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∗∗∗ Université de Lorraine, CRAN, CNRS, UMR 7039, France.

(e-mail: vineeth.satheeskumar-varma@univ-lorraine.fr)

Abstract: Fuel efficiency in platooning systems is a central topic of interest because of its
significant economic and environmental impact on the transportation industry. In platoon
systems, Adaptive Cruise Control (ACC) is widely adopted because it can guarantee string
stability while requiring only radar or lidar measurements. A key parameter in ACC is the
desired time gap between the platoon’s neighboring vehicles. A small time gap results in a
short inter-vehicular distance, which is fuel efficient when the vehicles are moving at constant
speeds due to air drag reductions. On the other hand, when the vehicles accelerate and brake
a lot, a bigger time gap is more fuel efficient. This motivates us to find a policy that minimizes
fuel consumption by conveniently switching between two desired time gap parameters. Thus,
one can interpret this formulation as a dynamic system controlled by a switching ACC, and
the learning problem reduces to finding a switching rule that is fuel efficient. We apply a
Reinforcement Learning (RL) algorithm to find a time switching policy between two desired
time gap parameters of an ACC controller to reach our goal. We adopt the proximal policy
optimization (PPO) algorithm to learn the appropriate transient shift times that minimize the
platoon’s fuel consumption when it faces stochastic traffic conditions. Numerical simulations
show that the PPO algorithm outperforms both static time gap ACC and a threshold-based
switching control in terms of the average fuel efficiency.

Keywords: Vehicle platoons, reinforcement learning, adaptive cruise control (ACC).

1. INTRODUCTION

Existing works have covered different aspects of platooning
systems under disturbance, including control parameters,
communication protocols, and fuel efficiency. See Al Alam
et al. (2010); Liang et al. (2013); Van De Hoef et al. (2017);
Turri et al. (2016a) for details. Deep Neural Networks
(DNNs) techniques have attracted significant attention as
a powerful tool to approximate complex non-linear func-
tions. In Chu and Kalabić (2019) a model-based reinforce-
ment learning (RL) approach is proposed to learn the best
headway signals for Cooperative Adaptive Cruise Control
(CACC) in a platoon, where the catch-up maneuver to the
leader vehicle has been investigated.

The RL framework was used by Li et al. (2020) to learn
how to perform appropriate overtaking maneuvers for au-
tonomous vehicles, but the platoon’s fuel consumption was
not studied. In our work, we focus on finding a switching
control scheme that reduces the fuel consumption of pla-
tooning systems. We study the suitability of switching the
time gap of the ACC controller to improve the fuel effi-
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ciency in platooning systems. More precisely, we show that
under disturbances caused by the vehicle that precedes
the platoon, called “jammer”, a specific time gap might
be more desirable than others, in terms of fuel efficiency,
because different time gap parameters lead to different
control efforts. See Turri et al. (2016a), Turri et al. (2016b)
for details. Furthermore, we propose a discrete-time ramp
function to coordinate the switching among the controllers
in order to mitigate instantaneous transient disturbances.

Different from existing works using ACC for platooning
operations, we adopt RL techniques to cope with the non-
ideal traffic conditions. More precisely, we aim at evalu-
ating the impact of different switching intervals between
different ACC time gap controllers. The set of switch-
ing intervals that minimizes the fuel consumption might
change according to the behavior of the jammer vehicle.
The main contribution of this paper is to demonstrate the
feasibility of switching between ACC’s of different time gap
parameters to coordinate a platoon. Firstly, we identify the
cost of switching controllers under given jammer velocity
profiles. Then, we propose a method for smooth switching
transition in order to reduce fuel consumption. Further-
more, we model the transition between the disturbances



caused by the jammer as a random process, in fact, as a
Markov Jump process, and reformulate the vehicle platoon
fuel efficiency problem using a RL framework. To the best
of our knowledge, the present study is the first to propose
a method to reduce fuel consumption, while accounting
for stochastic traffic conditions, using RL techniques to
determine the switching control scheme.

The rest of the paper is organized as follows. Section
2 introduces the platoon system and fuel consumption
model, and section 3 presents the ACC and switching rules
modeled in the RL framework using ACC’s time gap pa-
rameter. We also define our problem formulation in section
3. Section 4 describes how we formulate our problem in a
RL framework, and section 5 shows a numerical simulation
where we demonstrate the effectiveness of our approach.
We end the paper in section 6 with conclusions.

Notation. For real vectors or matrices, (′) refers to their
transpose. The symbols R, R+, and N, denote the sets of
real, real non-negative, and natural numbers respectively.
K = {1, 2, · · · , N} for a given integer N , and Γ =
{0, 1, 2, · · · , r}, where r is a given positive integer.

2. SYSTEM MODEL

In this section, we introduce the platoon’s continuous-time
dynamics and its corresponding discrete-time form used
for simulation, the control to be designed, and the fuel
consumption model.

2.1 Platooning dynamics

Consider a platoon consisting of one leader vehicle, labeled
by 0, and N − 1 follower vehicles, labeled in sequence by
1, . . . , N−1. For 0 ≤ i ≤ N−1, let pi(t) ∈ R be the position
of the front of vehicle i, and Li ∈ R+ be its length. We
adopt a coordinate system where pi−1 > pi. Define

di(t) = pi−1(t)− pi(t)− Li−1 (1)

to be the inter-vehicle distance. We consider the following
longitudinal vehicle model taking into account external
forces that describe the dynamics for each vehicle i in this
platoon:

mi ·
dvi
dt

= Fengi − Fairi − Frolli − Fg

= Fengi−
1

2
cDi

ψi(di)Afiρairvi
2 − crigmi cos θ − gmi sin θ

(2)

where the engine force is denoted by Feng, the air drag
force Fair, the roll resistance force Froll, and the gravita-
tional force Fg. Furthermore, m designates the vehicle’s
mass, v the vehicle’s speed, cD is the air drag coefficient,
ψ(d) ∈ [0, 1] is the possible reduction air-drag, cr is the
roll resistance coefficient, Af is the front area of vehicle,
ρair is the air density, θ ∈ (−π

2 ,
π
2 ) denotes the road slope,

and g is the gravitational constant. Note that we drop the
time-dependence notation when it is clear from the context
to keep it simple. In practice, to simplify the design of
the vehicle platoon control, the engine force is assumed to
be able to counteract against the air drag force, the roll
resistance force and the gravity force such that

Fengi = uimi +
1

2
cDi

ψi(di)Afiρairvi
2

+ crigmi cos θ + gmi sin θ (3)

where ui is the platoon control input to be designed.
Here, the engine force is used to linearize the dynamics
by canceling the nonlinear terms. For convenience of
simulation, we discretize the vehicle dynamics (2) under
(3); to be more precise, we adopt the following model for
the vehicle dynamics widely used in the literature in the
discrete-time form (Dolk et al., 2017; Ploeg et al., 2013;
Hedrick et al., 1994; Seiler and Sengupta, 2005):[
pi(k + 1)
vi(k + 1)
ai(k + 1)

]
=

 1 Ts 0
0 1 Ts
0 0 1-Ts

τi


︸ ︷︷ ︸

Ã

[
pi(k)
vi(k)
ai(k)

]
+

 0
0
Ts

τi


︸ ︷︷ ︸

B̃

ui(k) (4)

where ai is the acceleration of the vehicle i, Ts is the
sample-time, and τi is the time constant of the first-order
low pass filter for each vehicle i. So, the open-loop model
of the N-vehicle platoon system in the discrete-time form
can be written as

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Dwσ(kTs)(k)
(5)

where x(k) := [p0 v0 a0 d1 ḋ1 a1 · · · dN−1 ḋN−1 aN−1]
′,

indicates the state-space vector of the system, u(k) :=
[u0 · · · uN−1]

′, is the vector of all control inputs. Note that
the state x(k) is for the whole platoon, with one leader and
N − 1 followers. The output vector available for feedback
is defined as y(k) := [d0 ḋ0 v0 · · · dN−1 ḋN−1 vN−1]

′,
and wσ(t)(k) := [pj vj ]

′ is the exogenous input, i.e., the
jammer’s front position and velocity. Here, we use t = kTs,
j is the label for the jammer, and σ(t) is a parameter that
represents a Markov process that will be further detailed.
Define R = (rnm) ∈ R3N×3N , where rnm = -Ts for
n = 3i + 5 and m = 3i + 3, i = {0, · · · , N − 1} and 0,

otherwise. Now, take, A = IN ⊗Ã+R, B = IN ⊗B̃, where
Ã and B̃ are defined in (4). Let

D =

[
-I2×2

0(3N−2)×2

]
(6)

whereas C can be easily identified since the state-space
x(k) and the output y(k) are defined. The output feedback
control law u(k) will be detailed in section 3. We consider
that the platoon behavior is affected only by the first
vehicle in front of it, namely, the jammer. To model its
dynamics, we consider two profiles. The first has a constant
speed, representing the platoon driving on a highway
under light traffic conditions. The second is characterized
by periodic braking and accelerating, so it models a heavy
scenario of traffic conditions in terms of road safety.
Vukadinovic et al. (2018) describes a similar heavy profile.
More formally, we have the jammer’s dynamics given by:

wσ(t)(k + 1) =

[
1 Ts
0 1

] [
pj(k)
vj(k)

]
+

[
0
Ts

]
a
σ(t)
j (k) (7)

where vj and a
σ(t)
j are the jammer’s speed and acceler-

ation, respectively, for a certain discretization time Ts.
This profile is dictated by σ(t) that is a random variable
governed by a continuous-time Markov process. Therefore,
we can model the jammer’s dynamics by adjusting its
acceleration with the σ(t) parameter introduced next.

Definition 1. (Markov switching signal). The switch-
ing signal σ(t) is said to be Markov, if for ∀n ∈ Γ and
∆ > 0,

P
(
σ(t+∆) = n|{σ(s)}s≤t

)
= P

(
σ(t+∆) = n|σ(t)

)
. (8)



AMarkov switching signal σ(t) ∈ Γ, t ≥ 0 is unequivocally

defined by its initial condition σ(0) = σ0 ∈ Γ, and its
generator Q = (qnm) ∈ RΓ×Γ, such that

P
(
σ(t+∆)=m|σ(t)=n

)
=

{
qnm∆+ o(∆), n ̸= m,
1 + qnm∆+ o(∆), n = m,

(9)

for any ∆ > 0, where qnn = −
∑

m ̸=n qnm. If the matrix
Q is irreducible, then the Markov switching signal has a
unique stationary distribution. See Ross et al. (1996).

We consider the case where σ(t) ∈ Γ = {0, 1}, which here
denotes for steady and heavy modes, respectively. We will
study system (5) focusing on fuel consumption efficiency.

2.2 Fuel consumption model

Fuel consumption is of great interest for analyzing the per-
formance of a platoon. We are interested in investigating
how the force (3) and system dynamics (5) affect the fuel
consumption of each vehicle when under different inter-
vehicle distances in the platoon. We use the model of the
energy loss (Wt), which depends on σ, over time Tf as in
Oguchi et al. (1996)

Wt =

∫ Tf

0

ζ(t)Fengi(t) · vi(t) · dt (10)

where

ζ(t) =

{
1 if Fengi(t) > 0

0 otherwise
(11)

where Fengi > 0 indicates that propellant is used to power
the vehicle, thus, resulting in energy losses to be computed.
Note that we use (10) to compute the fuel consumption for
a certain “sample event” of the system’s dynamics, that
fluctuates due to the stochasticity of the jammer. In order
to represent such energy losses in terms of fuel consumed,
we adopt the following energy-fuel conversion

J(u) =
1

ρprop · ηeng
Wt (12)

where ρprop and ηeng are the energy density of the propel-
lant in Joule per Liter [J/L] and the constant efficiency
of the engine, respectively. Note that we consider those
parameters as ρpro = 34.9M [J/L] and ηeng = 30% which
correspond to average gasoline density energy and effi-
ciency respectively. See Khan (2011). Note that the inter-
vehicle distance and the speed of the platoon’s vehicles
have a strong impact on the fuel efficiency modeled in
(12). Decreasing the speed of the platoon to save fuel is
not a choice of interest here since the implicit constraints
on minimum traveling times in practice do not make this
option economically viable. One key parameter we can
control in the platoon is the inter-vehicle distance di and
note that the possible reduction air-drag ψ(di) is a function
of it. The work of Hucho (1998) shows that shorter inter-
vehicle distances lead to air-drag reduction for all platoon
members. We will present in the following section the ACC
controller and show that its time gap parameter does have
an immense influence on the platoon’s fuel consumption.

3. SWITCHED CONTROLLERS AND OBJECTIVE

3.1 Adaptive Cruise Control

One uses Adaptive Cruise Control due to its relevance
for the deployment application of platooning systems in
a decentralized design that does not require any com-
munication. This controller can guarantee string stability
to the platoon providing safe outcomes, see Rajamani
et al. (2000). Note that the information of on-board sen-
sors is sufficient for proper control performance under
autonomous operation. We adopt a constant time gap
spacing policy, where the desired distance between vehicle
i > 0 and i− 1 is formulated by

ddesi(k) = dss + hvi(k) (13)

where h > 0 is the time gap parameter, dss is the standstill
distance, and vi(k) is the longitudinal velocity of vehicle
i, a discrete version of what is presented in (2). Therefore,
consider the following output feedback control law

u(k) = -Khy(k) (14)

where Kh ∈ RN×3N is the controller ACC gain defined by

Kh =


χ0 0 · · · 0

0 χi

...
...

. . . 0
0 · · · 0 χN−1

 (15)

where

χi =
[

λi

hi

1
hi

λi
]
, i = {0, 1, · · · , N − 1} (16)

are the ACC controller gains proposed by Ioannou and
Chien (1993). The subscript h denotes the vector h ∈
RN = [h0, · · · , hN−1]

′ of chosen time gaps for each car in
the platoon. We will describe a specific configuration of the
vector h as hz = [hz0, . . . , h

z
N−1], where z is the label of our

current time gap parameter setup. This generic notation
allows us to consider a centralized (λi = λ and hi =
h, ∀i) and a decentralized (λi ̸= λ and hi ̸= h, ∀i)
ACC controller. Note that there are some specifications to
choose the parameters of the ACC control. We just choose
a set of parameters that does not violate them. The aim
of this work is not to directly solve this control problem,
but to find a set of switching transitions time among
different time gap parameters to reduce the platoon’s
fuel consumption. This will be introduced in the next
subsection.

3.2 Switching between two time gap setups

In this section, we propose two approaches to handle the
stochastic disturbance w introduced in (5) and detailed in
(7). One is based on threshold and the other on reinforce-
ment learning techniques. Note that our first objective is to
minimize the fuel consumption cost for a set of control con-
stituted by two ACC controllers with different time gaps,
to be further addressed. In our numerical simulations,
we find that when following a jammer with a constant
speed, the platoon is more fuel efficient when its ACC
control is configured with a small time gap setup. With
this configuration, the acceleration is minimum and the
air drag forces are small because the platoon vehicles are
close to each other. On the other hand, if a bigger time gap



configuration is chosen for the platoon, better performance
is expected when following a jammer with a heavy profile
since less frequent use of accelerating and braking will be
required when following in a longer distance. The air drag
forces are also bigger since the platoon vehicles are farther
away from each other (Gonçalves, 2021).

Smooth switching Switching instantaneously between
the time gap setup is not realistic and gives rise to many
abrupt changes in the system, generating high peaks of
accelerating and braking. It also leads to less efficient
switching logic in terms of fuel consumption. We propose
a discrete-time ramp function to mitigate the transient
disturbances during the switching between the time gap
setups. This approach reduces the high transient picks
that could occur during the switching. To smooth such
undesirable transient responses and to improve the fuel
efficiency, we propose the following smoothing transition
control:

u(k) = -(β(k)Khb + (1− β(k))Kha)y(k) (17)

where β(k) ∈ {0, 1/δ, 2/δ, · · · , 1} is a control design pa-
rameter and formally defined in the sequence, and δ is the
minimum subinterval considered, in the order of seconds.
Note that β(k) is responsible for arranging the influence
of each time gap setup in the controller, given by Kha and
Khb , respectively, where ha = [ha0 , . . . , h

a
N−1] for instance.

Here, the super-script a and b refer to two different time
gap setups. In other words, β(k) corresponds to the pa-
rameter used to smooth the switching transition control.
Define the set of transitions times

K = {ki, ki+1, · · · , kW } (18)

where the following holds,

ki−ki+1 ≥ δ ∀i ∈ {1, · · · ,W − 1}
0 < k1 < k2 < · · · < kW < T

(19)

where T is the maximum simulation time adopted. Fur-
thermore, the dynamics of the smooth switch parameter
follows:

β(k + 1) = β(k) + ϱ(k) · (−1)β(ki) · 1
δ

(20)

where

ϱ(k) =

{
1 if k ∈ [ki, ki + δ],

0 otherwise
(21)

∀ki ∈ K, where we initialize by setting β(0) = 0, which
corresponds to Kha time gap configuration. To find the set
K that reduces the platoon’s fuel consumption is the main
goal of this work. Next we will provide two approaches to
solve this problem.

Threshold Our first approach requires little computa-
tional power and is simple to implement. Our goal is to
provide a threshold value that triggers which time gap will
be selected for the ACC controller. The designed threshold
switch control is based on the system’s state-space param-
eters xi(k) responsible to specify the controller set u that
is a combination of which time gap will be used in each
interval. Thus, such controller generates a set of transition
times K = {ki, ki+1, · · · , kW } based on the jammer be-
havior. To take the recent system history information into
account, we assume a moving average where each means
is calculated over a sliding window of length sw across
neighboring elements of the state-space parameter xi(k).

Mathematically, consider the following threshold logic to
determine if k is in the set of transitions time K

k ∈ K if

{
β(k) = 0 and ā0 > εth
β(k) = 1 and ā0 < εth

(22)

where ā0 =
√

1
sw

∑k
k−sw a0(k)

2. The variable εth is the

threshold value that needs manual tuning according to
the output values for each system configuration. In other
words, equation (22) indicates that we compare the root-
mean-square value of the acceleration signal over the last
sw time-steps with a defined threshold parameter ϵth
to select the appropriate time gap setup. Note that we
make such analysis in each sub-interval of time of size δ.
Although simple to implement, the previous controller has
its limitation, since the threshold parameter ϵth is adjusted
empirically based on several observations.

Reinforcement learning An alternative is to adopt RL
techniques, which seek from trial-and-error to find a policy
that maximizes the accumulated reward through only
interaction with the environment. In this work, we adopt
the Proximal Policy Optimization (PPO) algorithm to
determine the most appropriate switching times in terms
of fuel efficiency. Our algorithm focuses on finding in
real-time the time-intervals that each time gap setup of
the ACC controller will be applied, namely, the set of
transitions time K. Note that the policy generated by
the PPO algorithm does not directly control the platoon’s
vehicles, it only decides when the switching between the
time gap setups should occur, and it takes decisions at
each interval δ. In other words, the learning defines the
set of transitions times K where the switching of modes
takes place. The appropriate choice is unknown due to the
stochastic behavior of the jammer vehicle. Such a challenge
motivates the use of RL algorithms that can learn the
preceding vehicle dynamics from trial and errors. Note
that the neural network (NN) does not introduce high
computation costs in real-time, since it is trained offline.

3.3 Problem formulation

Once the system dynamics, the fuel consumption model,
and the controllers are defined, we now state the main
objective of this paper. At each time step, system (5)
is subjected to the control (17) defined by the weight
matrices Kha and Khb . The function β(K) defines how
they are used. We use RL to find the set K, that is, the
transition switching times that minimize the platoon’s fuel
consumption. Said differently, considering system (5), we
want to minimize the fuel consumption cost (12) for an
established set of control as (17) chosen by the policy
learned by the PPO algorithm subject to the restrictions:

pi−1 − pi − Li−1 ≥ Dmin

pi−1 − pi − Li−1 ≤ Dmax

vmin ≤ vi ≤ vmax

umin ≤ ui ≤ umax

(23)

Formally, we have:

min
K as (19)

{J(K) : constrained by (5), (17), (20), (23)} (24)

Additionally, note that u(k) is of the type given in (17)
with transition times K = {ki, ki+1, · · · , kW } subject to
(19) as such collection defines the moment that each
controller operates.



Fig. 1. Overview of the RL modeling for our platoon
system.

4. LEARNING MODEL

The first step to apply reinforcement learning techniques
to solve a problem is to model the system as a Markov
decision process (MDP). Consider the platooning system
described in (5). The state s ∈ S3×N is the x(k) vector,
thus a continuous state space. The action space a ∈
A = {0, 1} has cardinality 2 and represents the two
time gap setup options that are possible to choose from.
The reward r : S × A → R is defined as the rate
between the traveled distance and the fuel consumption
in the last k steps. The agent is the abstract decision
maker that chooses which time gap setup will be used
in each time-step, and the environment is the platoon’s
system dynamics and the ACC controller. A schematic
visualization of this description is in Figure 1. Through
interaction with the environment, the agent aims to find
a policy π : S → A that maximizes the cumulative
discounted reward Rt0 =

∑∞
t=t0

γt−t0rt where γ ∈ [0, 1)
is the discounting factor. Our problem of interest has
an infinity state space and a discrete action space. The
PPO algorithm is a policy gradient algorithm suitable to
solve this type of problem. Our choice is motivated by
the robustness of the algorithm related to hyperparameter
tuning and its performance when compared to others RL
algorithms, interested reader is referred to Schulman et al.
(2017). Note that the learning agent only learns how to
find a policy that switches between two ACC controllers
with different time gaps, that is, the set of transitions time
K as in (18).

5. SIMULATION ANALYSIS

We consider a homogeneous platoon of size N = 3 with
actuator lag τi = 0.2 s, i = 0, 1, 2. The main reason for
such a choice is to mitigate the computation complexity
for the RL approach. For the numerical simulation, we
consider for the constant jammer profile a speed of 80
km/h. The heavy jammer profile’s speed has a maximum
and minimum of 80 km/h and 30 km/h. The minimum
and maximum acceleration are −0.3g and 0.485[m/s2],
modeled similar to Vukadinovic et al. (2018). The pla-
tooning consists of identical trucks, with mass m = 20
tons, front area Af = 10.26 m2 and air drag coefficient
cD = 0.6. We set for the ACC controller the design gain
parameter λ = 0.5 and two different time gap setups.
We call ha = [3, 0.4, 0.4] and hb = [3, 3, 3] for the time
gap for the leader, the first, and the second follower,
respectively. Note that the leader has the same time gap
in both setups. We choose this so that the platoon is in
accordance with the recommended safety time interval gap

Jammer profile ha [3, 0.4, 0.4] hb [3, 3, 3]

Steady 3.46 km/l 3.25 km/l
Heavy 1.47 km/l 1.77 km/l

Table 1. Controllers’ performance when follow-
ing a steady and heavy jammer profile. Note
that ha performers better when following a
steady jammer whereas hb for the heavy jam-

mer.

of the respective local law, as an important safe distance
is kept from vehicles outside of the platoon formation,
i.e., the jammer vehicle. The platoon’s members, except
the leader, can have tight time gaps and still secure a
safe drive. Observe that a time gap of h = 0.4 is the
minimal possible value that still guarantees string stability
of the platoon for τ = 0.2 as proved by Rajamani et al.
(2000). We choose this minimum value to enhance the
reduction in fuel consumption due to air drag losses. The
disadvantage here is that the vehicles are subjected to
higher accelerating and braking when following a heavy
jammer profile.

We first evaluate the performance of the platooning for
both time gap setups (ha, hb) when facing a constant
jammer and a heavy jammer. The result is shown in
Table 1. Note that each time gap setup performs better
against a specific jammer profile. As expected, it is more
fuel-efficient to use the ha setup with a steady jammer
and the hb with a heavy jammer. The fuel consumption
formulation (12) has a term related to control effort,
i.e. acceleration, and another one related to air drag.
The platoon with a smaller time gap loses less energy
due to air drag forces. But to keep following the control
signal, more control effort is required when following a
heavy jammer profile. If the platooning is dealing with
a steady jammer, the system requires no acceleration
after achieving a steady-state state. Therefore, the fuel
consumption is influenced mainly by the air drag and the
other constant terms. The above behavior explains why
ha performs better against a steady jammer profile. When
following a heavy profile, the platoon needs to periodically
brake and accelerate. The acceleration pick decreases, and
less fuel consumption occurs when using a bigger time gap.
This behavior compensates for the higher fuel usage due to
air drag and explains why hb performs better when dealing
with a heavy jammer profile.

Consider the scenario when following a jammer that
switches between its steady and heavy profile. Choosing
ha and hb for the steady and heavy period, respectively,
would improve the overall platooning performance. How-
ever, because there are energy losses due to the transition
between the setups, finding an improved response is not
clear anymore. This difficulty is related to the Markov
process associated with the transition between the jam-
mer’s profiles. For the numerical simulation, we considered
a jammer with two modes. The first mode represents
the constant profile and the second, the heavy one. The
transition rate matrix q11 = − 1

40 and q22 = − 1
20 is such

that the jammer will spend more time in the constant
mode than in the heavy one. By doing so, we attempt
to model the behavior of highways.



Algorithm Static PPO PPO PPO

Parameter ha δ = 10 δ = 20 δ = 50
Fuel efficiency 3.04% 4.78% 3.68% 2.54%

Table 2. Fuel efficiency analysis of static ha,
and PPO strategy with static hb as baseline.

PPO performance The RL framework is presented in
Fig. 1. Observe that the PPO agent does not directly
control the platooning, but only the switching time be-
tween different time gaps. We set the ACC with a static
hb time gap as the baseline, and evaluated the learning
agent performance when subjected to different sampling
times. We run simulations for different subinterval times
δ = {10, 20, 50} in seconds. As expected, for a lower
sampling time, the PPO agent can respond faster to the
changes in the jammer profile, thus, presenting a better
performance. After training the PPO agent, we obtained
the fuel efficiency described in Table 2. The time gap hb

granted the worst fuel efficiency performance when the
platooning is following a stochastic jammer.

6. CONCLUSIONS

We studied the fuel consumption of a longitudinal platoon-
ing model where a RL algorithm dictates the switching rule
of different ACC time gaps. Furthermore, we evaluated
our system under stochastic disturbances modeled by two
Markov modes, namely steady and heavy. We worked with
the time gap parameter from the ACC control to derive
two different options to deal with the jammer. A smaller
time gap responded better when the jammer was in the
steady mode, and a bigger time gap performed better
when it was in the heavy mode. For a platoon under non-
ideal traffic conditions, we trained a PPO agent to select
the time gap applied by the controller at each sampling
time step. This agent was more fuel-efficient than the one
using the threshold control and the static control, that
is, when there is no switching between time gap setups.
Smaller sampling intervals presented better performance.
Future work can focus on how switching between different
platooning controllers, namely ACC and Cooperative ACC
(CACC) can improve fuel efficiency. Additionally, we can
propose a different reinforcement learning algorithm and
compare its performance.
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