

What's on a subjective evaluation of time? Dissociating premotor and motor components in RT task reveals the building blocks of time metacognition

Nathalie Pavailler, Boris Burle

▶ To cite this version:

Nathalie Pavailler, Boris Burle. What's on a subjective evaluation of time? Dissociating premotor and motor components in RT task reveals the building blocks of time metacognition. Conference of the European Society for Cognitive Psychology (ESCoP), Aug 2022, Lille, France. hal-03940357

HAL Id: hal-03940357 https://hal.science/hal-03940357v1

Submitted on 16 Jan 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ORATOIRE DE

What's on a subjective evaluation of time? Dissociating premotor and motor components in RT task reveals the building blocks of time metacognition.

Nathalie PAVAILLER & Boris BURLE

Laboratoire de Neurosciences Cognitives, Aix-Marseille University, CNRS-UMR7291 Marseille, France

Introduction

Metacognition refers to the subjective evaluation of our own cognitive performances and processes, and can be crucial to regulate behavior.

- Metacognition in the time domain remains poorly investigated even though temporal information is of great importance for appropriate behaviour.
- When we have to act as fast as possible (i.e reaction time situation), time is implicit but largely contributes to the achievement of the goal.
- Previous study (Corallo et al. 2008) showed that on average, participants have a rather good estimation of their reaction times (RTs).

Question 1 : Is RT estimation really based on temporal information?

Fixation

1s

- RTs constitute a widespread measure of the time taken to decide and initiate an appropriate action.
- Many models (e.g. diffusion models) separate RTs into a decision time (*Tdecision*), during which evidence is accumulated until a decision threshold is reached (Fig.1), and a non decision time, composed of encoding time (*Tencoding*) and motor execution time (*Tresp*).
- Motor execution time, which can be measured directly using electromyography (EMG), is almost always ignored even though it is a significant part of RTs variability.
- We do not know if and to what extent this motor time contributes to RTs subjective evaluation.

Results

Question 2 : What is the contribution of decision and non decision time in RT estimation?

Materials and Methods

Force faible

Participants (n=30) performed a choice reaction time task. They were asked to respond with a left or right button press according to the orientation of a Gabor patch. After each trial, they had to evaluate their response time on a visual analog scale. Task difficulty and response force were manipulated (72 trials/condition)

Behavioral task

1.0	2.0 3.0 difficulty	4.0	5.0	iRT ~ PMT + MT	$R^2 = 0.147$	MT β =0.42*	AIC =-2.006e+04	
fect of force and difficulty on PMT and MT				Bette	Better prediction of iRT with PMT + MT than with PMT only			
								-

Subjective evaluation

of reaction time

Reaction time

Decision

time

Difficulty

Execution

Force

Conclusion

- We show that iRT is sensitive to both decisionnal and non decisionnal experimental manipulations (e.g. difficulty and force) in the same way as RT.
- RT evaluation was biased by force, meaning that part of this effect is a factor effect.
- But, overall, positive correlations between trial-by-trial RT and iRT show that **participants can** reliably estimate their RTs independently of information linked to experimental conditions.

- RT and iRT increased the same way with force, a factor mainly affecting MT.
- The correlation between RT and iRT was degraded when MT was not taken into account.
- These observations suggest that **non decision time** (at least motor execution time) **also contributes to the subjective evaluation of RT**.

References :

- Corallo, G., Sackur, J., Dehaene, S., Sigman, M., 2008. Limits on Introspection: Distorted Subjective Time During the Dual-Task Bottleneck. Psychol Sci 19, 1110–1117. https://doi.org/10.1111/j.1467-9280.2008.02211.x
- Weindel, G., Gajdos, T., Burle, B., Alario, F.-X., 2021. The Decisive Role of Non-Decision Time for Interpreting the Parameters of Decision-Making Models. https://doi.org/10.31234/osf.io/gewb3