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ABSTRACT In conventional wireless communications, cyclic-prefix orthogonal frequency division multi-
plexing (CP-OFDM) has been adopted as the baseline multicarrier scheme. Despite their corroborated merits,
they are explored only in the asynchronous and strictly orthogonal scenario. To overcome the limitations
observed in CP-OFDM, to support the constraints imposed by different SG scenarios, and also to improve
robustness against channel impairments, several waveforms have been investigated. Quadrature amplitude
modulation associated with filter-bank multicarrier (QAM-FBMC) has been an auspicious technology for
5G communication systems and beyond. The main feature of QAM-FBMC is its capacity for high spectral
confinement, which is possible thanks to the per-subcarrier filtering. Aiming to improve the QAM-FBMC
performance, in this paper, we propose a prototype filter design based on the discrete prolate spheroidal
sequences (DPSS), also known as Slepian sequences. The presented filters were obtained by optimizing
the weights that are used to compose the desired prototype filter to such an extent that they minimize the
intrinsic interference of the system. At the same time, these weights keep spectral confinement of the filter
for a previously determined bandwidth limitation. Simulation results show that the optimized filters achieve
higher intrinsic interference attenuation than the competitors. Indeed, we can confirm the improvement in the
system performance brought by the usage of the optimized filters through the bit error rate (BER) evaluation.
Furthermore, the proposed method is flexible thanks to the suitability of its parameters.

INDEX TERMS Filter-bank multicarrier, QAM-FBMC, wireless communication, 5G, prototype filter deign,

DPSS, Slepian functions.

I. INTRODUCTION

Waveform design for post orthogonal-frequency-division-
multiplexing (OFDM) systems, e.g., the fifth generation
(5G) and beyond (B5G), is a challenge due to the
amount and the nature of the services that must be pro-
vided [1]-[3]. Among the recent candidates we can cite
the offset-quadrature amplitude modulation filter-bank mul-
ticarrier (OQAM-FBMC) [4], [5]. Its major characteristics
lie in keeping only the real part of the orthogonality con-
dition, crucial for OFDM systems, and in using a per-
subcarrier pulse-shaping to reduce out-of-band emissions
(OOBE). Consequently, it provides flexibility in waveform
design when compared to OFDM and allows heterogeneous
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services, which is also a requirement of 5G/B5G communi-
cation systems. Unfortunately, the one-dimensional intrinsic
interference observed in OQAM-FBMC systems becomes
a source of problems when combining known techniques,
like multiple-input multiple-output (MIMO) and maximum
likelihood (ML) detection [6], [7].

Pulse-shaping OFDM systems with good time-frequency
localization (TFL) have been proposed in [8], [9] to cope
with doubly-selective channels. In order to keep the per-
fect reconstruction of the data, the authors in [10], [11]
have considered a time-frequency lattice associated with an
OFDM system with a lattice density (1/7F) lower than 1
(ie. TF > 1), where T is the symbol period and F is
the subcarrier frequency spacing. To overcome the draw-
backs observed in OQAM-FBMC, a QAM-based FBMC
scheme (QAM-FBMC) with a single prototype filter has been
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proposed in [12]. It can be seen as a generalized OFDM
with a time-frequency lattice of density equal to one. A more
complex structure of QAM-FBMC, composed of two proto-
type filters, has been proposed and studied in [13] and [14].
An even more complex structure, based on several prototype
filters, was proposed in [15]. The use of more than one
prototype filter reduces the interference but requires more
elaborated receivers in order to mitigate the observed residual
intrinsic interference.

Several researchers have been working on different tech-
niques for enhancing QAM-FBMC performance. A basic
iterative interference estimation and cancellation have been
proposed in [16]. The authors in [17] proposed an interference
mitigation scheme based on precoding and decision feedback
equalization. In [18] researchers proposed an iterative inter-
ference cancelation (IIC) receiver to minimize the interfer-
ence. Also, the authors of [19] proposed a nonlinear receiver,
that uses IIC and parallel interference cancellation (PIC)
concepts in multiple-input multiple-output (MIMO) systems
with minimum mean square error (MMSE) receiver.

We can also find in the literature several works on pro-
totype filter design for QAM-FBMC systems in an attempt
to enhance its performance. In [13] the authors proposed the
prototype filter called Type I, which is based on the minimiza-
tion of the self inter-symbol interference (ISI) subjected to
the fall-off-rate limitation. As the obtained filter in [13] was
poorly concentrated in the time-domain, another waveform
design considering time domain localization based on a single
prototype filter was suggested in [20] at a cost of a slight
increase in interference. In [20] the real coefficients were
obtained from the minimization of self signal-to-interference
ratio (self-SIR), under the constraints of fall-off rate and
time dispersion. By using a global optimization algorithm,
the authors proposed three different filters. The number of
frequency-domain coefficients of their filters was set as 7,
11, and 15, which led to the filters named Case A, Case
B, and Case C, respectively. We can also cite filter design
proposals based on carrier frequency offset (CFO) [21]; fil-
ter design proposals specifically for minimum mean square
error (MMSE) based receiver for a given signal-to-noise
rate (SNR) value [22]; and, more recently, a design based on
the ISI minimization subject to OOBE limitation [23]. How-
ever, the performance evaluations of these prototype filters
remain unsatisfactory, since each proposal considers differ-
ent parameters for the optimization, such as specific SNR,
bandwidth, or class of the receiver. Consequently, a direct
comparison of their performances is questionable.

The authors of [13] have proposed the use of two prototype
filters to reduce interference. However, the bandwidth of the
second filter is significantly larger than that of the first filter.
This change makes the comparison to the case of using one
prototype filter unfair. Besides, the complexity of the system
also increases.

We can look at prolate spheroidal wave functions (PSWFs)
proposed by Slepian [24], [25], as a possible solution for
QAM-FBMC prototype filter design. David Slepian proposed
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a solution for the time and frequency localization through a
set of functions denominated prolate spheroidal wave func-
tions (PSWFs), which are maximally energy concentrated in
a given time and bandwidth limitation. It is known that the
Slepian solution for the discrete-time problem, called discrete
prolate spheroidal sequences (DPSS), is the equivalent ver-
sion of PSWFs in discrete-time domain [26], consequently
they have the same properties. Both DPSS and PSWFs have
been widely studied [27]-[31].

The DPSS has a wide range of classical signal processing
applications [32]-[38]. Compressive sensing [33], parametric
waveform and detection of extended targets [34], wall clut-
ter mitigation and target detection [35], design of baseband
receivers [36], fiber Bragg grating (FBG) sensors for optical
sensing systems [37], and multipath suppression for contin-
uous waves [38] are just few examples.

We propose, in this paper, a prototype filter specifically
designed for QAM-FBMC systems considering a matched
filter at the receiver. We consider the discrete prolate
spheroidal sequences (DPSS) in order to achieve good energy
concentration for a given time and bandwidth limitation.
However, differently from traditional filter designs, we did
not minimize the OOBE, but the intrinsic interference of the
system. We compare the performance of the obtained filters
to some known filters from the state of the art.

The proposed prototype filters show high interference
attenuation and, as expected, significantly improve the sys-
tem BER performance. In addition, since the bandwidth of
the desired filter is adjustable through the DPSS parameters,
the proposed procedure shows flexibility in terms of spectrum
confinement.

The contributions presented in this paper are:

o A new prototype filter for FBMC-QAM based on the
most energy concentrated DPSS sequences.

« A new technique to optimize prototype filters for
QAM-FBMC based on DPSS that minimize the intrinsic
interference for a given bandwidth limitation.

« A system performance comparison of the proposed pro-
totype filters with the ones in the literature considering
both AWGN and fading channels.

For the sake of clarity, we start by describing the
QAM-FBMC system and deriving its intrinsic interference
in Section II. Then, we give an overview of PSWF and
DPSS in Section III. We present our DPSS-based prototype
filter design as an optimization problem in Section IV. The
optimization results are presented in Section V and the per-
formance evaluation of the proposed filters in Section VI. The
conclusions are drawn in Section VII.

Il. SYSTEM MODEL OF QAM-FBMC

Let us define a; , as the transmitted symbol allocated
at the k’-th subcarrier and transmitted in the n’-th QAM-
FBMC symbol. Thus, the QAM-FBMC transmitted signal,
also known as the Weyl-Heisenberg system of functions [39],
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can be given by
M—-1
s() =) Y awws(t —n'T)ePm Y, )
n k'=0
where M is the number of subchannels, g(¢) is the unit-energy
prototype filter with overlapping factor K (i.e. length L, =
KM), T is the symbol time, and F is the subcarrier frequency
spacing.
Considering additive white Gaussian noise channel
(AWGN), the continuous-time received signal can be
described as

r(t) = (1) + (), (@)

where v(¢) is Gaussian white noise.

At the receiver, the output of the n-th symbol of the k-th
filter can be expressed as

ak,n

o0
= / r(t)g*(t — nT)e />y

oo M—1
- / (Z Z ak/,n/g(t — n’T)e/QYTFk’t>
—00 ‘

n k=

gt — nT)e 7 gt 4y,

M—1 00
= Z Z ak/,n// gt — I’l/T)
0 00

n/ k/:
g*(t _ nT)e—jZT[F(k—k/)tdt + vk,n
= akn+ Vin
o0 P ’
4 awr [ gD e—nT)e P
') >
(k,n)

interference
3)
where v, = %0 v(t)g*(t — nT)e /> Fk gy,
Let us recall the ambiguity function definition [40]

+00

Ay(To, Fo) = / g()g*(t — To)e 2™ Holgr, (4)

—00

where * denotes complex conjugate. By setting A,, = (n—n’)
and Ay = (k — k') we can derive the function Ag(T Ay, FAy)
as

+m P
Ag(A,T, AkF)Z/ g(t —n'T)g*(t — nT)e 7272k gy
—00
®)

Thus, by using (5) we can rewrite (3) as

Zlk,n = dagn+ Z

(k' ,n")F(k,n)

ap wAg (AT, A F)+vi . (6)

interference

As an example, we show in Fig. 1 the ambiguity function of
the prototype filter case C proposed in [20] for QAM-FBMC
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FIGURE 1. Magnitude of ambiguity function for Case C prototype
filter [20], (|Ag(T, F)I)-

systems with a single filter. The red marks represent the rect-
angular lattice structure of the QAM-FBMC system. These
points, except for the one in the center (A, A,) = (0, 0)),
indicate where we should sample the ambiguity function in
order to obtain the intrinsic interference coefficients which
will be used to compute the system interference.

Let us define the intrinsic interference coefficients as
Ca,ar = Ag(AnT, ApF), represented by the red points in
Fig. 1. Therefore, the total interference over the k-th sub-
carrier at the n-th time instant can be calculated using the
interference coefficients to weight the neighbor symbols as

follows
o=}
(k' ,n")#(k,n)

ay w T apa,- @)

As we can see, these coefficients are essential to calculate
the intrinsic interference, since the quantity of I'a, A,, when
(k',n") # (k,n), is dedicated to the interference that comes
from the surrounding symbols (X', n’).

Ill. DISCRETE PROLATE SPHEROIDAL SEQUENCES (DPSS)
The problem of confining a signal in time and frequency
domains simultaneously has been discussed in digital signal
communication systems for a long time [41]. The energy
time-concentration level of a signal can be measured as the
fraction of the signal’s energy lying in a time interval of length
2Ty. This measure can be mathematically written as

RO
J23 Igo))Pde

If g(z) is strictly time-limited to the interval [—Tg, To]
the energy concentration level P will achieve its maximum
value of one. As time and frequency are inversely related, the
Fourier transform of a time-limited function is equal to an
infinitely wide bandwidth.

®)
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The time and frequency concentration issue, which con-
sists in maximizing P while keeping g(¢) band-limited, was
first studied by Slepian, Pollak, and Lindau [24], [25].
They developed a set of band limited functions v,(¢, b) that
are maximally concentrated in a given time interval [24].
These functions are called Prolate Spheroidal Wave Func-
tions (PSWFs), also known as Slepian functions.

The approach used by Slepian is based on angular and
radial solutions in spheroidal coordinates of the first kind to
the Helmholtz wave equation So, (b, t) and Ro, (b, 1), respec-
tively. Hence, the PSWFs can be expressed as [24], [42]

VAp(0)/To

1t
Yp(t, b) = So, (1% —) ) 9
! \/ L (S0, (b, 1)) dr To
where A,(b) is given by
b 5
Jp®) = = [Rop(b, 1) ] (10)

The PSWFs are dependent on the continuous time param-
eter ¢, on the order p of the function, on the time parameter
To, and also on the parameter b which is defined as

b= 2" (11)

where B is the bandwidth of (¢, b) of a given order p.

The PSWFs, (¢, b), concentrated in the interval
[Ty, To], can be defined as the normalized eigenfunctions
of the following integral equation [26], [27]:

/TO sin (7w (x — 1)B)
T wT(x —1)

The sinc function in (12) can be regarded as a symmetric
Toeplitz operator kernel, and the integral of (¢, b) mul-
tiplied by this kernel can be called a symmetric Toeplitz
operator [26]. Also, A,(b) are the eigenvalues of the sinc
function kernel, which can also be seen as the index of
energy concentration on the interval [—Ty, To] [43]. If Ao(b)
denotes the largest eigenvalue of (12), then its corresponding
eigenfunction, (2, b), is commonly called Slepian window,
or prolate spheroidal window in the continuous-time domain.

In addition, we can also examine the time/frequency con-
centration problem in discrete time. For a given time interval
2Ty with L samples, and foreachp = 0, 1, 2,..., L — 1,
Slepian defined the discrete Prolate Spheroidal Sequences
(DPSS) <¢£p )(L, B)) as the real solution to the system of
equations

Y2, bYdt = 2, (D)p(x, b).  (12)

Z sin (7t (¢ — [)B)

) = ®
pp—T ¢, (L, B) = 1y(L, B)p (L, B) (13)

=0
for ¢ € Z, and A,(L, B) are the eigenvalues of the sinc
function kernel [44]. This is the discrete time representation
of the system described in (12).

In our application, we are interested in the sequences
oL, B) limited to ¢ e {0,L — 1}, obtained by
index-limiting the DPSS. In this case, the sequence ¢V, B)
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FIGURE 2. Example of discrete prolate spheroidal sequences (DPSS) of
length L = 512.

is the unique sequence that is time-limited and the most
frequency-concentrated, (b(l)(L, B) is the second sequence
having maximum energy concentration among the DPSS, and
orthogonal to ¢(0) (L, B), and so on. Therefore, we can rewrite
(13) in a matrix approach as

OL,B$P(L,B) = ML, B)$P(L, B). (14)
These sequences are thus seen to be the eigenvectors of the

L x L matrix Q(L, B) with elements [44], [45]:
sin(z (I — ¢)B)

l,c=0,1,2,...,L -1
w(l—c)

15)

O, B),c =

In Fig. 2 we illustrate some of these sequences.

PSWFs should not be confused with the solution of the
discrete-time energy concentration problem, the DPSS. DPSS
are much simpler to calculate, and they are known only in a
finite interval [27].

IV. DPSS-BASED PROTOTYPE FILTER DESIGN

The features presented here suggest the potential utility of
DPSS for filter-bank multicarrier systems. The first prolate
sequence, ¢(0)(L, B), is also known as the classical prolate
window. It provides the optimum frequency-concentrated
pulse for a given filter length and bandwidth [44]. It is defined
as the eigenvector corresponding to the largest eigenvalue of
the matrix Q(L, B), usually called Slepian window, or prolate
spheroidal window in the discrete-time domain.

Another possible solution that we can think of for filter
design is the Kaiser window [46], [47], which employs Bessel
functions in order to obtain an approximation of the prolate
window. Although it has the advantage of its formulation
through a closed-form expression, it is sub-optimal in terms
of out-of-band leakage when compared to the prolate window.

Knowing favorable characteristics of discrete prolate
spheroidal sequences, we propose a prototype filter design
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technique based on DPSS, and we optimize the obtained
filter. For this, we consider the spectral confinement, through
the band-time parameter of DPSS, and minimize the intrinsic
interference of the QAM-FBMC system by using its ambigu-
ity function. We start by designing a function that represents
the desired prototype filter using the DPSS.

As the eigenvalues can be regarded as the index of energy
concentration of the DPSS [24], our proposal consists in
selecting the eigenvectors o (Lg, B) of matrix Q(L,, B)
whose eigenvalues A,(Lg, B) are higher than a certain thresh-
old y. The first eigenvalues have strong energy-concentration
behavior, they are very close to 1, and the remaining eigen-
values are close to 0 [24]. By doing this process, we select
the N, most energy concentrated sequences ¢’ (Lg, B) for a
given band limitation B.

Finally, the proposed prototype filter can be described as a
weighted sum of the N, sequences as follows:

Ne—1
g= > w? L. B), (16)
p=0
where g = [g[0].g[1],....,8[Ly — 1]] is the discrete

response of g(t) with g[m] = g (m%), and w, is the weight
coefficient.

From the definition of the desired prototype filter given in
(16), and taking into account the interference of the system
described in (7), we propose an optimization problem to find
the best prototype filter for QAM-FBMC systems. In this
sense, we want to find the optimal weights w, of the prototype
filter that minimize the energy of the intrinsic interference
coefficients I'a, o, subject to the filter energy constraint.
So that, we formulate our optimization problem as

2
2 Apm
ming, Z Zg[m —n'Mg*[m —nMle™ s
(k',n'y 1 m
2
(k,n)
st. glg=1 (17)

where the cost function is the discrete version of the ambigu-
ity function given in (5).

In order to solve the above optimization problem, we use
in this work the interior point (IP) method [48]. We have
done the optimization several times, each time with different
random initial weights w, and we select the best-obtained
result, i.e. the one with the smallest amount of interference.
Our obtained prototype filters are denoted as DPSS-based
filters (DPSSb).

Algorithm (1) describes the procedure adopted to solve the
optimization problem (17).

V. OPTIMIZATION RESULTS

In this section, we present the obtained optimization results
for a specific FBMC-QAM system settings. We set the over-
lapping factor of the desired filter as K = 4, and the number
of subcarriers M = 128, which results in a filter length
L, =512.
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Algorithm 1 Prototype Filter Design.
1: procedure Filter Design(Ly, B, inax)

2: interf,,;, < 00

3: compute Q(Lg, B) as in (15)

4 select the eigenvalues greater than y

5: select the corresponding eigenvectors ¢(p)(Lg, B)
6: for i = 1to i, do

7 w ~ CN(On,x1,1In,)

8 w<—w/|w]

9: compute g according to (16)
10: w < solution of problem (17) through IP
11: compute g according to (16)
12: interf = Z(k’,n’);é(k,n) |FAkAn|2
13: if interf < interf,,;, then

14: interf,,,;, < interf
15: opt < 8
16: end if
17: end for

18: return g,

19: end procedure

For a good compromise between N, and OOBE, we used
in our designs the threshold y = 0.99 for the eigenvalues. For
a fair comparison to the state-of-the-art filters known in the
literature, we have determined the bandwidth as B = 7/M for
the optimization of the filter that was compared to the Case
C filter proposed in [20]. For the comparison to the Type 1
filter proposed in [13] we set the bandwidth B = 1.7/M . The
compared filters have approximately the same bandwidth.
These filters have been chosen due to their characteristics,
they were not optimized for a specific SNR or CFO. To the
best of our knowledge, there is no prototype filter in the
literature for QAM-FBMC with bandwidth B = 3/M, but
we have also optimized a prototype filter with this bandwidth
in order to demonstrate the proposed procedure flexibility.

In the case of B = 1.7/M, by setting y = 0.99, we have
found N, = 3 eigenvectors, therefore we had to optimize
3 weights w),. In Fig. 3 we present the ambiguity function of
the DPSS-based optimized filter. As we can notice, the inter-
ference spreads differently in time and frequency domains.
It spreads more in time than in the frequency domain.

We have also compared the frequency response of the opti-
mized DPSSb B = 1.7/M filter with the frequency response
of Type I filter [13] in Fig. 4, both of them normalized to
unit energy. As expected, due to the choice of B, they have
approximately the same bandwidth. However, their energy
distribution is not the same. It happens due to the filter design
procedure, which is focused on the intrinsic interference
minimization, not in OOBE, as observed in classical filter
designs.

The optimization procedure was also applied for the com-
parison with the Case C filter [20]. We present in Fig. 5 the
ambiguity function of the optimized DPSSb B = 7/M filter.
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FIGURE 3. Magnitude ambiguity function of the proposed DPSSb 1.7/M
filter, (|Ag(T, F)|)-
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FIGURE 4. Magnitude frequency response of the proposed DPSSb 1.7/M
filter and Type I filter [13].

For this optimization, considering y = 0.99, the number of
selected eigenvectors was N, = 25.

The ambiguity function of the DPSS-based 7/M optimized
filter is not symmetric. This fact comes from the complex
values of the optimized weights. As expected, comparing this
ambiguity function to that for B = 1.7/M, we can notice
an increase in the interference spreading in the frequency
domain. It comes from the fact that, in this case, we are opti-
mizing a filter with bandwidth far greater than the subcarrier
spacing 1/M.

The comparison between the frequency response of DPSSb
7/M filter and Case C [20] filter is also presented in Fig. 6.
Once again, the optimized filter and the known filter have
approximately the same bandwidth, however, their energy
distribution is not the same.

Despite achieving higher attenuation at the edges of the
transmission band, the passband of the DPSSb 7/M is not
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FIGURE 5. Magnitude ambiguity function of the proposed DPSSb filter
7/M, (|Ag(T, F)I).
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FIGURE 6. Magnitude frequency response of the proposed DPSSb filter
and Case C [20].

flat. This result comes from the fact that the bandwidth of
DPSSb 7/M comprises more than one subcarrier spacing
(1/M). As we minimize the interference coefficients I'a A,
which are spaced by one subcarrier spacing, some of them are
inside the considered passband of the optimized filter.

In order to make a comparison of the prototype filters,
we present, in Table 1, some characteristics of the known and
the proposed filters. We compare the inter-symbol interfer-
ence (ISI) observed in a QAM-FBMC system when using
all of these prototype filters. Besides, we evaluate the out-
of-band energy (OOBE) of them considering their bandwidth
and we also classify them by the nature of their coefficients.

By increasing the desired bandwidth it is possible to
decrease the ISI of the optimized prototype filter. Despite
having approximately the same bandwidth, the DPSSb 1.7/M
filter presents smaller ISI than the Type I filter, however,
it happens at a cost of higher OOBE. Unlike what happens
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TABLE 1. 1Sl and OOBE of different filters.

‘ Filter [ IST | Coefficient | OOBE
Case C [20] -17.42 dB Real 5.28e-04
DPSSb (proposed) 7/M -18.95 dB Complex 4.21e-06
[ DPSSb (proposed) 3M [ -1447dB | Complex [ 3.30e-05 |
Type I[13] -10.63 dB Complex 4.68e-06
DPSSb (proposed) 1.7/M | -12.60 dB Complex 3.54e-04

BER

108 F |—%—DPSSb1.7/M \ 3
— & —Typel
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107F |—© —Typel+IliCt 3
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FIGURE 7. BER performance of QAM-FBMC system with 4QAM
modulation, DPSSb 1.7/M filter and Type I [13] filter over AWGN channel.
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FIGURE 8. BER performance of QAM-FBMC system with 16QAM
modulation, DPSSb 1.7/M filter and Type I [13] filter over AWGN channel.

with the DPSSb 1.7/M filter, the optimized DPSSb 7/M
has approximately the same bandwidth as that of the Case
C filter. Its ISI is smaller and also its OOBE. This fact
can be explained by the complex nature of the optimized
filter coefficients, whereas Case C filter coefficients are real.
It is important to point out that the proposed DPSSb 7/M
filter achieves the highest interference attenuation among the
optimized filters, and the smallest OOBE.
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FIGURE 9. BER performance of QAM-FBMC system with 4QAM
modulation, DPSSb 1.7/M filter and Type I [13] filter over pedestrian
channel.
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FIGURE 10. BER performance of QAM-FBMC system with 16QAM
modulation, DPSSb 1.7/M filter and Type 1 [13] filter over pedestrian
channel.

VI. PERFORMANCE EVALUATION
In this section we evaluate the performance of the
QAM-FBMC system when using the optimized DPSS-based
(DPSSb) prototype filters and compare the results with those
obtained when using the prototype filter Case C proposed
in [20] and Type I proposed in [13].

The performance of the prototype filters was evaluated
through the bit error rate (BER) over Additive White Gaus-
sian Noise (AWGN) channel and also over the pedestrian
channel, defined by 3GPP [49]. The presented results are
obtained by averaging over different channel instantaneous
realizations. The performance evaluation was performed
over different modulation levels: 4-QAM, 16-QAM and,
64-QAM.

In order to enhance the overall system performance, the
iterative interference cancellation (IIC) [16], [18] was applied
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FIGURE 11. BER performance of QAM-FBMC system with 64QAM
modulation, DPSSb 1.7/M filter and Type I [13] filter over pedestrian
channel.
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FIGURE 12. BER performance of QAM-FBMC system with 4QAM
modulation, DPSSb 3/M filter over pedestrian channel.

at the receiver. For the sake of clarity, we also present the
Genie Aided performance where the interference is assumed
to be perfectly known at the receiver.

In Figs. 7 and 8, we present the BER performance of
QAM-FBMC system over AWGN channel with 4-QAM and
16-QAM modulations respectively. We compare the results
using DPSSb 1.7/M optimized filter with the results of Type
I filter. In the case of 4-QAM modulation, the system per-
formance can be significantly improved by the use of the
optimized filter. However, with just one IIC iteration it is
possible to achieve the same performance for both filters,
which is the same as the Genie Aided. Even observing a
significant degradation in the performance for 16-QAM mod-
ulation compared to the 4-QAM modulation, the proposed
filter outperforms the Type I filter. In this case, applying the
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FIGURE 13. BER performance of QAM-FBMC system with 16QAM
modulation, DPSSb 3/M filter over pedestrian channel.
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FIGURE 14. BER performance of QAM-FBMC system with 64QAM
modulation, DPSSb 3/M filter over pedestrian channel.

IIC technique, even with two IIC iterations, the proposed
DPSSb 1.7/M outperforms the Type I filter.

The QAM-FBMC system was also evaluated over pedes-
trian channel. Figs. 9, 10, and 11 compare the performance
of DPSSb 1.7/M and Type I filters when using 4, 16, and
64-QAM modulation respectively. In the case of 4-QAM
modulation, even without using IIC technique, the DPSSb
1.7/M performance is very close to that of Genie Aided,
whereas for Type I one IIC iteration is necessary to achieve
the same performance.

Considering 16-QAM and 64-QAM modulation, we can
observe an overall system degradation as expected. Once
again the optimized filter outperforms the Type I filter and
achieve the Genie Aided performance with 16-QAM modu-
lation by performing 3 IIC iterations. Although for 64-QAM
modulation the system suffers from high degradation, we can
still confirm the superiority of the DPSSb 1.7/M filter, since
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FIGURE 15. BER performance of QAM-FBMC system with 4QAM
modulation, DPSSb 7/M filter and Case C [20] filter over pedestrian
channel.
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FIGURE 16. BER performance of QAM-FBMC system with 16QAM
modulation, DPSSb 7/M filter and Case C [20] filter over pedestrian
channel.

it achieves almost the same performance of Type I after 5 IIC
iterations but with just 3 iterations.

As we did not find in the literature a prototype filter with
approximately the same bandwidth to make a fair comparison
to the DPSSb 3/M, we present its performance in Figs. 12, 13,
and 14 compared to the Genie Aided performance in the cases
of 4-QAM, 16-QAM, and 64-QAM modulation respectively.

As we can see, for 4-QAM modulation we achieve the
same performance as the Genie Aided, even without IIC. The
Genie-Aided performance is achieved after 3 IIC iterations
when the 16-QAM modulation is applied. In the case of 64-
QAM modulation, the improvement obtained with our pro-
posed DPSSb filter applied in tandem with IIC is significant.

For the comparison to the Case C filter, we have opti-
mized a prototype filter DPSSb with bandwidth B = 7/M.
We present, in Figs. 15, 16, and 17, the system performance
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FIGURE 17. BER performance of QAM-FBMC system with 64QAM
modulation, DPSSb 7/M filter and Case C [20] filter over pedestrian
channel.

when applying 4-QAM, 16-QAM, and 64-QAM modula-
tions, respectively.

In the case of 4-QAM modulation, the Genie-Aided per-
formance is achieved even without IIC. Besides, both filters
have the same performance until approximately 34dB of
Ey/Ny. After that, the performances are slightly different.
One IIC iteration is needed for achieving the same perfor-
mance of Genie Aided in the case of 16-QAM modulation
for both filters. However, without IIC the optimized filter
outperforms the Case C filter. Once again we can notice a
slight difference between the performances for E /Ny greater
than 34dB. In the case of 64-QAM modulation, the overall
system performance deteriorates. Despite that, DPSSb 7/M
filter achieves better results when compared with the Case C
filter, until three IIC iterations, when they have very similar
performance.

VIl. CONCLUSION

In this paper, we propose a novel method for the design of
prototype filters for QAM-FBMC systems which are based
on DPSS. We consider the spectral confinement through
the band-time parameter of DPSS and minimize the intrin-
sic interference coefficients of the QAM-FBMC system.
As a result, the obtained filters achieve smaller ISI than
the competitors found in the literature. Furthermore, our
proposed design shows to be flexible considering their
adjustable parameters as bandwidth, overlapping factor, and
filter length.

The performance of the proposed DSSSb filters was eval-
uated through the BER of the system and compared to known
filters, such as Case C and Type I, which are strong competi-
tors among the state of the art. We consider different modu-
lation levels, AWGN, and pedestrian channels, and for all the
considered scenarios the DPSSb-optimized filters outperform
the competition, with and without interference cancellation.
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