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A method based on the distribution theory is introduced
to compute the Fresnel diffraction integral. It is ap-
plied to the diffraction of Gaussian and Laguerre-Gauss
beams by a circular aperture. Expressions of the diffract-
ing field are recast into perturbation series describing
the near and far field regions.
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1. INTRODUCTION

Laguerre-Gauss Beams (LGB) carry angular momentum and
are used in a wide field of research [1]. Recently, it has been
used in research topics as different as generation of elegant
elliptical vortex Hermite–Gaussian beams [2], non-linear optics
[3], underwater optical communications and [4] plasma physics
[5].

Explicit formula, easy to handle and fast to compute, describ-
ing the propagation and diffraction of LGB are needed to model
their interactions with various media. However, whereas diffrac-
tion of Gaussian Beams (GB) or plane waves has extensively
been studied in the past, LGB have received less attention. See,
for instance, [6–8] and references therein.

Unlike previous methods [7] used to compute Fresnel diffrac-
tion integrals, here we use the theory of distributions. Since
these integrals can be written as Fourier and Hankel transforms
[9], we show that the moment expansion method [10] permits
the accurate derivation of near and far field diffraction. This
method has been used in statistical physics and quantum optics
[10] but never, to the best of our knowledge, in diffracting optics.
As we show, it leads to easy calculations of diffraction integrals
and could also be useful to solve similar problems. Our result
for LGB diffraction in the far-field region, while supported by
the numerical calculations of Fresnel integrals, is found to be in
disagreement with the published result of [6].

This article is organized as follows. The Fresnel integral
and a derivation of an expression for the nth order derivative
of the Dirac distribution in polar coordinates are presented in
section 2. This latter mathematical tool is a key element of
moment expansions. To the best of our knowledge, its use in this
context has not yet been published. In section 3 we show how the

moment expansion method applied to diffraction integrals of GB
by a circular aperture can be recast into perturbation expansions
describing near and far fields of the diffracted beam. Section 4 is
eventually devoted to LGB.

2. FORMALISM

Diffraction of an electromagnetic field by a circular aperture of
radius a is addressed in this article. We restrict ourselves to the
large aperture limit a ≫ λ, where λ is the wavelength, so that
scalar field theory can be used [11]. Paraxial approximation is
further assumed to describe the scalar field propagation along
an axis labeled z. This axis is normal to the aperture plane and
intersects this plane at the center of the circular aperture. The
transverse coordinates in the aperture plane, located at z = 0
and in the observation plane located at z > 0 are written x′, y′

and x, y respectively.
For a paraxial scalar monochromatic field E(r, t) =

E(r) exp(−iω0t), with ω0 the angular frequency and rt =
(x, y, z), the Fresnel diffraction integral for E(r) is given by [9]:

E(r) =
exp(ikz)

iλz
exp

[
i

k
2z

(x2 + y2)

]
∫ ∫ +∞

−∞
E(x′, y′, 0) exp

[
i

k
2z

(x′2 + y′2)
]

exp
[
−i(x′ωx + y′ωy)

]
dx′dy′ (1)

where k = 2π/λ, ωx = kx/z and ωy = ky/z. Mathematical
properties of the Fresnel integral are well known (e.g. see [12])
as well as its range of applicability (e.g. see [13]).

For a circular aperture, one uses polar coordinates so that,
assuming a circular symmetry of the wave-front of the incident
field, Eq. 1 can be written as a Hankel transform [9, 14]

E(ρ, z) =
exp(ikz)

iλz
exp

[
i

k
2z

ρ2
]

2πI(ρ) (2)

with

I(ρ) =
∫ +∞

0
circ(ρ′/a)E(ρ′, 0) exp

[
i

k
2z

ρ′2
]

J0(ρ̃ρ′)ρ′dρ′ (3)

where J0 is the zeroth order Bessel function of the first kind,

ρ′ =
√

x′2 + y′2, ρ =
√

x2 + y2, ρ̃ =
√

ω2
x + ω2

y = kρ/z and

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Letter Journal of the Optical Society of America A 2

circ(ρ′/a) = 1 if ρ′ ≤ a and 0 if ρ′ > a. Modifications of Eq. 3
for a non-circular symmetric incident field are given in section 4.

Eq. 3 thus reads [15]

I(ρ) = H0

[
f (ρ′)g(ρ′)

]
(4)

where f (ρ′) = circ(ρ′/a), g(ρ′) = E(ρ′, 0) exp
[

ikρ′2/(2z)
]

and

where H0 stands for the zeroth order Hankel transform. That is

f̃ (r̃) = Hn[ f (r)] =
∫ ∞

0
f (r)Jn(r̃r)rdr (5)

with n = 0.
Using Hn[Hn[ f (r)]] = f (r) ∀n one can write Eq. 4 in two

equivalent ways:

I(ρ) =


H0[H0[g̃(ũ)] f (ρ′)]
or

H0[H0[ f̃ (ũ)]g(ρ′)]

(6)

In order to compute the integral of Eq. 4, we choose to per-
form a moment expansion of either g̃(ũ) or f̃ (ũ) in the first or
second expression of Eq. 6, respectively. Though they should
lead to the same results, it comes out that it either corresponds
to the near or far field approximations when truncating the mo-
ment expansion.

Making a moment expansion of function g̃(ũ), that is the
Hankel transform of the incident field E(ρ′, 0) times the Fresnel
propagator term exp[ikρ′2/(2z)], therefore leads to the diffracted
far field. Whereas expanding the smooth function f̃ (ũ), i.e. the
Hankel transform of the screen aperture function, multiplied by
a Gaussian regulation function leads to the diffracted near field.
These two calculations will therefore be addressed separately in
the following sections 3 and 4. Eventually, it is worth mention-
ing that one cannot compute directly the moment expansion of
f (ρ′)g(ρ′) in Eq. 4 since no formal expression exists for it and
that we are only expanding smooth functions in moments.

A. Moment expansion in polar coordinates
We define the moments of a function h(r, θ) in polar coordinates
(r, θ) by

µmn =
∫ 2π

0

∫ +∞

0
h(r, θ)rm exp(inθ)rdrdθ (7)

with x = r cos θ and y = r sin θ and m ∈ N, n ∈ Z. Following
[10], we then seek for a moment expansion of h(r, θ) as a func-
tion of the n-order derivatives of the Dirac distribution δ[n](r).
A derivation of the first-order derivative can be found in [16].
Defining

∫ +∞
0 δ(r)dr = 1 one has

∫ +∞
0 δ[1](r) f (r)rdr = − f (0).

However, to the best of our knowledge, the nth-order deriva-
tives are not available in the existing literature. Thus, we need
to determine for any r0 ≥ 0

Fn(r0) =
∫ +∞

0
δ[n](r − r0) f (r)rdr. (8)

To do so, we extend a method used in [16]. Let g(r) be a func-
tion having a definite nth-order derivative. It is defined by the
following limit

g[n](r) = lim
ϵ→0

1
ϵn D[n]

c {g}(r, ϵ) (9)

where D[n]
c {g}(r, ϵ) is the nth order centered finite difference

[17]

D[n]
c {g}(r, ϵ) =

n

∑
k=0

(−1)k n!
k!(n − k)!

g
(

r +
[

n
2
− k

]
ϵ

)
. (10)

Replacing g(r) by δ(r − r0) and injecting it in Eq. 8, one obtains

Fn(r0) = lim
ϵ→0

1
ϵn

n

∑
k=0

(−1)k n!
k!(n − k)!(

r0 −
[

n
2
− k

]
ϵ

)
f (r0 −

[
n
2
− k

]
ϵ)

= r0(−1)n f [n](r0) +

lim
ϵ→0

n(−1)n

ϵn−1 D[n−1]
c { f }

(
r0 +

ϵ

2
, ϵ

)
= r0(−1)n f [n](r0) + n(−1)n f [n−1](r0). (11)

It should be noted that this expression differs significantly from
that in Cartesian coordinates [10]. The moment expansion of
h(r, θ) is defined by

h(r, θ) =
1

2π

+∞

∑
n=−∞

+∞

∑
m=0

(−1)m+1

(m + 1)!
µmn exp(−inθ)δ[m+1](r). (12)

For a radially symmetric function, only the term n = 0 in the
above sum remains. Therefore, h(r, θ) ≡ h(r) and the previous
equation simplifies to

h(r) =
1

2π

+∞

∑
m=0

(−1)m+1

(m + 1)!
µmδ[m+1](r) (13)

with µm = 2π
∫ +∞

0 h(r)rmrdr. Such a series expansion for the
function h(r) is suitable because it is going to be inserted inside
an integral over r.

3. GAUSSIAN BEAM

Here, the incident field of Eq. 3 reads E(ρ′, 0) =
E0 exp(−ρ′2/w2

0) where w0 is the beam waist. Following [6],
we thus fix the waist position in the aperture plane z = 0. One

therefore gets g(ρ′) = E0 exp
[
−αρ′2

]
with

α =
1

w2
0

(
1 − i

zR
z

)
=

1
w2

0
− i

πNF
a2 (14)

where we have introduced two important parameters, the
Rayleigh range zR = πw2

0/λ and the Fresnel number NF =

a2/(λz).

A. Far field and collimated beam region
We start with the first expression of Eq. 6:

I(ρ, z) = H0

[
H0[g̃(ρ̃0)] f (r)

]
=

∫ ∞

0
g̃(ρ̃0)

∫ a

0
J0(rρ̃0)J0(rρ̃)rdrρ̃0dρ̃0 (15)

For ρ̃ ̸= ρ̃0, the integral over r is known, see p. 664 of [18],
we then get

I(ρ, z) = a2
∫ ∞

0
ρ̃0 g̃(ρ̃0)(

ρ̃0r J1( ˜ρ0r)J0(ρ̃r)− ρ̃r J1(ρ̃r)J0( ˜ρ0r)

)
ρ̃2

0r − ρ̃2
r

dρ̃0 (16)
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with ρ̃0r = aρ̃0 and ρ̃r = aρ̃. A formal expression also exits for
ρ̃ = ρ̃0 but it turns out that our final result will be finite in the
limit ρ̃ → ρ̃0 = 0 using Eq. 16. We will therefore extend the use
of Eq. 16 to this limit.

Using the results of section 2.A for g̃(ρ̃0) =
E0 exp[−ρ̃0

2/(4α)]/(2α), we get

g̃(ρ̃0) = E0

∞

∑
n=0

(−1)n+1

(n + 1)!
2nαn/2Γ

(
n
2
+ 1

)
δ[n+1](ρ̃0) (17)

Inserting this expression into Eq. 16 and performing the integra-
tion over ρ̃0, one obtains

I(ρ) = a2E0
J1(ρ̃r)

ρ̃r
+ a2E0

∞

∑
n=1

2n

n!
Γ
(

n
2
+ 1

)
(a2α)n/2

[
∂n

∂ρ̃n
0r

(
ρ̃0r J1(ρ̃0r)

ρ̃2
0r − ρ̃2

r

)∣∣∣∣
ρ̃0r=0

J0(ρ̃r)

− ∂n

∂ρ̃n
0r

(
J0(ρ̃0r)

ρ̃2
0r − ρ̃2

r

)∣∣∣∣
ρ̃0r=0

ρ̃r J1(ρ̃r)

]
. (18)

The first term of the r.h.s. of this equation is the solution of
the Fraunhofer diffraction integral [9] which corresponds to the
limits a/w0 → 0 and NF → 0. Eq. 18 is an expansion in powers
of (a2α) and can then be viewed as a perturbation expansion for
a2|α| ≲ 1. Therefore, Eq. 18 can be used either if a/w0 ≪ 1 and
NF ≲ 1/π or NF ≪ 1/π and a/w0 ≲ 1.

Expanding the nth-order partial derivatives terms of Eq. 18
one sees that the sum vanishes for odd values n. Eq. 18 can thus
be written

I(ρ, z) = I [0](ρ, z) +
∞

∑
p=1

I [p](ρ, z) (19)

with I [0] = a2E0 J1(ρ̃r)/ρ̃r and

I [p](ρ, z) = a2E022p p!(a2α)p[
J1(ρ̃r)

p

∑
k=0

(−1)k ρ̃
2k−2p−1
r

(k)!222k

−J0(ρ̃r)
p−1

∑
k=0

(−1)k ρ̃
2k−2p
r

(k)!(k + 1)!22k+1

]
. (20)

This expression shows that the limit

lim
ρ̃r→0

I [p](ρ) = E0
a2(−1)p(a2α)p

2(p + 1)!
, (21)

which corresponds to the case ρ̃r = ρ̃0r = 0 in Eq. 16, is in fact
finite for all p.

By numerically evaluating Eq. 19 one has to truncate the
series over p. Accordingly, a cutoff parameter pmax = Max(p)
must then be introduced and the numerical accuracy can be
estimated simply by computing I [pmax+1](ρ). As for the speed
convergence of Eq. 19, it depends on a/w0, NF and on the range
of ρ̃r. This must be addressed numerically on a case by case
basis (as for the other results of this article). To illustrate that,
numerical calculations were performed taking a = 1, NF = 0.1
and a/w0 = 1. Fig. 1 shows a comparison between the numer-
ical integration of Eq. 4 done using the rectangle method, the
zeroth order (pmax = 0) and the sixth order (pmax = 6) approxi-
mations of Eq. 19. Whereas the zeroth order approximation is
not precise enough, taking only six terms in the series of Eq. 19

leads to a good agreement. To quantify the numerical precision
one defines

Rpmax (ρ, z) =
I [pmax+1](ρ, z)

I [0](ρ, z) + ∑
pmax
p=1 I [p](ρ, z)

(22)

that is the relative next order contribution for a given pmax value.
Fig. 2 shows the values of R as a function of aρ̃ for various val-
ues of pmax and for the same parameters as in Fig. 1. The curve
for pmax = 0 corresponds to the correction to the Fraunhofer
approximation. Since here NF = 0.1 is sizable, such a large cor-
rection is expected. As pmax increases one sees that the precision
also increases. It is however dependent on the value of aρ̃.

Fig. 1. I(ρ) as a function of the dimensionless variable aρ̃ for
a = 1, NF = 0.1 and a/w0 = 1. Dashed line: zeroth order
(pmax = 0 in Eq. 19); full line : 6th order (pmax = 6 in Eq. 19) ;
circles: numerical integration (Eq. 4).

Fig. 2. Rpmax (ρ) as a function of the dimensionless variable aρ̃
for a = 1, NF = 0.1 and a/w0 = 1. Full line: zeroth order
pmax = 0; dotted line: pmax = 3; dashed-dotted: pmax = 5.
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B. Near field and focused beam region
We start start with the second expression of Eq. 6:

I(ρ) = H0

[
H0[ f̃ (ρ̃0)]g(r)

]
= E0

∫ ∞

0
f̃ (ρ̃0)

∫ ∞

0
exp(−αr2)J0(rρ̃0)J0(rρ̃)rdrρ̃0dρ̃0

Performing the integral over r, see p. 707 of [18], we obtain

I(ρ) =
E0
2α

exp
(
− ρ̃2

4α

) ∫ ∞

0
f̃ (ρ̃0)

exp
(
−

ρ̃2
0

4α

)
I0

(
ρ̃0ρ̃

2α

)
ρ̃0dρ̃0 (23)

where I0 is the zeroth order modified Bessel function of the
first kind. However, it turns out that the moments of f̃ (ρ̃0) =
aJ1(aρ̃0)/ρ̃0 are not defined. Since the moments of

f̃q(ρ̃0) = aJ1(aρ̃0)/ρ̃0 exp(−qρ̃2
0/(4α))

are well defined for 0 < q ≤ 1 and ℜ(α) > 0, we can rewrite
Eq. 23

I(ρ) =
E0
2α

exp
(
− ρ̃2

4α

) ∫ ∞

0
f̃q(ρ̃0)

exp
(
−(1 − q)

ρ̃2
0

4α

)
I0

(
ρ̃0ρ̃

2α

)
ρ̃0dρ̃0 (24)

and perform a moment expansion of f̃q(ρ̃0).
Taking q = 1 we indeed obtain a very compact solution.

Using the results of section 2.A, we get, see p. 706 of [18]

f̃1(ρ̃0) =
1
a

exp
(
− a2α

2

) ∞

∑
n=0

Mn/2,1/2(a2α)

(−1)n+12nαn/2Γ(1 + n/2)
(n + 1)!

δ[n+1](ρ̃0) (25)

where Mn/2,1/2(X) is the Whittaker M function, see p. 1024 of
[18]. Inserting this expression into Eq. 24 and performing the
integration over ρ̃0, we obtain

I(ρ) =
E0
2α

exp
(
− ρ̃2

4α

)
exp

(
− a2α

2

)
∞

∑
n=0

Mn,1/2(a2α)

22nn!

(
1

a2α

)n
ρ̃2n

r (26)

here we used ∂n/∂Xn[I0(YX)] = (2n)!/(22nn!2)Y2n for X = 0.
Eq. 26 is an expansion in power of 1/(aα). If a/w0 ≫ 1 (NF ≫
1/π), Eq. 26 will thus be useful for NF ≳ 1/π (a/w0 ≳ 1). As in
the previous section, we can write Eq. 26 in the form of Eq. 19
with

I [p](ρ, z) =
E0
2α

exp
(
− ρ̃2

4α

)
exp

(
− a2α

2

) Mp,1/2(a2α)ρ̃
2p
r

22p p!(a2α)p . (27)

From these two expressions one can further use Eq. 22 to define
Rpmax (ρ, z) for the far-field region, where pmax = Max(p).

Figure 3 shows I(ρ) as a function of the dimensionless vari-
able aρ̃ for a = 1, NF = 10 and a/w0 = 5/4. For this set of
parameters and the range aρ̃ ≤ 30, it was necessary to take
pmax = 60 to match the numerical integration of Eq. 4. Rpmax is
shown in Fig. 4 as a function of aρ̃ for various values of pmax and

Fig. 3. I(ρ) as a function of the dimensionless variable aρ̃ for
a = 1, NF = 10 and a/w0 = 5/4. Dashed line: zeroth order
(n = 0 contribution in Eq. 26); full line: 60th order (pmax = 60
in Eq. 26); circles: numerical integration (Eq. 4).

Fig. 4. Rpmax (ρ) as a function of the dimensionless variable aρ̃
for the same parameter as in Fig. 3. Full line: pmax = 0; Dotted
line: pmax = 19; Dashed line: pmax = 39; Dashed-dotted:
pmax = 59.
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for the same parameters as in Fig. 3. As for the far field case of
the previous section, the precision strongly depends on pmax and
decreases as aρ̃ increases. Here much more terms are needed
to reach accurate calculations and one even gets Rpmax > 1 for
some aρ̃ intervals, e.g. for pmax = 19 if aρ̃ > 15 in Fig. 4.

We checked numerically that the range of validity of Eq. 26
with respect to the parameters a/w0 and NF was indeed sizable
provided that the tuning of pmax can be flexible enough. For
a/w0 ⪆ 1 we could vary NF over a large range 10−2 ⪅ NF ⪅ 104.
The limits for larger values of NF and smaller values of a/w0
comes from the numerical evaluation of the special function
Mn,1/2(X) and from the factorial term for large pmax values.
These can be evaluated to arbitrary precision at the price of
increasing computing time to prohibitive values.

Eventually, it is instructive here to write the expression of the
corresponding electric field of Eq. 2:

E(ρ) =

√
2
π

q(0)
w0q(z)

exp
(
− ikρ2

2q(z)

)
exp(ikz)

exp
(
− a2α

2

) ∞

∑
n=0

(πNF)
2n Mn,1/2(a2α)

(a2α)nn!
ρ2n

r (28)

with E0 =
√

2/π/w0, q(z) = z − izR and zR = πw2
0/λ. Using

limℜ(X)→∞ exp(−X/2)M0,1/2(X) = 1, one sees that for n = 0
and a/w0 ≫ 1 ∀z, Eq. 28 gives the expression of the paraxial
Gaussian beam [19]. Beside, for a/w0 ⪅ 1 and in the near
field limit NF ≫ 1, one can use the asymptotic expansion of
M0,1/2(X) for |X| ≫ 1 [20] to get a very compact expression

E(ρ) ≈
√

2
π

q(0)
w0q(z)

exp
(
− ikρ2

2q(z)

)
exp(ikz)[

1 − exp(−a2α)J0(aρ)

]
. (29)

This expression is valid in the very near field region where the
Fresnel approximation holds [21] but not in the shadow region.
It is also complementary to other results obtained with plane
waves [22].

4. LAGUERRE-GAUSS BEAM

For an incident Laguerre-Gauss beam [19] one has
Ep,ℓ(ρ

′, θ′, 0) = Fp,ℓ(ρ
′) exp (−iℓθ′), with

Fp,ℓ(ρ
′) = E0

(
ρ′
√

2
w0

)|ℓ|
L|ℓ|

p

(
2ρ′2

w2
0

)
exp

(
− ρ′2

w2
0

)
(30)

where L|ℓ|
n (X) is the generalized Laguerre polynomial, see p.

1000 of [18], with ℓ ∈ Z, p ∈ N and x′ = ρ′ cos θ′, y′ = ρ′ sin θ′.
Eq. 3 now reads

Ep,ℓ(ρ, θ, z) =
exp(ikz)

iλz
exp

[
i

k
2z

ρ2
]

2πi−ℓ exp(iℓθ)Ip,ℓ(ρ, z) (31)

with x = ρ cos θ, y = ρ sin θ and

Ip,ℓ(ρ, z) =
∫ ∞

0
circ

(
ρ′

a

)
Fp,ℓ(ρ

′)

exp
(

iπNF
ρ′2

a2

)
Jℓ(ρ̃ρ′)ρ′dρ′ (32)

Eq. 32 can be further written in the form

Ip,ℓ(ρ, z) = Hℓ

{
H0H0

[
f (ρ′)

]
HℓHℓ

[
G(ρ′)

]}
(33)

with f (ρ′) = circ(ρ′/a), G(ρ′) = Fp,ℓ(ρ
′) exp(iNFρ′2/a2) and

where Hℓ[X] is the ℓth-order Hankel transform with Hℓ[X] =
H−1

ℓ [X]. This expression, together with the phase factor exp(iℓθ)
of Eq. 31, corresponds to the convolution product of non circu-
larly symmetric functions in polar coordinates [23].

A. Far field and collimated beam region

As in section 3.A, we first evaluate the following integral

Ip,ℓ(ρ, z) = Hℓ

{
f (ρ′)Hℓ

[
G̃(ρ̃0)

]}
=

∫ ∞

0
G̃(ρ̃0)

∫ a

0
Jℓ(rρ̃0)Jℓ(rρ̃)rdrρ̃0dρ̃0 (34)

Integrating over r, see p. 664 of [18], it reads

Ip,ℓ(ρ, z) = a2
∫ ∞

0
ρ̃0G̃(ρ̃0) (35)(

ρ̃r Jℓ(ρ̃0r)Jℓ−1(ρ̃r)− ρ̃0r Jℓ−1( ˜ρ0r)Jℓ(ρ̃r)

)
ρ̃2

0r − ρ̃2
r

dρ̃0

with (see p. 706 of [18])

G̃(ρ̃0) =
∫ ∞

0
G(ρ′)Jℓ(ρ̃0ρ′)ρ′dρ′

= exp
(
−

ρ̃2
0

8α

)
1
ρ̃0

p

∑
n=0

Apℓ(n)

αn+ ℓ
2 +

1
2

Mn+ ℓ
2 +

1
2 , ℓ2

[
−

ρ̃2
0

4α

]
. (36)

For simplicity, we assumed that ℓ ≥ 0. For ℓ < 0, the identity
J−ℓ(X) = (−1)ℓ Jℓ(X) shows that the results would be identical
up to a sign. We also use the explicit expression of Lℓ

p(X), see p.
1000 of [18], and define

Apℓ(n) = E0
(−1)n(p + ℓ)!
n!ℓ!(p − n)!

(√
2

w0

)2n+ℓ

(37)

As for the moments µm(p, ℓ) of G̃(ρ̃0), we obtain [24]

µm(p, ℓ) = π2m+1α
m
2 −

ℓ
2 Γ

(
1 +

m
2
+

ℓ

2

)
(38)

p

∑
n=0

1
αn Apℓ(n) 2F1

[
1 +

m
2
+

ℓ

2
,−n; ℓ+ 1; 1

]
where 2F1[X] is the hypergeometric function, see p. 1005 of
[18]. Performing the moment expansion of function G̃(ρ̃0) and
integrating over ρ̃0 one finally obtains

Ip,ℓ(ρ, z) = aℓ+2
∞

∑
m=0

2m

m!
(a2α)

m
2 −

ℓ
2 Γ

(
1 +

m
2
+

ℓ

2

)

κm(ρ̃r)
p

∑
n=0

1
αn Apℓ(n)2F1

[
1 +

m
2
+

ℓ

2
,−n; ℓ+ 1; 1

]
(39)
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with, for m > 0

κm(ρ̃r) =
∂m

∂ρ̃m
0r

(
Jℓ(ρ̃0r)

ρ̃2
0r − ρ̃2

r

)∣∣∣∣
ρ̃0r=0

ρ̃r Jℓ−1(ρ̃r)

− ∂m

∂ρ̃m
0r

(
ρ̃0r

Jℓ−1(ρ̃0r)

ρ̃2
0r − ρ̃2

r

)∣∣∣∣
ρ̃0r=0

Jℓ(ρ̃r) (40)

and for m = 0, κ0(ρ̃r) = −Jℓ(0)Jℓ−1(ρ̃r)/ρ̃r, that is κ0(ρ̃r) = 0
for ℓ > 0. Fixing ℓ = 0 and p = 0 and using J−1(X) = −J1(X),

A00(0) = 1 and 2F1

[
1 + m

2 , 0; 1; 1
]
= 1 ∀m, one can check that

Eq. 39 gives, as expected, Eq. 18.
At first sight, the factor α

m
2 −

ℓ
2 of Eq. 39 may forbid to interpret

this equation as a perturbation expansion for ℓ > 0. However,
calculating the derivatives terms of Eq. 40 we obtain for m ≥ ℓ
and ℓ and m integers of same parity:

κm(ρ̃r) =
m!

2m+1

m−ℓ
2

∑
k=0

(−1)k

k!(k + ℓ− 1)!

(
ρ̃r

2

)2k+ℓ−m−2

[
Jℓ(ρ̃r)−

ρ̃r

2(k + ℓ)
Jℓ−1(ρ̃r)

]
(41)

and κm(ρ̃r) = 0 if m < ℓ or ℓ and m integers of different parity.
The first sum of Eq. 39 thus starts from m = ℓ so that this
equation can be taken as a perturbation expansion in powers
of α for |α| ⪅ 1. Expanding the Bessel functions in Eq. 41, we
obtain an expression suitable for numerical calculations when
ρ̃r is close to zero:

κm(ρ̃r) =
m!

2m+1

m−ℓ
2

∑
k=0

∞

∑
q=1+ m−ℓ

2

(−1)k+q(k − q)
k!q!(k + ℓ)!(q + ℓ)!

(
ρ̃r

2

)2(k+ℓ+q−1)−m
(42)

From this expression one can eventually check that κm(0) =
0 ∀m.

Eq. 39 can then finally be written

Ip,ℓ(ρ, z) = I [ℓ]
p,ℓ(ρ, z) +

∞

∑
µ=1

I [µ]
p,ℓ(ρ, z) (43)

with

I [ℓ]
p,ℓ = E0a2

(
a
√

2
w0

)ℓ
(p + ℓ)!

p!ℓ!
Jℓ+1(ρ̃r)

ρ̃r
(44)

and

I [µ]
p,ℓ(ρ, z) = E0aℓ+2 22µ+ℓ(µ + ℓ)!

(2µ + ℓ)!
(a2α)µκ2µ+ℓ(ρ̃r)

p

∑
n=0

1
αn Apℓ(n)2F1

[
1 + µ + ℓ,−n; ℓ+ 1; 1

]
.(45)

The first term of the perturbation expansion I [ℓ]
p,ℓ corresponds

to Fraunhofer approximation for a/w0 → 0. This expression has
been previously derived and compared to experimental data [8].

However, Eq. 44 is in disagreement with Eq. 27 of [6] where

I [ℓ]
p,ℓ ∝ Jℓ+1(ρ̃r)/ρ̃ℓ+1

r . No obvious misprint could be found to
explain this disagreement. Therefore, since Eqs. 44 and 45 agree
with numerical integration of Eq. 32 (see below), Eq. 27 of [6]
is most likely affected by a non-trivial misprint or a calculation
error.

Fig. 5 shows Ip,ℓ(ρ) as a function of the dimensionless vari-
able aρ̃ for p = 6, ℓ = 3. Twelve terms were needed in the sum
over µ of Eq. 43 to reach a good agreement with the numerical

integration of Eq. 32. The zeroth order contribution I [ℓ]
p,ℓ is also

shown for comparison. In order to show it on a similar scale as
the result of the numerical integration, it has been multiplied by
a factor 0.05. It has been checked that the three curves are super-
imposed when a/w0 = 0.05 and NF → 0. As for the calculation
precision, it is found to be similar to the one of section 3.A.

Fig. 5. Ip,ℓ(ρ) as a function of the dimensionless variable aρ̃
for p = 6, ℓ = 3, a = 1, NF = 0.1 and a/w0 = 1. Full line
: 13th order (sum up to µ = 12 in Eq. 43); circles: numerical
integration (Eq. 32) ; dashed line: zeroth order contribution
(multiplied by 0.05).

B. Near field region

As in section 3.B, we start with :

Ip,ℓ(ρ) = Hℓ

[
H0[ f̃ (ρ̃0)]G(ρ′)

]
(46)

with f̃ (ρ̃0) and G(r) defined in sections 3.B and 4.A respectively.
However, as in section 3.B, we have to account for the fact

that the moments of f̃ (ρ̃0) are undefined. We thus write

Ip,ℓ(ρ) =
∫ ∞

0

[
f̃ (ρ̃0) exp

(
− ρ̃0

4α

)]
exp

(
ρ̃0
4α

)
J0(rρ̃0)∫ ∞

0
G(r)Jℓ(rρ̃)rdrρ̃0dρ̃0 (47)

and perform the moment expansion of the term in the square
bracket of the first integral. This expansion is indeed given by
Eq. 25. Next, integrating over ρ̃0, we obtain

Ip,ℓ(ρ) = exp
(
− a2α

2

) ∞

∑
N=0

MN, 1
2
(a2α)

N

∑
k=0

(−1)k N!αk

k!2(N − k)!∫ ∞

0
G(r)Jℓ(rρ̃)r2k+1dr (48)
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Integrating over r and after some algebra, we finally obtain

Ip,ℓ(ρ) =
E0
2α

exp
(
− a2α

2

)
exp

(
− ρ̃2

4α

)(
ρ̃

αw0
√

2

)ℓ

∞

∑
N=0

MN, 1
2
(a2α)

p

∑
q=0

(−1)q(p + ℓ)!
(ℓ+ q)!(p − q)!

(
2

αw2
0

)q

N

∑
k=0

(−1)k N!(q + k)!
k!2q!(N − k)!

Lℓ
q+k

(
ρ̃2

4α

)
(49)

This expression can be viewed as a perturbation expansion in
powers of α−1 and therefore suitable to describe the near field
region (i.e NF > 1). It was checked that this expression gives Eq.
26 when p = ℓ = 0.

As in section 3.B, the number of term to be retained in the
sum over N of Eq. 49 increases when aρ increases. One needs
typically 60 terms for aρ̃ ≤ 30. To illustrate the agreement
between Eq. 49 and the numerical integration of Eq. 32, a
comparison is shown in fig. 6 for p = 2, ℓ = 1, NF = 10 and
w0 = 4/5a with a = 1. For aρ ≤ 50, 100 terms where needed in
the sum over N of Eq. 49. The zeroth order contribution is also
shown. As for the calculation precision, it is found to behave
similarly to the one of section 3.B.

Fig. 6. Ip,ℓ(ρ) as a function of the dimensionless variable aρ̃
for p = 2, ℓ = 1, a = 1, NF = 10 and a/w0 = 5/4. Full
line : 100th order (sum up to N = 100 in Eq. 49); Dashed line:
zeroth order contribution (N = 0 in Eq. 49); circles: numerical
integration (Eq. 32).

5. SUMMARY

A method based on the distribution theory has been used to
compute Fresnel diffraction integrals. We specialized to Gaus-
sian and Laguerre-Gauss beams and obtained useful expression
for the near and far field regions. Interestingly, we have found
that making a moment expansion of the Hankel transform of
the incident field times the Fresnel propagator term leads to the
diffracted far field. While expanding the Hankel transform of
the screen aperture function, leads to the diffracted near field.
Unfortunately, we have not been able to find a physical reason
for describing this feature.

This method can be used to solve other diffraction problems.
First, for the diffraction of Hermite-Gauss beam by a rectangular

aperture, one just has to repeat the calculations presented in this
article using Cartesian coordinates. Second, one can apply the
results of this paper to the propagation of super-Gaussian beams.
Indeed, these can be modeled by the convolution of a circular
aperture function and a Gaussian beam [25], and the results
of this article concerning Gaussian beams can be directly used.
Third, the results can be extended to the diffraction by circular
apertures of a slightly miss-aligned Gaussian beam. Such an
incident beam can indeed be expended into a Hermite-Gauss
series of modes [26]. Then, converting the transverse Cartesian
coordinated into radial coordinates one obtains an expression
that can be handled similarly to those of section 3. More spec-
ulatively, one could also look at the more precise diffraction
integrals, e.g. Rayleigh-Sommerfeld diffraction formula [9]. The
formal expressions of the Fourier or Hankel transform of the
free-space Green function and its derivative [27] may allow to
solve these integrals for particular cases.
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