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b Physique et Mécanique des Milieux Hétérogènes, UMR 7636 CNRS – ESPCI Paris – PSL Research
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Abstract

Aeolian sediment transport is observed to occur on Mars as well as other extraterrestrial
environments, generating ripples and dunes as on Earth. The search for terrestrial analogues
of planetary bedforms, as well as environmental simulation experiments able to reproduce
their formation in planetary conditions, are powerful ways to question our understanding
of geomorphological processes towards unusual environmental conditions. Here, we perform
sediment transport laboratory experiments in a closed-circuit wind tunnel placed in a vacuum
chamber and operated at extremely low pressures to show that Martian conditions belong to
a previously unexplored saltation regime. The threshold wind speed required to initiate
saltation is only quantitatively predicted by state-of-the art models up to a density ratio
between grain and air of 4 × 105, but unexpectedly falls to much lower values for higher
density ratios. In contrast, impact ripples, whose emergence is continuously observed on the
granular bed over the whole pressure range investigated, display a characteristic wavelength
and propagation velocity essentially independent of pressure. A comparison of these findings
with existing models suggests that sediment transport at low Reynolds number but high grain-
to-fluid density ratio may be dominated by collective effects associated with grain inertia in
the granular collisional layer.

Proc. Natl. Acad. Sci. USA 118, e2012386118 (2021).
https://doi.org/10.1073/pnas.2012386118

Well-resolved satellite images and local pictures taken by rovers have provided multiple obser-
vational evidence of aeolian sand transport on Mars [1, 2, 3, 4, 5, 6]. The surface of the planet
is continually reshaped by wind-induced sand transport, forming ripples and dunes at decimetre,
metre and hectometre scales [7, 8, 9, 10, 11]. The sediment fluxes, estimated from the detected
motion of ripples and dunes [12, 13, 6], are only ten times smaller than in terrestrial deserts – typ-
ically 2–20 m2/year. This observation seems at odds with the low CO2 atmospheric pressure P at
the Martian surface, which varies from 6 to 10 hPa, depending on the season [14]. It is surprising
that Martian winds can be strong enough [15, 16, 17] to set rather dense grains (basaltic material
of typical density ρp ≈ 3×103 kg/m3) in motion, even though gravity is almost three times smaller
than on Earth (g = 3.7 m/s2). The description of aeolian saltation in such low-pressure conditions
has remained controversial: conflicting theories either predict anomalously giant [18, 19, 20, 21]
or Earth-like centimetre scale trajectories [22, 23]. To shed light on this controversy [24], here, we
directly investigate sediment transport threshold [25, 26, 27] in a controlled wind tunnel experi-
ment [28, 29, 30], varying the pressure [31] over three orders of magnitude. We also quantitatively
compare the characteristics of impact ripples [32] with state of the art modeling of ripple formation
and migration.

1 Dimensionless numbers for sediment transport

The comparison of sediment transport in terrestrial and Martian environments, and the exper-
imental reproduction on Earth of Mars-like conditions, require the identification of the relevant
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dimensionless numbers for sediment transport. The shear velocity u∗ can be rescaled using the
grain diameter d and the fluid mass density ρf to form the Shields number

Θ =
ρfu

2
∗

(ρp − ρf ) gd
, (1)

which compares the fluid shear stress exerted on the particles at the surface of the bed to their
apparent weight. As cohesion between grains is usually negligible for sand, the threshold Shields
number Θt associated with the incipient motion of particles at the surface of a static bed only
depends on a single dimensionless parameter: the Galileo number

G =

√
ρf (ρp − ρf ) gd3

η
, (2)

which compares gravity to fluid viscosity η effects. G can be interpreted as a Reynolds number
based on the settling velocity; G2/3 can also be thought of as a dimensionless grain diameter.

This threshold has been extensively measured for incipient subaqueous bedload, varying grain
diameter and fluid viscosity [33, 34]. In that case, the average threshold data compares quantita-
tively with a simplified model based on a free body diagram on a single grain [35]. Because grain
inertia is not included in this static force balance, the gravity term, proportional to (ρp − ρf ) gd3

is the only one involving particle density. A rigorous dimensional analysis implies that the static
threshold curve Θt vs G must be ‘universal’ in the sense that it is valid for any environment.

However, the threshold shear velocity for aeolian transport, defined as the value below which
already saltating grains colliding with the bed cannot sustain transport, is typically half that for
subaqueous transport [36, 37, 38]. Its value must therefore depend on a second dimensionless
parameter, the density ratio ρp/ρf , which can be varied continuously through dense (liquid) to
dilute (gas) fluid conditions. Alternatively, any combination of G and ρp/ρf can be used as a
second controlled parameter, for instance the gravitational Stokes number D defined by:

D =

√
ρp(ρp − ρf )gd3

η
(3)

D gives the relative magnitude of gravity and viscous drag for a grain moving at the surface of
the bed.

In the aeolian case, rather than a static force balance, a dynamic model, which idealizes
saltation by means of a typical grain trajectory, is needed to reproduce those threshold data.
Importantly, these static vs dynamic designations for thresholds are theoretical concepts and are
not used here in their pragmatic experimental acceptations (Supplementary Information (SI) Ap-
pendix). In our experiment, no hysteresis in sediment transport regime is observed upon increasing
or decreasing the wind speed, so that a unique wind velocity threshold ut has unambiguously been
measured using the procedure described below. As in air at ambient pressure, it must be compared
to a dynamical threshold model.

2 Low-pressure sediment transport experiments

To investigate the role of ρp/ρf in a systematic way, we performed controlled experiments in a
pressure-controlled wind tunnel [31] (Methods, SI Appendix, Figs. 5, 6). The working section
of the tunnel is 0.85 m high, which is larger than the highest trajectories. The width (0.36 m)
is much larger than both the viscous and turbulent boundary layers, providing a homogeneous
central region, where measurements are performed. The 3.25 m length is comparable to that of
working sections previously employed in low pressure saltation experiments. These finite sizes do
not allow for fully developed trajectories as in an unbounded environment, but should not affect
the value of the threshold, nor the characteristics of incipient ripples. At constant temperature,
the fluid density ρf is proportional to the pressure P . At low pressure, a larger wind velocity
is required to transport the grains; this constraint determines in practice a minimum working
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Figure 1: Impact ripple characteristics vs pressure P . (a) Emergent wavelength λ (black circles).
(b) Photograph of the ripples in the tunnel at u∗/ut = 1.1. (c) Propagation speed c (black
squares) and maximum net bed erosion rate ϕm (red circles). (d) Space-time diagram of the ripple
elevation profiles showing their coarsening dynamics when the wind speed is suddenly increased
from u∗/ut = 1.1 to 1.5. Time goes from bottom to top. Wind is from left to right.These are data
in CO2 Martian conditions. Solid lines in panels (a) and (c): adjustment of Eqs. (4,5) with factors
calibrated on independent data [32]. Statistical error bars corresponding to data dispersion on
independent measurements are displayed.
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pressure of around 1.7 hPa for our experiments. The Martian density ratio ρp/ρf ≈ 1.6× 105 has
been reproduced both in air at P ≈ 14 hPa and in CO2 at P ≈ 9 hPa. A granular bed made of
quartz grains of diameter d = 125 µm was used, equivalent to Galileo numbers of 1.9 in CO2 and
1.6 in air and therefore to an equivalent grain diameter for Mars of 160 and 140 µm, respectively
(SI Appendix, Supp. Tab. 3). During a typical experiment, the wind was blown for one minute
at ambient pressure to smooth the flat sand bed before pumping the atmosphere to decrease the
pressure to the desired value. A centimetre-thick saltation layer and emergent ripples were directly
observed over three orders of magnitude in P .

3 Impact ripple characteristics

In Martian conditions, ripples forming just above the wind velocity threshold ut presented the
same morphology as their terrestrial counterpart. They can unambiguously be identified as im-
pact ripples, as one can continuously observe the formation of the same pattern when gradually
decreasing the pressure. The space-time diagram of Fig. 1d shows the dynamics of the ripples
when the wind speed is increased: the pattern propagates downwind and coarsens with a growing
wavelength. We could not observe the final, saturated state of the ripples [32], and focus on the
emergent pattern characteristics. Importantly, Fig. 1 shows that neither the initial wavelength λ
of these incipient ripples nor their propagation velocity c strongly depend on the pressure, at fixed
u∗/ut.

This lack of dependence on ρp/ρf provides a strong test of the current understanding of aeolian
sediment transport [42, 40, 43] (see also SI Appendix). The key idea is the existence of a saltation
layer inside which the wind speed profile is reduced to its threshold due to the negative feedback of
the particles on flow momentum (‘feedback’ layer, Fig. 2) [44, 45, 46, 22, 23, 42, 43]. The number of
particles transported increases with wind speed but the characteristics of grain trajectories remain
those of threshold conditions. However, this layer alone cannot explain the observed increase
of ripple wavelength with u∗ . Numerical simulations [39] have revealed the existence, at the
interface with the static bed, of a collisional layer (Fig. 2) responsible for this behavior. Contrary
to the original idea of saltating grains splashing and ejecting grains from the static bed, saltation
transmits its momentum to a whole quasi-two-dimensional layer governed by gaseous-like collective
effects. The grain velocities in this layer therefore behave differently than in the feedback layer and
depend on u∗ (SI Appendix). The mathematical modelling of the coupling between the feedback
and collisional layers provides the following scaling laws for the ripple velocity and wavelength
(see [39] and Methods):

c ∼ ut

√
ρf
ρp

√
u2
∗
u2
t

− 1, (4)

λ ∼ ut

√
d

g

√
ρf
ρp

√
u2
∗
u2
t

− 1. (5)

These relationships reproduce well the increase of c and λ with the wind speed in a quasi-linear
fashion [32]. Their proportionality factors, which only depend on the grain characteristics but not
on the fluid density, are calibrated using ambient pressure data (SI Appendix, Supp. Fig. 17). The
predictions of Eqs. (4,5) are superimposed on the data in Fig. 1a,c and show fair agreement. As
the threshold shear stress ρfu

2
t is, to a first approximation, independent of P (Fig. 3d), Eqs. (4,5)

indeed predict that c and λ remain roughly constant at fixed u∗/ut, as evidenced over the three
orders of magnitude of pressure investigated here. This is a key result to interpret the smallest
decimeter-scale Martian bedforms as impact ripples. A closer look to the data shows a slight
increasing trend of the wavelength with pressure, which would need confirmation with additional
experiments to reduce error bars on measurements.

Close to the threshold, the air flow entering the working section of the tunnel is free of particles.
As grains are entrained into motion, the sediment bed is eroded and the sediment flux progressively
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increases downwind until it reaches saturation. At ambient pressure, the erosional zone is limited
to the entrance bed region, corresponding to a metre-scale saturation length [47]. Upon decreasing
P , this zone extends downwind, and below 300 hPa, it encompasses the entire bed. The maximum
net erosion rate ϕm along the surface remains much smaller than grain velocity in the collisional
layer (on the order of c), and, like ripple characteristics, does not depend much on P (Fig. 1).
Considering that both feedback and collisional layers rapidly equilibrate to the wind conditions
independently of P , the overall erosion of the bed remains to be explained. The feedback layer with
grains experiencing a flow at the threshold is unstable [23]: any grain bouncing above Bagnold’s
focal point experiences a larger drag and is accelerated to velocities comparable to that of the
wind. The bed erosion is therefore associated with the gradual mobilisation of grains towards the
upper part of the transport layer, or ‘free wind’ layer (Fig. 2). In the case of saturated transport,
this upper layer is in dynamic equilibrium with the lower feedback layer through a balanced net
flux. The saturation of the free wind layer is controlled by the drag length, defined as the distance
needed to accelerate a grain to the velocity of the undisturbed wind, which scales as

ρp
ρf
d in the

inertial regime [47]. The overall erosion of the bed in the wind tunnel under Martian conditions
affects the morphology of the impact ripples, which display sharp slightly segregated crests, where
the coarser grains accumulate.

4 Saltation threshold

Although the fact that sand transport occurs on Mars is now well established, the value of the
threshold wind velocity ut as a function of grain and fluid characteristics has remained contro-
versial. Here, we use a long-distance microscope to measure the number of moving grains in a
control volume located close to the bed as a function of time (Methods, SI Appendix). These
measurements are performed on a levelled granular surface, without ripples, outside the lateral
boundary layers. With increasing wind speed, one observes a transition from a regime of individual
grains transported intermittently due to turbulent fluctuations to a regime with bursts composed
of a number of moving particles that is rapidly increasing with the shear velocity (Fig. 3a, SI
Appendix, Supp. Fig. 8). This behaviour is typical of an imperfect bifurcation in the presence
of noise, for which the threshold can be defined by extrapolating to zero the average number of
grains per burst. Below this threshold, the overall sediment flux decreases rapidly and is negligible.
Therefore, its feedback on the wind velocity profile can be neglected. Calibrations of the shear
velocity on a rigid bed can then be used safely (SI Appendix). This analysis provides accurate and
reproducible values of ut. The quantification of the transition between transport regimes allows
us to measure a threshold with error bars significantly smaller than those reported in previous
experiments [26, 27] (see SI Appendix, Supp. Fig. 21 for a comparison).

The corresponding behaviour of the threshold wind shear stress ρfu
2
t with respect to P is shown

in Fig. 3d. At relatively high pressures (P & 60 hPa), results follow the prediction of a ‘dynamic’
threshold model adjusted in the ambient conditions [23, 35, 42, 48, 11]. It accounts both for the
transition from Stokes to turbulent drag as determined by the grain Reynolds number, and for the
transition from a rough to a smooth (viscous) boundary layer (Methods, SI Appendix). At low
pressures, however, the measured threshold gradually deviates from this expected theoretical law,
providing experimental evidence of a new regime, which cannot be explained by these hydrody-
namic transitions. Thanks to the unprecedented accuracy (7%, see SI Appendix for calibrations)
the drop by a factor of ' 2 in threshold stress in this regime is unambiguously resolved in our
experiment. This change of regime can also clearly be observed on raw data (SI Appendix, Supp.
Fig. 16), which confirms that it does not result from a calibration artefact. This behaviour does
not coincide with the Knudsen regime: the molecular mean free path remains, in the investigated
pressure range, much smaller than the grain size and than the viscous sub-layer [49]. We have
also excluded other possible spurious effects like electrostatics or finite size effects, which could
putatively lower the transport threshold.

In order to isolate the effect of the density ratio, the threshold must be represented in the
dimensionless plane relating the Shields number to the Galileo number (Fig. 4). Compiled mea-
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free wind layer

Bagnold’s focal point

collisional layer

Figure 2: Three-layer picture of aeolian sediment transport. The main, central layer is the feedback
layer, where the saltating grains slow down the wind, and their feedback ensures a unit replacement
capacity during rebounds [22]. Above Bagnold’s focal point, defined as the top of that central
layer, this feedback is negligible and the wind is unperturbed (‘free wind’ layer). At the interface
with the static bed, momentum is transferred by collisions between the grains [39] (‘collisional’
layer). Note that, in this schematic, the vertical axis is not to scale: the altitude of Bagnold’s
focal point is on the order of 50d, or a centimeter [28, 40, 41].
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Figure 3: Sediment transport threshold. (a) Averaged number of grains passing through the
control window during a 30 s time interval vs wind speed. The threshold ut is the cross-over
between a regime of intermittent individual grains (arrows in (b)) and a fluctuating but steady
transport (c). The precision on the number of grains is of the size of symbols; dispersion of data
indicates the repeatability. (d) Threshold shear stress ρfu

2
t vs pressure P (filled circles). Square:

experiment in CO2, in Martian conditions. All these data are for quartz grains of size d = 125 µm.
Solid line: prediction of the model (Methods, SI Appendix) adjusted on subaqueous and aeolian
data, for different d at ambient pressure. Green background: zone corresponding to the new
low-pressure regime (large density ratio ρp/ρf ). The 7 % error bars reflect both measurement
statistical errors on the threshold and uncertainties on the relation between shear velocity and
rotation speed.
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surements of the threshold for subaqueous bedload [33, 50] robustly follow the theoretical static
curve (Methods). Lowering G from large values, one may observe several well known transitions:
the decrease of the threshold around G ≈ 103 is associated with the change from turbulent to Stokes
drag on the grains; its increase below G ≈ 102 is due to the transition from rough to smooth bed
conditions. Cohesion raises the threshold at very small grain sizes (Supp. Fig. 18). Note that in
our experiments, with grains of fixed diameter d = 125µm, cohesion can be neglected. As it stays
below the static threshold, aeolian data [36, 51] are fitted by the model dynamic threshold. The
offset between theoretical static and dynamic thresholds shows the importance of grain inertia
to sustain saltation at wind speeds lower than the static threshold. In this closed-loop tunnel,
we have not observed any significant transport hysteresis. The bed heterogeneities and the wind
turbulent fluctuations are sufficient to eventually activate transport below the static model curve.
This lack of hysteresis incidentally allows us to define unambiguously and accurately a unique
transport threshold.

When varying the Galileo number by varying ρp/ρf for a fixed grain size (here d = 125µm),
the dynamic model predicts a threshold that naturally coincides with the ‘universal’ static curve
at low ρp/ρf (dense fluid) and progressively deviates from it to cross the ambient-aeolian curve
at the point corresponding to that grain size. It further follows the trend of our low-pressure
points, but only down to a value of G ≈ 3, below which a new regime takes place, where measured
thresholds are significantly below the expected values. Previous experimental data obtained in
the NASA Martian wind tunnel using walnut shells [26] of size 212 µm in CO2 are reasonably
consistent with our measurements for the larger values of ρp/ρf , but crucially do not enter this
low fluid density region. Lower-than-expected values of the threshold have also been found by
[27] (SI Appendix, Supp. Fig. 21), but their more qualitative detection as well as their data
scatter over a factor of ' 3 make any quantitative comparison difficult. Our CO2 data point in
Martian conditions also collapses on the same curve in this dimensionless graph, in contrast with
its dimensional representation as a function of pressure (Fig. 3).

5 Discussion

The central result of this paper, beyond ripples properties being invariant with pressure, is the
continuous transport threshold curve obtained with an unprecedented accuracy as a function of
the Galileo number. It shows a regime at small G whose understanding is a challenge that must
be tackled by further experiments, varying grain size and gas properties. From this perspective, it
is instructive to exploite threshold values reported in [26] for the four smallest grain sizes at G ' 1
(SI Appendix, Supp. Fig. 19). They suggest a threshold Shields number scaling as Θ ∝ D−1 in
the low Galileo regime (SI Appendix, Supp. Fig. 20). This condition is equivalent to a surface
velocity gradient proportional to the typical granular collision frequency

√
g/d.

Novel ideas are required to explain the physical processes at work in this saltation regime
reached at Galileo numbers orders of magnitude below well-known hydrodynamic transitions. It
is also characterised by a reduced noise in grain trajectories and bursts (SI Appendix, Supp. Fig.
7). We hypothesize that the physics in this regime is associated with mechanisms at the granular
bed level. Two surface processes are currently not accounted for in the dynamic model to which
data are compared. First, the surface is irregular at the grain scale and thus must affect grain
rebound and trapping. Second, it ignores any collective effects, and in particular the collisional
layer mentioned above, whose crucial role was previously emphasized for the ripple dynamics. One
could imagine that a collisional layer, presenting a wide distribution of grain hop lengths [39], is
already needed above the threshold to sustain transport. Such a gaseous-like layer could play the
role of granular temperature to activate grain motion.

Finally, the existence of this regime is of practical importance as it arises for large values of
ρp/ρf that are commonly encountered on planetary bodies with relatively thin atmospheres. Of
particular importance, we predict this regime to dictate saltation thresholds on Mars. Because
saltating grains may impact landed assets and lift dust, there is a critical need to further inves-
tigate the mechanics behind sand transport under Martian conditions to mitigate risks during
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Figure 4: Transport threshold in the dimensionless plane Shields Θ vs Galileo G numbers. Gather-
ing of subaqueous (violet diamonds) and aeolian (green square) data of the literature [36, 33, 51, 50]
for sand grains with variable d in ambient conditions, and our aeolian data (circles) with variable
P and fixed grain size d = 125 µm. The symbols’ colour codes for the density ratio ρp/ρf : from 1
(violet) to 106 (red), in log scale – green is in the range 103–104. Previously published data from
the NASA wind tunnel using walnut shells [26] of size 212 µm in CO2 are displayed (triangles)
too, see also Supp. Fig. 19 for data corresponding to other grain diameters used in that paper.
Solid lines: threshold predictions for subaqueous (purple), aeolian at ambient (green) and variable
(orange) pressure conditions. Green background: new regime range.
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future robotic and human missions. Even larger density ratios occur on comets, where transient
thermal winds have been shown to be responsible for the emergence of giant ripples [52]. In denser
atmospheric conditions, such as those on Titan and Venus [53, 54, 55], for which the fluid density
is intermediate between water and air (typically ρp/ρf ≈ 102), our measurements predict that this
regime to be irrelevant, so that the extrapolation of the model calibrated in ambient conditions
remains valid and can be used for quantitative predictions of sediment transport threshold and
characteristics of emergent bedforms.

This work has been funded by Europlanet grant No 11376. Europlanet 2020 Research Infras-
tructure has received funding from the European Union’s Horizon 2020 research and innovation
program under grant agreement No 654208. We are grateful to R.C. Ewing for providing walnut
shell samples for a new measurement of their bulk density.
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MATERIALS AND METHODS

We describe here the experimental set-up, the measurements, as well as the theoretical frame-
work for the computation of the transport threshold. More details, references, technical points as
well as additional figures and calibration curves can be found in the Supplementary Information
(SI) document.

Wind tunnel

The wind tunnel set-up consists of a turbine section with a bi-propeller system. The rotation of
the propeller fans at a controlled angular frequency generated two return flows above and below
the working section (SI Appendix, Supp. Fig. 5). The sand bed was prepared in the 3.25 m long
tunnel, which had a rectangular cross section about 0.36 m wide and 0.85 m high (SI Appendix,
Supp. Fig. 6). The container could be hermetically closed and the interior pressure adjusted to
the desired value. Pressure calibration of the two low-pressure (Pirani gauge Pfeiffer TPR280) and
high-pressure (capacitance gauge Pfeiffer APR250) sensors were made by successive injections of
a given amount of gas in a chamber of known volume (SI Appendix, Supp. Fig. 9). The absolute
pressure is measured within 2% except below 500 Pa, where uncertainties level off at 10 Pa.

Saltation threshold

A digital microscope was installed at 30 cm from the end of the working section, looking across
the bed and focused around 12 cm into the wind tunnel. Here, a horizontal laser sheet crossed the
microscope field of view (at around 45◦) and close to the sand bed surface (around 1 cm). The
laser sheet was thick enough (1 mm) for saltating sand grains to be tracked (SI Appendix, Supp.
Fig. 8). Image analysis then allowed us to quantify the number of particles passing through the
field of view. The threshold was defined as the transition between saltation of groups of particles
(bursts) to intermittent saltation of single particles (at high pressure) or no transport (at low
pressure), see Fig. 3 and SI Appendix, Supp. Fig. 7. It is measured on a flat bed, in a situation
where the negative feedback of transport on flow velocity is negligible. The threshold fan angular
frequency Ωt is measured within 2.5%. Due to uncertainty on the calibration, the threshold shear
velocity, ut is measured within 3.5%.

Bed erosion rate and ripples

Four overhead cameras were mounted equidistant between the inlet and outlet of the working
section while four sheet lasers were placed outside the tunnel impinging the sand bed close to
the center of the tunnel and forming a straight line on an initially flat bed (SI Appendix, Supp.
Fig. 6). The inclination of each laser sheet was adjusted to be around 15◦ from the horizontal.
Changes in bed elevation resulted in a sideways displacement of the laser line, which was recorded
by the cameras. A four-step vertical calibration target was placed on the bed below each camera
and imaged in order to verify the conversion between transverse displacement and bed elevation.
This system allowed continuous monitoring of changes in bed elevation with a resolution on the
order of 0.08 mm (one pixel). From bed elevation, the erosion rate profile as well as the emerging
ripple characteristics (wavelength, propagation velocity) were measured as functions of time and
pressure (Fig. 1). The average erosion rate has been measured at different locations, showing a
statistical dispersion around 0.005 m/s.

10



Wind shear velocity

Wind velocity profiles (SI Appendix, Supp. Fig. 12) were measured in the tunnel by means of
arrays of Pitot tubes. Calibration was made with a 2-D Dantec Flow-Lite laser-Doppler anemome-
ter. To avoid possible clogging of the Pitot tubes by saltation grains, these measurements were
systematically performed over a fixed bed made of glued sand grains. We checked over the available
runs that they are consistent with corresponding measurements over mobile beds (SI Appendix,
Supp. Figs. 10, 11, 13).

These profiles were analysed using a hydrodynamic model where the turbulent boundary layer
flow is described by means of a first order Prandtl type closure. To account for both smooth and
rough bed regimes, we adopted a van Driest-like mixing length, where the various constants were
calibrated independently. In the unbounded case the fluid shear stress τf is the constant ρfu

2
∗,

defining the shear velocity u∗. A phenomenological stress profile of the form

τf = ρfu
2
∗exp

[
−
(z
δ

)2
]
, (6)

where z is the vertical distance to the bed and δ the thickness of the turbulent boundary layer,
provides a robust fit to the data. δ is found on the order of a few cm in the measurement zone,
gently increasing when decreasing the pressure from the ambient to a few hPa. The prediction of
the hydrodynamic model is fitted to the data by adjusting u∗ and δ, which allows us to calibrate
the relation between the ratio u∗/Ω and the Reynolds number ρfu∗d/η (SI Appendix, Supp. Fig.
14). The systematic error on u∗ can be decomposed into two parts: (i) the miscalibration as a
whole (all values, regardless the pressure, would be over or under estimated) is smaller than 1%;
(ii) the slope of the relation may also produce systematic variations with pressure, at worst on the
order of 2.5%.

Transport threshold model

The theoretical framework used here for the computation of the transport static and dynamic
thresholds gather elements from previously published studies [23, 35, 42, 48].

The static shear velocity threshold uts is computed from the force balance on a grain at rest at
the surface of the bed that opposes the drag force of the flow and the effective friction of the bed.
We take the drag force on a grain as a function of the difference between the grain velocity ~v and
the fluid velocity ~u at the grain’s location. The drag coefficient depends on the particle’s Reynolds
number based on that velocity difference Ru = |~u − ~v|dρf/η and accounts for both inertial and
viscous (Stokes) regimes. Cohesion between grains due to Van der Waals adhesive contact forces
are taken into account. The various parameters involved in this static balance are adjusted to
reproduce the threshold curve for subaqueous bedload (Fig. 4).

For the dynamic threshold, the equation for the grain motion is integrated. Upon colliding
with the bed, the grain is assumed to rebound with a given ejection angle and a velocity ratio. The
criterion for steady transport at the dynamic shear velocity threshold ut is that the kinetic energy
of the take off particle is just enough to escape from the potential traps between its neighbours.
Taking into account gravity and the force exerted by the wind, the take-off velocity takes the form

v↑ = a

√
gd

(
1− u2

t

u2
ts

)
. (7)

where a ' 11 is a dimensionless number obtained by fitting the aeolian data at ambient pressure.
As expected, v↑ vanishes at the static threshold ut = uts . The various parameters involved in
this dynamic analysis are fitted to reproduce the threshold curve in the case of aeolian saltation
at ambient pressure (Fig. 4).
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SUPPLEMENTARY INFORMATION

As an extension of the Materials and Methods, this file gathers all technical details on the
experimental set-up and calibrations. It also summarises the theoretical framework from the
literature for the sediment transport and ripple models.

Wind tunnel and instruments

Environmental wind tunnel

As shown in Supp. Fig. 5, the tunnel set-up presents a working section which is 6 m long, 2 m
wide and 1 m high and a bi-propeller turbine section. The rotation of the propeller fans at a
controlled frequency Ω (given in Fig. 16 in rotations per minute (rpm)) generates a flow which is
directed to the two return flow sections above and below the working section. At the upstream
end of the working section, the flow from the two return sections is mixed in the entry section
and directed into a contraction leading into the insert tunnel (Supp. Fig. 6). The granular bed
is prepared in the 3.25 m long insert tunnel, inside the working section. The insert tunnel has a
rectangular cross section around 0.36 m wide and 0.85 m high. The container can be hermetically
closed and the interior pressure P adjusted to the desired value.

Detecting saltation threshold

A digital microscope is installed just upwind of the end of the working section looking across
the bed and focused around 12 cm into wind tunnel. Here, a horizontal laser sheet crossed the
microscope field of view (at around 45◦) and close to the granular bed surface (around 1 cm). The
laser sheet was thick enough (& 1 mm) for saltating grains to be tracked.

At each working pressure, the fan frequency Ω was raised by steps from below threshold (no
transport) to a value where visual inspection of the microscope images showed abundant saltation
(Supp. Fig. 7c-e). Ω was then decreased in small steps until a few, if any, saltating particles were
observed within a period of 15-30 s. At each step in Ω, the saltation intensity has been quantified
from the video recording by estimating the number of particles passing through the microscope
window (Fig. 2a Supp. Fig. 7). The threshold was defined as the transition between saltation of
groups of particles (bursts) to intermittent saltation of single particles (at high pressure) or no
transport (at low pressure). It must be emphasized that former studies have used other definitions
of the transport threshold, leading to much larger dispersion of the data. Not only have the
threshold measurements presented here been made quantitative, precise and repeatable, but also
correspond to an objective change of regime detected by a visual criterion (Fig. 2a, Supp. Fig. 8),
thanks to the microscope imaging. Note also that, in a recirculating wind tunnel, there are always
residual grains injected upstream of the working section. Threshold was measured for decreasing as
well as increasing Ω corresponding to two estimates of the wind shear velocity ut. For the highest
pressures no significant difference was seen between those velocities: turbulent noise is sufficient
to induce intermittent motion below ut and to initiate transport, and the saturation time is rather
short. For pressures below around 200 hPa, however, the relaxation time becomes larger than the
observation timescale (around a minute), leading to slightly different estimates of ut (less than
1%) when the fan rotation frequency is increased or decreased. Moreover, the turbulent noise in
the transport region is not sufficient any longer to sustain intermittent transport of individual
grains below ut observable over a minute timescale.

Error bars – To determine error bars, we have performed a blind test to measure several times
the threshold i.e. the cross-over from intermittent individual grains to burst regime at the same
pressure. Repetability of the threshold value for Ω is within 2.5%. Another 2.5% uncertainty
results from the transformation from Ω to u∗. This overall leads to an uncertainty on ut around
3.5% and twice that for the shear stress which scales as u2

t . Note that the threshold is measured
on a flat bed, without ripples. Moreover, negative feedback of sediment transport is negligible
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at the threshold (lower than 2% on the stress), as the sediment flux itself is reduced to very few
intermittent grains.

Measuring bed erosion rate

Four overhead web-cameras were mounted equidistantly between the inlet and outlet of the working
section while four sheet lasers were placed outside the tunnel impinging the granular bed close to
the center of the tunnel and forming a straight line on an initially flat bed (Supp. Fig. 6). The
inclination of each laser sheet was adjusted to be around 15◦ from the horizontal. The positions
of the laser lines were adjusted so that there was no overlap between any two lines. Changes in
bed elevation resulted in a sideward displacement of the laser line, which then was recorded by
the web-cameras. A four-step vertical calibration target was placed on the bed below each camera
and imaged in order to verify the conversion between transverse displacement and bed elevation.

Error bars – This system allowed continuous monitoring of the bed elevation profile with a
resolution on the order of 0.08 mm (one pixel). The average erosion rate has been measured at
different locations, showing a statistical dispersion around 0.005 m/s that we have used as error
bars in Fig. 1b.

Measuring grain bulk density

Having precise values for the grain bulk mass density ρp is of prime importance to accurately
compute the relevant density ratio and the other dimensionless numbers. Here, it was measured
with a pycnometer of precisely known volume (V0 = 10.164 cm3). We first fill it with a liquid
(both water and ethanol have been used) and measure its mass m0

f (in all measurements, the mass
of the empty pycnometer is tared out). In a second step, we put some dry grains in the empty
bottle, and measure the corresponding mass of grains mp. We then fill the pycnometer with the
liquid and measure the corresponding total mass of the grain / fluid mixture mt. Care has been
taken to avoid any air bubble in the mixture, and a vacuum pump has been used.

From volume and mass conservation equations, we obtain:

ρp
ρf

=
mp

mp +m0
f −mt

. (8)

Knowing the fluid mass density by ρf = m0
f/V0, we can then deduce ρp. Values for the quartz

grains we have used in the wind tunnel, as well as for the walnut shells used in the NASA Martian
wind tunnel are displayed in Tab. 1.

Error bars – ρp is measured within 1 %, which includes both statistical and absolute error
bars.

Pressure and air flow calibration

Absolute pressure

For better accuracy, two types of gauges were employed for determining the chamber pressure: a
Pirani type gauge (Pfeiffer TPR280) and a capacitance type gauge (Pfeiffer APR250). The Pirani
sensor is typically accurate for low pressures (below 10 hPa) though becomes unreliable for gas
types other than air. The capacitance sensor is insensitive to gas composition and is expected to
be highly accurate above 100 hPa, though inaccurate at the lowest pressures.

The absolute calibration of these pressure sensors was performed as follows. A glass flask of
precisely known volume 196.2±0.1 cm3 was filled with 1000 hPa of air (which could be determined
to an accuracy < 0.2% using a capacitance sensor and also calibrated with respect to absolute
room pressure). This flask was then used in order to inject a known mass of air (0.23 g) into a
larger vacuum chamber of volume 20750± 10 cm3). By repeated injections of this mass of air the
pressure within the vacuum chamber could be sequentially increased, in increments of 9.33 hPa.
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Simultaneously measuring the pressure of this vacuum chamber using both capacitance and Pirani
sensors allowed their calibration with respect to absolute pressure up to around 56 hPa. These
data are plotted in Supp. Fig. 9.

As can be seen, the Pirani sensor is in good agreement with absolute pressure below 10 hPa
(to better than 2%). The capacitance sensor has a constant offset of 2.2 hPa with an uncertainty
of < 2%. Extrapolating this offset for the capacitance sensor is in good agreement with the offset
observed at around 1000 hPa supporting the assumption of good linearity for this sensor over the
entire range (1–1000 hPa) [82]. The measured pressure values agreed well with the manufacturer’s
claims of 2% accuracy and 0.5% linearity for the capacitance sensor.

The room temperature was monitored using a pt100 thermistor and was seen to be around
21 ± 1◦C. Prior to wind flow this was taken as the air temperature within the chamber. During
prolonged high wind flow, a small increase in chamber pressure (of a few %) was observed, which
is consistent with the expected heating of the air by friction and does not affect the gas density.

Error bars – Combining the measurements of both calibrated sensors, general uncertainties in
absolute pressure and density ρf are less than 2 % although they level off at 10 Pa below 500 Pa.
Horizontal error bars are therefore much smaller than symbol size in figures 1a, 1b, 3b and 4.

Calibration of Pitot tubes

Measurement of differential pressure from up to five pitot-static tubes was made using miniature
amplified pressure transducers (First Sensor A/G HCLA 02X5) which are insensitive to gas com-
position. For this transducer it’s sensitivity (G) is linear over the 2.5 hPa full range while it’s
offset (O) for zero pressure varies between transducers. At low ambient pressure P , the differential
pressure of a pitot tube is very small and we have no information on the stability of the electronics
controlling recording and A/D conversion. A calibration experiment was made in order to estimate
G and O at varying pressures (3.4, 14, 37, 110, 308 and 972 hPa). In the experiment, the dynamic
and static ports of the pressure transducers were connected, respectively, to one of two pressure
chambers connected via a valve. Each chamber was supplied with a Pirani and a capacitance
sensor and one chamber was connected to a vacuum pump. When open, the valve between the
chambers secured the same pressure in both of them. When closed, a valve (to the ambient) in
the second chamber allowed small amounts of air to enter, creating a pressure difference between
the chambers, in small steps up to the 2.5 hPa full range. The calibration verified that output was
truly linear and G independent of pressure while O for each transducer was sensitive to pressure
as well as temperature. The average G for each of the five calibrated transducers is given in Supp.
Tab. 2. The calibration showed that before each experiment it is important to record the offset
value for each sensor during 2-3 minutes with stable temperature in order to estimate O at the
actual pressure.

When the average pressure difference is based on readings at 50 Hz over a 3-minute interval,
the error of the difference is on the order of 4% and the corresponding error on a velocity of
about 20 m/s at Martian pressure is less than 2%. An example for the output recorded at 11 hPa
is shown in Supp. Fig. 10. In an attempt to investigate further the quality of velocity data
based on pitot tube data, we have placed one tube at the end of the working section at a 83 mm
elevation above the bed and recorded the pressure difference as described above. Outside one of
the windows in the environmental wind tunnel a 2-D Dantec Flow-Lite laser-Doppler anemometer
(LDA) instrument was set up with beams crossing 10 mm upwind of the tip of the pitot tube.
Seeding dust particles was made through a valve placed at the center of the upwind end of the
environmental wind tunnel. Measurements were performed at combinations of P (above 3.4 hPa)
and Ω for which the saltation threshold was estimated. Two sets of data are available, displayed
in Supp. Fig. 11.

LDA measurements at the lowest pressures (3.4 and 6.6 hPa) were based on a few dust particles
only, corresponding to very short intervals immediately after injection. The deduced speeds may
then not be representative of the average fluid velocity over the entire recording period. At all
higher pressures, we recorded particle speed during several and longer intervals distributed over
the entire recording period. The minimum number of counts was 350, and in most cases, the
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number was much higher and often higher than 1000 particles. As can be seen from the Supp.
Fig. 11, air velocity can be measured satisfactorily using the pitot-static tube/HCLA set-up from
ambient to below Martian pressures.

Measuring wind velocity profiles

During the threshold experiment three pitot-static tubes (outer diameter 4 mm) were placed at
the downwind end of the working section with their tips at elevations of 10, 20 and 40 mm above
the granular bed. At ambient pressure, when a pitot-static tube is placed in the saltation layer,
a stagnation bubble forms in front of the orifice of the dynamic tube, which prevents grains from
entering the tube. However, at decreasing fluid pressure, the stagnation bubble weakens and
saltating grains eventually accumulate in the tube and gradually clog it, even if those moving
grains are not numerous when working close to the transport threshold. Therefore, for those low
pressures, only a few reliable wind velocities were recorded at one or more elevations following the
start of an experimental run.

We have consequently made a series of post-experiment velocity calibrations and tests. Here
a ‘fixed-bed’ was prepared by gluing a sample of the grains used in the experiment to a metal
bed. We also added pitot tubes at 5 and 15 mm elevations thus enabling the recording of the
velocity profile based on five elevations above the bed. Once the pitot tube rake was installed in
the wind tunnel, a precision elevation gauge (±0.1 mm) was used to measure the exact elevation
above the bed of each pitot tube. For each values of P and Ω for which the saltation threshold
for the granular bed was estimated, we sampled a velocity at each elevation of a pitot tube. After
recording was made for pressures the pitot-rake was lifted by 2.5 mm and a second set of velocities
recorded at the new elevations. At every pressure we can thus construct a velocity profile based
on measurements at ten different elevations (Supp. Fig. 12). These data must be fitted by a
hydrodynamic model to deduce the corresponding wind shear velocity u∗, as described below.

Experimental runs for the measurement of the threshold were performed with a bed initially
made uniformly flat and as close to threshold only marginal transport occurs, no ripples developed.
It is then justified to assume that, being at the onset of saltation, the shear stress measured above
a bed of loose particles is similar to that above a fixed surface composed of the same (glued) grains.
Moreover, we have gone through the differential pressure data measured above the granular bed
and picked the runs that we think contains data at two or three heights that are not (or only to
a small degree) influenced from clogging of the dynamic tube. For the same pressure, we have
calculated the ratio between the speed measured at an almost similar height (deviation less than
1 mm) above the granular bed and the fixed bed (Supp. Fig. 13). For most pressures the ratio
is close to unity, while at the lowest pressure of 11 hPa one of the pitot tubes is obviously partly
clogged. We are then confident that the threshold shear stress values derived from the velocity
profiles measured on the fixed bed are representative of those on the granular bed. We emphasize
that sediment transport at the threshold – as defined here – is limited to intermittently moving
grains, whose negative feedback on the wind is negligible (2% on the shear stress, at most).

Measuring the wind shear velocity

In order to convert the frequency Ω into a wind shear velocity u∗, we need to fit the velocity profile
by a turbulent model, which we adapt here from the literature. We consider a fluid flow along the
x direction over a flat bed. Here, z is the crosswise axis normal to the bed, and y is spanwise.
Following the standard separation between average quantities and fluctuating ones (denoted by a
prime), the equations governing the mean velocity field ui and the pressure p can be written as

∂iui = 0 and ρf∂tui + uj∂jui = ∂jτij − ∂ip, (9)

where τij contains the Reynolds stress tensor −ρu′iu′j . We use a first-order turbulence closure
to relate the stress to the velocity gradient. It involves a turbulent viscosity resulting from the
product of a mixing length and a mixing frequency, representing the typical eddy length and time
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scales. The mixing length ` depends explicitly on the distance to the bed. The mixing frequency
is given by the strain rate modulus, which, in the homogeneous situation along the x-axis assumed
here, reduces to ∂zux. Adding up viscous and turbulent contributions, the shear stress writes

τxz = η∂zux + ρf `
2|∂zux|∂zux, (10)

where η is the dynamic fluid viscosity. In order to account for both smooth and rough regimes,
we adopt here a van Driest-like expression for the mixing length [66]:

` = κ [z + rd]

[
1− exp

(
− (τxzρf )1/2 [z + sd]

ηRt

)]
. (11)

In this expression, κ = 0.4 is the von Kármán constant, d is the sand equivalent bed roughness size,
here set to the diameter of the grains used in the experiments, and Rt is the van Driest transitional
Reynolds number, set to R0

t ' 25 in the homogeneous case of a flat bed [91]. The exponential
term suppresses turbulent mixing within the viscous sub-layer, close enough to the bed [100]. rd
corresponds to the standard Prandtl hydrodynamical roughness extracted by extrapolating the
logarithmic law of the wall at vanishing velocity. sd controls the reduction of the viscous layer
thickness upon increasing the bed roughness. The dimensionless numbers r = 1/30 and s = 1/3 are
calibrated with measurements of velocity profiles over varied rough walls [95, 73]. We have checked
that uncertainties on these values only affect the results in a negligible way, as our experiments
take place in the smooth aerodynamical regime.

In order to account for the tunnel geometry, we assume a shear stress profile of the form:

τxz = ρu2
∗ exp

[
−
(z
δ

)2
]
, (12)

where u∗ is the shear velocity and δ is the thickness of the turbulent boundary layer. ρfu
2
∗ is the

shear stress that the air flow applies to the granular bed. We compute corresponding the velocity
profile ux(z) with a numerical integration of Eqs. (10-12) coupled together.

Adjusting both u∗ and δ, we can reproduce the velocity data described in the previous section,
see Supp. Fig. 12. The wind profiles were measured close to the transport threshold. In Supp.
Fig. 14a we display the corresponding friction speed u∗ rescaled by Ω as a function of the pressure
P . The ratio u∗/Ω varies slowly with P . The thickness δ also gently varies with P , increasing from
2 to 6 cm when decreasing the pressure from the ambient to a few hPa. These values corresponds to
the altitude z at which the velocity profiles quit the boundary layer and saturate (Supp. Fig. 12).

The true control parameter is in fact not the pressure, but the Reynolds number based on
the grain diameter d, which depends on u∗ and on the fluid density ρf . In practice, in order to
interpolate between points, and to include data points associated with experimental runs in CO2,
we have used an empirical fifth order polynomial fit of this calibration curve u∗/Ω as a function
of ρfu∗d/η (Supp. Fig. 14b).

The best fit of the velocity profiles by the model equations leads to residuals that are consistent
with the velocity measurement accuracy. The model depends on two fitted parameters: the
shear velocity u∗ and the thickness of the turbulent boundary layer δ. We emphasize that the
experiments are performed with 125µm grains so that the grain based Reynolds number is always
smaller than 2 – value at ambiant pressure. The calibration runs on a fixed bed are therefore all in
the smooth aerodynamic regime, where the viscous sublayer is significantly larger than the grain
size. Including both the statistical uncertainties, defined from the residuals and the instrumental
resolution, the uncertainty on the measurement of u∗ from a velocity profile is around 7% over
the whole pressure range. The uncertainty on δ decreases logarithmically with the pressure, from
7% at P = 102 Pa to 0.4% at at P = 105 Pa. Using the calibrated relation between Ω and u∗, a
factor 3 can be gained on the accuracy on u∗.

Error bars – The final error bars for the value of the determination of u∗ is obtained from
the law relating the ratio u∗/Ω to the Reynolds number ρfu∗d/η. The systematic error can be
decomposed into two parts: the miscalibration as a whole (all values, regardless the pressure,
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would be over or under estimated) is smaller than 1%. The systematic error associated with the
slope of the relation may also produce systematic variations with pressure, at worst on the order
of 2.5%.

Sediment transport thresholds from the experimental and
theoretical perspectives

We discuss in this section possible ambiguities in the naming of sediment transport thresholds.
On the one hand, they are defined in wind tunnel and field experiments, based on pragmatic
measurement procedures. On the other hand, they are defined in the theoretical and numerical
literature based on conceptual ideas and simplified descriptions. While both are equally legitimate,
we argue that these two definitions do not perfectly coincide. Our purpose is of course not to
introduce an epistemic hierarchy between theory, wind tunnel experiments and field, but rather
to warn the reader on the sense in which concepts are used here.

From pioneering works of Bagnold [58], two distinct thresholds for sediment transport have
been standardly introduced in the literature: the static or fluid threshold and the dynamic or
impact threshold. These two thresholds have clear definitions in theoretical models. The static
threshold characterizes the minimal flow shear velocity needed to entrain the surface grains from
a static bed. It results from a balance of the forces acting on such a grain: weight, friction with
the bed, drag, and possibly cohesion (see e.g. [96, 65]). By contrast, it is argued that sediment
transport can be sustained below that value, due to impacts and rebounds of the grains with the
bed, down to the dynamic threshold, which must then be computed taking into account the grain
trajectories (see e.g. [56, 65, 83, 69, 90, 89]). Importantly, in their theoretical acceptations, the
static threshold shear stress is larger than the dynamic threshold shear stress. Note that most
models ignore the effect of intrinsic wind fluctuations and bed heterogeneities.

Over several decades, sediment transport thresholds were measured experimentally in aeolian
[64, 80, 77, 78, 81, 92, 93, 63, 85, 97], subaqueous [72, 101, 60, 84, 87, 75] or intermediate [61, 62]
conditions. In those experiments, the dynamic or cessation threshold is defined in most papers
as the extrapolation to vanishing flux of the relation between the average sediment flux and the
imposed constant, shear velocity u∗. This threshold is accurately defined, as it results from the
fitting of robust quantities (sediment flux or related proxies). By contrast, more variation is found
in the definition of the static threshold in experimental papers. The idea is to determine the
moment when first isolated grains are set in motion upon increasing the wind speed: these grains
can be detected as just detached (rocking/rolling), or entrained (leaving the bed and bouncing), or
associated with sporadic saltation. As a consequence of this arbitrariness in the criterion for the
incipient grain motion, those measurements generally present huge data dispersion. In the field,
the shear stress presents besides fluctuations at the relevant time-scale for sediment transport,
which makes the link between wind tunnel experiments and field measurement complex – and a
matter of ongoing debate. In this context, it has been proposed that aeolian saltation in the field,
for a given mean wind velocity, is both sensitive to fluid and impact thresholds (see e.g. [85]).

Here, we propose the following criterion to identify the static threshold (in the theoretical
sense) in experiments. As, by definition, incipient motion does not depend on the grain inertia,
the curve relating the Shields number Θ to the Galileo number G is independent of the density
ratio ρp/ρf , and is thus identical in aeolian and in subaqueous conditions. All measurements
should therefore collapse on that curve. However, published data in the literature reporting static
thresholds (in the experimental sense) for sediment transport in air (see e.g. [64, 78, 92, 93, 97])
are typically below the static threshold measured under water (Fig. 4). The conclusion is therefore
that those values of saltation thresholds reported in the experimental and field literature are not
static thresholds, as defined by theory. Note that the wind shear velocity at which the first granular
motion is observed would be even lower than the transport threshold reported here and would
therefore be even less comparable to the theoretical static threshold.

In this work, we have considerably reduced error-bars on the transport threshold by using a
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specific experimental procedure. We determined quantitatively the cross-over between a regime of
residual sediment transport, composed by intermittent, individual moving grains, and a permanent
though bursty transport regime. Uncertainties are small as this quantity is robust with respect
to turbulent fluctuations. Increasing the wind speed from a static bed, or decreasing it from
sustained transport, the same threshold shear velocity is measured, within a few percent. This
may be interpreted as an effect of turbulent fluctuations, which play the role of thermal activation
in bifurcation theory: we do not observe any significant hysteresis, reason for which we name it
‘the’ threshold, here. As a consequence, we do not name it ‘static’ nor ‘dynamic’ but reserve
these words to their theoretical meanings. Note that we use here a closed wind tunnel experiment,
so that transported grains may be reinjected from time to time at the entrance of the working
section.

Static threshold model

In this section, we summarise the modelling of the threshold shear velocity for the incipient
motion of a grain at the surface of the bed (static threshold in the theoretical sense). We do not
develop here a new theoretical framework but gather elements from previously published studies,
in particular from Refs. [65, 69, 66]. We also provide values for the various empirical factors or
parameters, obtained by calibration and best fit of experimental data independent of the present
study.

Drag force

We take the drag force ~fd of the flow on a grain as a function of the difference between the grain
velocity ~v and the fluid velocity ~u at the grain’s location:

~fd =
π

8
ρfd

2Cd|~u− ~v|(~u− ~v) (13)

where the drag coefficient Cd depends on the particle’s Reynolds number based on that velocity
difference Ru = ρf |~u− ~v|d/η and is empirically written in the form of two terms to account both
inertial and viscous (Stokes) contributions:

Cd =
(
C1/2
∞ +A/R1/2

u

)2

. (14)

The best fit of the drag curve measured for natural sand grains gives C∞ ' 1 and A ' 5 [74].

Static force balance

We hypothesise that the static threshold uts results from the force balance on a grain at rest at
the bed surface. Along the flow direction, the drag force from the fluid flow is opposed to the
effective bed friction. Following the above expression of the drag force, this balance writes:

α
π

8
ρfd

2Cdu
2 =

π

8
µ(ρp − ρf )gd3, (15)

where we have introduced the friction coefficient µ = 0.6 and a factor α = 1/2 to account for the
fact that the only the upper half of the grain is submitted to the hydrodynamic stress. u is the
flow velocity at the grain’s location u = ux(βd).

To get the corresponding shear velocity u∗ = uts, the computation of the whole profile ux(z)
is needed. This is obtained by integration of the hydrodynamic horizontal momentum balance,
which reduces to τxz = ρfu

2
∗, associated with its expression with the velocity gradient (10) and

the mixing length (11). Defining ux(z) ≡ u∗U(z/d), one then needs to integrate the differential
equation

Υ2|U ′|U ′ +R−1U ′ = 1, or equivalently U ′ =
−1 +

√
1 + 4Υ2R2

2Υ2R
. (16)
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with the boundary condition U(0) = 0 corresponding to the no-slip condition of the wind at the
solid interface. In the above equation the mixing length is made dimensionless by

`/d ≡ Υ(ζ) = κ(ζ + r) (1− exp(−R(ζ + s)/R0
t )). (17)

With these notations, the force balance can be rewritten as:

C1/2
∞ RU(β) +A [RU(β)]

1/2
=

(
4µ

3α

)1/2

G, (18)

where we have introduced the Reynolds number

R =
ρfu∗d

η
(19)

and the Galileo number

G =
1

η

√
ρf (ρp − ρf )gd3. (20)

This allows us to deduce U(β) as a function of R, and to compute the static condition. The best
fit to the subaqueous threshold data gives β = 0.85 (Fig. 4).

Rather than the shear velocity or the Reynolds number, it is traditional in the context of
sediment transport to work with the Shields number

Θ =
ρfu

2
∗

(ρp − ρf )gd
=

(
R
G

)2

. (21)

The static condition thus relates Θ to G, independent of ρp/ρf . Any dependence on the density
ratio is the signature that the threshold is of dynamical origin (see next section).

Finally, following [65], to take into account cohesion between the grains, a correction is added
through a modified gravity acceleration:

g∗ = g

[
1 +

3

2

(
dm
d

)5/3
]
. (22)

Here, we have obtained the best data fit of the subaqueous threshold data with dm = 6 µm. This
length scale can be interpreted as the particle size below which Van der Waals adhesive contact
forces become dominant over the particle’s weight.

Dynamic threshold model

We summarise in this section a model of dynamic threshold shear velocity (in the theoretical
sense). As in the previous section, this summary gathers elements from previously published
works [56, 65, 69, 66], and provides values for the various empirical parameters. We assume that
the complexity of transport can be modelled by a single type of trajectories.

Trajectory integration

Starting from the Newton’s second law of motion, the dynamical equation for the grain velocity ~v
is:

1

6
πd3ρp

d~v

dt
=
π

8
Cdd

2ρf |~u− ~v|(~u− ~v) +
π

6
(ρp − ρf )~gd3 (23)

In a dimensionless form where velocities are rescaled by u∗, lengths by d and time by 1/(du∗), one
obtains:

d~va
dta

=
3

4
Cd
ρf
ρp
|~ua − ~va|(~ua − ~va)− ρf

ρp

(
G
R

)2

~ez, (24)
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with the rescaled drag coefficient (see Eq. 14)

Cd =

(
C1/2
∞ +A

1

(R|~ua − ~va|)1/2

)2

, (25)

where ua = u/u∗, va = v/u∗ and ta = tdu∗. The wind velocity profile u(z) is computed as in the
previous section (Eq. 16). In this simplified description, the typical grain trajectory is assumed to
present an initial angle θ0. We also hypothesise that the rebound law is controlled by a velocity
ratio e = v↑/v↓, which depends on the grain Stokes number according to [76]:

St = ρpv↓d/η =
ρp
ρf

v↓d

u∗
R. (26)

Dynamic steady state

We express the criterion for steady transport at the dynamic threshold shear velocity ut with the
condition that the kinetic energy of the typical grain trajectory is just enough to escape from the
potential traps between its neighbours. This condition can be interpreted as a unit replacement
capacity during rebounds. In the absence of wind, the escape velocity simply scales as

√
gd. Due

to the wind, the trapping must reduce and vanish at the static threshold, which we express as:

v↑ = a

√
gd

(
1− u2

t

u2
ts

)
. (27)

The depth of these traps scale with the grain size. The quadratic dependence in shear velocity
comes from the wind stress, which reduces the work of the grain’s weight. The take off velocity
v↑ vanishes at the static threshold ut = uts, as it should. Eq. 27 is an improvement with respect
to earlier versions of the model [56, 65, 69, 66]. The best fit to aeolian (ambient pressure) data
gives a = 11, θ0 = 50◦ and e = 0.36 (Fig. 4).

Sediment transport and ripple scaling laws

In this section we gather different elements from the existing literature to form a theoretical
framework in which we can interpret our experimental results regarding transport, erosion and
ripple formation.

Saltation fluxes

We formulate a three-layer model of aeolian sediment transport (Fig. 4). Specific terminology
(saltation, reptation, creep) has been proposed to distinguish between the different modes of
transport. Their precise definitions, however, are not consistent throughout the literature. Here
we refer to saltation as the generic word for aeolian grain motion, and define the specific physical
processes in relation to a corresponding transport layer.

Feedback layer — The sediment flux is dominated by the central region of the transport layer.
It is located below Bagnold’s focal point [58], where the grains exert a negative feedback on the air
flow [88, 86, 69, 99], and is well described by the approach of Ungar & Haff [98] summarised below.
Its thickness is on the order of several tens of d or a centimeter [67]. We shall refer to it below
as the ‘feedback layer’. Following these authors, for a given wind shear stress ρfu

2
∗, the windward

momentum balance sets the partition between the fluid-born and grain-born stress contributions:

ρfu
2
∗ = τf + τp. (28)

In the steady state, the fluid-born stress is reduced to its threshold value τp = ρfu
2
t , due to the

grains’ feedback, and we then deduce τp = ρf (u2
∗ − u2

t ). Again, the complexity of transport is
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assumed to be modelled using a single grain trajectory. The grain-born stress can also be expressed
as a function of the vertical particle flux ϕ and the horizontal velocities of ascending or descending
grains, v↑ and v↓ respectively, as

τp = ρpφbϕ(v↑ − v↓), (29)

where φb is the static bed volume fraction. The trajectories of the grains are controlled by their
impact and rebound on the bed. In this layer where the wind is at the threshold, the particles
taking off from the bed must have just enough kinetic energy to escape from the potential traps
between the static grains. Consequently, the velocities of the saltating grains v↑,↓ scale with

√
gd

(Eq. 27), and their typical hop-length is L ∝ d [69]. Under these assumptions, one can then deduce
the vertical flux in the feedback layer:

ϕ ∼ ρfu
2
t

φbρp
√
gd

(
u2
∗
u2
t

− 1

)
(30)

and the corresponding transport flux q = ϕL:

q ∼ ρfu
2
t

φbρp
√
g/d

(
u2
∗
u2
t

− 1

)
. (31)

Both fluxes scale in a quadratic way with respect to the wind shear stress, in good agreement with
experimental and numerical data [92, 69, 79, 68, 99].

Free wind layer — The feedback layer is unstable with respect to the acceleration of the grains
that would fly above Bagnold’s focal point [56]. In this upper region, which we refer to below as
the ‘free wind’ layer, the grains can reach the unperturbed wind velocity v ∝ u∗ and trajectories
are of length L ∝ u2

∗/g, so that the contribution of these grains to the saltation flux would make
q scale with the cube of the wind shear stress (Bagnold’s scaling [58]). This becomes relevant
at very strong winds only [69]. This cubic scaling is also observed for saltation on non-erodible
beds [79], where no feedback layer is present. Steady saltation requires a balance in the exchange
of grains between the feedback layer and free wind layer, associated with this change of velocity
scale, which is the limiting process in the transient case. This phenomenon explains the saturation
of the surface transport properties over few L in the feedback layer but the overall erosion of the
bed in the tunnel at low pressures, due to an unbalanced free wind layer.

Collisional layer — As introduced by Durán et al. [70], aeolian transport involves a third region
at the interface between the feedback layer and the static bed, referred below as the ‘collisional’
layer. In this layer, the grains are found to behave in a quasi-2D gaseous-like manner with a typical
velocity ϕb, the basal value of the vertical flux density profile ϕ(z). The associated collisional stress
is then ρpϕ

2
b . Through a balance with the grain-born stress of the feedback layer ρf (u2

∗− u2
t ), one

can deduce

ϕb ∼ ut
√
ρf
ρp

√
u2
∗
u2
t

− 1, (32)

a formulation which is in good agreement with numerical data [70].

Impact ripples

Following Durán et al. [70], the impact ripples emerge at a wavelength λ ∝ q/ϕb, which is a length
scale associated with aeolian steady transport. Combining Eqs. (31) and (32), one obtains:

λ ∼ ut√
g/d

√
ρf
ρp

√
u2
∗
u2
t

− 1. (33)

Similarly, these authors have shown that the grain velocity scale in the interfacial collisional layer
is also representative of the ripple propagation speed c ∼ ϕb (Eq. 32). Both λ and c thus scale
quasi-linearly with wind velocity, in agreement with experimental data [57]. Adjustment of these
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scaling laws on our data (Supp Fig. 17) yields multiplicative factors of 3.4×10−3 for c and 1.1×103

for λ. For a fixed typical value of u∗/ut ' 1.5, our scalings yield:

c ∼ ut
√
ρf
ρp

=

√
τf
ρp
, (34)

which stays approximately constant with varying pressure (i.e. ρf ) as τf does not vary much upon
decreasing the atmospheric pressure. Similarly, the ripple wavelength follows:

λ ∼ ut√
g/d

√
ρf
ρp

=
1√
g/d

√
τf
ρp
, (35)

which also stays approximately constant for the same reason.

Feedback of sediment transport and impact ripples on the shear velocity

The value of u∗ reported in this article always refers to a shear velocity deduced from wind speed
profiles obtained for a given fan rotation frequency Ω above a flat bed made of glued grains without
any sediment transport. This is rigorous for the measurements of the sediment transport threshold,
performed on a levelled granular surface bed in conditions of residual transport. However, at larger
flow speed, the negative feedback of sediment transport on the fluid velocity induces an enhanced
bed roughness seen by the flow. Similarly, when impact ripples emerge and develop, their growing
amplitude generates a larger effective bed roughness. For a fixed Ω, these two effects increase
the shear velocity. In this section, we discuss how to estimate the actual shear velocity uc∗, in
comparison to the reference value u∗. The results are displayed in Supp. Fig. 15.

To solve the hydrodynamic model combining Eqs. (10,11,12), we assume that, at a given Ω,
the air flow rate and thus the velocity in the central part of the tunnel as well as the pressure
gradient along the tunnel remain constant in first approximation. We therefore consider that the
vertical gradient of the fluid shear stress ' ρfu2

∗/δ is also approximately constant. The model can
be solved under these assumptions in the following two cases.

To account for the effect of the feedback of saltation on the wind speed, we simplify the approach
of Ungar & Haff [98] by changing u∗ to its threshold value ut in (10) in the feedback layer. The
Bagnold’s focal point altitude is at the top of the grain trajectory deduced from the dynamic
threshold calculation. We plot in Supp. Fig. 15a the corresponding ratio uc∗/ut as a function of
the reference value u∗/ut. At low pressure, the curve is close to the diagonal, meaning that the
correction is small. This is due to the fact that the transport layer is imbedded into the viscous
layer, and has therefore a minor effect on the outer flow. As the pressure P increases, however,
the correction is more and more significant. As a consequence, in the experimental runs that we
have conducted for the study of ripple emergence with a fan rotation frequency corresponding to
u∗/ut = 1.5, the actual value of the shear velocity is likely to be a bit larger, when working close
to the ambient pressure.

To model the effect of an increasing aerodynamic roughness during ripple development, we
simply replace the actual grain diameter d in Eq. 11 by an equivalent value d̃ associated with the
ripple amplitude. We plot in Supp. Fig. 15b the corresponding increase of the ratio uc∗/u∗ as a
function of d̃. This graph shows that the effect of the ripple-induced bed roughness on this ratio
decreases with pressure, as a consequence of the fact that the viscous sublayer becomes thicker at
smaller P . In the experiments, the wavelength and propagation speed of the ripples are measured
as soon as they appear, when their amplitude is typically less than a millimeter. We can then
neglect that correction to the shear velocity at this stage.

As a conclusion, these roughening effects are negligible for the determination of the sediment
transport threshold, which is the main goal of the present paper. They are not so important
for the results that we obtained on the characteristics of emerging ripples, but could modify the
wavelength and velocity at the higher pressures – the values of λ and c are probably slightly
overestimated, as corresponding to effectively larger u∗/ut than assumed at large P . Further
experiments using particle image velocimetry are needed to record precise wind profiles above
mobile beds.
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1 meter

Figure 5: Schematics of the set-up, with insert boundary layer tunnel. The working section is
approximately 6 m long, 2 m wide and 1 m high. Right: Photograph of the wind tunnel when
open in halves.

Figure 6: (a) Schematic of insert tunnel with instruments: i) rake of pitot-static tubes connected to
the HCLA-differential pressure instrument; ii) microscope for observing near bed particle move-
ment; iii) lasers inclined at a low angle to the bed illuminating a line approximately along its
centre; iv) web cameras recording bed topography. (b) Photograph of the laser line on the bed,
looking downwind in the tunnel. (c) Photograph of the three pitot static tubes at the downwind
end of the working section.
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Figure 7: Equivalent of Fig. 3a, but at low pressure P = 103 Pa. Circles: data upon increasing
the wind speed. Squares: data upon decreasing the wind speed. The solid line is the best linear fit
trough the data. Data dispersion provides an idea of the error made due to the finite observation
time and the long relaxation time. Insets: typical signals above (left) and below (right) threshold.

Figure 8: Visualisation of sediment transport at ambient pressure. Microscope videogram in the
regime where (a) individual grains are intermittently transported, (b) in the burst regime and (c)
in the permanent transport regime. This allows us to measure the sediment transport threshold,
defined as the transition from (a) to (b) with an unprecedented precision. The wind flows from
right to left.

Grains Quartz grains in this study Walnut shells
Bulk density (kg/m3) ρp = 2640± 30 ρp = 1330± 30

Table 1: Bulk density of the quartz grains used in this study, and of the walnut shells used in the
NASA Martian wind tunnel.

Pressure sensor Ch1 Ch2 Ch4 Ch5 Ch7
G (Pa/count) 0.00987 0.00987 0.00984 0.00980 0.00989

Standard error (×10−4) 3.50 3.51 3.48 3.46 3.52

Table 2: The average sensitivity (G) for five 2.5 hPa pressure sensors. The values are based values
calculated at six pressure values in the range from 3.4 to 972 hPa.
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Figure 9: Calibration data for capacitance (a) and Pirani (b) pressure sensors. Raw signal of the
sensors as a function of the true pressure P . The capacitance sensor presents an offset value while
the Pirani sensor is more accurate at small pressure.
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Figure 10: Raw data (counts) for a 2.5 hPa pressure sensor measuring differential pressures from
a pitot-static tubes at 83 mm height above the granular bed below transport threshold. The blue
and red hatched areas mark the beginning and end of the intervals during which the average flow
speed was measured.
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Figure 11: Air velocity above the granular bed measured with a LDA-instrument plotted versus
velocity measured with a pitot static tube connected to the HCLA-instrument. The two symbols
represent two data sets.
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Figure 12: Wind velocity profiles at different pressures. The error bars are smaller than the
symbol size. Solid lines: theoretical fits (see section 2.4), from which the corresponding wind
shear velocity u∗ is deduced. Symbols in panel (a) from bottom to top: P = 998, P = 720.2,
P = 518.3, P = 373.9, P = 269.8 and P = 194.6 hPa. Symbols in panel (b) from bottom to
top: P = 140.9, P = 102.1, P = 74.3, P = 54.1, P = 39.05, P = 29.1, P = 21.7, P = 16.1 and
P = 13.4 hPa. Uncertainties are on the order of the symbol size or smaller.
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Figure 13: Comparison of velocities measured over a fix (Ufix) or a mobile (Umob) granular bed, for
different pressures, at the threshold value Ω = Ωt. Although sediment transport at the threshold
is residual and intermittent, it may gradually clog the Pitot tubes leading to a slightly smaller
apparent velocity. The clogging problem is enhanced at pressures lower than 103 Pa. Altogether,
the deviations to unity are consistent with the dispersion of data points, providing direct proof
that negative feedback of sediment transport on the wind velocity is negligible at threshold.
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Figure 14: The ratio of friction speed u∗ and fan frequency Ω (in Hz) as a function of the tunnel
pressure (a) and Reynolds number (b). The solid line represents an empirical fifth order polynomial
fit.
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Figure 15: (a) Computation of the shear velocity ratio when corrected to account for the presence
of sediment transport uc∗/ut, as a function of the reference value u∗/ut corresponding to the flat
bed composed of fixed grains of diameter d = 125 µm. The line uc∗ = u∗ is shown in red. (b)
Computation of the factor by which the shear velocity gradually increases due to ripple-induced
bed roughening, as parametrized by an equivalent diameter d̃. In both panels, the different lines
correspond to computations for different pressures P (values in legends).
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Figure 16: Raw data of the threshold fan frequency Ωt as a function of pressure P . The solid lines
are best fits by power laws, showing an exponent −0.3 at low pressure and −0.5 at high pressure.
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Figure 17: Wavelength (a) and propagation speed (b) of impact ripples at ambient pressure
(adapted from [57]). The best fit by Eq. (4-5) of the main text is superimposed, allowing one to
extract the multiplicative factors.
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Figure 18: Transport threshold under water in the dimensionless plane Shields Θ vs Galileo G
numbers. Circles: data from the literature gathered by [75]. Diamonds: average over data in a
moving window. Solid lines show the model with (violet) and without (orange) cohesion.
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Figure 19: Transport threshold in the dimensionless plane Shields Θ vs Galileo G numbers plotted
with all data from [78]. The data have been obtained for d = 212 µm in air (circle) and CO2 (down
triangle) varying tunnel pressure, and for variable grain sizes d (from top to bottom, 35, 52, 75,
106, 151, 212, 301 and 641 µm) at four different pressures (5, 10, 20 and 50 hPa, up triangles). Our
data: green diamonds. Saltation threshold data at ambient pressure from the literature [64, 92]:
squares. Solid lines: same as in Fig. 4. Note that, in contrast with Fig. 4, the symbols’ color
codes here for the gravitational Stokes number D = 1

η

√
ρp(ρp − ρf )gd3 =

√
ρp/ρfG such that

points obtained for the same grain diameter d at different pressures share a same color.
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Figure 20: Transport threshold in the dimensionless plane relalting the Shields number Θ to the
gravitational Stokes number D at constant Galileo number around G ' 1. As in Supp. Fig. 19,
data from [78] are represented with triangles, and our data with diamonds. The best fit by a
power-law gives a phenomenological relation of the form ΘD ' 8.8.

In wind tunnel Data at ambient pressure and temperature (P = 1 bar, T = 293 K)

gravity g = 9.81 m/s2

grains ρp = 2636 kg/m3 d = 125 µm

air ρf = 1.204 kg/m3 η = 1.825× 10−5 Pa
s

G = 13.5

CO2 ρf = 1.84 kg/m3 η = 1.5× 10−5 Pa s

On Mars Data representative of Gale crater (b)

gravity g = 3.7 m/s2

grains ρp = 3000 kg/m3 (a)

CO2 ρf =
1.89× 10−2 kg/m3

P = 8.5 hPa T =
243 K

In wind tunnel Data at the Martian density ratio ρp/ρf = 1.59× 105, but T = 293 K

air ρf =
1.66× 10−2 kg/m3

P = 13.8 hPa G = 1.58 deff = 140 µm

CO2 ρf =
1.66× 10−2 kg/m3

P = 9.0 hPa G = 1.93 deff = 160 µm

Table 3: Summary of main data values for fluid and grain mass densities (ρf , ρp), fluid dynamic
viscosity (η), grain size (d), gravity (g) and pressure (P ). Notes: (a) Estimate of Martian grain
composition [71]. (b) Martian in-situ measurements by NASA’s rover Curiosity [94]. The Galileo
number G is here computed for the quartz grains in the wind tunnel, either in the ambient con-
ditions, or at the Martian-like value of the atmospheric density (the two values only differ by the
slightly different viscosities of air and CO2). In the Martian context, these G-values correspond to

grains of size deff =
[
(Gη)2/(ρfρpg)

]1/3
.
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Figure 21: Data from [97] plotted in the dimensionless plane Shields Θ vs Galileo G numbers
with two symbols: their ‘fluid’ (circle) and ‘general’ (square) thresholds for three grain sizes (310,
730 and 1310 µm). Note the very large data scatter, associated with qualitative definitions of
thresholds: visual observations ‘as the bed transitioned from intermittent, sporadic motion (fluid
threshold) to continuous transport (general threshold)’. For reference: as in previous similar
figures, data from [78] are represented with triangles and our data with diamonds. Solid lines and
color code: as in previous Supp. Fig. 19
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