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Abstract: Dynamical models of social influence may present discontinuous rules of interactions:
discontinuities are unavoidable when interactions are of topological nature, i.e. when the
dynamics is the outcome of interactions with a limited number of nearest neighbors. Here,
we prove that classical solutions are not sufficient to describe the dynamics that is produced by
such interactions, but one needs to use non-classical concepts of solutions instead. We first
describe the time evolution of the interaction graph associated to Caratheodory solutions,
whose properties depend on the dimension of the state space and on the number of considered
neighbors. We then prove the existence of Caratheodory solutions for 2-nearest neighbors, via
an algorithm defining an interaction graph.
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1. INTRODUCTION AND SUMMARY OF RESULTS

Researchers from many different fields have explored the
behavior of large systems of active particles or agents.
Examples include dynamics of opinions in social networks,
animal groups, networked robots, pedestrian dynamics and
language evolution. Their dynamics is written as an Ordi-
nary Differential Equation (ODE in the following) in large
dimension. One of the main phenomena of active particles
is self-organization of the whole system, stemming from
simple interaction rules at the particle level. Such inter-
action rules are often motivated by relationships among
agents; thus, corresponding evolutions are referred to as
social dynamics, see Aydoğdu et al. (2017); Proskurnikov
and Tempo (2017, 2018).

The description of social dynamics may require ODEs
with discontinuous vector fields, as we will show in the
model studied in the present paper. Several concepts
of solutions have been defined in mathematical analysis
and in control theory, such as classical, Caratheodory,
Filippov, Krasovsky, Clarke-Ledyaev-Sontag-Subbotin and
stratified solutions. In this article, we will only focus on
Caratheodory solutions, for which we recall the precise
definition in Section 2.1 below. For a thorough discussion
on these different concepts of solutions in social dynamics
models, see e.g. Ceragioli et al. (2021a); Piccoli and Rossi
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(2021); Ceragioli et al. (2021b); Ceragioli and Frasca
(2012, 2018b,a); Frasca et al. (2019).

We now informally describe the opinion dynamics model
that we analyze in the present article, whose basic idea
is that trust towards others has limitations. Some earlier
work (by Hegselmann and Krause (2002) and followers)
has assumed that an individual is influenced by others
only if opinions are not too far from one another. Here,
we describe the fact that one’s confidence towards others is
limited by describing the so-called topological interactions:
we assume that an individual follows only a fixed number
κ ≥ 1 of neighbors, the ones whose opinions are the nearest
to his own. Topological interactions can be motivated
by cognitive limits of the individuals on the number of
significant relationships with other individuals (see Bal-
lerini et al. (2008); Dunbar (1992)). These limitations are
particularly meaningful in the dynamics of contemporary
society, where potential contacts and available information
are virtually unlimited. The precise mathematical descrip-
tion of the model is postponed to Section 2.

The main results of this article are the following. First,
we study the evolution of the interaction graph for
Caratheodory solutions, i.e. the graph of the interacting
neighbors at each instant of time. In Theorem 2, we will
show that such graph is constant for positive times only
for the case of κ = 1 when agents interact on the real
line R. Instead, the graph can evolve in time both when
κ > 1 or where the state space for each agent is Rn with
n > 1, as shown by relevant examples. The second main
result is Theorem 4, stating that, in the case of κ = 2
neighbors, for any initial data there exists at least one
Caratheodory solution. The presence of topological (thus,



strongly discontinuous) interactions makes the problem
quite hard, and we need a non-trivial algorithm to build
the interaction graph.

The structure of the article is the following. In Section 2,
we describe the model and show the need of non-classical
solutions to make sense of discontinuous interactions. We
then recall in Section 2.1 the definition of Caratheodory
solutions and some known results about them. Section 3
presents the main results about the interaction graph: after
its precise definition, we provide a couple of remarkable ex-
amples of solutions in which the interaction graph evolves
in time. We finally prove Theorem 2. Section 4 contains
our main result about existence of Caratheodory solutions,
i.e. Theorem 4. Finally, Section 5 collects conclusions and
future research directions.

2. THE TOPOLOGICAL INTERACTION MODEL
AND ITS KNOWN PROPERTIES

Let us consider a set V = {1, . . . , N} of N agents with
states xi ∈ Rn (e.g. position, opinion, speed). Each agent
i ∈ V interacts with other agents belonging to a subset
of neighbors Ni(x) ⊆ V . The subset of neighbors Ni(x)
depends on the state and induces a graph G(x) = (V,E)
of interactions among the agents: V is the set of nodes and
ij ∈ E is a (directed) edge if j ∈ Ni(x). We denote the set
of edges by E(x). The dynamics can be written as

ẋi =
∑

j∈Ni(x)
a(|xj − xi|)(xj − xi), (1)

where the function a : [0,+∞[→ [0,+∞[ represents the
strength of interactions among agents. It satisfies the
following hypotheses from now on:

a is a non-decreasing C1-function, with a(r) > 0.

The topological interaction model is obtained when agent
i interacts only with a fixed number κ of neighbors, where
1 ≤ κ ≤ N − 1. More precisely, for every agent i ∈ V ,
his neighborhood Ni(x) is defined in the following way:
the elements of V \ {i} are ordered by increasing values of
|xj − xi|; then, the first κ elements of the list (i.e. those
with smallest distance from i) form the setNi(x) of current
neighbors of i. Should a tie between two or more agents
arise, priority is given to agents with lower index.

This continuous-time topological interaction model was
first pointed out in Aydoğdu et al. (2017), while several
other models of opinion dynamics and collective motion
have considered topological interactions in different forms:
see Cristiani et al. (2011); Rossi and Frasca (2020) and
references therein.

Observe the following key feature: the right hand side of
(1) is a discontinuous function because of the possible
changes in the neighbor sets. For this reason, one needs to
carefully select a concept of solution to such discontinuous
ODE. Here, we will only consider Caratheodory solutions,
which are defined below in Section 2.1. For a thorough
discussion on these different concepts of solutions in social
dynamics models, see Ceragioli and Frasca (2018b); Piccoli
and Rossi (2021); Ceragioli et al. (2021a).

Remark 1. (Metric bounded confidence models). A related
family of bounded confidence models is given by metric

interactions: the agents in Ni(x) are all the agents within
a given radius R > 0, i.e.

Ni(x) = {j ∈ V s.t. |xj − xi| < R} .
Also in this case, the presence of the threshold implies that
the ODE in (1) has discontinuous right hand side. Yet,
metric interactions enjoy some nicer properties, compared
to the topological ones, such as symmetry: if ij is an edge
for G(t), then ji is an edge too. See more details in Piccoli
and Rossi (2021).

2.1 Caratheodory solutions

An autonomous ODE is written as:

ẋ(t) = g(x(t)) (2)

where x ∈ Rm and g : Rm → Rm is a measurable
and locally bounded function (defined at every point).
Many definitions of solutions for (2) are available, most of
which coincide when g is sufficiently regular (e.g. locally
Lipschitz). In this article we only consider the following.

Definition 1. Given the ODE (2) and T > 0, we define:

(1) A classical solution is a differentiable function
x : [0, T ] → Rm that satisfies (2) at every time
t ∈ (0, T ). At 0 and at T the equation must be satisfied
with one-sided derivatives.

(2) A Caratheodory solution is an absolutely contin-
uous function x : [0, T ] → Rm which satisfies (2)
at almost every time t ∈ [0, T ]. Equivalently, x is a
solution in integral form:

x(t) = x(0) +
∫ t

0
g(x(s)) ds.

It is clear that all classical solutions are Caratheodory too.

We will show in Examples 2-3 below that classical solutions
to (1) may not exist. For this reason, in this paper we
will concentrate on Caratheodory solutions to (1). We thus
recall from Ceragioli et al. (2021a) two facts about them.
The first one is contractivity of their support, which is a
consequence of the fact that a(r) > 0, i.e. that interactions
are always attractive.

Proposition 1. (Contractivity). Let x(t) be a solution to
(1). Then

co
({
x1(T

1), . . . , xN (T 1)
})
⊇ co

({
x1(T

2), . . . , xN (T 2)
})
,

for 0 ≤ T 1 < T 2, where the (closed) convex hull of A is

co(A) :=

{
ℓ∑

i=1

αixi : ℓ ∈ N, αi ∈ [0, 1],

ℓ∑
i=1

αi = 1, xi ∈ A

}
.

The second fact is about the uniqueness of Caratheodory
solutions from almost every initial data. We provide a
counterexample to uniqueness from specific initial condi-
tions in Example 1.

Theorem 1. (Uniqueness). Uniqueness of Caratheodory so-
lutions for the topological bounded confidence model (1)
does not hold for all initial data but does hold for almost
every initial datum, i.e. the set of initial data in RnN

for which uniqueness does not hold has zero Lebesgue
measure.



3. THE INTERACTION GRAPH

In this section, we define and study the graph associated
to a Caratheodory solution to (1).

Definition 2. (Associated graph). Let x(t) be a Caratheo-
dory solution to (1). Then, the associated (directed) graph
is G(x(t)) := (V,E(t)), where E(t) is composed by edges
{ij s.t. i ∈ V, j ∈ Ni(x(t))}.

For all examples in this section, we set a(r) ≡ 1. As
a consequence, the solutions of (1) are given by piecing
together solutions of linear systems.

Observe that Ni(x(t)) is not uniquely determined by the
initial data and is not even constant along trajectories, as
the following example shows.

Example 1. (Non-uniqueness). Set N = 4, n = 1, κ = 1.
Consider the initial condition x = (−1, 0, 1, 1). We now
provide two Caratheodory solutions with such initial data.
The first is given by choosing the edges of the interaction
graph E(t) = {12, 23, 34, 43} for t > 0: the solution is

x(t) = (1− t exp(−t)− 2 exp(−t), 1− exp(−t), 1, 1).
Note that x(0) = x and x(t) satisfies (1) for all t > 0
but not for t = 0, hence it is not a classical solution. Also
remark that E(0) = {12, 21, 34, 43} ≠ E(t) for t > 0.
The second solution is given by setting the edges of the
interaction graph to be Ẽ(t) = {12, 23, 34, 43} for all t ≥ 0.
In this case, the solution is

x̃(t) =
(
− 1

2 −
1
2 exp(−2t),−

1
2 + 1

2 exp(−2t), 1, 1
)
.

Remark that this solution is (the unique) classical one.

Remark 2. (Initial data and interaction graphs). Example 1
also explains why the interaction graph is associated to a
specific Caratheodory solution, and is not uniquely deter-
mined by the initial data.

In the previous example, the graph G(t) is different at
time t = 0 and for t > 0. Motivated by this and similar
examples, we ask ourselves whether the associated graph of
Caratheodory solutions of (1) is always constant for t > 0.
We will prove in Theorem 2 that this fact only holds true
when κ = 1 and n = 1. Instead, we now provide examples
in which the associated graph is not constant when κ > 1
or n > 1.

3.1 Examples of non-constant interaction graphs

In this section, we provide two interesting examples of
topological bounded confidence models for which the
graph associated to a Caratheodory solution is not con-
stant. For each example, we will provide a Caratheodory
solution and prove that it is the unique Caratheodory
solution for it. Since trajectories will be non-differentiable
for some times, this will also ensure that classical solutions
do not exist.

Example 2. (κ = 1, n = 2). In this example, we set κ = 1
and n = 2, i.e. agents evolve on the plane R2. Fix L :=√
7/8 and N = 6 agents in initial positions

x1(0) := (0, 0), x2(0) := (1, 0), x3(0) := (1.9, 0),

x4(0) := (0.5, L), x5(0) := (−0.5, L), x6(0) := (−1.4, L).
Since |x1(0)−x4(0)| = |x2(0)−x4(0)| = |x1(0)−x5(0)| > 1,
for small times the graph G(x(t)) = (V,E(t)) has the

x1 x2

x3

x4
x6

x5

Fig. 1. Trajectories of Example 2.
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Fig. 2. Example 2: evolution of the first component of
x1, x2, x3.

following edges: E(t) = {12, 23, 32, 45, 56, 65}. By solving
the associated linear system

ẋi =
∑

ij∈E(t)(xj − xi), (3)

there exists a time T1 > 0 for which it holds

|x1(T1)− x4(T1)| = |x1(T1)− x2(T1)| = |x4(T1)− x5(T1)|
> |x2(T1)− x3(T1)| = |x5(T1)− x6(T1)|.
Then, there exists T2 > T1 for which {23, 32, 56, 65} ⊂
E(t) for all t ∈ (T1, T2). In principle, one needs to choose
either 12 ∈ E(t) or 14 ∈ E(t) for t ∈ (T1, T2), and similarly
either 45 ∈ E(t) or 41 ∈ E(t). Direct computations of the
solution of the associated linear system show that any of
the possible choices forces

|x1(t)− x4(t)| < min{|x1(t)− x2(t)|, |x4(t)− x5(t)|},
i.e. that the unique Caratheodory solution of (1) satisfies
E(t) = {14, 41, 23, 32, 56, 65} for all times t > T1.
The trajectories are illustrated in Figure 1. The first
component of x1, x2, x3 is plotted as a function of time
in Figure 2: the angle in the trajectory of x1 corresponds
to the change of the interaction graph.

Example 3. (κ = 2, n = 1). In this example, we set κ = 2
and agents evolve on the real line R. Consider N = 6
agents with initial positions

x1(0) = −11, x2(0) = −8, x3(0) = −3,
x4(0) = 3, x5(0) = 8, x6(0) = 11.

By continuity, the interaction graph is constant on a given
interval [0, T1), with edges E(t) = {12, 13, 21, 23, 32, 34, 43,
45, 54, 56, 64, 65}. By computing the solutions of the corre-
sponding linear system (3), there exists a first time T1 > 0
such that

|x1(T1)− x3(T1)| = |x3(T1)− x4(T1)|.
On a time interval (T1, T2), one certainly keeps

{12, 13, 21, 23, 32, 45, 54, 56, 64, 65} ∈ E(t)

and might eventually replace 34 with 31 and/or 43 with
45. In reality, for any of the possible choices, it holds

max{|x1(t)− x3(t)|, |x4(t)− x6(t)|} < |x3(t)− x4(t)|.
Thus, the only admissible choice for (1) is to set {31, 45} ∈
E(t) for t ∈ (T1, T2), hence E(t) is not constant along the
trajectory. Afterwards, the graph is constant for t > T1.
The time evolution of the system is shown in Figure 3.
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Fig. 3. Example 3: trajectories.

In both examples above, the Caratheodory solution is
unique and is not always differentiable, thereby implying
that no classical solution exists.

3.2 The interaction graph for κ = 1 on the real line

In this section, we prove the first main result of our article,
i.e. that the interaction graph is constant for Caratheodory
solutions of topological interaction models for κ = 1 in R.
Observe that the result is stated for a given Caratheodory
solution: different solutions starting from the same initial
datum may have different interaction graphs.

Theorem 2. (Graph is constant). Let x(t) be a Caratheo-
dory solution for (1) and G(x(t)) be the associated graph.
If κ = 1 and the state space for agents is R, then G(x(t))
is constant for t > 0.

Proof. Step 1. We first prove that the ordering in
R is preserved by Caratheodory solutions of (1) with
κ = 1. Since the space is R, one can rearrange indexes
so that xi(0) ≤ xi+1(0) for all i ∈ V \ {N}. Moreover,
rearrangement of indexes can preserve ordering in case of
initial coinciding positions, i.e. if xi(0) = xj(0) with i < j
before rearrangement, we can preserve it.

We now prove that inequalities are preserved along time.
For simplicity of notation, we choose i = 3 and N ≥ 5;
the cases with N ≤ 4 are identical. Consider the function
ϕ(t) := x4(t) − x3(t), that is Lipschitz continuous with
respect to time. From now on, only consider times where
x(t) is differentiable, hence ϕ(t) if differentiable too. We
also drop dependence on time, for simplicity. For times
where ϕ ≥ 0, one has two cases:

• either |x2− x3| ≤ ϕ and ẋ3 = a(|x2− x3|)(x2− x3) ≤ 0;
• or |x2 − x3| ≥ ϕ and ẋ3 = a(ϕ)ϕ.

In both cases, it holds ẋ3 ≤ a(ϕ)ϕ. By symmetry, one also

has ẋ4 ≥ −a(ϕ)ϕ, then ϕ̇ = ẋ4 − ẋ3 ≥ −2a(ϕ)ϕ. Since
solutions of ϕ̇ = −2a(ϕ)ϕ preserve the sign of the initial
datum, then ϕ(0) > 0 implies ϕ(t) > 0, while ϕ(0) = 0
implies ϕ(t) = 0. Then, the order is preserved, particles
cannot merge in finite time and particles with coinciding
initial data keep being coinciding.

Step 2. We now prove the main statement: with no loss
of generality, we choose the index i = 3 and prove that the
unique edge of the form 3j is constant for t > 0. If x3(0) =
x2(0), then by Step 1 it holds x3(t) = x2(t) = x3(0). If
x1(0) < x3(0), then the edge is constantly 32, otherwise it
is constantly 31. Similarly, if x2(0) < x3(0) = x4(0), then
the edge is constantly 34.

Assume then x2(0) < x3(0) < x4(0) from now on. Define
the function f(t) := (x4(t)− x3(t))− (x3(t)− x2(t)), that

is Lipschitz continuous with respect to time, and let t be
a point of differentiability of x(t). We have three cases,
depending on the sign of f(0).

If f(0) > 0, i.e. |x3(0) − x2(0)| < |x4(0) − x3(0)|, then
necessarily ẋ3 = a(|x3− x2|)(x2− x3) as soon as f(t) > 0.
To estimate ẋ2, one has:

• either |x1 − x2| ≤ |x2 − x3| and
ẋ2 = −a(|x2−x1|)(x2−x1) ≥ −a(|x3−x2|)(x3−x2);

• or |x2 − x3| ≤ |x1 − x2| and ẋ2 = a(|x3 − x2|)(x3 − x2).
In both cases, it holds

ẋ2 ≥ −a(|x3 − x2|)(x3 − x2).
By using results of Step 1, one also has

ẋ4 ≥ −a(|x4 − x3|)(x4 − x3).
It then holds

ḟ ≥−a(|x4 − x3|)(x4 − x3)− a(|x3 − x2|)(x2 − x3) (4)

−a(|x3 − x2|)(x2 − x3)− a(|x3 − x2|)(x3 − x2)
=− (a(|x4 − x3|)(x4 − x3)− a(|x3 − x2|)(x3 − x2)) .

Introduce the the difference quotient of the function a(r)r,
i.e. the following function of two variables:

ψ(r, h) := 1
h (a(r + h)(r + h)− a(r)r).

Our hypotheses on a(r) imply that a(r)r is differentiable
and increasing, then ψ(r, h) ≥ 0 when restricted to
[0,+∞)× [0,+∞). One can then rewrite (4) as

ḟ(t) ≥ −ψ(x3(t)− x2(t), f(t))f(t),
whose solutions with f(0) > 0 preserve the sign for all
times. This shows that |x3(0) − x2(0)| < |x4(0) − x3(0)|
implies |x3(t) − x2(t)| < |x4(t) − x3(t)|. If x2(0) > x1(0),
this implies that the edge 32 is constant, otherwise x2(0) =
x1(0) implies x2(t) = x1(t) and the edge 31 is constant.
The case f(0) < 0 is identical to the previous case, by
reversing the sign.

We are left with the case f(0) = 0. Due to the study
above, one necessarily has f(t) ≡ 0 on a suitable interval
[0, T ], possibly with T = 0,+∞, while f(t) is either
always strictly negative or strictly positive in (T,+∞).
We now prove that T = 0, i.e. that f(t) cannot be zero for
positive times. By contradiction, assume that T > 0 and
consider again the function ϕ(t) = x4(t) − x3(t), which
is strictly positive due the hypothesis x4(0) > x3(0) and
to Step 1. Since f(t) ≡ 0 on [0, T ], it also holds x3(t) −
x2(t) = ϕ(t). Again by considering only points t ∈ [0, T ]
of differentiability for x(t) and by dropping dependence
on time, for each of the agents x3, x4, x2, we have two
possibilities:

• ẋ3 = a(ϕ)ϕ or ẋ3 = −a(ϕ)ϕ;
• ẋ4 = −a(ϕ)ϕ or ẋ4 = a(|x5 − x4|)(x5 − x4) ≥ 0;
• ẋ2 = a(ϕ)ϕ or ẋ2 = a(|x1 − x2|)(x1 − x2) ≤ 0.

Since f(t) ≡ 0, then ḟ = 0, thus ẋ4 + ẋ2 = 2ẋ3. The
possibilities above are then reduced to the following:

• ẋ3 = a(ϕ)ϕ, then ẋ4 = a(|x5 − x4|)(x5 − x4) = a(ϕ)ϕ
and ẋ2 = a(ϕ)ϕ;
• ẋ3 = −a(ϕ)ϕ, then ẋ4 = −a(ϕ)ϕ and

ẋ2 = a(|x1 − x2|)(x1 − x2) = −a(ϕ)ϕ.
By hypotheses on a(r), we have that a(r)r is strictly
increasing, hence injective: then, the first case reads as



x5 − x4 = ϕ, while the second reads as x2 − x1 = ϕ. Since
ϕ is constant on [0, T ], the first case read as ẋ5 = ẋ4, while
the second reads as ẋ1 = ẋ2. In the first case, one cannot
have ẋ5 = a(|x4−x5|)(x4−x5) < 0, hence one necessarily
has ẋ5 = a(|x6−x5|)(x6−x5) = a(ϕ)ϕ. This in turn implies
x6 − x5 = ϕ and subsequently ẋi = a(ϕ)ϕ for all i ≥ 2.
This holds also for the agent with highest index i = N ,
but this contradicts the fact that it necessarily holds

ẋN = a(|xN−1 − xN |)(xN−1 − xN ) = −a(ϕ)ϕ < 0.

This implies that there exists no time t ∈ [0, T ] for which
the first case is satisfied, then the second case holds for all
t ∈ [0, T ] for which x(t) is differentiable. But this second
case is similar, as one has ẋi = −a(ϕ)ϕ for all i ≤ 4, which
is in contradiction with the fact that for i = 1 it necessarily
holds ẋ1 = a(|x1 − x2|)(x2 − x1) = a(ϕ)ϕ > 0. 2

We just proved that the interaction graph is constant.
Since each component has a globally reachable node, we
can draw the following important consequence.

Theorem 3. (Convergence). Let x(t) be a Caratheodory
solution to (1) and Ḡ = (V, Ē) the associated graph for
t > 0. If κ = 1 and the state space for agents is R, then
x(t) converges to some x⋆. Moreover, it holds x⋆i = x⋆j if

and only if there is a path from i to j or from j to i in Ḡ.

A similar reasoning was employed in Ceragioli et al.
(2021b) for a more restrictive definition of solutions. The-
orem 3 was also proved by a Lyapunov argument in Cer-
agioli et al. (2021a).

4. EXISTENCE OF CARATHEODORY SOLUTIONS

In this section, we prove the second main result of this
article, that is, the existence of Caratheodory solutions for
the topological interaction models for κ = 2 neighbors.
The case κ = 1 was already proved in Ceragioli et al.
(2021a). The general case seems much harder to solve, as
we will discuss later.

Theorem 4. (Existence). Let κ = 2. Then, for any initial
condition, equation (1) admits a Caratheodory solution on
[0,+∞).

Proof. We first fix notation. We denote by #B the
cardinality of the set B. Given κ ≥ 1, we denote by

minκ(B) := min{x ∈ R s.t. #(B ∩ (−∞, x]) ≥ κ},
i.e. the minimal value ensuring that B ∩ (−∞, x] contains
at least κ elements. Similarly, given and indexed set B =
{Bi}i∈I . we denote by

argminκ(B) := {i ∈ I s.t. Bi ≤ mink(B)},
i.e. the set of indexes of elements smaller than minκ(B).
It is clear that argminκ(B) contains at least κ elements.
Moreover, it contains exactly κ elements in several relevant
cases: e.g., when there is a single element b ∈ B such that
b = minκ(B).

Since the case of several values b ∈ B satisfying b =
minκ(B) is relevant for the rest of the discussion, we also
define “ strict” κ-minimum and κ-argmin as follows:

sminκ(B) := max{x ∈ R s.t. #(B ∩ (−∞, x]) ≤ κ}
sargminκ(B) := {i ∈ I s.t. Bi ≤ smink(B)}.

It is clear that sargminκ(B) contains κ elements at most.
Moreover, it contains exactly κ elements when it coincides
with argminκ(B), e.g. in the case discussed above.

We now build a Caratheodory solution as follows. For each
initial datum x̄ = (x̄1, . . . , x̄N ), we first define a directed
graph G = (V,E) for which there exists T > 0 and a curve
defined on [0, T ] having G as connectivity graph on (0, T ).
For each index i ∈ V we choose exactly κ indexes, that
we denote with Γ(i), such that ij ∈ E for j ∈ Γ(i). This
implies that

ẋi =
∑

j∈Γ(i) a(|xj − xi|)(xj − xi). (5)

for the whole time interval (0, T ). We then need to prove
that the corresponding trajectory (x1(t), . . . , xN (t)) is
indeed a Caratheodory solution for (1).

Remark that one might be tempted to choose Γ(i) to be
equal to Ni(x̄), that is, the set of nearest neighbors choos-
ing the minimal index (in the lexicographic order) in case
of ties. This solution cannot be effective, though, because
problems arise exactly in case of ties. Hence, we will not
choose Γ(i) to be the set of nearest neighbors with minimal
index at the initial time, but instead choose Γ(i) to be the
set of nearest neighbors for all t ∈ (0, T ). This delicate
construction will be achieved by Algorithm 1, which takes
as input an initial configuration x̄ and produces as output
the directed graph G = (V,E), by iteratively adding edges
into E through four Steps.

To simplify notation within the algorithm, we will first
treat the specific case of coinciding particles separately. If
there exist coinciding initial states x̄i = x̄j , one needs to
treat any creation of edges from i as follows:

• if the edge ij is created, then create ji too;
• if an edge il with l ̸= j is created, then create jl too.

This rule ensures that we have ẋi = ẋj in (5), hence the
two particles keep coinciding all along the trajectory.

In writing the algorithm, we will make use of the following
useful function, where k is an element of the set of indexes
V , while J is a subset of it:

ψi(k, J) :=
(∑

l∈Γ(k) a(|x̄l − x̄j |)(x̄l − x̄j) (6)

−
∑

l∈J a(|x̄l − x̄i|)(x̄l − x̄i)
)
· (x̄k − x̄i).

It is easy to observe that ψi(k, J) is the derivative of
|xk − xi|2 for t = 0, where neighbors of k are in Γ(k),
while the neighbors of i are in J .

It is easy to observe that the algorithm terminates: indeed,
at each step the number of edges increases or keeps being
constant. The only exception comes from Step 4, in which
some steps provide smaller sets Ai instead of increasing
the number of edges. This anyway leads to increase edges
in future steps, as conditions for Step 2) or Step 3) are
easier to be satisfied.

We now prove that the algorithm provides a graph G =
(V,E) such that the solution to (5) starting from x̄ is a
Caratheodory solution to (1) for a small interval of time
[0, T ]. In particular, we define

V ∗ : = {(i, j, k) with i ∈ {1, . . . , N}, j ∈ Γ(i), k ̸∈ Γ(i)

x̄i ̸= x̄j ̸= x̄k ̸= x̄i},



Algorithm 1: Graph construction

Step 1) for i = 1, . . . , N do
Γ(i)← sargmin2(|x̄j − x̄i|);

Step 2) while There exists i such that #Γ(i) < 2 and all
j ∈ Ai := argmin2(|x̄j − x̄i|) \ Γ(i) satisfy
#Γ(j) = 2 do

if #Γ(i) = 1 then
Choose j∗ ∈ Ai as one element of

argminj∈Ai
ψi(j,Γ(i) ∪ {j});

Γ(i)← Γ(i) ∪ {j∗};
else

Choose {j∗1 , j∗2} ⊂ Ai as one pair realizing
argmin{j1,j2}⊂Ai

maxl=1,2 ψi(jl, {j1, j2});
Γ(i)← Γ(i) ∪ {j∗1 , j∗2};

Step 3) if The set B := {i such that #Γ(i) = 1} is
nonempty then

Choose the subset B′ := {i ∈ B such that

argmin2j∈Ai
(|x̄j−x̄i|) = max

k∈B
argmin2j∈Ak

(|x̄j−x̄k|)};

Choose one ordered pair (i, j∗) ∈ B′′ with

B′′ := {(i, j) ∈ B′×{1, . . . , N} with j ∈ Ai \Γ(i)}
that minimizes ψi(j,Γ(i) ∪ {j}) on B′′;

Γ(i)← Γ(i) ∪ {j∗};
if Γ(j∗) = 1 then

Γ(j∗)← Γ(j∗) ∪ {i};
Go to Step Step 2));

Step 4) if There exists i with Γ(i) = ∅ then
For each i, consider the set of pairs

Bi := {argmin{j1,j2}⊂Ai
max
l=1,2

ψi(jl, {j1, j2})}.

if There exist i, j such that {j, k} ∈ Bi and
{i, l} ∈ Bj then

Γ(i)← {j} and Γ(j)← {i};
else

if There exist i, j such that there exist
neither {j, k} ∈ Bi nor {i, l} ∈ Bj then

Ai ← Ai \ {j} and Aj ← Aj \ {i};
else

if There exists i, j such that {j, k} ∈ Bi

and minl∈Aj maxr=i,l ψj(r, {i, l}) <
min{l1,l2∈Aj\{i}} ψj(l1, {l1, j2}) when
Γ(i) = {k} then

Γ(i)← {j};
else

Ai ← Ai \ {j} and Aj ← Aj \ {i};

Go To Step Step 2));

and prove the following claim:

Claim A) For each (i, j, k) ∈ V ∗ there exists a time
Tijk > 0 such that for all t ∈ (0, Tijk) it holds

dijk(t) := |xj(t)− xi(t)|2 − |xk(t)− xi(t)|2 < 0.

The claim ensures that j keeps being one among the κ = 2
nearest neighbors of i for the whole time interval.

We prove Claim A in four steps, corresponding to the four
Steps of the algorithm.

Step 1) Let (i, j, k) ∈ V ∗ with j ∈ sargmin2(|x̄j − x̄i|).
By Step 1, we set j ∈ Γ(i). By definition, it then holds
dijk(0) < 0. Thus, continuity of dijk(t) ensures the exis-
tence of Tijk > 0 satisfying Claim A. The case of (i, j, k) ∈
V ∗ with j ∈ argmin2(|x̄j − x̄i|) and k ̸∈ argmin2(|x̄k− x̄i|)
is similar and can be treated by continuity as well.

We are now left to the (more complicated) case of ties.
From now on, we assume L := |xj − xi| = |xk − xi| > 0,
where strict positivity comes from the definition of V ∗.

Step 2) If for some i, all possible neighbors j ∈ Ai have a
fixed dynamics, then it is sufficient to choose the neighbors
of i as the ones ensuring dijk(t) < 0 for t ∈ (0, Tijk). With
this goal, it is sufficient to recall that

ψi(j,Γ(i) ∪ J)− ψi(k,Γ(i) ∪ J)
is the time derivative of dijk for t = 0 when one adds J as
new neighbors of i. Thus, the two possibilities in Cycle 2
(in which one has to choose 1 or 2 neighbors, respectively)
correspond to the fact that one chooses the neighbors
ensuring that ḋijk is minimal among all possible choices.

It is easy to observe that ḋijk(0) < 0. By contradiction, if

ḋijk(0) = ψi(j, J)− ψi(k, J) ≥ 0,

replace the neighbor j ∈ J with k, define J ′ := {k}∪J\{j}
and observe that it holds

ψi(k, J
′)− ψi(j, J

′) = ψi(k, J) + (xk − xi) · a(L)(xj − xi)
−(xk − xi) · a(L)(xk − xi)− ψi(j, J)

−(xj − xi) · a(L)(xj − xi) + (xj − xi) · a(L)(xk − xi) =
−(ψi(j, J)− ψi(k, J)) + 2a(L)((xj − xi) · (xk − xi)− L2).

The first term is zero or negative, due to the hypothesis,
while the second term is strictly negative, except for L = 0
or for xj = xk. Both cases are forbidden in V ∗.

Step 3) is very similar to the previous step. Given i such
that Γ(i) = {l} and an edge ij is added, this means that
the l neighbor was added at Cycle 1, i.e. |xi−xl| < L. We

now prove ḋijk(0) < 0 as follows:

• If #Γ(j) = #Γ(k) = 2 at this stage, follow the argument
of Step 2.

• If #Γ(j) = 2 > #Γ(k) = 1, use the fact that neighbors
of Γ(k) are all at distance smaller or equal than L,
otherwise Γ(k) = 2 due to the choice of the maximal
distance in B′. Then, adding the edge ij decreases
d
dt |xj − xi|

2 by a factor a(L)L2, while adding any edge

kr will increase d
dt |xk − xi|

2 by a factor that is strictly

smaller than a(L)L2. The only exception would be to
choose r = i, but in this case one would have
ψi(k,Γ(i) ∪ {k}) = ψi(j,Γ(i) ∪ {j}), thus

ψk(i,Γ(k) ∪ {i}) = ψk(i,Γ(k))− a(L)L2 =

ψi(k,Γ(i) ∪ {k})− a(L)L2 =

ψi(j,Γ(i) ∪ {k})− a(L)L2,

i.e. (i, j) is not a minimizer of ψi(j,Γ(i) ∪ {j}) on B′′.
• If #Γ(j) = 1, the situation is similar to the previous one.

One adds both edges ij and ji, to decrease |xi−xi|2 by
a factor 2a(L)L2, while any choice for Γ(k) will increase
it by a strictly smaller factor.



Step 4) Observe that the repetition of Steps 2 and 3 forces
all agents to be in the following configuration when the
Step 4 starts: they all satisfy #Γ(i) ∈ {0, 2}, i.e. the case
#Γ(i) = 1 is no more present. In this case, all the different
possibilities either provide links that ensure Claim A, or
remove the links that cannot satisfy it. Then, going back
to Step 2 and repeating the algorithm, we have that Claim
A is proved.

We are now left to prove that there exists a Caratheodory
solution to (1). Using Claim A, define T := minijk Tijk >
0. The claim, together with the discussion about coinciding
agents, ensures that the solution to (5) is a Caratheodory
solution to (1) on [0, T ]. We now prove that we can always
extend the solution to the time interval [0,+∞). Since
the trajectory is compact, due to Proposition 1, then
x(T ) is well-defined. By using the same algorithm starting
from x(T ) and one can build a solution on some [T, T1]
with T1 > T , then on [T1, T2] and so on. This implies
that there exists a maximal interval I of definition of the
solution. We claim that I = [0,+∞). By contradiction, if
I = [0, T ∗) with T ∗ < +∞, then x(T ∗) is well defined and
I can be extended to [0, T ∗]. Then, one uses the algorithm
starting from x(T ∗) and extends the solution on [0, T ∗+ϵ).
Contradiction. 2

Remark 3. (Larger κ). An algorithm that constructs Cara-
theodory solutions for the case κ > 2 seems much more
complicated to devise, for two reasons:

• The combinatorics of cases seems increasing, as one can
observe by comparing the algorithm for κ = 2 here with
the one for κ = 1 given in Ceragioli et al. (2021a).

• In case of ties, when a first neighbor j ∈ Γ(i) is found,
adding one more neighbor k (which is required by κ = 2)
cannot drastically change the dynamics of i, since j and
k have the same weight. Instead, for κ > 2, the influence
of the first neighbor can be overcome by the κ − 1 > 1
new neighbors.

5. CONCLUSIONS AND FUTURE DIRECTIONS

This paper has contributed some additional results to the
study of continuous-time opinion dynamics with topo-
logical interactions. The resulting differential equations
feature discontinuous right-hand sides, which requires ap-
propriate notions of solutions. Furthermore, the interac-
tions are inherently asymmetric, which makes the analysis
harder.

In this paper, we have focused on Caratheodory solutions:
building upon and extending the recent contributions by
Ceragioli et al. (2021a,b), we have produced results about
the existence of Caratheodory solutions, the properties of
their associated graph of inter-agent interactions, and their
convergence to equilibria when time goes to infinity.

In the light of our results, the most immediate open
problem is proving the existence of Caratheodory solutions
when the number of neighbors κ is greater than 2. Next,
one should study their convergence properties: so far,
convergence to equilibria has only been proved for κ = 1
by Ceragioli et al. (2021a).
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