑁,Γ𝓁

𝑆𝐿𝑖
𝑗

)
𝜑 = ∓𝛿𝑖,𝓁

𝜑

2
+ 𝐾𝓁,𝑖

𝑗
𝜑,(

𝛾±𝑁,Γ𝓁
𝐷𝐿𝑖

𝑗

)
𝜑 =𝑊𝓁,𝑖

𝑗
𝜑,

(
𝛾±𝐷,Γ𝓁

𝐷𝐿𝑖
𝑗

)
𝜑 = ±𝛿𝑖,𝓁

𝜑

2
+ 𝐾𝓁,𝑖

𝑗
𝜑,

(24)

where 𝑉𝓁,𝑖
𝑗
, 𝐾𝓁,𝑖

𝑗
, 𝐾𝓁,𝑖

𝑗
, and𝑊𝓁,𝑖

𝑗
are the single-layer, double-layer, adjoint double-layer, and hyper-

singular operators with wavenumber 𝑘𝑗 , target curve Γ𝓁, and source curve Γ𝑖 . Formally, these
operators are defined as (

𝑉𝓁,𝑖
𝑗

𝜑
)
(𝒓) ∶= ∫

Γ𝑖

𝐺𝑘𝑗 (𝒓, 𝒓
′)𝜑(𝒓′)𝑑𝑠(𝒓′), (25a)
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286 STRAUSZER-CAUSSADE et al.

(
𝐾𝓁,𝑖
𝑗

𝜑
)
(𝒓) ∶= ∫

Γ𝑖

𝜕𝐺𝑘𝑗 (𝒓, 𝒓
′)

𝜕𝑛(𝒓′)
𝜑(𝒓′)𝑑𝑠(𝒓′), (25b)

(
𝐾𝓁,𝑖
𝑗

𝜑
)
(𝒓) ∶= ∫

Γ𝑖

𝜕𝐺𝑘𝑗 (𝒓, 𝒓
′)

𝜕𝑛(𝒓)
𝜑(𝒓′)𝑑𝑠(𝒓′), (25c)

(
𝑊𝓁,𝑖

𝑗
𝜑
)
(𝒓) ∶= f .p.∫

Γ𝑖

𝜕2𝐺𝑘𝑗 (𝒓, 𝒓
′)

𝜕𝑛(𝒓)𝜕𝑛(𝒓′)
𝜑(𝒓′)𝑑𝑠(𝒓′), 𝒓 ∈ Γ𝓁, (25d)

where “f.p.” indicates that the integral in the definition of the hypersingular operator has to be
interpreted as a Hadamard finite part integral. The symbol 𝛿𝑖,𝓁 in (24), on the other hand, denotes
the Kronecker delta.
To deal with the quasi-periodicity condition, it will be convenient to work with the layer poten-

tials (23) and the integral operators (25) in parametric form. For a sufficiently smooth density
function 𝜑 ∶ Γ𝑖 → ℂ, we let 𝜙 = 𝜑◦𝐫𝑖 ∶ 𝐼𝑖 → ℂ, with 𝐼1 = [0, 2𝜋) and 𝐼2 = 𝐼3 = ℝ, and define
the parametric layer potentials as ( 𝑖

𝑗
𝜙)(𝒓) ∶= (𝑆𝐿𝑖

𝑗
𝜑)(𝒓) and (𝑖

𝑗
𝜙)(𝒓) ∶= (𝐷𝐿𝑖

𝑗
𝜑)(𝒓), or, more

explicitly as

( 𝑖
𝑗
𝜙)(𝒓) =

𝑖

4 ∫
𝐼𝑖

𝐻
(1)
0 (𝑘𝑗|𝒓 − 𝐫𝑖(𝜏)|)𝜙(𝜏)|𝐫′𝑖 (𝜏)|𝑑𝜏,

(𝑖
𝑗
𝜙)(𝒓) =

𝑖𝑘𝑗

4 ∫
𝐼𝑖

𝐻
(1)
1 (𝑘𝑗|𝒓 − 𝐫𝑖(𝜏)|) (𝒓 − 𝐫𝑖(𝜏)) ⋅ 𝐧𝑖(𝜏)|𝒓 − 𝐫𝑖(𝜏)| 𝜙(𝜏)|𝐫′

𝑖
(𝜏)|𝑑𝜏, 𝒓 ∈ ℝ2 ⧵ Γ,

(26)

where 𝐧𝑖 = (𝗒′
𝑖
, −𝗑′

𝑖
)∕|𝐫′

𝑖
| denotes the parameterized unit normal vector to the curve Γ𝑖 .

Similarly, the parametric boundary integral operators are defined as𝖵𝓁,𝑖
𝑗
𝜙 = (𝑉𝓁,𝑖

𝑗
𝜑)◦𝐫𝓁,𝖪

𝓁,𝑖
𝑗
𝜙 =

(𝐾𝓁,𝑖
𝑗

𝜑)◦𝐫𝓁, 𝖪̃
𝓁,𝑖
𝑗
𝜙 = (𝐾𝓁,𝑖

𝑗
𝜑)◦𝐫𝓁, and 𝖶𝓁,𝑖

𝑗
𝜙 = (𝑊𝓁,𝑖

𝑗
𝜑)◦𝐫𝓁. For self-contained, we write them in

extensive as

(𝖵𝓁,𝑖
𝑗
𝜙)(𝑡) =∫

𝐼𝑖

𝑄𝓁,𝑖
𝑉,𝑘

(𝑡, 𝜏)𝜙(𝜏)|𝐫′
𝑖
(𝜏)|𝑑𝜏, (𝖪𝓁,𝑖

𝑗
𝜙)(𝑡) =∫

𝐼𝑖

𝑄𝓁,𝑖
𝐾,𝑘

(𝑡, 𝜏)𝜙(𝜏)|𝐫′
𝑖
(𝜏)|𝑑𝜏,

(𝖪̃𝓁,𝑖
𝑗
𝜙)(𝑡) =∫

𝐼𝑖

𝑄𝓁,𝑖

𝐾,𝑘
(𝑡, 𝜏)𝜙(𝜏)|𝐫′

𝑖
(𝜏)|𝑑𝜏, (𝖶𝓁,𝑖

𝑗
𝜙)(𝑡) = f .p.∫

𝐼𝑖

𝑄𝓁,𝑖
𝑊,𝑘

(𝑡, 𝜏)𝜙(𝜏)|𝐫′
𝑖
(𝜏)|𝑑𝜏, (27)

where letting 𝑹𝓁,𝑖 = 𝐫𝓁(𝑡) − 𝐫𝑖(𝜏) and 𝑅𝓁,𝑖 = |𝐫𝓁(𝑡) − 𝐫𝑖(𝜏)|, the integral kernels can be expressed
as

𝑄𝓁,𝑖
𝑉,𝑗

(𝑡, 𝜏) ∶=
𝑖

4
𝐻

(1)
0 (𝑘𝑗𝑅𝓁,𝑖), (28a)

𝑄𝓁,𝑖
𝐾,𝑗

(𝑡, 𝜏) ∶=
𝑖𝑘𝑗

4
𝐻

(1)
1 (𝑘𝑗𝑅𝓁,𝑖)

𝑹𝓁,𝑖 ⋅ 𝐧𝑖(𝜏)

𝑅𝓁,𝑖
, (28b)

𝑄𝓁,𝑖

𝐾,𝑗
(𝑡, 𝜏) ∶= −

𝑖𝑘𝑗

4
𝐻

(1)
1 (𝑘𝑗𝑅𝓁,𝑖)

𝑹𝓁,𝑖 ⋅ 𝐧𝓁(𝑡)

𝑅𝓁,𝑖
, (28c)

𝑄𝓁,𝑖
𝑊,𝑗

(𝑡, 𝜏) ∶=
𝑖𝑘𝑗

4

(
𝐻

(1)
1 (𝑘𝑗𝑅𝓁,𝑖)

𝑅𝓁,𝑖
𝐧𝓁(𝑡) ⋅ 𝐧𝑖(𝜏) (28d)
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STRAUSZER-CAUSSADE et al. 287

+
{
𝑘𝑗𝑅𝓁,𝑖𝐻

(1)
0 (𝑘𝑗𝑅𝓁,𝑖) − 2𝐻

(1)
1 (𝑘𝑗𝑅𝓁,𝑖)

}𝑹𝓁,𝑖 ⋅ 𝐧𝑖(𝜏)𝑹𝓁,𝑖 ⋅ 𝐧𝓁(𝑡)

𝑅3
𝓁,𝑖

)
for 𝑖, 𝓁 = 1, 2, 3 and 𝑗 = 1, 2.
The following simple result greatly simplifies the final form of the BIEs derived in the sequel:

Proposition 1. The identities

𝖵2,2
1 = 𝖵3,3

1 , 𝖪2,2
1 = 𝖪3,3

1 , 𝖪̃2,2
1 = 𝖪̃3,3

1 , and 𝖶2,2
1 = 𝖶3,3

1 (29)

hold for the parameterized integral operators defined in (27) associated with the parallel curves Γ2

and Γ3 defined in (14). Furthermore,

𝖵2,3
1 = 𝖵3,2

1 , 𝖪2,3
1 = −𝖪3,2

1 , 𝖪̃2,3
1 = −𝖪̃3,2

1 , and 𝖶2,3
1 = 𝖶3,2

1 (30)

in the particular case when Γ2 and Γ3 are straight vertical lines with constant unit normal 𝐞1.

Proof. The first part (29) follows directly from the fact 𝐫3(𝑡) = 𝐫2(𝑡) + 𝐿𝐞1, 𝑡 ∈ ℝ and hence 𝑅2,2 =

𝑅3,3, 𝑹2,2 = 𝑹3,3, and 𝐧2 = 𝐧3 in (28). For the second part (30), the proof follows from writing the
integral kernels (28) using the parameterizations 𝐫2(𝑡) = −

𝐿

2
𝐞1 + 𝗒2(𝑡)𝐞2 for Γ2 and 𝐫3(𝑡) =

𝐿

2
𝐞1 +

𝗒2(𝑡)𝐞2 for Γ3 that have a constant unit normal 𝐧2(𝑡) = 𝐧3(𝑡) = 𝐞1 for all 𝑡 ∈ ℝ. Therefore, in view
of the fact that 𝑅2,3 =

√
𝐿2 + (𝗒2(𝑡) − 𝗒2(𝜏))2 = 𝑅3,2, 𝑹2,3 ⋅ 𝐞1 = −𝐿 = −𝑹3,2 ⋅ 𝐞1 and |𝐫′3| = |𝐫′3| in

this case, the identities in (30) readily follow. ■

5 BIE FORMULATION

A direct BIE formulation for the quasi-periodic transmission problem presented in Section 2 is
derived in this section. Our strategy lies in recasting the problem as a (formally) second-kind
system of BIEs for the interior traces of the total field on Γ1 and for the traces of the scattered field
on the unbounded curves Γ2 and Γ3. We follow here the Kress–Roach approach31 (also known as
Müller’s formulation32 for its 3D electromagnetic version) which yields two second-kind integral
equations fromenforcing the transmission conditions (2c) onΓ1. The remaining two equations, on
the other hand, are derived from the representation formula (19) that is used to suitably combine
the traces of the scattered field on Γ2 and Γ3, to obtain second-kind equations that account for the
quasi-periodicity of the scattered field. One salient advantage of our approach is that the resulting
integral operators are expressed in terms weakly-singular and smooth kernels that can integrated
with high precision using global trigonometric quadrature rules.
We start off by noting that by virtue of the quasi-periodicity condition (2b) the traces 𝛾−𝐷,Γ3

𝑢𝑠

and 𝛾−𝑁,Γ3
𝑢𝑠 can be expressed in terms of 𝛾+𝐷,Γ2

𝑢𝑠 and 𝛾+𝑁,Γ2
𝑢𝑠 (see (3) for the definition of the trace

operators). Indeed, using the curve parameterizations 𝐫𝑖 ∶ 𝐼𝑖 → Γ𝑖 for the curves Γ𝑖 , 𝑖 = 1, 2, 3, we
have that the scattered field traces on the Γ2 and Γ3 satisfy(

𝛾−𝐷,Γ3
𝑢𝑠

)
◦𝐫3 = 𝜁

(
𝛾+𝐷,Γ3

𝑢𝑠
)
◦𝐫2 and

(
𝛾−𝑁,Γ3

𝑢𝑠
)
◦𝐫3 = 𝜁

(
𝛾+𝑁,Γ3

𝑢𝑠
)
◦𝐫2 (𝜁 = e𝑖𝛼𝐿), (31)

where we have used the facts that Γ3 is parameterized by 𝐫3(𝑡) = 𝐫2(𝑡) + 𝐿𝐞1 and that the
curves share the same unit normal 𝐧2 = 𝐧3 = (𝗒′2, −𝗑′2)∕|𝐫′2| where 𝐫2 = (𝗑2, 𝗒2). It hence follows
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288 STRAUSZER-CAUSSADE et al.

F IGURE 3 Depiction of the relevant
curve parameterizations and associated
scattered-field and total-field traces (32)
utilized in our BIE formulation

from (31) that only the parameterized traces

𝜙1 ∶=
(
𝛾−𝐷,Γ1

𝑢𝑡
)
◦𝐫1 ∶ [0, 2𝜋) → ℂ 𝜙2 ∶=

(
𝛾−𝑁,𝛾1

𝑢𝑡
)
◦𝐫1 ∶ [0, 2𝜋) → ℂ

𝜙3 ∶=
(
𝛾+𝐷,Γ2

𝑢𝑠
)
◦𝐫2 ∶ ℝ → ℂ 𝜙4 ∶=

(
𝛾+𝑁,Γ2

𝑢𝑠
)
◦𝐫2 ∶ ℝ → ℂ

(32)

are needed to retrieve the fields by means of the representation formulas (19), (22), and (21).
Indeed, by the transmission conditions (2c) we have 𝛾+𝐷,Γ1

𝑢𝑠 = 𝛾−𝐷,Γ1
(𝑢𝑡 − 𝑢inc) and 𝛾+𝑁,Γ1

𝑢𝑠 =

𝛾−𝑁,Γ1
(𝜂𝜕𝑛𝑢

𝑡 − 𝑢inc). Therefore, the representation formulas (19) and (21) can be combined
with (31) to obtain the following integral representation of the scattered field:

𝑢𝑠(𝒓) =
(1

1𝜙1

)
(𝒓) − 𝜂

(1
1𝜙2

)
(𝒓) +

(2
1𝜙3

)
(𝒓) −

(2
1𝜙4

)
(𝒓)

− 𝜁
{(3

1𝜙3

)
(𝒓) −

(3
1𝜙4

)
(𝒓)

}
, 𝒓 ∈ Ω1,

(33)

where we have used the parameterized form of the layer potentials (26). Similarly, the transmitted
field in (22) can be expressed as

𝑢𝑡(𝒓) = −
(1

2𝜙1

)
(𝒓) +

(1
2𝜙2

)
(𝒓), 𝒓 ∈ Ω2 (34)

in terms of the unknown densities (32).
To fix ideas, we present Figure 3 which depicts the curve parameterizations involved in the

derivations above together with the parameterized traces (32) that are the unknowns of our
BIE formulation.
We then proceed to derive a system of BIEs for (32). Letting

𝑓 =
(
𝛾−𝐷,Γ1

𝑢inc
)
◦𝐫1 and 𝑔 =

(
𝛾−𝑁,Γ1

𝑢inc
)
◦𝐫1, (35)

we have that a direct application of the jump conditions (24) to evaluate (33) and its normal
derivative on Γ1, yields the equations

−𝑓 +
𝜙1

2
= 𝖪1,1

1 𝜙1 − 𝜂𝖵1,1
1 𝜙2 + (𝖪1,2

1 − 𝜁𝖪1,3
1 )𝜙3 − (𝖵1,2

1 − 𝜁𝖵1,3
1 )𝜙4 (36a)
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STRAUSZER-CAUSSADE et al. 289

−𝑔 +
𝜂

2
𝜙2 = 𝖶1,1

1 𝜙1 − 𝜂𝖪̃1,1
1 𝜙2 + (𝖶1,2

1 − 𝜁𝖶1,3
1 )𝜙3 − (𝖪̃1,2

1 − 𝜁𝖪̃1,3
1 )𝜙4, (36b)

which hold in [0, 2𝜋). Similarly, using (24) to evaluate the transmitted field (34) and its normal
derivative on Γ1, we obtain

𝜙1

2
= − 𝖪1,1

2 𝜙1 + 𝖵1,1
2 𝜙2, (37a)

𝜙2

2
= −𝖶1,1

2 𝜙1 + 𝖪̃1,1
2 𝜙2, (37b)

which hold in [0, 2𝜋).
Therefore, adding (37a) to (36a) and adding (37b) to (36b) we arrive at the following integral

equations:

𝜙1 +

4∑
𝑞=1

𝖬1,𝑞𝜙𝑞 = 𝑓 and
(
1 + 𝜂

2

)
𝜙2 +

4∑
𝑞=1

𝖬2,𝑞𝜙𝑞 = 𝑔 in [0, 2𝜋), (38)

where

𝖬1,1 ∶= 𝖪1,1
2 − 𝖪1,1

1 , 𝖬1,2 ∶= 𝜂𝖵1,1
1 − 𝖵1,1

2 , 𝖬1,3 ∶= 𝜁𝖪1,3
1 − 𝖪1,2

1 , 𝖬1,4 ∶= 𝖵1,2
1 − 𝜁𝖵1,3

1 ,

𝖬2,1 ∶= 𝖶1,1
2 − 𝖶1,1

1 , 𝖬2,2 ∶= 𝜂𝖪̃1,1
1 − 𝖪̃1,1

2 , 𝖬2,3 ∶= 𝜁𝖶1,3
1 − 𝖶1,2

1 , 𝖬2,4 ∶= 𝖪̃1,2
1 − 𝜁𝖪̃1,3

1 .
(39)

Remark 1. As mentioned above, all the integral operators in (39) are weakly singular. Indeed, for
instance, the seemingly hypersingular operator𝖬2,1 = 𝖶1,1

2 − 𝖶1,1
1 is weakly singular by virtue of

the fact that hypersingular parametric kernel, defined in (28d), can be expressed as

𝑄1,1
𝑊,𝑗

(𝑡, 𝜏) =
𝐧1(𝑡) ⋅ 𝐧1(𝜏)

2𝜋𝑅2
1,1

+ 𝑎𝑗(𝑡, 𝜏) log(|𝑡 − 𝜏|) + 𝑏𝑗(𝑡, 𝜏), 𝑡, 𝜏 ∈ [0, 2𝜋), (40)

where 𝑎𝑗, 𝑏𝑗 ∶ [0, 2𝜋)2 → ℂ are smooth 2𝜋-periodic functions in both arguments.38 Therefore,
since the hypersingular static terms 𝐧1(𝑡)⋅𝐧1(𝜏)

2𝜋𝑅2
1,1

cancels when we take the difference 𝑄1,1
𝑊,2 − 𝑄1,1

𝑊,1,

the integral kernel of𝖬2,1 features only a logarithmic singularity as 𝑡 → 𝜏.

To find the two additional integral equations, we take the Dirichlet and Neumann traces (3)
of (33) on Γ2 and Γ3 using the jump relations (24), to obtain

𝜙3

2
= 𝖪2,1

1 𝜙1 − 𝜂𝖵2,1
1 𝜙2 + (𝖪2,2

1 − 𝜁𝖪2,3
1 )𝜙3 − (𝖵2,2

1 − 𝜁𝖵2,3
1 )𝜙4, (41a)

𝜙4

2
= 𝖶2,1

1 𝜙1 − 𝜂𝖪̃2,1
1 𝜙2 + (𝖶2,2

1 − 𝜁𝖶2,3
1 )𝜙3 − (𝖪̃2,2

1 − 𝜁𝖪̃2,3
1 )𝜙4, (41b)

𝜁
𝜙3

2
= 𝖪3,1

1 𝜙1 − 𝜂𝖵3,1
1 𝜙2 + (𝖪3,2

1 − 𝜁𝖪3,3
1 )𝜙3 − (𝖵3,2

1 − 𝜁𝖵3,3
1 )𝜙4, (41c)

𝜁
𝜙4

2
= 𝖶3,1

1 𝜙1 − 𝜂𝖪̃3,1
1 𝜙2 + (𝖶3,2

1 − 𝜁𝖶3,3
1 )𝜙3 − (𝖪̃3,2

1 − 𝜁𝖪̃3,3
1 )𝜙4, (41d)
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290 STRAUSZER-CAUSSADE et al.

which hold in ℝ. We then combine these equations to cancel all the weakly-singular (𝖵𝑖,𝑖
1 , 𝖪𝑖,𝑖

1 ,
and 𝖪̃𝑖,𝑖

1 , 𝑖 = 2, 3) and hypersingular (𝖶𝑖,𝑖
1 , 𝑖 = 2, 3) operators. In detail, multiplying (41a) by 𝜁 and

adding it to (41c), and multiplying (41b) by 𝜁 and adding it to (41d), while using the identities
in (29), we arrive at

𝜁𝜙3 +

4∑
𝑞=1

𝖬3,𝑞𝜙𝑞 = 0 and 𝜁𝜙4 +

4∑
𝑞=1

𝖬4,𝑞𝜙𝑞 = 0 in ℝ, (42)

where

𝖬3,1 ∶= −𝜁𝖪2,1
1 − 𝖪3,1

1 , 𝖬3,2 = 𝜂(𝜁𝖵2,1
1 + 𝖵3,1

1 ), 𝖬3,3 ∶= 𝜁2𝖪2,3
1 − 𝖪3,2

1 , 𝖬3,4 = 𝖵3,2
1 − 𝜁2𝖵2,3

1 ,

𝖬4,1 ∶= −𝜁𝖶2,1
1 − 𝖶3,1

1 , 𝖬4,2 = 𝜂(𝜁𝖪̃2,1
1 + 𝖪̃3,1

1 ), 𝖬4,3 ∶= 𝜁2𝖶2,3
1 − 𝖶3,2

1 , 𝖬4,4 = 𝖪̃3,2
1 − 𝜁2𝖪̃2,3

1 .
(43)

Clearly, the operators (43) have smooth kernels, by virtue of the fact that integration and
evaluation are carried out over different well-separated curves.
Finally, lumping the unknown density functions (32) in a single vector 𝝓 = [𝜙1, 𝜙2, 𝜙3, 𝜙4]

⊤ and
combining the Equations (38) and (42) we obtain the system

𝐄𝝓 +𝗠𝝓 = 𝝓inc, (44)

where𝗠 is the 4 × 4 block matrix integral operator [𝗠]𝑖,𝑗 ∶= 𝖬𝑖,𝑗 , 𝑖, 𝑗 = 1, … , 4,

𝐄 ∶=

⎡⎢⎢⎢⎢⎣
1

1+𝜂

2
𝜁

𝜁

⎤⎥⎥⎥⎥⎦
and 𝝓inc ∶=

⎡⎢⎢⎢⎢⎣
𝑓

𝑔

0

0

⎤⎥⎥⎥⎥⎦
. (45)

Two observations about the system (44) are in order. The first one is that the last two equa-
tions in (44), which account for the quasi-periodicity of the scattered field, need to be satisfied in
all of ℝ. Being these equations as well as the associated density functions 𝜙3 and 𝜙4 defined in
an unbounded interval, they need to be effectively truncated in order for them to be suitable to
Nyström or boundary element discretizations. We do so in the next section by means of the WGF
method. Second, note that the integral equation system (44) does not properly account for the
radiation condition. Indeed, only the boundedness and the quasi-periodicity of the scattered field
were used in its derivation. This important issue is also address in the next section.

Remark 2. In light of Proposition 1, half of the operators (43) can be significantly simplified in the
case when Γ2 and Γ3 are parallel vertical lines. In fact, in such case we have

𝖬3,3 = − (1 + 𝜁2)𝖪3,2
1 , 𝖬3,4 = (1 − 𝜁2)𝖵3,2

1 ,

𝖬4,3 = − (1 − 𝜁2)𝖶2,3
1 , 𝖬4,4 = (1 + 𝜁2)𝖪̃3,2

1 .
(46)

Remark 3. Note that other direct formulations can be used to account for the transmission condi-
tions on Γ1. For instance, Kress–Roach equations (38) can be replaced by the ones resulting from
the well-known Costabel–Stephan formulation,39 that can be easily derived by combining (36)
and (37) so as to eliminate 𝜙1 and 𝜙2 from the left-hand side of the equations. In this case, we
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STRAUSZER-CAUSSADE et al. 291

obtain

4∑
𝑞=1

𝖬̃1,𝑞𝜙𝑞 = 𝑓 and
4∑

𝑞=1

𝖬̃2,𝑞𝜙𝑞 = 𝑔 in [0, 2𝜋), (47)

where

𝖬̃1,1 = −𝖪1,1
2 − 𝖪1,1

1 , 𝖬̃1,2 = 𝜂𝖵1,1
1 + 𝖵1,1

2 , 𝖬̃1,3 = 𝖬1,3, 𝖬̃1,4 = 𝖬1,4,

𝖬̃2,1 = −𝜂𝖶1,1
2 − 𝖶1,1

1 , 𝖬̃2,2 = 𝜂𝖪̃1,1
1 + 𝜂𝖪̃1,1

2 , 𝖬̃2,3 = 𝖬2,3, 𝖬̃2,4 = 𝖬2,4.
(48)

Unlike the advocated Kress–Roach approach, this formulation involves the (noncompact)
hypersingular operator 𝖬̃2,1 that negatively affect the conditioning of the discretized integral equa-
tion system, hindering the use of GMRES40 and standard acceleration techniques based on fast
matrix–vector products.26

6 WGFMETHOD

In view of the definitions in (43), it is clear that several of the operators making up 𝗠 involve
integration and evaluation over the unbounded curves Γ2 or Γ3. To reduce the BIE system (44)
to a finite-size computational domain where standard BIE solvers can be applied, the domain of
integration of the boundary integral operators over Γ2 and Γ3 has to be effectively truncated. We
address this issue here by means of the WGF method.27
The WGF method relies on the use of a slow-rise window function 𝜒(⋅, 𝑐𝐴,𝐴) ∈ 𝐶∞

0 (ℝ), 𝑐 ∈
(0, 1), 𝐴 > 0, which following27 is selected as

𝜒(𝑦, 𝑦0, 𝑦1) ∶=

⎧⎪⎨⎪⎩
1 if |𝑦| ≤ 𝑦0,

exp

(
2 e−1∕𝑢

𝑢 − 1

)
if 𝑦0 < |𝑦| < 𝑦1, 𝑢 =

|𝑦|−𝑦0

𝑦1−𝑦0
,

0 if |𝑦| > 𝑦1.

(49)

Note that 𝜒(⋅, 𝑐𝐴,𝐴) vanishes together with all its derivatives in ℝ ⧵ [−𝐴,𝐴] and it equals one
within [−𝑐𝐴, 𝑐𝐴]. In what follows we assume that 𝑐𝐴 > max{ℎ+, −ℎ−} so that the periodic array
𝐷2 lies within the strip ℝ × [−𝑐𝐴, 𝑐𝐴].
Next, letting

𝑤𝐴 ∶= 𝜒(⋅, 𝑐𝐴,𝐴)◦𝗒2 and 𝑤𝑐
𝐴
∶= 1 − 𝑤𝐴, 𝑡 ∈ ℝ, (50)

and replacing the split density

𝜙𝑗 = 𝑤𝐴𝜙𝑗 + 𝑤𝑐
𝐴
𝜙𝑗 for 𝑗 = 3, 4 (51)

in (38)–(42), we obtain

𝜙1(𝑡) +

2∑
𝑞=1

𝖬1,𝑞[𝜙𝑞](𝑡) +

4∑
𝑞=3

𝖬1,𝑞[𝑤𝐴𝜙𝑞](𝑡) = 𝑓(𝑡) − 𝜓1(𝑡), 𝑡 ∈ [0, 2𝜋), (52a)

(
1 + 𝜂

2

)
𝜙2(𝑡) +

2∑
𝑞=1

𝖬2,𝑞[𝜙𝑞](𝑡) +

4∑
𝑞=3

𝖬2,𝑞[𝑤𝐴𝜙𝑞](𝑡) = 𝑔(𝑡) − 𝜓2(𝑡), 𝑡 ∈ [0, 2𝜋), (52b)
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292 STRAUSZER-CAUSSADE et al.

𝜁𝜙3(𝑡) +

2∑
𝑞=1

𝖬3,𝑞[𝜙𝑞](𝑡) +

4∑
𝑞=3

𝖬3,𝑞[𝑤𝐴𝜙𝑞](𝑡) = − 𝜓3(𝑡), 𝑡 ∈ ℝ, (52c)

𝜁𝜙4(𝑡) +

2∑
𝑞=1

𝖬4,𝑞[𝜙𝑞](𝑡) +

4∑
𝑞=3

𝖬4,𝑞[𝑤𝐴𝜙𝑞](𝑡) = − 𝜓4(𝑡), 𝑡 ∈ ℝ, (52d)

where the terms that were moved to the right-hand side in (52) are the tail integrals

𝜓𝑝 = 𝖬𝑝,3[𝑤
𝑐
𝐴
𝜙3] + 𝖬𝑝,4[𝑤

𝑐
𝐴
𝜙4], 𝑝 = 1,… , 4. (53)

Our BIE formulation relies on constructing suitable approximations of 𝜓𝑝, 𝑝 = 1,… , 4, taking
into account the radiation condition (11) and the superalgebraic decay as 𝐴 → ∞ of certain oscil-
latory windowed integrals. Upon replacing 𝜓𝑝, 𝑝 = 1,… , 4, by their respective approximations
in (52) and restricting the integral equations (52c) and (52d) to the bounded interval [−𝐴,𝐴], we
obtain a windowed integral equation suitable to be discretize by standard Nyström or boundary
element methods.
We then proceed to construct suitable approximations for the tail integrals 𝜓𝑝, 𝑝 = 1,… , 4.

For the sake of presentation simplicity and without loss of generality in the remainder of this
section, we assume that 𝐫2(𝑡) = −

𝐿

2
𝐞1 + 𝑡𝐞2 (i.e., 𝗒2(𝑡) = 𝑡 ) for 𝑡 > |𝑐𝐴|. From the general quasi-

periodic expansion (9) of the scattered field, it follows that within supp(𝑤𝑐
𝐴
) = {𝑡 ∈ ℝ ∶ |𝑡| ≥ 𝑐𝐴}

the parameterized traces𝜙3 and𝜙4 (32) associatedwith the unbounded curvesΓ2, can be expressed
as

𝜙3(𝑡) =
∑

𝑛∈∪
e
−𝑖𝛼𝑛

𝐿

2
{
𝐵±
𝑛 e±𝑖𝛽𝑛𝑡 +𝐶±

𝑛 e∓𝑖𝛽𝑛𝑡
}
+

∑
𝑛∈

e
−𝑖𝛼𝑛

𝐿

2
{
𝐵±
𝑛 + 𝐶±

𝑛 𝑡
}
,

𝜙4(𝑡) =
∑

𝑛∈∪
𝑖𝛼𝑛 e

−𝑖𝛼𝑛
𝐿

2
{
𝐵±
𝑛 e±𝑖𝛽𝑛𝑡 +𝐶±

𝑛 e∓𝑖𝛽𝑛𝑡
}
+

∑
𝑛∈

𝑖𝛼𝑛 e
−𝑖𝛼𝑛

𝐿

2
{
𝐵±
𝑛 + 𝐶±

𝑛 𝑡
} (54)

for ±𝑡 > 𝑐𝐴. Splitting 𝑤𝑐
𝐴
= 1 − 𝑤𝐴 as 𝑤𝑐

𝐴
= 𝜒−

𝐴
+ 𝜒+

𝐴
where

𝜒−
𝐴
= 𝟏(−∞,0)𝑤

𝑐
𝐴

and 𝜒+
𝐴
= 𝟏(0,∞)𝑤

𝑐
𝐴
, (55)

and replacing (54) in (53), we arrive at

𝜓𝑝 = 𝜓
(𝐵)
𝑝 + 𝜓

(𝐶)
𝑝 , 𝑝 = 1,… , 4, (56)

where

𝜓
(𝐵)
𝑝 =

∑
𝑛∈ℤ

e
𝑖𝛼𝑛

𝐿

2 𝐵+
𝑛

{
𝖬𝑝,3

[
𝜒+
𝐴
e𝑖𝛽𝑛|⋅|] + 𝑖𝛼𝑛𝖬𝑝,4

[
𝜒+
𝐴
e𝑖𝛽𝑛|⋅|]}

+
∑
𝑛∈ℤ

e
𝑖𝛼𝑛

𝐿

2 𝐵−
𝑛

{
𝖬𝑝,3

[
𝜒−
𝐴
e𝑖𝛽𝑛|⋅|] + 𝑖𝛼𝑛𝖬𝑝,4

[
𝜒−
𝐴
e𝑖𝛽𝑛|⋅|]} (57)
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STRAUSZER-CAUSSADE et al. 293

and

𝜓
(𝐶)
𝑝 =

∑
𝑛∈∪

e
−𝑖𝛼𝑛

𝐿

2 𝐶+
𝑛

{
𝖬𝑝,3

[
𝜒+
𝐴
e−𝑖𝛽𝑛|⋅|] + 𝑖𝛼𝑛𝖬𝑝,4

[
𝜒+
𝐴
e−𝑖𝛽𝑛|⋅|]}

+
∑

𝑛∈∪
e
−𝑖𝛼𝑛

𝐿

2 𝐶−
𝑛

{
𝖬𝑝,3

[
𝜒−
𝐴
e−𝑖𝛽𝑛|⋅|] + 𝑖𝛼𝑛𝖬𝑝,4

[
𝜒−
𝐴
e−𝑖𝛽𝑛|⋅|]}

+
∑
𝑛∈

e
−𝑖𝛼𝑛

𝐿

2 𝐶+
𝑛

{
𝖬𝑝,3

[
𝜒+
𝐴
⋅
]
+ 𝑖𝛼𝑛𝖬𝑝,4

[
𝜒+
𝐴
⋅
]}

+
∑
𝑛∈

e
−𝑖𝛼𝑛

𝐿

2 𝐶−
𝑛

{
𝖬𝑝,3

[
𝜒−
𝐴
⋅
]
+ 𝑖𝛼𝑛𝖬𝑝,4

[
𝜒−
𝐴
⋅
]}

.

(58)

Let us first examine the term 𝜓
(𝐵)
𝑝 , 𝑝 = 1,… , 4. In view of the boundedness of the Rayleigh

coefficients 𝐵±
𝑛 in (57) and the exponential decay as |𝑡| → ∞ of the functions e𝑖𝛽𝑛|𝑡| for 𝛽𝑛 ∈ 𝑖ℝ>0

(i.e., 𝑛 ∈ ), we have that the approximation
𝜓
(𝐵)
𝑝 ≈

∑
𝑛∈∪

e
𝑖𝛼𝑛

𝐿

2 𝐵+
𝑛

{
𝖬𝑝,3

[
𝜒+
𝐴
e𝑖𝛽𝑛|⋅|] + 𝑖𝛼𝑛𝖬𝑝,4

[
𝜒+
𝐴
e𝑖𝛽𝑛|⋅|]}

+
∑

𝑛∈∪
e
𝑖𝛼𝑛

𝐿

2 𝐵−
𝑛

{
𝖬𝑝,3

[
𝜒−
𝐴
e𝑖𝛽𝑛|⋅|] + 𝑖𝛼𝑛𝖬𝑝,4

[
𝜒−
𝐴
e𝑖𝛽𝑛|⋅|]} (59)

introduces errors that decrease exponentially fast as 𝐴 → ∞.
Next, for 𝛽𝑛 ∈ ℝ≥0 (i.e., 𝑛 ∈  ∪ ), we note that 𝖬𝑝,𝑞[𝜒

±
𝐴
e𝑖𝛽𝑛|⋅|](𝑡) for 𝑝 = 1, 2, 𝑡 ∈ [0, 2𝜋),

and for 𝑝 = 3, 4, 𝑡 ∈ [−𝑐𝐴, 𝑐𝐴], decays superalgebraically fast as𝐴 → ∞ (i.e., faster than𝑂(((𝑘1 +

𝛽𝑛)𝐴)−𝑚) for all 𝑚 ∈ ℕ).28,29,41 We refer the reader to Appendix B for a detailed justification of
this estimate. Given then the fast convergence of these windowed integrals as 𝐴 → ∞, we adopt
to approximation

𝜓
(𝐵)
𝑝 ≈ 0, 𝑝 = 1,… , 4. (60)

Let us now look into the terms 𝜓
(𝐶)
𝑝 , 𝑝 = 1,… , 4. In principle, the radiation condition (11)

requires all the coefficients 𝐶±
𝑛 in (58) to vanish. These conditions can be easily incorporated in

our formulation by simply setting 𝜓
(𝐶)
𝑝 = 0. This together with (60)—which amount to simply

ignore the tail integrals (53)—yield the following windowed integral equation:

𝐄𝝓𝐴 +𝗠𝐖𝐴𝝓𝐴 = 𝝓inc, (61)

where

𝐖𝐴(𝑡) ∶=

⎡⎢⎢⎢⎢⎣
1

1

𝑤𝐴(𝑡)

𝑤𝐴(𝑡)

⎤⎥⎥⎥⎥⎦
, 𝑡 ∈ ℝ. (62)

Here, the first two equations of the system (61), associated with the curve Γ1, correspond to
the parameter 𝑡 ∈ [0, 2𝜋), while the last two, associated with the truncated curve Γ2,𝐴 = {𝒓 ∈

ℝ2 ∶ 𝒓 = 𝐫2(𝑡), |𝑡| ≤ 𝐴}, correspond to 𝑡 ∈ supp(𝑤𝐴) = [−𝐴,𝐴]. Consequently, the entries 𝜙𝑗,𝐴,
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294 STRAUSZER-CAUSSADE et al.

F IGURE 4 Solution of the problem scattering of a planewave at 𝜃inc =
𝜋

4
by an infinite periodic array of

kite-shaped obstacles obtained using the naive windowed BIE (61) and the scattered field approximation (67) for
𝑘2 = 20, 𝐿 = 2, 𝑐 = 0.5, and various window sizes 𝐴 and wavenumbers 𝑘1 at and around an RW-anomaly
configuration corresponding to 𝑘1 = 𝑘∗ ≈ 10.7261. Energy balance error (65) as a function of 𝐴 in (A) semilog
and (B) log–log scale computed at ℎ = 1. (C) Wavenumber sweep of the energy balance error around 𝑘∗. (D) Real
part of the computed total field within the region [−

𝐿

2
,
𝐿

2
] × [−𝑐𝐴, 𝑐𝐴] for 𝑘1 = 10.68 and 𝐴 = 20𝜆.

𝑗 = 1,… , 4, of the solution vector 𝝓𝐴 are considered functions 𝜙𝑗,𝐴 ∶ [0, 2𝜋] → ℂ for 𝑗 = 1, 2 and
𝜙𝑗,𝐴 ∶ [−𝐴,𝐴] → ℂ for 𝑗 = 3, 4.

7 AN ILLUSTRATIVE NUMERICAL EXAMPLE

In this section, we consider a series of numerical experiments aimed at assessing the accuracy
of the quasi-periodic problem solutions produced by the windowed integral equation (61). In all
such experiments, we consider the diffraction and transmission of a planewave (1) in TE polariza-
tion (𝜂 = 1) that impinges at an angle 𝜃inc = 𝜋

4
on an infinite array of period 𝐿 = 2 consisting of

penetrable kite-shaped obstacles (see Figure 4D) parameterized by

𝐫1(𝑡) =

{
1

2
cos 𝑡 +

13

40
cos 2𝑡 −

13

40

}
𝐞1 +

3

4
sin 𝑡 𝐞2, 𝑡 ∈ [0, 2𝜋). (63)
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STRAUSZER-CAUSSADE et al. 295

For clarity of exposition the left- (Γ2) and right (Γ3)-hand-side boundaries of the unit cell are
selected as straight vertical lines parameterized by

𝐫2(𝑡) = −
𝐿

2
𝐞1 + 𝑡𝐞2 and 𝐫3(𝑡) =

𝐿

2
𝐞1 + 𝑡𝐞2, 𝑡 ∈ ℝ, (64)

respectively.
In our first experiment, the error in the numerical solution is assessed by means of the energy

balance relation (Equation (A.9)). We define the energy balance error as how much numerical
solutions deviate from conserving energy, or more precisely, as

error𝑒𝑏 ∶=
|||||2Re (𝐵−

0 ) +
∑
𝑛∈

𝛽𝑛
𝛽

{|𝐵−
𝑛 |2 + |𝐵+

𝑛 |2}|||||, (65)

where the coefficients in (65) are computed via (see Appendix A)

𝐵±
𝑛 ∶=

e∓𝑖𝛽𝑛ℎ

𝐿 ∫
𝐿

2

−
𝐿

2

𝑢𝑠
𝐴
(𝑥, ±ℎ) e−𝑖𝛼𝑛𝑥 𝑑𝑥 (66)

using the WGF approximation of the scattered field given by

𝑢𝑠
𝐴
(𝒓) = (1

1𝜙𝐴,1)(𝒓) − 𝜂(1
1𝜙𝐴,2)(𝒓) + (2

1 − 𝜁3
1)[𝑤𝐴𝜙𝐴,3](𝒓) − (2

1 − 𝜁3
1 )[𝑤𝐴𝜙𝐴,4](𝒓) (67)

for 𝒓 = (𝑥, 𝑦) ∈ Ω1 with 𝜙𝐴,𝑗 , 𝑗 = 1,… , 4, denoting the components of the vector density 𝝓𝐴 solu-
tion of (61). Note that, as in the approximations that led to the windowed BIE system (61), the
errors produced by the windowed integrals in (67) decay superalgebraically fast as 𝐴 → ∞ for
𝒓 ∈ Ω1,𝐴 ∶= {(𝑥, 𝑦) ∈ Ω1 ∶ 𝜒(𝑦, 𝑐𝐴,𝐴) = 1} when the exact scattered field traces, 𝜙𝑗 , 𝑗 = 1,… , 4

defined in (32), are used.
Highly accurate numerical approximations of 𝝓𝐴 are used in all the examples presented in

this section. These are obtained by numerically solving (61) by means of the spectrally accurate
Martensen–Kussmaul (MK) Nyström method Ref. [42, section 3.5] employing a large number of
discretization points (roughly, eight points per wavelength on each of the relevant curves). The
finite-domain integrals in (66), on the other hand, are computed using the trapezoidal quadra-
ture rule which, by virtue of the fact that 𝑢𝑠

𝐴
(⋅, ±ℎ) e−𝑖𝛼𝑛⋅ is smooth and approximately 𝐿-periodic

(see Figure 5), it is expected to converge fast as the number of quadrature nodes increases. This
choice of discretizationmethods andparameter values ensure that the dominant part of the energy
balance error (65) stems solely from the WGF approximation employed in (61) and (67). In what
follows of this section we consider fixed parameter values 𝑘2 = 20, 𝑐 = 0.5, and ℎ = 1.
Figure 4A-B displays the energy balance error (65) in semilog and log–log scale, respectively, as

a function of thewindow size𝐴 (measured inwavelengths 𝜆 = 2𝜋∕𝑘1) for three different informa-
tive 𝑘1 values at and around anRW-anomaly configuration corresponding to 𝑘1 = 𝑘∗ = 2𝜋∕(𝐿(1 −

sin 𝜃inc)) ≈ 10.7261 (𝛽1 = 0 in this case). At 𝑘1 = 10.68—to the left of 𝑘∗ when 𝛽1 ∈ 𝑖ℝ>0—the
expected superalgebraic convergence is achieved, as it can be seen in the blue nearly constant-
slope curve plotted in semilog scale in Figure 4A. Figure 4D displays the real part of the total field
within the region [−

𝐿

2
,
𝐿

2
] × [−𝑐𝐴, 𝑐𝐴] = Ω1,𝐴 ∪ Ω2 for𝐴 = 20𝜆, produced by the numerical eval-

uation of formulas (67) and (22). At 𝑘1 = 𝑘∗ when 𝛽1 = 0, in turn, slow (algebraic) convergence is
observedwhile at 𝑘 = 10.76—to the right of 𝑘∗when𝛽1 ∈ ℝ>0—noconvergence at all is observed.
To examine this issue in more detail, a wider range of 𝑘1 values is considered in Figure 4C, which
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296 STRAUSZER-CAUSSADE et al.

(A) (B)

(C)

F IGURE 5 Errors (68) in the quasi-periodicity condition of the numerical solution produced by the
windowed integral equation (61). (A) Depiction of the supercell configuration used to assess the left (𝑙) and right
(𝑟)mismatch errors (68). The density functions associated with the 3𝐿-periodic supercell are obtained from the
densities of the middle 𝐿-periodic cell by multiplying them by 𝜁 = e𝑖𝛼𝐿 and 𝜁−1 = e−𝑖𝛼𝐿 to transfer them from left
to right and from right to left, respectively. Errors in semilog (B) and log–log (C) scale for the exterior
wavenumbers 𝑘1 = 10.68, 𝑘∗, and 10.76, and window sizes 𝐴 ∈ [10𝜆, 60𝜆].

shows a sweep of the error over the interval [𝑘∗ − 0.1, 𝑘∗ + 0.1]. Clearly, significant accuracy dete-
rioration occurs at and around the RW-anomaly configuration for all the window sizes considered
in this experiment.
There are two main factors that could explain the accuracy deterioration seen in Figure 4C.

On the one hand we have the radiation condition, which is indirectly incorporated in our for-
mulation by neglecting all the tail integrals 𝜓(𝐶)

𝑗
, 𝑗 = 1,… , 4, in (52), and on the other hand, the

quasi-periodicity condition (2b)which is enforced through theEquations (52c) and (52d) restricted
to the interval [−𝐴,𝐴].
To verify the quasi-periodicity condition (2b), we consider the following experiment. First, the

windowed integral equation (61) is solved using the MK method to obtain the approximate den-
sities on Γ1 and on the truncated vertical curves Γ2,𝐴 parameterized by 𝐫2 in (64) with 𝑡 restricted
to [−𝐴,𝐴]. Then, assuming that the quasi-periodicity condition holds, we “transfer” the densities
to the boundaries of a 3𝐿-period supercell. Referencing to Figure 5A, we have that the supercell
consists of the original obstacle’s boundary Γ1 ⊂ 𝑈, the shifted obstacles’ boundaries Γ1 − 𝐿𝐞1 and
Γ1 + 𝐿𝐞1, and the truncated parts Γ2,𝐴 − 𝐿𝐞1 and Γ3,𝐴 + 𝐿𝐞1 of the shifted vertical lines Γ2 − 𝐿𝐞1
and Γ3 + 𝐿𝐞1 which are parameterized by 𝐫2(⋅) − 𝐿𝐞1 and 𝐫3(⋅) + 𝐿𝐞1, respectively. Assuming that
the quasi-periodicity condition holds, the densities associated with the supercell boundaries are:
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STRAUSZER-CAUSSADE et al. 297

{𝜁−1𝜙𝐴,1, 𝜁
−1𝜙𝐴,2} on Γ1 − 𝐿𝐞1, {𝜙𝐴,1, 𝜙𝐴,2} on Γ1, {𝜁𝜙𝐴,1, 𝜁𝜙𝐴,2} on Γ1 + 𝐿𝐞1, {𝜁−1𝜙𝐴,3, 𝜁

−1𝜙𝐴,4} on
Γ2,𝐴 − 𝐿𝐞1, and {𝜁2𝜙𝐴,3, 𝜁

2𝜙𝐴,4} on Γ3,𝐴 + 𝐿𝐞1. We then approximate the scattered field within the
supercell as 𝑢𝑠

𝐴
in (67) but integrating on each of the relevant boundaries of the supercell using the

aforementioned densities. To verify the quasi-periodicity condition, we then introduce the right
and left mismatch errors defined as

error
(𝑟)
𝑞𝑝 ∶=

max
𝑝=1,…,4

|𝑢𝑠
𝐴
(𝒓𝑝) − 𝜁−1𝑢𝑠

𝐴
(𝒓𝑝 + 𝐿𝐞1)|

max
𝑝=1,…,4

|𝑢𝑠
𝐴
(𝒓𝑝)| and

error
(𝑙)
𝑞𝑝 ∶=

max
𝑝=1,…,4

|𝑢𝑠
𝐴
(𝒓𝑝) − 𝜁𝑢𝑠

𝐴
(𝒓𝑝 − 𝐿𝐞1)|

max
𝑝=1,…,4

|𝑢𝑠
𝐴
(𝒓𝑝)| ,

(68)

respectively, where the sample points are 𝐫1 = (−0.5, −1), 𝐫2 = (0.5, −1), 𝐫3 = (−0.5, 1), and 𝐫4 =

(0.5, 1) (they are depicted in Figure 5A in red). The errors (68) corresponding to 𝑘1 = 10.68, 𝑘∗

and 10.76 are displayed in Figure 5B–C in semilog and log–log scales, respectively, for various
window sizes 𝐴 ∈ [10𝜆, 60𝜆]. These results demonstrate that, although the enforcement of the
quasi-periodicity condition deteriorates as 𝑘1 approaches the RW-anomaly configuration, the
mismatch errors still converge to zero superalgebraically fast as 𝐴 increases.
Since the quasi-periodicity condition does not seem to be themain factor that explains the poor

convergence and the complete lack of it for certain wavenumbers 𝑘1, we are left with to examine
the enforcement of the radiation condition. To do so, we introduce

error
(+,𝑛)
𝑟𝑐 ∶=

||||||
1

𝐿 ∫
𝐿

2

−
𝐿

2

{
𝜕𝑦𝑢

𝑠
𝐴
(𝑥, ℎ) − 𝑖𝛽𝑛𝑢

𝑠
𝐴
(𝑥, ℎ)

}
e−𝑖𝛼𝑛𝑥 𝑑𝑥

|||||| and

error
(−,𝑛)
𝑟𝑐 ∶=

||||||
1

𝐿 ∫
𝐿

2

−
𝐿

2

{
𝜕𝑦𝑢

𝑠
𝐴
(𝑥, −ℎ) + 𝑖𝛽𝑛𝑢

𝑠
𝐴
(𝑥, −ℎ)

}
e−𝑖𝛼𝑛𝑥 𝑑𝑥

||||||,
(69)

where 𝑢𝑠
𝐴
is defined in (67). These integrals are directly related to the amplitude 𝐶±

𝑛 of the
nonradiative modes, which one expects to decrease superalgebraically fast as 𝐴 increases, thus
measuring the correct enforcement of the radiation condition.
Figure 6 displays the errors (69) for 𝐴 ∈ [10𝜆, 60𝜆], for the three representative wavenumbers

𝑘1 = 10.68, 𝑘∗, and 10.76, and for four modes 𝑛 ∈ 3𝑘1∕4 = {−6,−5, 0, 1}, where

𝛿 ∶= {𝑛 ∈ ℤ ∶ |𝛽𝑛| ≤ 𝛿}. (70)

This set, which plays an important role below in Section 8, consists of the modes which are the
closest to horizontally traveling waves. In the case 𝑘1 = 10.68, which is considered in Figure 6A
and where 𝛽−6 ≈ 3.6844𝑖, 𝛽−5 ≈ 6.8950, 𝛽0 ≈ 7.5519, and 𝛽1 ≈ 0.5370𝑖, all the corresponding
errors (69) exhibit superalgebraic convergence as 𝐴 increases. In turn, in the RW-anomaly case
𝑘1 = 𝑘∗, considered in Figure 6B andwhere 𝛽−6 ≈ 3.4429𝑖, 𝛽−5 ≈ 7.0041, 𝛽0 ≈ 7.5845, and 𝛽1 = 0,
slow convergence of error(±,1)𝑟𝑐 is observed. Finally, in the case 𝑘1 = 10.76, considered in Figure 6C
and where 𝛽−6 ≈ 3.2534𝑖, 𝛽−5 ≈ 7.0835, 𝛽0 ≈ 7.6085, and 𝛽1 ≈ 0.4624, we note that error±,1𝑟𝑐 does
not seem to converge at the all. These observations are consistent with the results displayed in
Figure 4A,B, that consider the overall energy balance error, and suggest that in practice the win-
dowed BIE (61) on its own does not properly enforce the radiation condition of the problem.
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298 STRAUSZER-CAUSSADE et al.

(A) (B) (C)

F IGURE 6 Errors (69) in the numerical solution obtained from the windowed integral equation (61) in the
enforcement of the radiation condition (11). Three different exterior wavenumbers are considered corresponding
to 𝑘1 = 10.68 in (A), 𝑘1 = 𝑘∗ in (B), and 𝑘1 = 10.76 in (C). The modes 𝑛 ∈ 3𝑘1∕4

used in these examples
correspond to the smallest 𝛽𝑛 values arising in each case, which include 𝛽1 that vanishes in the RW-tanomaly
case 𝑘1 = 𝑘∗ in (B).

Indeed, the nonpropagative modes corresponding to the smallest 𝛽𝑛 values, which are contained
in 𝛿, seem to be polluting the numerical solution.
As it turns out, there is a subtle issue that explains the remarkable failure of the naive win-

dowed BIE (61) for certain frequencies. In light of the estimates derived in Appendix B, not only
the tail integrals𝖬𝑝,𝑞[𝜒

±
𝐴
e𝑖𝛽𝑛|⋅|] for 𝛽𝑛 ∈ ℝ>0 decay superalgebraically fast as𝐴 increases, but also

𝖬𝑝,𝑞[𝜒
±
𝐴
e−𝑖𝛽𝑛|⋅|] in (58) as long as 𝛽𝑛 ∈ ℝ>0 and 𝛽𝑛 ≠ 𝑘1. Indeed, these tend to zero faster than

𝑂(((𝑘1 − 𝛽𝑛)𝐴)−𝑚) for all𝑚 ≥ 1 as𝐴 → ∞. For a fixed𝐴 > 0, this fact renders𝐶±
𝑛𝖬𝑝,𝑞[𝜒

±
𝐴
e−𝑖𝛽𝑛|⋅|]

for 𝛽𝑛 ∈ ℝ>0, 𝛽𝑛 ≠ 𝑘1, in (58) “small” regardless of the actual value of the coefficient 𝐶±
𝑛 , thus

making the conditions 𝜓(𝐶)
𝑝 = 0, 𝑝 = 1,… , 4, used in the derivation of (61), insufficient to enforce

the desired (radiation) condition 𝐶±
𝑛 = 0. In other words, the equations 𝜓(𝐶)

𝑝 (𝑡) = 0, 𝑡 ∈ [−𝐴,𝐴],
𝑝 = 1,… , 4, for the vanishing coefficients 𝐶±

𝑛 , become in practice ill-conditioned allowing the
presence of nonradiative modes that pollute the approximate solution of (61). As it turns out,
this is not much of an issue for the 𝑛 values for which 𝖬𝑝,𝑞[𝜒

±
𝐴
e−𝑖𝛽𝑛|⋅|] converges slowly, that is,

when 𝛽𝑛 ≈ 𝑘1, but it certainly is for those forwhich𝖬𝑝,𝑞[𝜒
±
𝐴
e−𝑖𝛽𝑛|⋅|] converges fast, that is, around

an RW-anomaly configuration when 𝛽𝑛 ≈ 0. Indeed, this phenomenon explains why error(±,1)𝑟𝑐 =

∓2𝑖𝛽1e
𝑖𝛽1ℎ𝐶±

1 in Figure 6C, when 𝛽1 ≈ 0.4624, does not seem to converge as 𝐴 increases, while
in turn error

(±,0)
𝑟𝑐 when 𝛽0 ≈ 7.6085, exhibits fast convergence. Interestingly, this phenomenon is

present even in connectionwith the divergent tail integrals in (58) corresponding to𝖬𝑝,𝑞[𝜒
±
𝐴
⋅ ] for

𝛽𝑛 = 0 and𝖬𝑝,𝑞[𝜒
±
𝐴
e−𝑖𝛽𝑛|⋅|] for 𝛽𝑛 ∈ 𝑖ℝ>0 and 𝛽𝑛 ≈ 0, due to the slow divergence of the comple-

mentary integrals along the bounded interval [−𝐴,𝐴]. This is for instance observed in Figure 6B
which shows the slow convergence of error(±,1)𝑟𝑐 = 𝐶±

1 .

8 CORRECTEDWINDOWED INTEGRAL EQUATION

This section presents a corrected windowed integral equation that leads to accurate numeri-
cal solutions for all frequencies and planewave incidences. We first consider the nonanomalous
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STRAUSZER-CAUSSADE et al. 299

configurations, for which  = ∅ (i.e., 𝛽𝑛 ≠ 0 for all 𝑛 ∈ ℤ), and address the RW-anomaly
configurations, for which  ≠ ∅, in Section 8.2.
Our approach to tackle the issues encountered in the previous section lies in retaining certain

critical coefficients𝐶±
𝑛 in (9) and (58) as unknowns, instead of setting them to zero a priori. Guided

by the numerical experiments of the previous section, we focus on the coefficients 𝐶±
𝑛 for 𝑛 ∈ 𝛿,

where the set 𝛿 is defined in (70) in terms of the parameter 𝛿 > 0. The necessary conditions𝐶±
𝑛 =

0 for 𝑛 ∈ 𝛿, which stem from the Rayleigh series (5) and (9), are then indirectly enforced through
the integral form of the radiation condition (11). Following this approach, the tail integrals (58)
become

𝜓
(𝐶)
𝑝 ≈

∑
𝑛∈𝛿

{𝐶+
𝑛 Ψ

+
𝑛,𝑝 + 𝐶−

𝑛 Ψ
−
𝑛,𝑝}, 𝑝 = 1,… , 4, (71)

where the functions Ψ±
𝑛,𝑝 are (formally) defined as

Ψ±
𝑛,𝑝 = e

−𝑖𝛼𝑛
𝐿

2
{
𝖬𝑝,3

[
𝜒±
𝐴
e∓𝑖𝛽𝑛|⋅|] + 𝑖𝛼𝑛𝖬𝑝,4

[
𝜒±
𝐴
e∓𝑖𝛽𝑛|⋅|]}, 𝑛 ∈ 𝛿. (72)

In view of the definition of the functions 𝜒±
𝐴
introduced in (55), the two terms in (72) involve

evaluation of improper integrals over the unbounded intervals (−∞,−𝑐𝐴] and [𝑐𝐴,∞), associated
with the “−” and “+” case, respectively, that either cannot be evaluated in closed form or simply
diverge. To produce computable approximations of Ψ±

𝑛,𝑝 in (72) we then resort to Green’s repre-
sentation formula (20). To achieve that, suitably approximations of the complementary integrals

𝖬𝑝,3

[
𝜒∓
𝐴
e∓𝑖𝛽𝑛|⋅|] + 𝑖𝛼𝑛𝖬𝑝,4

[
𝜒∓
𝐴
e∓𝑖𝛽𝑛|⋅|], 𝑛 ∈ ℤ (73)

are needed. As it turns out, the complementary tail integrals (73) tend to zero either superalge-
braically (for 𝑛 ∈ ) or exponentially (for 𝑛 ∈ ) fast as𝐴 increases (see Appendix B), so they can
simply be neglected. In the sequel, we derive the aforementioned computable approximations
of (72).
Let us first consider the case 𝑛 ∈  ∪ {𝑚 ∈ ℤ ∶ 𝛽𝑚 ≠ 𝑘1} (𝛽𝑛 ∈ ℝ>0, 𝛽𝑛 ≠ 𝑘1) for which (72) are

well-defined conditionally convergent integrals. (Note that the condition 𝛽𝑛 ≠ 𝑘1 is required for
the integrals 𝖬𝑝,3[𝜒

+
𝐴
e−𝑖𝛽𝑛|⋅|], 𝖬𝑝,3[𝜒

−
𝐴
e𝑖𝛽𝑛|⋅|], 𝖬𝑝,4[𝜒

+
𝐴
e−𝑖𝛽𝑛|⋅|], and 𝖬𝑝,4[𝜒

−
𝐴
e𝑖𝛽𝑛|⋅|] in (72) to be

conditionally convergent, otherwise e−𝑖𝑘1|𝑦| cancels the oscillations of the Helmholtz kernels ren-
dering these integrals divergent). Approximations ofΨ±

𝑛,𝑝 for the remaining 𝛽𝑛 values are obtained
by simply considering the analytical extension of the resulting expressions that depend smoothly
on 𝛽𝑛.
Using then the fact that (73) becomes negligible for large𝐴 values, we can add it to Ψ±

𝑛,𝑝 in (72)
to form

Ψ±
𝑛,𝑝 ≈ e

−𝑖𝛼𝑛
𝐿

2
{
𝖬𝑝,3

[
𝑤𝑐

𝐴
e∓𝑖𝛽𝑛|⋅|] + 𝑖𝛼𝑛𝖬𝑝,4

[
𝑤𝑐

𝐴
e∓𝑖𝛽𝑛|⋅|]}, (74)

where we used the identities 𝑤𝑐
𝐴
= 1 − 𝑤𝐴 = 𝜒±

𝐴
+ 𝜒∓

𝐴
. Then, introducing the notation

𝜙±
𝑛,1 ∶=

(
𝛾𝐷,Γ1𝑢

±
𝑛

)
◦𝐫1 = e𝑖𝛼𝑛𝗑1±𝑖𝛽𝑛𝗒1 , 𝜙±

𝑛,2 ∶=
(
𝛾𝑁,Γ1𝑢

±
𝑛

)
◦𝐫1 = 𝑖𝐧1 ⋅ (𝛼𝑛, ±𝛽𝑛) e

𝑖𝛼𝑛𝗑1±𝑖𝛽𝑛𝗒1 ,

𝜙±
𝑛,3 ∶=

(
𝛾𝐷,Γ2𝑢

±
𝑛

)
◦𝐫2 = e𝑖𝛼𝑛𝗑2±𝑖𝛽𝑛𝗒2 , 𝜙±

𝑛,4 ∶=
(
𝛾𝑁,Γ2𝑢

±
𝑛

)
◦𝐫2 = 𝑖𝐧2 ⋅ (𝛼𝑛, ±𝛽𝑛) e

𝑖𝛼𝑛𝗑2±𝑖𝛽𝑛𝗒2 ,

(75)
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300 STRAUSZER-CAUSSADE et al.

for the parameterized traces of the Rayleigh modes (7), and exploiting the linearity of the integral
operators𝖬𝑝,𝑞, we arrive at

Ψ±
𝑛,𝑝 ≈ 𝖬𝑝,3

[
(1 − 𝑤𝐴)𝜙

∓
𝑛,3

]
+𝖬𝑝,4

[
(1 − 𝑤𝐴)𝜙

∓
𝑛,4

]
= −Φ±

𝑛,𝑝 −
{
𝖬𝑝,3

[
𝑤𝐴𝜙

∓
𝑛,3

]
+𝖬𝑝,4

[
𝑤𝐴𝜙

∓
𝑛,4

]}
,

(76)

where closed-form expressions for the functions

Φ±
𝑛,𝑝 = −𝖬𝑝,3𝜙

∓
𝑛,3 − 𝖬𝑝,4𝜙

∓
𝑛,4 (77)

can be obtained fromGreen’s representation formula. Indeed, from the definition of the operators
𝖬𝑝,𝑞, 𝑝 = 1,… , 4 and 𝑞 = 2, 3, in (39) and (43), and Green’s representation formula (20), we find
that

Φ±
𝑛,𝑝 = −

⎧⎪⎪⎨⎪⎪⎩

(𝜁𝖪1,3
1 − 𝖪1,2

1 )𝜙∓
𝑛,3 − (𝜁𝖵1,3

1 − 𝖵1,2
1 )𝜙∓

𝑛,4 𝑝 = 1

(𝜁𝖶1,3
1 − 𝖶1,2

1 )𝜙∓
𝑛,3 − (𝜁𝖪̃1,3

1 − 𝖪̃1,2
1 )𝜙∓

𝑛,4 𝑝 = 2

(𝜁2𝖪2,3
1 − 𝖪3,2

1 )𝜙∓
𝑛,3 − (𝜁2𝖵2,3

1 − 𝖵3,2
1 )𝜙∓

𝑛,4 𝑝 = 3

(𝜁2𝖶2,3
1 − 𝖶3,2

1 )𝜙∓
𝑛,3 − (𝜁2𝖪̃2,3

1 − 𝖪̃3,2
1 )𝜙∓

𝑛,4 𝑝 = 4

=

{
𝜙∓
𝑛,𝑝 𝑝 = 1, 2

𝜁𝜙∓
𝑛,𝑝 𝑝 = 3, 4.

(78)

For 𝑛 ∈  ∪ {𝑚 ∈ ℤ ∶ 𝛽𝑚 ≠ 𝑘1}, we have hence produced a computable approximation (76) of
the modal integrals Ψ±

𝑛,𝑝 (72) with errors that decay superalgebraically fast as the window size
𝐴 increases. Such an approximation consists of the closed-form expression (78) and the finite-
domainwindowed integrals in (76) that can be evaluated numerically. Corresponding computable
expressions forΨ±

𝑛,𝑝 in the case 𝑛 ∈  ∪ {𝑚 ∈ ℤ ∶ 𝛽𝑚 = 𝑘1} are obtained by analytically extending
the formula on the right-hand side of (76) to 𝛽𝑛 values.
We are now in position to write the corrected windowed BIE in the case  = ∅. Letting

𝚿±
𝑛 = −

⎡⎢⎢⎢⎢⎣
𝜙∓
𝑛,1

𝜙∓
𝑛,2

𝜁𝜙∓
𝑛,3

𝜁𝜙∓
𝑛,4

⎤⎥⎥⎥⎥⎦
−𝗠𝐖𝐴

⎡⎢⎢⎢⎢⎣
0

0

𝜙∓
𝑛,3

𝜙∓
𝑛,4

⎤⎥⎥⎥⎥⎦
(79)

and using (76) we obtain that the BIE can be expressed in vector form as

𝐄𝝓𝐴 +𝗠𝐖𝐴𝝓𝐴 +
∑
𝑛∈𝛿

{
𝐶+
𝑛 𝚿

+
𝑛 + 𝐶−

𝑛 𝚿
−
𝑛

}
= 𝝓inc, (80)

where again the first two equations hold in the interval [0, 2𝜋)while the last two hold in [−𝐴,𝐴].
The additional equations needed to relate the coefficients 𝐶±

𝑛 with the vector density 𝝓𝐴 follow
from enforcing the radiation condition, which in view of (10) and (11), yields

𝐶±
𝑛 = ∓

e𝑖𝛽𝑛ℎ

2𝑖𝛽𝑛𝐿 ∫
𝐿

2

−
𝐿

2

{
𝜕𝑦𝑢

𝑠
𝐴
(𝑥, ±ℎ) ∓ 𝑖𝛽𝑛𝑢

𝑠
𝐴
(𝑥, ±ℎ)

}
e−𝑖𝛼𝑛𝑥 𝑑𝑥 = 0, 𝑛 ∈ 𝛿. (81)
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STRAUSZER-CAUSSADE et al. 301

Note that ℎ > 0 above has to satisfy the conditionmax{ℎ+, −ℎ−} < ℎ < 𝑐𝐴. Finally, expressing 𝑢𝑠
𝐴

in (81) in terms of both 𝝓𝐴 and 𝐶±
𝑛 , 𝑛 ∈ 𝐶𝛿, we can form a system of equations from where the

unknowns 𝝓𝐴 and 𝐶±
𝑛 , 𝑛 ∈ 𝐶𝛿, can be computed. We do so in the next section by developing a

suitable WGF approximation of 𝑢𝑠
𝐴
.

8.1 WGF approximation of the scattered field

As the matrix integral operator in (44), the representation formula (33) of the scattered field
involves the computation of layer potentials along the unbounded curve Γ2. In view of the dis-
cussion of the previous section, we proceed to utilize the following approximation of the Γ2 traces
of 𝑢𝑠:

𝜙𝑗 ≈ 𝑤𝐴𝜙𝐴,𝑗 +
∑
𝑛∈𝛿

{
𝐶+
𝑛 𝜒

+
𝐴
𝜙−
𝑛,𝑗

+ 𝐶−
𝑛 𝜒

−
𝐴
𝜙+
𝑛,𝑗

}
, 𝑗 = 3, 4, (82)

where 𝜙𝐴,𝑗 , 𝑗 = 1,… , 4, denote the entries of the vector density 𝝓𝐴 in (61) and 𝜙+
𝑛,𝑗
, 𝑗 = 1,… , 4

denote the traces of the (nonradiative) modes introduced in (75). The presence of such modes
in (82) accounts for the fact that the integral equation (61) as well as the integral representation of
the scattered field (67) used in Section 7 do not properly account for the radiation condition.
Replacing (82) in the integral representation of the scattered field (33) we obtain

𝑢𝑠(𝒓) ≈ (1
1𝜙𝐴,1)(𝒓) − 𝜂(1

1𝜙𝐴,2)(𝒓)

+ (2
1 − 𝜁3

1)[𝑤𝐴𝜙𝐴,3](𝒓) − (2
1 − 𝜁3

1 )[𝑤𝐴𝜙𝐴,4](𝒓)

+
∑
𝑛∈𝛿

𝐶+
𝑛

{
(2

1 − 𝜁3
1)[𝜒

+
𝐴
𝜙−
𝑛,3](𝒓) − (2

1 − 𝜁3
1 )[𝜒

+
𝐴
𝜙−
𝑛,4](𝒓)

}
+

∑
𝑛∈𝛿

𝐶−
𝑛

{
(2

1 − 𝜁3
1)[𝜒

−
𝐴
𝜙+
𝑛,3](𝒓) − (2

1 − 𝜁3
1 )[𝜒

−
𝐴
𝜙+
𝑛,4](𝒓)

}
, 𝒓 ∈ Ω1,

(83)

where the layer potentials are defined in (26).
To produce a computable approximation of the modal terms in (83) we resort to the above-

mentioned properties of the windowed oscillatory integrals to note that, for a target point 𝒓 ∈

Ω1,𝐴 = {𝒓 = (𝑥, 𝑦) ∈ Ω1 ∶ 𝜒(𝑦, 𝑐𝐴,𝐴) = 1}, the integrals

(2
1 − 𝜁3

1)[𝜒
±
𝐴
𝜙∓
𝑛,3](𝒓) − (2

1 − 𝜁3
1 )[𝜒

±
𝐴
𝜙∓
𝑛,4](𝒓) (84)

can be effectively approximated by

(2
1 − 𝜁3

1)[𝑤
𝑐
𝐴
𝜙∓
𝑛,3](𝒓) − (2

1 − 𝜁3
1 )[𝑤

𝑐
𝐴
𝜙∓
𝑛,4](𝒓) (85)

with errors

(2
1 − 𝜁3

1)[𝜒
∓
𝐴
𝜙∓
𝑛,3](𝒓) − (2

1 − 𝜁3
1 )[𝜒

∓
𝐴
𝜙∓
𝑛,4](𝒓) (86)

that converge to zero either superalgebraically fast for 𝑛 ∈  (i.e., 𝛽𝑛 ∈ ℝ>0) or exponentially fast
for 𝑛 ∈  (i.e., 𝛽𝑛 ∈ 𝑖ℝ>0) as 𝐴 → ∞.
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302 STRAUSZER-CAUSSADE et al.

Therefore, letting 𝜙̃𝐴,𝑗 , 𝑗 = 1,… , 4, denote the entries of the corrected vector density

𝝓𝐴 = 𝝓𝐴 −
∑
𝑛∈𝛿

⎧⎪⎪⎨⎪⎪⎩
𝐶+
𝑛

⎡⎢⎢⎢⎢⎣
0

0

𝜙−
𝑛,3

𝜙−
𝑛,4

⎤⎥⎥⎥⎥⎦
+ 𝐶−

𝑛

⎡⎢⎢⎢⎢⎣
0

0

𝜙+
𝑛,3

𝜙+
𝑛,4

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭
, (87)

we define our WGF approximation of the scattered field as

𝑢𝑠
𝐴
(𝒓) = (1

1𝜙̃𝐴,1)(𝒓) − 𝜂(1
1 𝜙̃𝐴,2)(𝒓) + (2

1 − 𝜁3
1)[𝑤𝐴𝜙̃𝐴,3](𝒓)

− (2
1 − 𝜁3

1 )[𝑤𝐴𝜙̃𝐴,4](𝒓) +
∑
𝑛∈𝛿

{
𝐶+
𝑛 𝑢

−
𝑛 (𝒓) + 𝐶−

𝑛 𝑢
+
𝑛 (𝒓)

} (88)

for 𝒓 ∈ Ω1,𝐴 where the last two terms were obtained by direct application of Green’s representa-
tion formula (20).
With this expression at hand, we can now easily incorporate the conditions (81) into the integral

equation system. To do so, we define the functionals:

𝖫±𝑛𝝓 =
1

𝐿 ∫
𝐿

2

−
𝐿

2

[
(𝜕𝑦1

1 ∓ 𝑖𝛽𝑛1
1)𝜙1 − 𝜂(𝜕𝑦1

1 ∓ 𝑖𝛽𝑛1
1 )𝜙2 + {𝜕𝑦2

1 ∓ 𝑖𝛽𝑛2
1 − 𝜁(𝜕𝑦3

1 ∓ 𝑖𝛽𝑛3
1)}𝜙3−

{𝜕𝑦2
1 ∓ 𝑖𝛽𝑛2

1 − 𝜁(𝜕𝑦3
1 ∓ 𝑖𝛽𝑛3

1 )}𝜙4

]
(𝐫±ℎ(𝑡)) e

−𝑖𝛼𝑛𝑡 𝑑𝑡,

(89)

where 𝐫±ℎ(𝑡) = ±ℎ𝐞2 + 𝑡𝐞1, with which conditions (81) using (88) can be readily expressed as

𝐶+
𝑛 =

e𝑖𝛽𝑛ℎ

2𝑖𝛽𝑛
𝖫+𝑛

[
𝐖𝐴𝝓𝐴

]
and 𝐶−

𝑛 = −
e𝑖𝛽𝑛ℎ

2𝑖𝛽𝑛
𝖫−𝑛

[
𝐖𝐴𝝓𝐴

]
, 𝑛 ∈ 𝛿 (90)

(note that we are still assuming that 𝛽𝑛 ≠ 0 for all 𝑛 ∈ 𝛿, i.e.,  = ∅).
Therefore, both (80) and (81) can be recast as a single corrected windowed BIE system:

𝐄𝝓𝐴 + 𝗠̃𝐖𝐴𝝓𝐴 = 𝝓inc (91)

for the corrected vector density 𝝓𝐴 defined in (87), where letting𝚽±
𝑛 =

⎡⎢⎢⎢⎢⎣
𝜙∓
𝑛,1

𝜙∓
𝑛,2

0

0

⎤⎥⎥⎥⎥⎦
the corrected matrix

operator is given by

𝗠̃ = 𝗠+
∑
𝑛∈𝛿

e𝑖𝛽𝑛ℎ

2𝑖𝛽𝑛

{
𝚽−

𝑛 𝖫
−
𝑛 − 𝚽+

𝑛 𝖫
+
𝑛

}
(92)

in the case  = ∅.

Remark 4. Note that the functionals 𝖫±𝑛 defined in (89) entail evaluation of singular integrals. This
is so because the layer potentials𝑖

1 and  𝑖
1 involve integration along the unit-cell boundaries Γ𝑖 ,

𝑖 = 2, 3, which are intersected by the horizontal line segments parameterized by 𝐫±
ℎ
.
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STRAUSZER-CAUSSADE et al. 303

To avoid this issue, altogether we leverage the quasi-periodicity condition satisfied by the scat-
tered field and express it bymeans ofGreen’s representation formula appliedwithin a three-period
wide cell, such as the one employed in the numerical examples of Figure 5. The scattered field
is then produced through integration on the supercell walls Γ2 − 𝐿𝐞1 and Γ3 + 𝐿𝐞1, which are
parameterized by 𝐫2(⋅) − 𝐿𝐞1 and 𝐫2(⋅) + 2𝐿𝐞1, respectively, as well as on the annexed left and
right obstacle boundaries Γ1 − 𝐿𝐞1 and Γ1 + 𝐿𝐞1, which are parameterized by 𝐫1(⋅) − 𝐿𝐞1 and
𝐫1(⋅) + 𝐿𝐞1, respectively. The densities on the new curves are given by multiplying the origi-
nal densities by 𝜁−1 and 𝜁 depending on whether the new curve corresponds to left or right
𝐿-translation of the original curve, respectively. Doing so the functionals can be recast as

𝖫±𝑛𝝓 =
1

𝐿 ∫
𝐿

2

−
𝐿

2

[{
𝜕𝑦(1

1 + 𝜁−11−𝐿
1 + 𝜁1+𝐿

1 ) ∓ 𝑖𝛽𝑛(1
1 + 𝜁−11−𝐿

1 + 𝜁1+𝐿
1 )

}
𝜙1

− 𝜂
{
(𝜕𝑦(1

1 + 𝜁−11−𝐿
1 + 𝜁1+𝐿

1 ) ∓ 𝑖𝛽𝑛(1
1 + 𝜁−11−𝐿

1 + 𝜁1+𝐿
1 )

}
𝜙2

+
{
𝜁−1(𝜕𝑦2−𝐿

1 ∓ 𝑖𝛽𝑛2−𝐿
1 ) − 𝜁2(𝜕𝑦3+𝐿

1 ∓ 𝑖𝛽𝑛3+𝐿
1 )

}
𝜙3

−
{
𝜁−1(𝜕𝑦2−𝐿

1 ∓ 𝑖𝛽𝑛2−𝐿
1 ) − 𝜁2(𝜕𝑦3+𝐿

1 ∓ 𝑖𝛽𝑛3+𝐿
1 )

}
𝜙4

]
(𝐫±ℎ(𝑡)) e

−𝑖𝛼𝑛𝑡 𝑑𝑡

(93)

in terms of the layer potentials: 1+𝐿
1 and 1+𝐿

1 associated with Γ1 + 𝐿𝐞1; 1−𝐿
1 and 1−𝐿

1 asso-
ciated with Γ1−𝐿; 2−𝐿

1 and 2−𝐿
1 associated with Γ2 − 𝐿𝐞1; and 3+𝐿

1 and 3+𝐿
1 associated with

Γ3 + 𝐿𝐞1.

8.2 Corrected windowed integral equation at RW anomalies

To extend (91) to the challenging RW-anomaly case, that is, when 𝛽𝑛 = 0 for some 𝑛 ∈ 𝛿 ( ≠ ∅),
we resort to L’Hôpital’s rule. In detail, we evaluate the correcting terms in (92) associated with
𝑛 ∈  as the limit

lim
𝛽𝑛→0

e𝑖𝛽𝑛ℎ

𝛽𝑛

{
𝚽−

𝑛 𝖫
−
𝑛 − 𝚽+

𝑛 𝖫
+
𝑛

}
= 𝜕𝛽𝑛

{
𝚽−

𝑛 𝖫
−
𝑛 − 𝚽+

𝑛 𝖫
+
𝑛

}|||𝛽𝑛=0

=
{
𝜕𝛽𝑛𝚽

−
𝑛
||𝛽𝑛=0

𝖫−𝑛 ||𝛽𝑛=0
+ 𝚽−

𝑛
||𝛽𝑛=0

𝜕𝛽𝑛𝖫
−
𝑛
||𝛽𝑛=0

}
−

{
𝜕𝛽𝑛𝚽

+
𝑛
||𝛽𝑛=0

𝖫+𝑛 ||𝛽𝑛=0
+ 𝚽+

𝑛
||𝛽𝑛=0

𝜕𝛽𝑛𝖫
+
𝑛
||𝛽𝑛=0

}
.

(94)

Doing so the general expression for the corrected matrix operator in (92) becomes

𝗠̃ ∶= 𝗠+
1

2𝑖

∑
𝑛∈𝛿⧵

e𝑖𝛽𝑛ℎ

𝛽𝑛

{
𝚽−

𝑛 𝖫
−
𝑛 − 𝚽+

𝑛 𝖫
+
𝑛

}
+

1

2𝑖

∑
𝑛∈

{
𝚽𝑛𝜕𝛽𝑛(𝖫

−
𝑛 − 𝖫+𝑛 ) + 𝜕𝛽𝑛𝚽𝑛(𝖫

−
𝑛 + 𝖫+𝑛 )

}
,

(95)
where we have introduced the vectors 𝚽𝑛 ∶= 𝚽±

𝑛 and

𝜕𝛽𝑛𝚽𝑛 =

⎡⎢⎢⎢⎢⎣
𝑖𝗒1

𝐧1 ⋅ (−𝗒1𝛼𝑛, 𝑖)

0

0

⎤⎥⎥⎥⎥⎦
e𝑖𝛼𝑛𝑥 (96)
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304 STRAUSZER-CAUSSADE et al.

for 𝑛 ∈  , which correspond to the Γ1 traces of the Raleigh modes 𝑢𝑛 and 𝑖𝑣𝑛 defined in (8). The
𝛽𝑛-derivative of the functionals 𝖫±𝑛 are given by

𝜕𝛽𝑛𝖫
±
𝑛𝝓 = ∓

𝑖

𝐿 ∫
𝐿

2

−
𝐿

2

[1
1𝜙1 − 𝜂1

1𝜙2 + 𝜁1+𝐿
1 𝜙1 − 𝜁𝜂1+𝐿

1 𝜙2

+ 𝜁−11−𝐿
1 𝜙1 − 𝜁−1𝜂1−𝐿

1 𝜙2 + 𝜁−12−𝐿
1 𝜙3 − 𝜁23+𝐿

1 𝜙3

− 𝜁−12−𝐿
1 𝜙4 + 𝜁23+𝐿

1 𝜙4

]
(𝐫±

ℎ
(𝑡)) e−𝑖𝛼𝑛𝑡 𝑑𝑡.

(97)

Similarly, the expression for the corrected approximate scattered field reads as

𝑢𝑠
𝐴
(𝒓) = (1

1𝜙̃𝐴,1)(𝒓) − 𝜂(1
1 𝜙̃𝐴,2)(𝒓) + (2

1 − 𝜁3
1)[𝑤𝐴𝜙̃𝐴,3](𝒓)

− (2
1 − 𝜁3

1 )[𝑤𝐴𝜙̃𝐴,4](𝒓)

+
1

2𝑖

∑
𝑛∈𝛿⧵

e𝑖𝛽𝑛ℎ

𝛽𝑛

{
𝑢−
𝑛 (𝒓)𝖫

+
𝑛

[
𝐖𝐴𝝓𝐴

]
− 𝑢+

𝑛 (𝒓)𝖫
−
𝑛

[
𝐖𝐴𝝓𝐴

]}
+

1

2𝑖

∑
𝑛∈

𝜕𝛽𝑛
{
𝑢−
𝑛 (𝒓)𝖫

+
𝑛

[
𝐖𝐴𝝓𝐴

]
− 𝑢+

𝑛 (𝒓)𝖫
−
𝑛

[
𝐖𝐴𝝓𝐴

]}
, 𝒓 ∈ Ω1,𝐴.

(98)

Finally, it isworth tomention thatwhen𝛽𝑛 is small but not zero, round-off errors can in practice
make both expressions (92) and (95) of the corrected operator 𝗠̃, not suitable to achieve a desired
accuracy. In such case, a suitable approximation of 𝗠̃ can be obtained by means of higher-order
Taylor series expansions of the expressions in (94) about 𝛽𝑛 = 0.

8.3 Fredholm property

Assuming that Γ1 and Γ2 are sufficiently smooth, say, with twice continuously differentiable
paremeterizations 𝐫1 and 𝐫2, respectively, it is easy to show that the corrected windowed BIE (91)
is Fredholm of the second kind.
For the sake of presentation simplicity, we prove Fredholmness of the corrected windowed

BIE (91) in the product space 𝑋 ∶= [𝐿2(0, 2𝜋)]2 × [𝐿2(−𝐴,𝐴)]2 for which we first write it as

(𝖨𝖽𝑋𝐄 + 𝗠̃◦𝖨𝖽𝑋𝐖𝐴)𝝓𝐴 = 𝝓inc, (99)

where 𝝓inc ∈ 𝑋 and the solution 𝝓𝐴 is sought in that same space. Here, 𝖨𝖽𝑋 denotes the identity
mapping of 𝑋 and, slightly abusing the notation, 𝗠̃ is considered as an operator acting on 𝑋, that
is, all the integrals over ℝ in the definition of 𝗠̃ are truncated to the finite interval [−𝐴,𝐴].
Using then the fact that the subblock operators𝖬𝑝,𝑞, 𝑝, 𝑞 = 1,… , 4, defined in (39) and (43), are

of the Hilbert–Schmidt type (because the associated kernels belong to 𝐿2([0, 2𝜋] × [0, 2𝜋]) for 𝑝 =

𝑞 = 1, 2, 𝐿2([0, 2𝜋] × [−𝐴,𝐴]) for 𝑝 = 1, 2, 𝑞 = 3, 4, 𝐿2([−𝐴,𝐴] × [−𝐴,𝐴]) for 𝑝 = 𝑞 = 3, 4, and
𝐿2([−𝐴,𝐴] × [0, 2𝜋]) for 𝑝 = 3, 4, 𝑞 = 1, 2) it follows from classical arguments43 that𝗠 ∶ 𝑋 → 𝑋

is compact. On the other hand, since the functionals 𝖫±𝑛 , 𝜕𝛽𝑛𝖫
±
𝑛 ∶ 𝑋 → ℂ are bounded (because

all the integrands involved in their definition (93) are 𝐿2-integrable) and Φ±
𝑛 , Φ𝑛, 𝜕𝛽𝑛Φ

±
𝑛 ∈ 𝑋, we

have that the finite-rank operators 𝚽±
𝑛𝖫

±
𝑛 , 𝚽𝑛𝜕𝛽𝑛𝖫

±
𝑛 , 𝜕𝛽𝑛𝚽𝑛𝖫

±
𝑛 ∶ 𝑋 → 𝑋 are also compact, and so
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STRAUSZER-CAUSSADE et al. 305

it is the finite linear combination of them that appears in the definition of 𝗠̃ in (95). This shows
that 𝗠̃ ∶ 𝑋 → 𝑋 is compact.
Therefore, being 𝗠̃◦𝖨𝖽𝑋𝐖𝐴 the composition of 𝗠̃, which is compact, and 𝖨𝖽𝑋𝐖𝐴 ∶ 𝑋 →

𝑋, which is bounded, we conclude that 𝗠̃◦𝖨𝖽𝑋𝐖𝐴 ∶ 𝑋 → 𝑋 is itself compact. The Fredholm
property of (99) hence follows directly from the invertibility of the operator 𝖨𝖽𝑋𝐄 ∶ 𝑋 → 𝑋.
Having established the Fredholm property of the system (91), we can conclude from the Fred-

holm alternative that existence of solutions in the function space 𝑋 is implied by uniqueness. We
found, however, the uniqueness property difficult to prove since standard arguments based on
the unique solvability of associated partial differential equations (e.g., Ref. 44) does not directly
apply in this case due to the presence of the windowed integral kernels. Nevertheless, extensive
numerical experimentation supports the conjecture that the corrected windowed BIE system (91)
does not suffer from uniqueness issues, which typically manifests at the discrete level as severely
ill-conditioned linear systems at certain countable frequencies. A similar analysis can be carried
out in higher-order Sobolev spaces by relying on the well-established mapping properties45 of the
integral operators (25).
Finally, we mention that the results presented in this section rely heavily on the fact that 𝐴 is

finite. Unfortunately, at this point we do not have a theory to study the Fredholm property of the
corresponding limit equation as 𝐴 → ∞. The main difficulty here is that the space [𝐿2(0, 2𝜋)]2 ×

[𝐿2(ℝ)]2 does not contain the traces of the scattered field, which do not necessary decay on the
unbounded curves Γ2 and Γ3.

9 NUMERICAL EXAMPLES

This section presents a variety of numerical examples that demonstrate the accuracy and
robustness of the proposed WGF methodology.

9.1 Validation examples

We start off by applying the proposed windowed BIE approach to the kite-shaped array test prob-
lem of Section 7, where the naive windowed BIE formulation failed to produce accurate solutions
at and around RW-anomaly configurations.
Figure 7 displays the energy balance errors (65) for the problemof scattering by the two-periodic

array of penetrable kite-shaped obstacle (63) for 𝑘1 ∈ {10.68, 𝑘∗, 10.76} and 𝐴 ∈ [10𝜆, 70𝜆] pro-
duced by the naive (blue curves) and corrected (red curves) BIE formulations. The same
high-order Nyström discretization scheme was employed to numerically solve both BIEs. The
additional parameter 𝛿 > 0 that enters the corrected BIE (91) through the set 𝛿 in (70), which
selects the modes to be used in the correcting terms in (95) and (98), is chosen as 𝛿 = 3𝑘1∕4 in
these examples. Two different values of the parameter 𝑐 > 0, which controls the smoothness of
the window function𝑤𝐴, are used. As can be observed in Figure 7, the upper envelopes to the red
error curves corresponding to the corrected windowed BIE formulation, exhibit superalgebraic
convergence as the window size 𝐴 increases, for all three wavenumbers considered including
the challenging RW-anomaly configuration at 𝑘1 = 𝑘∗. Significantly smoother error curves and
higher accuracies are achieved for 𝑐 = 0.1 than for 𝑐 = 0.5. This may have to do with the smooth-
ness of the window function 𝑤𝐴 defined (50) which becomes discontinuous in the limit when
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306 STRAUSZER-CAUSSADE et al.

F IGURE 7 Energy balance errors (65) in the numerical solution of the test problem of Section 7 obtained
using the corrected windowed integral equation (91) for 𝑐 = 0.5 (top row) and 𝑐 = 0.1 (bottom row) and various
window sizes 𝐴 > 0. Three different exterior wavenumbers are considered corresponding to (A)–(D) 𝑘1 = 10.68,
(C)–(F) 𝑘1 = 10.76, and (B)–(E) 𝑘1 = 𝑘∗ ≈ 10.7261, that corresponds to an RW-anomaly frequency. The fixed
parameter value 𝛿 = 3𝑘1∕4, which yields a four-element set 𝛿 of correcting terms, is used in all these examples.

𝑐 → 1. Indeed, smootherwindow functions are numerically integratedwith higher accuracy along
the curves Γ2,𝐴 and Γ3,𝐴 using a fixed discretization, hence partially explaining the smaller errors
obtained for 𝑐 = 0.1. These results suggest that 𝑐 = 0 is the optimal value of this parameter. It is
however important to keep in mind that there is a trade-off when selecting the windows func-
tion parameters 𝐴 and 𝑐. This is that the smaller 𝑐 is, the smaller is the area of the region where
the WGFmethod produces accurate solutions (i.e., the region where {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑤𝐴(𝑦) = 1} =

ℝ × [−𝑐𝐴, 𝑐𝐴]). Therefore, the constraint 𝑐𝐴 > 𝑟, where 𝑟 > 0 is obstacle diameter, needs to be
considered to obtain accurate solutions inside and around the obstacleΩ2.
Next, Figure 8 displays wavenumber sweeps of the energy balance error (65) obtained using

the naive and the corrected BIE formulations for three window sizes 𝐴 ∈ {10𝜆, 30𝜆, 50𝜆} and
𝛿 = {3𝑘1∕4, 𝑘1∕4, 𝑘1}. The 𝑘1-wavenumber range [𝑘∗ − 0.1, 𝑘∗∗ + 0.1] considered in these exam-
ples includes two RW-anomaly frequencies at 𝑘∗ ≈ 10.7261 and 𝑘∗∗ ≈ 11.0418 where 𝛽1 = 0 and
𝛽−6 = 0, respectively. Unlike the results produced by the naive windowed BIE (blue curves) the
corrected approach does not break down at and around RW-anomaly frequencies. Indeed, despite
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STRAUSZER-CAUSSADE et al. 307

(A) (B) (C)

F IGURE 8 Energy balance error (65) sweeps for 𝑘1 ∈ [𝑘∗ − 0.1, 𝑘∗∗ + 0.1], where 𝑘∗ and 𝑘∗∗ are two
consecutive RW frequencies, in the solution of the test problem of Section 7 produced by the corrected windowed
BIE (91) using the parameter values 𝛿 ∈ {𝑘1∕2, 3𝑘1∕4, 𝑘1} and (A) 𝐴 = 10𝜆, (B) 𝐴 = 30𝜆, and (C) 𝐴 = 50𝜆.

the proximity to the RW frequencies, no extreme accuracy variations are observed as 𝑘1 changes
while maintaining the main parameters 𝐴 and 𝛿 fixed. These results demonstrate the robustness
of the proposed methodology. Moreover, these results show that the parameter value 𝛿 = 3𝑘1∕4

(red curves) is good enough to achieve highly accurate solutions throughout the spectrum as no
significant improvement is achieved using 𝛿 = 𝑘1 (purple curves).

9.2 Photonic crystal slab

In our next and final example, we apply the proposed BIE method to the solution of a problem
of scattering by a finite-thickness photonic crystal slab. As shown in Figure 9A and following the
experimental setup of Ref. 46,we examine a 2Dphotonic crystalwith a centered rectangular lattice
of width 𝑎1 = 693 nm and height 𝑎2 = 488 nm. The refractive index inside the crystal— which is
assumed to occupy the exterior domainΩ1—is taken equal to 𝑛 = 𝑘1∕𝑘2 = 2.6. The boundaries of
the 21 pores encompassed by our computational domain (which make up a nonconnected curve
Γ1) are circles of radius 𝑟 = 155 nm centered at

𝐚𝑙 =
(−1)𝑙−1𝑎1

4
𝐞1 +

(11 − 𝑙)𝑎2
2

𝐞2, 𝑙 = 1, … 21. (100)

Nonstraight unit-cell boundaries Γ2 and Γ3 parameterized by properly scaled sine functions are
used in this example. Note that nonstraight curves Γ2 and Γ3 are necessary in this case to avoid
them to intercept the pores (Γ1). All the curves involved in the computations are displayed in
Figure 9A together the lattice geometry. Both TE and TM polarization cases are considered
under normal planewave incidence (𝜃inc = 0) and the spectrally accurate MKNyströmmethod is
employed in the numerical solution of the corrected windowed BIE (99).
The computed reflectance (𝑅) and transmittance (𝑇), which are given by

𝑅 ∶=
∑
𝑛∈

𝛽𝑛
𝛽

||𝐵+
𝑛
||2 and 𝑇 ∶= 1 + 2Re (𝐵−

0 ) +
∑
𝑛∈

𝛽𝑛
𝛽

||𝐵−
𝑛
||2 (101)
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308 STRAUSZER-CAUSSADE et al.

(A) (B)

(C)

F IGURE 9 Reflectance and transmittance spectra of a finite-thickness photonic crystal slab in TE and TM
polarizations at normal planewave incidence. (A) Depiction of the lattice geometry and the curves involved the
numerical solution of the problem by the proposed windowed Green function method. Computed reflectance (𝑅)
and transmittance (𝑇) for various frequencies 𝜆−1 = 𝑘1∕(2𝜋) in TE (A) and TM (B) polarization. The first stop
band, from 17783 cm−1 to 23152 cm−1, is marked in gray, which is the same in both polarizations. The location of
RW-anomaly frequencies is marked by the vertical dashed lines.

are displayed in Figure 9B,C for TE and TM polarizations, respectively, as functions of the fre-
quency 𝜆−1 = 𝑘1∕(2𝜋) in the range from 4000 to 38000 cm−1. Both 𝑅 and 𝑇 are here computed
using (66) to approximate the Rayleigh coefficients 𝐵±

𝑛 and (98) to evaluate the scattered field
𝑢𝑠
𝐴
on the horizontal lines 𝑦 = ±(5𝑎2 + 2𝑟)where coefficients are computed. The quantity 𝑅 + 𝑇,

which is also displayed in those figures, deviates less than 0.01% from its theoretical value of one
(see Appendix A) in all the frequencies considered in this example where we used the parame-
ter values 𝑐 = 0.5, 𝐴 = 20𝜆, 𝛿 = 3𝑘1∕4, and ℎ = 𝑐𝐴 as well as sufficiently refined discretizations
of the curves involved. The resulting linear systems, whose sizes remain almost constant around
4920 × 4920, were solved by means of GMRES with a tolerance of 10−6. The observed numbers
of GMRES iterations needed to achieved the prescribed tolerance grew with the frequency from
33 (respectively, 44) iterations at 4000 cm−1 to 348 (respectively, 470) iterations at 38000 cm−1 in
TE (respectively, TM) polarization. The preconditioned system (𝖨𝖽𝑋 + 𝖨𝖽𝑋𝐄

−1◦𝗠𝑐◦𝖨𝖽𝑋𝐖𝐴)𝝓𝐴 =

𝖨𝖽𝑋𝐄
−1𝝓inc was used in the latter case, as it yields smaller number of iterations.

As expected, band structures form in the reflectance and transmittance spectra displayed in
Figure 9B,C. The lowest frequency band structure occurs at roughly the same frequency range
in both polarizations between 17783 and 23152 cm−1 at which 𝑅 ≈ 1 in both cases. These results
differ slightly from Ref. 46 that places the first stop band for TE-polarized incidence between
4700𝑛 = 12220 cm−1 and 7300𝑛 = 18980 cm−1.
Finally, Figure 10 shows the real part of the total field solution of the problem of scattering

by the photonic crystal slab in TE (top row) and TM (bottom row) polarizations for two different
frequencies. The left column plots correspond to the RW-anomaly frequency that ismarked by the
left dashed vertical line in Figure 9B,C. The reflectance 𝑅 equals 1.5 × 10−2 and 7.2 × 10−4 in TE
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STRAUSZER-CAUSSADE et al. 309

F IGURE 10 Solution of the problem of scattering of planewave at normal incidence by the finite-thickness
photonic crystal of Figure 9A. Top row: real part of the 𝑧-component total electric field at the lowest RW-anomaly
frequency (left) and at the lowest stop-band frequency (right). Bottom row: real part of the 𝑧-component of the
total magnetic field at the lowest RW-anomaly frequency (left) and at the lowest stop-band frequency (right).

and TM polarization, respectively, at this frequency. The right column plots, on the other hand,
correspond to the frequency at the beginning of the stop band where 𝑅 ≈ 1 in both polarizations.

10 CONCLUSIONS AND FUTUREWORK

We presented a novel BIE method for the numerical solution of problems of planewave scatter-
ing by periodic line arrays of penetrable obstacles in two dimensions. Our windowed BIE (99),
which is provable Fredholm of the second kind, involves the compact operator 𝗠̃ (95) that is
expressed in terms of free-space Green function kernels. As such, (99) can be directly discretized
and solved by means of any of the various 2D Helmholtz BIE solvers available (cf. Refs. 47–50).
We demonstrated through numerical experiments that the combination of our proposed superal-
gebraically convergent WGF method with the spectrally accurate MK Nyström method, yields a
high-order frequency-robust BIE solver that does not break down at and around the challenging
RW-anomaly configurations.
This work opens up multiple possible directions for future work. Most of what we presented

here applies to Helmholtz scattering problems by line arrays of penetrable obstacles in three
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310 STRAUSZER-CAUSSADE et al.

dimensions. The extension of this approach toHelmholtz scattering problems by two-dimensional
arrays of three-dimensional obstacles is currently being investigated. Themain challenge there are
the nearly-singular integrals that arise when enforcing the quasi-periodicity condition on the four
walls of the unit cell. This issue, however, can be completely avoided by enforcing such a condi-
tion on parts of the boundary of a supercell. Finally, we mention the natural extension of these
results to the full Maxwell’s equations in 3D periodic media.
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APPENDIX A: ENERGY CONSERVATION PRINCIPLE
The energy conservation principle is used to assess the accuracy of the proposed boundary integral
equation (BIE) solver. Such principle follows from a direct application of Green’s second identity
over 𝑈ℎ = {(𝑥, 𝑦) ∈ 𝑈 ∶ |𝑦| < ℎ} ⊂ ℎ for ℎ > max{ℎ+, −ℎ−} is large enough so that 𝑈ℎ contains
the obstacle Ω2 (see Figure 2). Applying Green second identity over 𝑈ℎ ⧵ Ω2 we obtain

0 =∫
𝑈ℎ⧵Ω2

{𝑢Δ𝑢̄ − 𝑢̄Δ𝑢}𝑑𝒓 = ∫
𝜕{𝑈ℎ⧵Ω2}

{
𝑢𝜕𝑛𝑣 − 𝑢̄𝜕𝑛𝑢

}
𝑑𝑠

= − 2𝑖 Im

(
∫
Γ1

𝑢𝜕𝑛𝑢𝑑𝑠

)
− 2𝑖 Im

(
∫
Γ2,ℎ

𝑢𝜕𝑛𝑢𝑑𝑠

)
+ 2𝑖 Im

(
∫
Γ3,ℎ

𝑢𝜕𝑛𝑢𝑑𝑠

)

+ 2𝑖 Im
⎛⎜⎜⎝∫

𝐿

2

−
𝐿

2

𝑢(𝑥, ℎ)𝜕𝑦𝑢(𝑥, ℎ)𝑑𝑥
⎞⎟⎟⎠ − 2𝑖 Im

⎛⎜⎜⎝∫
𝐿

2

−
𝐿

2

𝑢(𝑥, −ℎ)𝜕𝑦𝑢(𝑥, −ℎ)𝑑𝑥
⎞⎟⎟⎠,

(A.1)

where Γ𝑗,ℎ = {(𝑥, 𝑦) ∈ Γ𝑗 ∶ |𝑦| < ℎ}, 𝑗 = 2, 3 (see Figure 2). Note that, without loss of generality,
we have assumed that 𝗑2(𝑡) = −

𝐿

2
for 𝑡 ∈ ℝ such that 𝗒2(𝑡) = ℎ and 𝗒2(𝑡) = −ℎ.

The integrals over the Γ2,ℎ and Γ3,ℎ in (A.1) cancel each other by virtue of the fact that

∫
Γ3,ℎ

𝑢𝜕𝑛𝑢𝑑𝑠 = ∫
Γ2,ℎ

(e𝑖𝛼𝐿 𝑢)(e𝑖𝛼𝐿 𝜕𝑛𝑢)𝑑𝑠 = ∫
Γ2,ℎ

𝑢𝜕𝑛𝑢𝑑𝑠. (A.2)

Similarly, applying Green second identity inside Ω2 and assuming that 𝑘2 > 0 (i.e., that the
medium occupying Ω2 is non dissipative), we obtain

0 = ∫
Ω2

{𝑢Δ𝑢̄ − 𝑢̄Δ𝑢}𝑑𝒓 = ∫
Γ1

{
𝑢𝜕𝑛𝑢 − 𝑢̄𝜕𝑛𝑢

}
𝑑𝑠 = 2𝑖 Im

(
∫
Γ1

𝑢𝜕𝑛𝑢𝑑𝑠

)
. (A.3)
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Therefore, we conclude from these identities that

Im
⎛⎜⎜⎝∫

𝐿

2

−
𝐿

2

𝑢(𝑥, ℎ)𝜕𝑦𝑢(𝑥, ℎ)𝑑𝑥
⎞⎟⎟⎠ = Im

⎛⎜⎜⎝∫
𝐿

2

−
𝐿

2

𝑢(𝑥, −ℎ)𝜕𝑦𝑢(𝑥, −ℎ)𝑑𝑥
⎞⎟⎟⎠. (A.4)

These integrals can be expressed in terms of the Rayleigh coefficients. To do so, first we note that

𝑢(𝑥, ±ℎ) = e𝑖𝛼𝑥∓𝑖𝛽ℎ +
∑

𝑛∈∪
𝐵±
𝑛 e𝑖(𝛼𝑛𝑥+𝛽𝑛ℎ) +

∑
𝑛∈

𝐵±
𝑛 e𝑖𝛼𝑛𝑥−|𝛽𝑛|ℎ

𝜕𝑦𝑢(𝑥, ±ℎ) = 𝑖𝛽 e−𝑖𝛼𝑥±𝑖𝛽ℎ ∓
∑

𝑛∈∪
𝑖𝛽𝑛𝐵

±
𝑛 e−𝑖(𝛼𝑛𝑥+𝛽𝑛ℎ) ∓

∑
𝑛∈

|𝛽𝑛|𝐵±
𝑛 e−𝑖𝛼𝑛𝑥−|𝛽𝑛|ℎ . (A.5)

Therefore, using the fact that

1

𝐿 ∫
𝐿

2

−
𝐿

2

𝑢(𝑥, ±ℎ) e−𝑖𝛼𝑛𝑥 𝑑𝑥 =

{
𝛿0,𝑛 e

∓𝑖𝛽ℎ +𝐵±
𝑛 e𝑖𝛽𝑛ℎ 𝑛 ∈  ∪ 

𝐵±
𝑛 e−|𝛽𝑛|ℎ 𝑛 ∈  , (A.6)

we arrive at

1

𝐿 ∫
𝐿

2

−
𝐿

2

𝑢(𝑥, ℎ)𝜕𝑦𝑢(𝑥, ℎ)𝑑𝑥 = 𝑖𝛽 − 2𝛽Im (𝐵+
0 e2𝑖𝛽ℎ)

−
∑

𝑛∈∪
(𝑖𝛽𝑛)|𝐵+

𝑛 |2 − ∑
𝑛∈

|𝛽𝑛||𝐵+
𝑛 |2 e−2|𝛽𝑛|ℎ

(A.7)

1

𝐿 ∫
𝐿

2

−
𝐿

2

𝑢(𝑥, −ℎ)𝜕𝑦𝑢(𝑥, −ℎ)𝑑𝑥 = 𝑖𝛽 + 2𝑖𝛽Re (𝐵−
0 )

+
∑

𝑛∈∪
(𝑖𝛽𝑛)|𝐵−

𝑛 |2 + ∑
𝑛∈

|𝛽𝑛||𝐵−
𝑛 |2 e−2|𝛽𝑛|ℎ .

(A.8)

Finally, taking the imaginary part in both integrals (A.7) and (A.8), and equating them, we obtain
the following relation between the Rayleigh coefficients

0 = 2Re (𝐵−
0 ) +

∑
𝑛∈

𝛽𝑛
𝛽

{|𝐵−
𝑛 |2 + |𝐵+

𝑛 |2}, (A.9)

which expresses the energy conservation principle for this system under consideration.

APPENDIX B: SUPERALGEBRAIC DECAY OFWINDOWED OSCILLATORY
INTEGRALS
The main argument to establish the superalgebraic convergence as 𝐴 → ∞ of the terms in (59)
corresponding to the propagativemodes 𝛽𝑛 ∈ ℝ>0 is essentially the repeated use of the integration
by parts procedure. To illustrate this argument, let us consider the single-layer operator 𝑒𝐴 ∶=

𝖵1,2
1 [𝜒+

𝐴
e𝑖𝛽𝑛 ⋅]which contributes to the term𝖬1,4[𝜒

+
𝐴
e𝑖𝛽𝑛 ⋅]where𝖬1,4 is defined in (39). In detail,

we examine the oscillatory integral

𝑒𝐴(𝑡) =
𝑖

4 ∫
∞

𝑐𝐴

𝐻
(1)
0

(
𝑘1

√(
𝗑1(𝑡) +

𝐿

2

)2

+ (𝗒1(𝑡) − 𝜏)2

)
𝑤𝑐

𝐴
(𝜏) e𝑖𝛽𝑛𝜏 𝑑𝜏, 𝑡 ∈ [0, 2𝜋). (B.1)
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314 STRAUSZER-CAUSSADE et al.

In view of the addition theorem,35 that is,

𝐻
(1)
0

(
𝑘1

√(
𝗑1(𝑡) +

𝐿

2

)2

+ (𝗒1(𝑡) − 𝜏)2

)
=

∞∑
𝓁=−∞

𝐻
(1)
𝓁

(𝑘1|𝜏|)𝐽𝓁(𝑘1𝜚(𝑡)) e𝑖𝓁( 𝜋2 −𝜗(𝑡))
, (B.2)

where 𝜚 =
√

(𝗑1 +
𝐿

2
)2 + 𝗒21, 𝜗 = arctan(

𝗒1

𝗑1+
𝐿

2

) and 𝜚(𝑡) < 𝑐𝐴 ≤ |𝜏|, it suffices to estimate the

convergence of the integrals

𝐸
(𝑛,𝓁)
𝐴

∶= ∫
∞

𝑐𝐴

𝐻
(1)
𝓁

(𝑘1𝜏)𝑤
𝑐
𝐴
(𝜏) e𝑖𝛽𝑛𝜏 𝑑𝜏, 𝓁 ≥ 0, (B.3)

as𝐴 → ∞. Performing the change variable 𝜏 = 𝐴𝑠 and letting 𝜉(𝑠) = 𝑤𝑐
𝐴
(𝑠𝐴)where𝑤𝑐

𝐴
(𝐴𝑠) = 1 −

𝜒(𝑠, 𝑐, 1) with 𝜒 defined in (49) (note that it does not depend on 𝐴), ℎ𝐴,𝓁(𝑠) = e−𝑖𝑘1𝐴𝑠 𝐻
(1)
𝓁

(𝑘1𝐴𝑠)

and 𝜅𝑛 = 𝛽𝑛 + 𝑘1 ≠ 0, we arrive at

𝐸
(𝑛,𝓁)
𝐴

= 𝐴 ∫
∞

𝑐

𝜉(𝑠)ℎ𝐴,𝓁(𝑠) e
𝑖𝜅𝑛𝐴𝑠 𝑑𝑠. (B.4)

Integrating by parts𝑚 > 0 times, the integral above can be recast as

𝐸
(𝑛,𝓁)
𝐴

=
1

(𝑖𝜅𝑛)𝑚𝐴𝑚−1 ∫
∞

𝑐

e𝑖𝜅𝑛𝐴𝑠

(
𝑑

𝑑𝑠

)𝑚[
𝜉(𝑠)ℎ𝐴,𝓁(𝑠)

]
𝑑𝑠

=
1

(𝑖𝜅𝑛)𝑚𝐴𝑚−1

𝑚∑
𝑝=0

(𝑚
𝑝

)
∫

∞

𝑐

e𝑖𝜅𝑛𝐴𝑠 𝜉(𝑚−𝑝)(𝑠)ℎ
(𝑝)

𝐴,𝓁
(𝑠)𝑑𝑠,

(B.5)

where we have used Leibniz’s rule and the fact that 𝜉 together with its derivatives of any order
vanish at 𝑠 = 𝑐. We then conclude that

|||𝐸(𝑛,𝓁)
𝐴

||| ≤ ‖𝜉‖𝐶𝑚(ℝ)|𝜅𝑛|𝑚𝐴𝑚−1

{‖‖ℎ𝐴,𝓁
‖‖𝐿1(𝑐,1) + 𝑚∑

𝑝=1

(𝑚
𝑝

)‖‖‖ℎ(𝑝)

𝐴,𝓁

‖‖‖𝐿1(𝑐,∞)

}
. (B.6)

To estimate the 𝐿1-norm of ℎ(𝑝)

𝐴,𝓁
, 0 ≤ 𝑝 ≤ 𝑚, we employ a slight refinement of Lemma 1 in Ref. 51

which yields

|ℎ(𝑝)

𝐴,𝓁
(𝑠)| = |||||

(
d

d𝑠

)𝑝[
e−i𝑘1𝐴𝑠𝐻

(1)
𝓁

(𝑘1𝐴𝑠)
]||||| ≤ 1√

8𝑘1𝐴

2𝓁𝑃𝑝(𝓁)|Γ(𝓁 −
1

2
)| 𝑠−(𝑝+

1

2
) (B.7)

for 𝑠 ≥ 𝑐 and 𝑝, 𝓁 ≥ 0, where 𝑃𝑝 are positive-coefficient polynomials of degree 𝑝. It hence follows
from these bounds that

‖‖ℎ𝐴,𝓁
‖‖𝐿1(𝑐,1) ≤ 1√

8𝑘1𝐴

2𝓁𝑃0(𝓁)|Γ(𝓁 −
1

2
)| ∫

1

𝑐

𝑠
−

1

2 𝑑𝑠 ≤ 1√
8𝑘1𝐴

2𝓁|Γ(𝓁 −
1

2
)|
⎛⎜⎜⎝𝑃0(𝓁)

1 − 𝑐
1

2

2

⎞⎟⎟⎠ (B.8)
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and

‖‖‖ℎ(𝑝)

𝐴,𝓁

‖‖‖𝐿1(𝑐,∞)
≤ 1√

8𝑘1𝐴

2𝓁𝑃𝑝(𝓁)|Γ(𝓁 −
1

2
)| ∫

∞

𝑐

𝑠
−(𝑝+

1

2
)
𝑑𝑠

=
1√
8𝑘1𝐴

2𝓁|Γ(𝓁 −
1

2
)|
⎛⎜⎜⎝
𝑃𝑝(𝓁)𝑐

−(𝑝−
1

2
)

𝑝 −
1

2

⎞⎟⎟⎠
(B.9)

for 𝑝 ≥ 1, and, consequently,

|||𝐸(𝑛,𝓁)
𝐴

||| ≤ ‖𝜉‖𝐶𝑚(ℝ)|𝜅𝑛|𝑚𝐴𝑚−1
√
8𝑘1𝐴

2𝓁|Γ(𝓁 −
1

2
)|𝑃𝑚(𝓁), (B.10)

where 𝑃𝑚 is the𝑚-degree polynomial given by

𝑃𝑚(𝓁) =

⎧⎪⎨⎪⎩𝑃0(𝓁)
1 − 𝑐

1

2

2
+

𝑚∑
𝑝=1

(𝑚
𝑝

)
𝑃𝑝(𝓁)

𝑐
−(𝑝−

1

2
)

𝑝 −
1

2

⎫⎪⎬⎪⎭. (B.11)

With the suitable upper bounds (B.10) for𝐸(𝑛,𝓁)
𝑛 we return to the addition theorem (B.2) to obtain

|𝑒𝐴(𝑡)| = 1

4

||||||
∞∑

𝓁=−∞

𝐽𝓁(𝑘1𝜚(𝑡)) e
𝑖𝓁(

𝜋

2
−𝜗(𝑡))

𝐸
(𝑛,𝓁)
𝐴

|||||| ≤
1

2

∞∑
𝓁=0

||𝐽𝓁(𝑘1𝜚(𝑡))|||||𝐸(𝑛,𝓁)
𝐴

|||
≤ ‖𝜉‖𝐶𝑚(ℝ)|𝜅𝑛|𝑚𝐴𝑚−1

√
32𝑘1𝐴

∞∑
𝓁=0

𝑎𝓁(𝑡) for all 𝑚 ≥ 1,

(B.12)

where coefficients in the series above are given by 𝑎𝓁(𝑡) = |𝐽𝓁(𝑘1𝜚(𝑡))| 2𝓁𝑃𝑚(𝓁)|Γ(𝓁− 1

2
)| .

Finally, to prove the superalgebraic decay of the function 𝑒𝐴 as 𝐴 → ∞ is suffices to show that
the series in (B.12) converges for all 𝑡 ∈ [0, 2𝜋). To do so, we resort to the ratio test. From the
asymptotic form of the Bessel functions 𝐽𝓁(𝑥) for a fixed real number 𝑥 and large integers 𝓁, and
Stirling’s formula,35 we readily get that

𝑎𝓁(𝑡) ∼
𝑃𝑚(𝓁)

2𝜋

⎛⎜⎜⎝
e2 𝑘1𝜚(𝑡)

𝓁(𝓁 −
1

2
)

⎞⎟⎟⎠
𝓁(

𝓁

e

) 1

2

as 𝓁 → ∞. (B.13)

Therefore,

lim
𝓁→∞

𝑎𝓁+1(𝑡)

𝑎𝓁(𝑡)
= lim

𝓁→∞

⎧⎪⎨⎪⎩
e2 𝑘1𝜚(𝑡)

(𝓁 + 1)(𝓁 +
1

2
)

⎛⎜⎜⎝
𝓁(𝓁 −

1

2
)

(𝓁 + 1)(𝓁 +
1

2
)

⎞⎟⎟⎠
𝓁⎫⎪⎬⎪⎭ = 0 (B.14)

and hence the desired result follows.
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